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Abstract

Fractals are mathematical sets with interesting features but without clear mathematical defini-
tion. They are infinite-detailed and have self-similar patterns, which makes them well-suited for
rendering and artistic purposes.

A common problem when rendering fractals is, that choosing an appealing camera position
and path is difficult due to the delay generated by computing the fractals. Furthermore choosing
the right lighting for a scene is time consuming as well and therefore we propose an interactive
application to generate visual interesting images of fractals to solve those issues.

In this paper we describe the theory behind rendering fractals and an approach to the problem
of interactive fractal rendering. Our approach consists of a ray caster, which uses the CUDA-
API as well as real-time rendering techniques to give interactive previews of fractals. We also
provide a high quality renderer to generate detailed images of user-generated camera paths and
lighting conditions.

To enhance the visual quality of the images, we implemented effects such as High Dynamic
Range rendering (including a tone mapper), a bloom effect and a global illumination approxi-
mation. We also present our solution of calculating the normal vectors, which is essential for
evaluating the light transport on the fractal.
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CHAPTER 1
Introduction

Fractals are used to create terrain and other nature like objects as well as objects for creating
visual appealing images. Because of their infinite complex geometry with fractal structures on
every scale, fractals are a worst case scenario for rendering. The infinite details of their structure
will always lead to aliasing artifacts at some point. Therefore extra computational power is
needed to reduce aliasing and increase the quality of the resulting image.

This results in increased rendering time. When it comes to exploring a fractal, changing the
rendering environment (the light setup, reflectance properties, etc. for fractals in three dimen-
sional space or coloring techniques for two dimensional fractals for example) or generating a
camera flight/zoom, a delay between the users action and the corresponding image generation
makes an exploration of the available parameter space time consuming. We observe that the
recent improvements in general-purpose computing on graphic processing units (GPGPU) and
the increased computing power on graphics cards are sufficient enough to achieve ray casting of
fractals at interactive frame rates.

This paper presents our implementation of an interactive fractal renderer using common
real-time rendering techniques and hardware. We provide the users with various lighting modes
and progressive refinement to give them the possibility to choose between faster rendering and
more realistic results. Furthermore we include visual effects to further increase the quality of
the generated images, which are described in chapter 4.

In the following section we describe the theory behind fractals and relate to previous work.
In chapter 3 we describe the problems of rendering fractals and our approach to solve them. A
detailed description of our implementation is given in chapter 4. In chapter 5 we conclude our
work and in chapter 6 we give an outlook on how to extend it.
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CHAPTER 2
Fractal Theory

2.1 Introduction to Fractals

In mathematics it is not clearly defined which properties qualify an object to be a fractal, but
they share various properties as described below:

One feature that is associated with fractal geometry is that they are usually self similar, which
means that a part of an object matches the object itself exactly or approximately. Some fractals
even have the same shape under every scale, a property called scale invariant. This feature is
also the reason why fractals are often described as “infinite detailed“ [5].

Non-fractal objects (without infinite detail) can always be represented by a linear approxi-
mation of them, which converges to the correct solution with increasing quality. On the other
hand fractal objects can not be represented with such an approximation that would converge with
increasing accuracy to the correct solution [5].

A common misconception when it comes to fractals is, that they do not have a full integer
dimensionality, but rather fractional dimensionality (in other words, dimensionality that lies
between two integers). For example the Mandelbrot set has the Hausdorff dimension of 2 as
proven by [12] (consult the next section for more information on dimension).

One should note, that fractals are not only bound to be geometric object, but can also stretch
for example over time or any other space.

2.2 Dimension

As mentioned in the section above, an object’s dimensionality is not an intrinsic property to
classify a fractal amongst other objects. When it comes to fractals the dimension of an object
is of interest, because objects with fractional (non-integer) dimension are often fractals and the
dimension of a fractal is not intuitive. Because of this we give the reader a short introduction on
the topic of dimension in this section.
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In mathematics a dimension of an object is an intrinsic property of the object defined by the
minimum number of independent values, that are needed to describe any point on the object so
that it is continuous and continuously invertible. For fractal sets the definition of a dimension is
more complex compared to non-fractal geometry like lines, circles, cubes etc., due to the fact,
that fractals are not continuous and not differentiable. One can easily show, that a fractal line
segment would converge to filling up an area if the calculation of it is repeated infinitely times.
This leads to the discovery that fractal sets behave more like a volume than a shape. A way to
describe such complex objects dimensionality was introduced by Felix Hausdorff [4].

The general idea of the Hausdorff dimension is to estimate the dimensionality by covering
the border of an object with any shape, that has notion of a radius (a circle in two dimensional
space, a sphere in three dimensional space etc.). Such a covering is shown in figure 2.1. The
Hausdorff dimension is calculated by using the relation between that radius and the number of
objects with that radius needed to cover the border. The radius used to cover the border stays
the same and no point of the objects border should be uncovered, even if this means, that shapes
are overlapping. Furthermore should the number of shapes with a specific radius be minimal,
meaning not a single of those shapes should be redundant. This implicates, if the radius goes
to zero, the coverage of the border will get more exact and therefore the correctness of the
approximation to the Hausdorff dimension increases.

To put this idea into a mathematical formula the covering of the border N objects of the size
S is defined as a function N(S). The Hausdorff dimension DH is than defined as:

N(S) ∼ 1

SDH
(2.1)

This leads to:

DH = − lim
S→0

log(N(S))

log(S)
(2.2)

2.3 History

Benoit B. Mandelbrot first mentioned the term ffractalïn 1975 [5]. Before that they were called
mmathematical monstersäs seen in figure 2.2. Such mmathematical monstersäre for example:

1. The Cantor Set, introduced by George Cantor in 1870, by given an abstract description of
a set, that shows fractal properties [4].

2. The Sierpinski Triangle is named after Waclaw Sierpinski who mentioned it in 1915 as
part on his work in set theory, similar to George Cantor [5].

3. The Koch Snowflake was introduced by Helge von Koch, a Swedish mathematician. Koch
described the Snowflake fractal to give an example of a curve without any tangents [14].

Another important development for the field of fractals was the introduction of complex
numbers. Gaston Julia and Pierre Fatou both independently showed the applicability of complex
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Figure 2.1: A possible covering of the border of the Mandelbrot fractal with circles. This image
was created by hand and has 38 circles with a radius of roughly 0.0526.

Figure 2.2: “mathematical monsters“: The Sierpinski Triangle on the left and the Koch
Snowflake on the right.

numbers for fractals. After their work was submitted, Felix Hausdorff introduced the previously
mentioned Hausdorff dimension in the same year [4].
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2.4 Classification

In this section we provide a subjective classification to give the reader an overview of the various
fields in which fractals are used. Other ways of classifying fractals are valid too.

Non Deterministic

Non deterministic fractals always include some random element. They are often used to model
natural phenomena such as clouds, terrain, fluids etc as seen in Figure 2.3.

Figure 2.3: Images of terrain created with fractal algorithms. The left terrain was created with
less iterations than the right one. Images taken from [8]

Deterministic

Deterministic fractals on the other hand are always the same under the same parameters. There
are two main types of deterministic fractals:

Linear deterministic fractals are Iterated Function Systems, such as the Cantor Set, Koch
Curve and Sierpinski Gasket. But also the Lindenmayer systems, which are commonly used to
simulate the growth process of plants, are linear deterministic fractals. [9]. An example is shown
in Figure 2.4.

The non linear fractals, on the other hand, always contain at least one non linear term in their
equation. The Mandelbrot set and Julia sets are such non-linear deterministic fractals as seen in
Figure 2.5.

6



Figure 2.4: Plants and trees generated with Lindenmayer systems. Images taken from [9]

Artistic Fractals

As to this point we mentioned the mathematical background of fractals, as well as an short
overview on how fractals can be used.

However, we observe that there is certain artistic interest on fractals due to their intricate
shape. In particular fractals which make use of complex numbers or quaternions are used in
the artistic purposes. We refer to those artistic complex fractals as Hyper-complex Fractals
(which use complex numbers as well). Because of the creative potential of those fractals and the
increasingly convenient way to visualize them, creative new formulas for fractals are created by
various artists.

In our application we choose to use the formula called MMandelbulbäs our exemplary frac-
tal. The Mandelbulb fractal was introduced by Daniel White in 2007 as an extension to the 2D
Mandelbrot set [15].

2.5 Calculation of Fractals

In this section, we give a short overview over the various methods used to create fractals and give
an example of four formulas to create fractals including the Mandelbrot and the Mandelbulb Set.

Methods

Fractals are estimated by a recursive feedback system, meaning that the function converges
towards the correct fractal by increasing the number of iterations steps.

7



Figure 2.5: A colored Julia set on the left and a colored Mandelbrot set on the right. Images
created with the NVIDIA GPU SDK 4.0 Sample Mandelbrot.

The following list contains a selection of the methods of how those iteration steps can be
realized:

1. Iterated Function Systems are a formal description for constructing linear fractals. An
Iterated Function System replaces geometry with other geometry (which allows further
replacement). Examples of Iterated Function Systems include the Cantor Set, Koch Curve,
Sierpinski Gasket etc.

2. L-Systems(named after their introducer Aristid Lindenmayer) are rewriting systems op-
erating on strings. A L-System is defined by finite set of symbols, an initial word and a
finite set of productions. L-Systems replace the symbols parallel. Furthermore L-System
allow context sensitive production, parametrized production and various other extensions
introduced by Prusinkiewicz [9]. To render a graphic, the resulting string of a L-System
has to be interpreted by a drawing program. Fractals, that can be generated by an Iterated
Function System, can be drawn by L-Systems as well.

3. Escape-time fractals use a particular function as a sequence. Wether a start-value is part
of the fractal set is determined by checking if the point is within a preset boundary after a
certain number of iterations. Such Escape-time fractals are for example the Mandelbrot-
Set or the Julia-Set. [5]
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4. Strange Attractors To generate a fractal, the chaotic behavior of dynamic systems can be
used. Chaotic behavior means that the result of a system etc. changes drastically, when al-
tering the starting conditions only minimally. Some chaotic systems have an attractor(the
set of system states to which the system evolves after sufficiently long time) that exhibits
fractal nature.

5. Stochastic Rules The Levy flights, Brownian motion or other stochastic models can be
used to generate fractals as well. [13]

Sierpinski Triangle

This section describes one of the various methods to generate the Sierpinski Triangle.
The first step to generate Sierpinski Triangle is to create a triangle. Followed by:

1. Scale down the triangles height and width by 2 and copy it twice.

2. For each vertex of the original triangle, place one copy of the scaled triangle with the
corresponding vertex on it.

Those steps have to be repeated for each triangle.

Figure 2.6: The steps to generate a Sierpinski Triangle.

Koch Snowflake

Similar to the Sierpinski Triangle, described above, the following description is just one of many
ways to generate the Koch Snowflake.

The starting point for our method is to generate a equilateral triangle. Then the following
steps for each line have to be done:

1. Divide the line into three equal pieces.

9



2. Add two lines on top of the middle piece from step 1, so that an equilateral triangle (with
the edge-length of that middle piece) is created

3. Remove the middle piece from step 1.

Those steps have to be repeated for each generated line.

Figure 2.7: The steps to generate a Koch snowflake. On the top this is done for one line segment
and on the bottom it is done for three line segments of a triangle.

Julia Set

To understand the Mandelbrot fractal, a first look on Julia Sets of the sequence fc = z2 + c has
to be taken. In this sequence, the starting point z0 lies on the complex plane on which the Julia
set is mapped and c is an arbitrary constant complex number. As in every Julia set, the sequence
has to be tested if it converges to a fixed point for a specific starting value z0. When this test
succeeds, then the point z0 is part of the corresponding Julia set.

Like every mathematical set, a specific Julia set can be a disconnected or connected set. To
see if a Julia set is connected, the sequence fc = z2 + c with the starting point z0 = 0 has to be
tested if it escapes to infinity (disconnected Julia Set) or not (connected Julia set). This property
of connectivity is essential for the Mandelbrot set, as described in the next chapter.

Mandelbrot Iteration

The basic idea of Mandelbrot was to see if the Julia set is connected for a specific c in the
complex plane. We use the term complex plane to describe a two dimensional space, where the
real part of a complex number is represented via one dimension in this space and the imaginary
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part of the same number is represented by the other dimension. This complex plane directly
corresponds to the mapping used in visualizations of the Mandelbrot Fractal.

To determine whether a point is in- or outside of the Mandelbrot set, the convergence of the
particular point has to be calculated by starting the iteration zn+1 = z2n+c with z0 = 0 and the c
as the point of interest. If |z| > 2 is true, the iteration can be stopped, because the corresponding
Julia set is disconnected. In other words, a divergence can be detected in every iteration step. An
example of this iteration is given in Figure 2.8. The resulting visualization gets more accurate
as iterations increase.

Figure 2.8: The convergence of a point (marked in green) in the Mandelbrot set. The first two
images show divergent iteration steps. The last one is a convergent iteration step.

Mandelbulb Iteration

The operations on the complex numbers in the Mandelbrot formula can be seen as operations on
two dimensional vectors. Daniel White suggested to port the Mandelbrot fractal into the three
dimensional space, to do those same operations with three dimensional vectors as well [15].

The complex multiplication done in the Mandelbrot formula is equivalent to a rotation of this
number (seen as a two dimensional vector) in the complex plane. In his formula, Daniel White
rotated the three dimensional vector, which represents the former complex number, along its
spherical coordinates. The movement of such a three dimensional vector can be seen in Figure
2.9a and will be explained later in this chapter.

After Daniel White experimented with various spherical coordinate systems and multiplica-
tion factors for those coordinates, Paul Nylander came up with the idea to use a higher power
than 2 when it comes to moving the point by the original distance as seen in Figure 2.9b (dw rep-
resents the scaled distance) [15]. This led to the exploration of the formula using the Power 8 by
David Makin, which provided enough self similarity at high zoom levels in all three dimensions
according to Daniel White [15].

The mathematical equation for the Mandelbulb (with the iteration depth of n) is:

{x, y, z}n = rn{cos θ cosφ, sin θ cosφ,− sinφ} (2.3)
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where
r =

√
x2 + y2 + z2, θ = n ∗ atan2(y, x), φ = n sin−1(z/r) (2.4)

The algorithm for the Mandelbulb Iteration is described below:

1. At first we have to rotate the three dimensional point P around the origin by the same
degrees as P is already angled from the origin (in other words: double the angle), which
generates a new point Q(qx, qy). This happens in spherical coordinates, as shown in
Figure 2.9a.

2. Then the distance from the origin to the pointP has to be calculated: dp =
√
p2x + p2y + p2z .

The point Q, which can be seen as a vector from the origin as well, then has to be scaled
towards the origin relatively by the amount of dwp as seen in Figure 2.9b. This step is
equal to a complex multiplication. The parameter w is 8 for the Mandelbulb, but any
other number greater than 2 can be used for experimenting with certain shapes of the bulb.

3. This altered point Q now has to be increased by the value P , creating a new point S (in
other words: a complex addition has to be performed). This step is shown in Figure 2.9c.

4. The Steps above now have to be repeated over and over again, but with the point S as the
starting point P in Step 1. But the distance calculated in Step 3 has to be the distance
from the original point P . If the calculated point S is inside a sphere with radius 2 after a
specified amount of iterations, the point P is part of the Mandelbrot set.

(a) Step 1 (b) Step 2 (c) Step 3

Figure 2.9: Graphics describing one Mandelbulb iteration step.
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CHAPTER 3
Rendering Fractals

The complexity of fractal geometry demands computer graphics to visualize and investigate its
objects, because the amount of calculations can not be done by hand. In this section the basics
of rendering those objects are described.

3.1 2D Fractals

As shown in Figure 3.1 the Mandelbrot set spreads from -2 to 1 on the axis of the real component
and from -1 to 1 on the imaginary component axis. To determine where certain phenomena
appear, the cardioid and bulb like shapes, the hyperbolic components, on the Mandelbrot figure
are ordered by their size.

In general, coloring the distance from a pixel to the fractal, is the most common visualization
method for this kind of fractals. The distance can be calculated as mentioned in 3.1.

Limitations

The limitations of rendering 2D-fractals are caused by finite rendering time, inaccuracy of data
types and arithmetical operations. The computational time depends on resolution, used data
types and number of iterations. The last one changes the shape of the Mandelbrot set by making
it more accurate and therefore adding more detail to it. Increasing zoom levels require more
detail, because at some point fractal shapes do not appear anymore. Accuracy of data types on
the other hand, limit the possibilities to zoom into the fractal as shown in Figure 3.2.

Coloring

In most cases, the points, which are not in the Mandelbrot, set are colored by the number of
successful iterations. This requires either color maps with the size of the maximum number of
iterations or a cyclic mapping of a color-set.
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Figure 3.1: The Mandelbrot set. The orange numbers are a subset of the periodic hyperbolic
components.

To hide the banding effects, that occur when using one of the mappings above, an artistic
approximation for such continuous coloring can be used. Of particular interest is a formula
called Normalized Iteration Count [3]:

color = Numiter −
log(

log(d2p)

log(4) )

log(2)
(3.1)

Note that this formula is just one possible way to give a continuous color gradient.

3.2 3D Fractals

Rendering 3D-fractals suffers from the same limitations as 2D-fractals. In addition, we have to
take problems into account that come along with rendering three dimensional objects. In the
following sections we describe those problems and our approach to solve them.

14



Figure 3.2: A deep zoom on a Julia Set with 32 bit floating point values on the left and 64 bit
double precision floating point values on the right. Images created with the NVIDIA GPU SDK
4.1 Sample Mandelbrot [7].

Theoretical Background of Rendering 3D Fractals

To visualize a three dimensional fractal, it has to be mapped onto a two dimensional plane
(an image) in order to show it on 2D display. Therefore one dimension of information for the
observer (the human eye) is lost during this process, which would be equivalent to rendering a
2D fractal onto a (one dimensional) line.

However, it has not yet been investigated how light travels through objects with surfaces
like the Mandelbulb, which are not only of fractal nature but also irregular structured unlike a
Sierpinski cube etc.. We suggest that light travels through an non-virtual Mandelbulb (or similar
fractal structures), that is created at atom-level detail, like it would through translucent materials,
in other words: light scatters through that structure. Our suggestion is based on the following
observation: when light from a source outside of the Mandelbulb hits one point at the surface
on it, it may or may not exit the fractal object. To be more specific, the light can bounce infinity
times on the Mandelbulb until it is fully absorbed. It could also bounce of several times (or
one time) and escapes the Mandelbulb with decreased intensity (corresponded to the number of
bounces). Furthermore it is also possible that the light travels past the objects structure without
hitting the fractal itself. The chance of light getting absorbed or decreased in intensity gets
higher as the light travels deeper into Mandelbulb, since the density of the structure increases
with increasing depth. This behavior of light travel is similar to those in translucent materials,
which leads to our idea of scattered light transport within the Mandelbulb.

Rendering scattering materials in real-time is complicated to achieve. In our application we
choose not to render the scattering effect at all, because we find that a diffuse light reflection
model is sufficient enough to generate visual appealing images and furthermore is inexpensive
to compute. In particular we choose to use the Blinn - Phong shading model in our application.
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Discretization Method

When using a voxelization or triangulation or any other pre-calculated discretization, two major
disadvantages have to be taken into account:

1. The quality of zooms and in general the detail of the visualized surface are preset by the
calculation before the rendering and the camera movement starts. An adaptive refinement
of the pre-calculated surface has to be implemented to overcome this disadvantage.

2. The amount of memory transfered on the GPUs data buses is higher compared to ray
casting, potentially decreasing performance. See Section 4.4 for more details.

Therefore we choose an ray casting approach [16] over a pre-calculated discretization, due
to the better handling of close zooms and easier implementation of adaptive optimizations com-
pared to the methods mentioned in the previous paragraph. The ray casting algorithm is ex-
plained in the section 4.1.

Calculating the Normal Vector

The third dimension requires the shading and lighting of the surface so that the human eye can
perceive the structure of the fractal. Using a Blinn - Phong shading model, or any other BRDFs
(a shading and lighting model) for that purpose, requires a normal vector of the surface, in other
words: a statement about the surfaces structure has to be made. Since a fractal surface is infinite
detailed an approximation of its real structure is inevitable.

Our approach is to sample the surrounding area of the fractal on a regular grid. We are
testing several sampling patterns within this grid and evaluate the best method by weighting the
image quality against the performance costs (which increases when using more samples). As a
reference image we use figure 3.3a. It was created by leaving out the normal vector from the
lightning calculation to see which areas could be potentially lit. The graphic below shows the
sampling patterns, followed by our observations on the result by an example scene.
a) the reference image.
b) only 3 sample points distributed on the positive main axis of the grid. As someone can

observe large areas in the middle image, that should be lit but are not (they should be lit,
because they face the same direction as other lit ones).

c) 6 sampling points are distributed on the main axis. The large areas from the previous sample
are lit, however small areas (as seen on the right image) are still unlit.

d) has 18 sample points. The result is similar to c, but the size of the small dark spots increased.
e) 26 sample points bring similar results as d).

We decide to use option c), as it provides not only the best image in terms of aesthetics, but
also uses less sampling points as d) and e) and is therefore faster than those two options.
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Figure 3.3: The test cases for the normal calculation. Left Side: sampling pattern of the normal
calculation. The orange dots are the sample points. Middle: result of test scene. Right Side:
closeup of the result in the test scene.
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CHAPTER 4
Parallelized Ray Casting of Fractals

To speed up ray casting of fractals we use specialized processing units, the Graphics Processing
Units (GPUs). In this chapter we explain the details of our implementation on the GPU.

4.1 GPU Ray Tracing

GPUs are in general used to increase performance when rasterizing and texturing triangles. Their
architecture can be described with the key-attributes “Single Instruction, Multiple Data, High
Parallelism“.

The common APIs to run custom Code on GPUs, such as OpenGL and DirectX, offer too
few options and have too much overhead for the requirements of our real-time application. In
particular those APIs don’t provide enough flexibility when it comes to loop and double preci-
sion support, and in addition are bound to the rasterization pipeline.

The advantages of general-purpose computing on graphics processing units (GPGPU) APIs,
are the reason why we decide to use this approach instead of other programming interfaces and
methods. The implementation is realized with Nvidias CUDA APIs on GPUs with the Fermi
architecture.

4.2 Basic Approach for Fractals

To render the fractal, its location has to be calculated. This is done by using its distance function
as in listening 1. With this formula, stepping along the viewing ray as shown in Figure 4.1 can
be done until a point is reached, that is close enough (Epsilon-area) to the fractal.
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Figure 4.1: The concept of ray-stepping. At each step, the distance to the 3D fractal is estimated
and added to the viewing ray until it reaches a distance close enough (E - the Epsilon area).

4.3 Advantages of GPU Architectures

Pixel Parallelism

The main advantage of the GPU-Architecture is, that the parallelized data processing happens
with a higher thread-count compared to the common CPU-architecture. But unlike the CPU
architecture, the GPU is not as flexible on the instruction set of different threads, because of two
reasons:

1. Each thread on the GPU is running with the same source code, but on the CPU each thread,
that runs in parallel, could potentially have entirely different source code.

2. The GPU is divided into smaller processing units (similar to the CPU). Those so called
Single Instruction Multiple Data (SIMD) units require the same instructions set for each
thread that runs on it. Because of this, threads that already finished computing on one
SIMD unit, have to wait for the last thread to finish on this SIMD. CPUs, in contrast, feed
every thread with a unique instruction set on each kernel and no thread has to wait for
another to finish.

An schematic overview of the different workflow between CPUs and GPUs for the ray cast-
ing of fractals is given in figure 4.2. The high number of parallel threads is the reason why GPUs
are better suited for rendering fractals than CPUs as described in 4.4.
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Algorithm 1 Calculate fractal distance for the Mandelbulb

Require: point,maxiter, power, divergence
1: z ⇐ point
2: r ⇐ length(z)
3: dr ⇐ 1
4: i⇐ maxiter
5: while r ≤ divergenceandi > 0 do
6: i⇐ i− 1
7: ph⇐ asin(z.z/r)
8: th⇐ atan2(z.y, z.x)
9: zr ⇐ pow(r, power − 1)

10: dr ⇐ zr ∗ dr ∗ power + 1
11: zr ⇐ zr ∗ r
12: sph⇐ sin(power ∗ ph)
13: cph⇐ cos(power ∗ ph)
14: sth⇐ sin(power ∗ th)
15: cth⇐ cos(power ∗ th)
16: z.x⇐ zr ∗ cph ∗ cth+ point.x
17: z.z ⇐ zr ∗ sph+ point.z
18: r ⇐ length(z)
19: end while
20: return⇐ 0.5 ∗ log(r) ∗ r/dr

Floating Point Operations

Current GPUs are optimized for executing single floating point arithmetic operations, but not
for double precision floating point operations. To improve performance for the former, the
CUDA API offers an option to speed up floating point computations at the price of accuracy [6].
This option is used for the real-time approach, because the numerical inaccuracy is covered up
by artifacts from the reduced sampling per pixel - another quality cutoff we made to achieve
rendering in real-time.

Furthermore double-precision calculations are significant slower than the corresponding
single-precision operations. This is not only because of the increased data transfer but also
because of the lower amount of operations per clock cycle for one multiprocessor for double
precision arithmetics compared to single precision arithmetics (consult chapter 5.4.1 in [6] for
detailed information).

4.4 Challenges in GPU Based Fractal Rendering

Since fractals are infinite detailed, calculations on CPUs and GPUs always contain artifacts,
caused by the finite accuracy of data types and limited computing time. But there are also some
other difficulties and limitations when it comes to rendering fractals, which we describe below.
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Figure 4.2: The different workflow of GPUs and CPUs. The orange rectangles represent one
single thread. The blue rectangles represent the SIMDs of the GPU.

Limitations of the GPU-Architecture

As stated above the GPU’s SIMD units execute only the same instruction set. This leads to a
disadvantage of the GPU over the CPU when different operations have to be applied on threads
on the same SIMD. Threads have to wait for each other in this case. This reduces the effec-
tiveness of the GPU’s architecture when loops are executed, that do not have the same number
of passes. When it comes to calculating the distance to the fractal or stepping along the the
viewing-ray, using loops with breaking conditions that cannot be resolved at compile time is
essential. Because of this a great amount of computational time is unused.

Oversampling

To reduce aliasing artifacts, we oversample the fractal geometry. This is done by casting multiple
rays for one pixel and averaging those samples to get the final value (see memory consumption
for details). To further reduce aliasing artifacts, the casted rays are jittered with pre-calculated
random values stored in a 2D-texture. For further informations about the anti-aliasing methods
used, consult “Real-Time Rendering 3rd Edition“ [1].

Memory Consumption

The memory needs are an important factor of the applications performance. To be more specific,
increased data traffic along the GPUs data lines in our application slows down the rendering
significantly.
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In the implementation a similar approach to deferred shading is used for storing the sampling-
points. This is done to accomplish a global illumination approximation called Image-Space
Horizon-Based Ambient Occlusion (HBAO) [2], as described in section 4.5.

For each sampled point, the position, normal vector and a counter which increases if the
sampled point is in the fractal or outside. We use this counter to tell if a point is inside or
outside, which we need for the global illumination approximation described in 4.5. All three
vectors of a sampled point are three-dimensional, which leads to a memory consumption of 37
byte per sampled point when using single precision and 73 bytes when using double precision.

The number of sampling points stored in the memory is equivalent to the resolution of the
resulting image. For a Full-HD resolution of 1920x1080 and single-precision sampling this sums
up to a total of ~73.5 MB and ~144.5 MB for double precision.

For calculating the final color and post processing effects a texture with the resolution of the
final image and four channels red, green, blue and alpha, is needed. Each channel is represented
by a 32-bit floating point value to enable High Dynamic Range output.

The tone mapper used in the application needs the average color of all pixels, which is done
by calculating the mipmapping-levels. To do so, 1/3 of the storage of the texture mentioned
before has to be allocated.

For a resolution of 1920x1080, the texture for the final image is ~32 MB and ~11 MB for
the mipmap-levels. The texture and the mipmap-levels use single-precision floating point values
in both precision modes. This makes up to a total of ~116.5 MB for single- and ~187.5 MB for
double-precision to be available on the GPU, as shown in Table 4.1.

float double
Sample Points 73.5 MB 144.5 MB
Texture 32 MB 32 MB
Mipmap 11 MB 11 MB
Total 116.5 MB 187.5 MB

Table 4.1: This table shows the memory usage of our application

Real-time-Approach

To accomplish a real-time rendering, several cutbacks on quality in the exchange for speed are
done. Those include single-precision computing, using the fast-math-option, doing no oversam-
pling, lowering the resolution and using only a few lights.

Those restrictions allow around 3 frames per second on current hardware. To get more
frames per seconds, progressive refinement, a technique used in visualization, was implemented
to enable smooth navigation. Progressive refinement decreases the number of samples while
moving. See Figure 4.3.

We also provide the user with the option to turn the shadow calculations off.
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Performance

As mentioned before in our real-time rendering part of the application we get around 3 frames
per second using 3 environmental lights, activated bloom effect (see chapter 4.5 for more) and
tone mapping (see chapter 4.5 for more) on a still frame (without progressive refinement and no
oversampling, in other words 1 sample per pixel). With progressive refinement activated we get
around 16 to 25 frames per second an the NVIDIA Geforce GTX 470, whilst using 1 sample for
5 pixels.

As for the high quality render, a Mandelbulb image with 1920x1080 pixels, 16x oversam-
pled, 3 light sources and per channel tone mapping, our application needs 135 seconds with
single precision and 718 seconds with double precision to render on a NVIDIA Geforce GTX
470.

In both the real-time application as well as in the high quality renderer the frame rates are
calculated in scenes where the entire screen is covered with the fractal. This is the worst case
scenario for our application, because rendering time decreases, when samples for the image do
not hit the fractal, due to thread-blocks can finish their work earlier.

4.5 Lighting / Illumination / Shading

When it comes to 3D-Objects, the human perception determines the structure of an object by its
shading and lighting. In this section we describe our methods for approximating light transport
and generating visual effects.

Environment Lighting

Environment lighting simulates the incoming light from every direction on an object. We store
the incoming light in a list containing all lights with their direction and color. Every light can be
interpreted as an directional light, which casts shadows.

To calculate the shadows for one particular light, a ray is casted to sample for intersections
between the sampled point and the light source. These rays are casted to the sampled point from
a point, that lies in the direction of the light, but is outside of the fractal.

The implementation uses deferred shading, which is known to be faster when it comes to
multiple lights. In general the shadowing of a pixel is done after averaging the sample points.
This would lead to diverging normals and positions as a result of the discontinuity of the fractal
or sampling different parts of it. We therefore cast the rays for shadowing for each sample point
and merge the results afterwards.

Point Lights

To reach parts of the Mandelbulb with light, that cannot be reached with the environmental
light sources, point light sources are also part of the application. Each point light is defined by
position and color. Similar to environment lights the shadows are calculated by shooting a ray
towards the light source from every sampled point.
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Global Illumination

We use the screen space approach to approximate the indirect lightning. This is realized by two
different screen space operators in our application.

The first one uses a uniform sampling area and weights the color channels by the cosine of
the normal vectors as shown in the following formula:

Lindir(P ) =

S∑
y=−S

S∑
x=−S

Ldir(x, y)dot(N(P ), N(x, y))

(S ∗ 2 + 1)2
(4.1)

This operator results in a continuous color gradient as shown in Figure 4.4, which does not
give any clues about the structure of the fractal.

For a more detailed global illumination approximation we implemented Image-Space Horizon-
Based Ambient Occlusion [2]. The technique was improved, after several tests, by dividing by
the number of the samples, which are closer to the camera. The result is the second operator as
seen in the listening 2.

Algorithm 2 Horizon Based Ambient Occlusion

1: sp⇐ getSamplePoint(pixelCoord)
2: curAngle⇐ 0
3: a⇐ 0
4: ao⇐ 0
5: for all directions do
6: for d = 1→ numSamplesPerDirection do
7: p⇐ getSamplePoint(pixelCoord+ d ∗ direction)
8: if isNotBackground(p) then
9: vec⇐ p.pos− sp.pos

10: normalize(vecToPos)
11: angle⇐ saturate(dot(sp.normal, vec))
12: if angle ≥ curAngle then
13: curAngle⇐ angle
14: angle⇐ 1− angle
15: ao⇐ ao+ angle ∗ Color(sp) ∗ (ambientfactor + Color(p))
16: a⇐ a+ 1
17: end if
18: end if
19: end for
20: end for
21: ao⇐ ao/a

We considered the screen space approach to calculate the direct lighting in this application as
well. To accomplish this, we implemented Screen-Space Directional Occlusion (SSDO) [11] for
fast results. We rejected that idea, because calculating the directional occlusion with ray tracing
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proofed to generate sufficient fast results for the needs of our application. In addition, the ray
tracing technique does provide physically correct shadows without the artifacts, that occur in the
approximation of SSDO [11].

High Dynamic Range Rendering

Since environment lighting uses a high number of light sources, we use High Dynamic Range
(HDR) rendering to provide the user with the full spectrum of light intensity. In our application
there is an option to directly return a HDR-image or to use a tone mapper to scale images values
to a displayable range.

We decide to implement Reinhard’s tone map operator [10] in our application for that pur-
pose. We evaluate the average pixel-color for this operator by using mipmap-levels of the ren-
dered image, which allows us to parallelize this process. After this calculation, each pixel is
mapped to its new value (either for each color-channel separately, or by the pixels luminance
value and we leave the choice to the user).

Bloom

To further improve the quality of the images produced, a bloom effect [1] can be applied on
demand. Our application uses one of the mipmap-levels to realize this effect. To save perfor-
mance the blurring is done in a horizontal and vertical step separately. The filtering is done by a
uniform kernel. The bloom effect is applied after the tone mapping in the application. In figure
4.5 one can see difference between a scene with and without the bloom effect. An unintended
effect of bloom is, that it gives back a small amount of saturation to the final image, which is
lost after tone mapping.

Stereoscopic 3D

The high-quality rendering part of our application also features stereoscopic rendering. To ac-
complish stereoscopic vision, the renderer produces two images in two separate steps. The user
is able to define the size of the screen, the distance between the eye and the screen and the
distance between the two eyes. The size of the screen is defined by only one parameter in the
application, the height of it. The width of the screen is calculated by the ratio between the pixel
width and height. An example of stereoscopic images is given in figure 4.6.
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Figure 4.3: A real-time rendering of the Mandelbulb. The image on the top is rendered while
moving, the image on the bottom is captured when the camera was fixed.
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(a) Screenspace Ambient Occlusion (b) Horizon Based Ambient Occlusion

Figure 4.4: Different global illumination approximations.

(a) No bloom effect added (b) Bloom effect added after tone mapping

Figure 4.5: An example of a rendering with and without the bloom effect.

(a) image for the left eye (b) image for the right eye

Figure 4.6: An example of stereoscopic 3D rendering of a test scene.
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CHAPTER 5
Conclusion

The rendering of fractals on the GPU is, due to the nature of the fractals, a worst-case-scenario
for anti-aliasing and a lot of cutbacks of correct rendering need to be done to provide a real-
time visualization. The current GPU-architecture offers enough computational power for single
precision calculations, but still needs more power to enable deep zooms into fractals with dou-
ble precision calculations and good visual quality at interactive frame-rates. Furthermore we
succeed to include image enhancing effects and provide a high quality rendering mode as well.
To accomplish this, we solve the problem of calculating the normal vector for the fractal and
investigate the GPU architecture to achieve maximum performance.
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CHAPTER 6
Future Work

For future work we suggest to implement a scheme for adapting the number of iterations on the
camera-distance. Such an adaptive iteration number reduces sampling artifacts and speeds up
rendering (by potentially using less iterations) in order to increase performance without losing
a significant amount of visual quality and detail. To further improve visual quality, we propose
to implement a better and more accurate global illumination method. We also emphasis a more
sophisticated coloring option for the fractal to increase artistic freedom in our application.
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