

Diplomarbeitspräsentation

Masterstudium: Computergraphik & Digitale Bildverarbeitung

Stefan Reinalter

Visibility in a real-world

cross-platform game engine

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich Computergraphik Betreuer: Michael Wimmer & Oliver Mattausch

Scope of the work

This thesis presents optimized visibility algorithms in the context of a cross-platform rendering engine for PC, PlayStation 3, Xbox 360 and Wii. The main challenges due to varying platform properties are the following:

Novel occlusion query mechanism
Occlusion query
CPU GPU Interrupt controller

Unified API: Each platform has vastly different CPU and GPU specs, but a rendering engine must provide a unified API while still taking advantage of platform-specific features.

Efficient algorithms: State-of-the-art visibility algorithms must be tailored to console hardware in order to be efficient.

Contributions

Rendering engine: The thesis describes the design and implementation of a multi-platform rendering engine, detailing different strategies and approaches for unifying vastly different architectures into the same API.

Novel occlusion query mechanism: A low-level mechanism for enabling occlusion query functionality on platforms without hardware-support was invented.

Improved algorithms: State-of-the-art algorithms were improved using new branch-free data-structures as well as platform-specific features.

Left: Camera viewpoint. **Right**: Visibility visualization. Visible objects must be rendered, while occluded objects are discarded. The used visibility algorithm is able to cull about 80% of all objects in the scene in this case.

Same as above, for A_end. Occlusion query result is obtained by calculating (A_end - A_begin).

By inserting certain instructions into the command-buffer, the CPU and GPU can be synchronized via interrupts in a way that allows the occlusion query functionality to be implemented on platforms which do not natively support it.

Kontakt: stefan.reinalter@inode.at, wimmer@cg.tuwien.ac.at, mattausch@cg.tuwien.ac.at