

Visibility in a Real-World
Cross-Platform Game Engine

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computergraphik/Digitale Bildverarbeitung

eingereicht von

Stefan Reinalter
Matrikelnummer 0225790

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Oliver Mattausch

Wien, 28.03.2010 _______________________ ______________________
 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien • Karlsplatz 13 • Tel. +43/(0)1/58801-0 • http://www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Stefan Reinalter
Viktor Christ-Gasse 20/20
1050 Wien

”Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich
die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass
ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen
-, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach
entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.”

Ort, Datum:
Unterschrift:

Abstract

With hardware capabilities and customer expectations rising every new game
console generation, efficient visibility algorithms become a more and more
crucial part of every modern rendering engine. Although GPUs built into the
consoles become better each generation, game developers are always striving
to get more performance and better quality out of a game console. Therefore
it is a must to employ powerful visibility algorithms which allow the devel-
opers to render more complex scenes while maintaining smooth framerates.

This thesis explores whether current state-of-the-art visibility algorithms
can be used on game consoles, and describes the layers of abstraction needed
in developing a multi-platform rendering engine.

Therefore, the first part of the thesis focuses on the design and imple-
mentation of a rendering engine for major current-gen platforms, such as
Microsoft Windows, the Microsoft XBox360, Sony’s PlayStation 3 and the
Nintendo Wii, dealing with the vastly different platform architectures. Fur-
thermore, solutions to engine design problems related to both hardware ca-
pabilities as well as software engineering practices are explored. Concluding
the first part, prerequisites and building blocks for implementing visibility
algorithms are developed.

The second part of the thesis concentrates on developing and integrat-
ing visibility algorithms into the aforementioned engine, building upon the
components introduced in the first part. The used visibility algorithms are
enhanced and tailored to specific hardware needs and capabilities, getting
the most performance out of game consoles. Finally, results and possible im-
provements and future enhancements for current state-of-the-art algorithms
conclude this thesis.

Kurzfassung

Aufgrund der immer besseren Hardwarefähigkeiten und steigenden Kunden-
erwartung, die jede neue Spielkonsolen-Generation mit sich bringt, spielen
effiziente Sichtbarkeitsalgorithmen eine immer größere Rolle in der Entwick-
lung einer modernen Rendering Engine. Obwohl die in die Konsolen inte-
grierten Grafikkarten mit jeder Generation besser werden, streben Spiele-
Entwickler immer danach, mehr Performance und bessere Qualität aus der
Hardware herauszuholen. Deshalb ist es absolut notwendig, leistungsfähige
Sichtbarkeitsalgorithmen zu verwenden, die es erlauben, noch komplexere
Szenen bei gleichbleibender, gleichmäßiger Bildwiederholrate zu rendern.

Diese Diplomarbeit erforscht, ob die derzeit gängigsten und modernsten
Sichtbarkeitsalgorithmen auch auf Spielkonsolen verwendet werden können,
und beschreibt dabei die dafür nötigen Abstraktionen in Bezug auf die En-
twicklung einer Multi-Plattform Rendering Engine.

Demzufolge konzentriert sich der erste Teil dieser Diplomarbeit auf das
Design und die Implementierung einer Rendering Engine für bedeutende
”Current-Gen”-Plattformen, wie Microsoft Windows, die Microsoft XBox360,
Sony’s PlayStation 3 und die Nintendo Wii, und behandelt die erheblichen
Unterschiede in der Architektur dieser Plattformen. Darüber hinaus wer-
den Lösungen zu Design-Problemen untersucht, sowohl in Bezug auf die un-
terschiedlichen Leistungsmerkmale, als auch in Bezug auf die verwendeten
Praktiken der Software-Entwicklung. Abschliessend werden Grundvorausset-
zungen und Bausteine für die Implementierung von Sichtbarkeitsalgorithmen
entwickelt.

Der zweite Teil der Arbeit konzentriert sich auf die Entwicklung und
Integration von Sichtbarkeitsalgorithmen in die zuvor genannte Engine, auf-
bauend auf den Komponenten des ersten Teils. Die dabei verwendeten Sicht-
barkeitsalgorithmen werden erweitert und speziell auf die Hardware der Kon-
solen zugeschnitten, sodass ein größtmöglicher Performancegewinn erzielt
werden kann. Den Abschluss dieser Diplomarbeit bilden die erzielten Re-
sultate, sowie Vorschläge zur Erweiterung und künftigen Weiterentwicklung
derzeitiger, hochmoderner Sichtbarkeitsalgorithmen.

Contents

1. Introduction . 9
1.1 Scope of the work . 9
1.2 Daedalus Engine . 10
1.3 Main contributions . 10
1.4 Thesis structure . 11

2. Real-Time Rendering Engines . 13
2.1 Real-Time Rendering . 13
2.2 Rendering pipeline . 14

2.2.1 Application Stage . 16
2.2.2 Geometry Stage . 16
2.2.3 Rasterizer Stage . 17

2.3 Graphics APIs . 17
2.3.1 Direct3D 9 . 18
2.3.2 Direct3D 10 . 18
2.3.3 Direct3D 11 . 20
2.3.4 OpenGL . 20

2.4 Rendering engines . 21
2.4.1 OGRE - Open Source 3D Graphics Engine 22
2.4.2 Irrlicht . 22
2.4.3 Open Scene-Graph . 23

2.5 Game Engines . 23
2.5.1 Unreal Engine 3 . 24
2.5.2 CryEngine 3 . 24
2.5.3 Gamebryo . 25

2.6 Rendering Engine Requirements 25

3. Introduction to cross-platform design 27
3.1 Platform capabilities . 27

3.1.1 PC platform . 27
3.1.2 Xbox360 platform . 30
3.1.3 PlayStation 3 platform 33

Contents 6

3.1.4 Wii platform . 35
3.2 Separation of low-level and high-level code 37
3.3 Granting access to platform-dependent functionality 37
3.4 Ease of use . 38
3.5 Judicious use of language features 39
3.6 Abstracting low-level interfaces 39

3.6.1 Preprocessor directives 40
3.6.2 Splitting interfaces across files 41
3.6.3 Modified PIMPL idiom 42

3.7 Multi-platform rendering . 44
3.7.1 Submission-based vs. buffer-based rendering 44
3.7.2 Immediate vs. delayed rendering 46

3.8 Multi-threaded rendering . 46
3.9 Comparison between rendering schemes 47
3.10 CPU-GPU synchronization . 47
3.11 Cache coherency . 48
3.12 Platform APIs . 48

3.12.1 Microsoft Windows Direct3D 9 48
3.12.2 Microsoft XBox360 Direct3D 48
3.12.3 Sony PlayStation 3 LibGCM 48
3.12.4 Nintendo Wii GX . 49
3.12.5 Comparison . 49

4. Implementing the occlusion query functionality on multiple plat-
forms . 50
4.1 CPU-GPU synchronization . 50

4.1.1 PC platform . 52
4.1.2 Other platforms . 52

4.2 Render states . 52
4.2.1 Caching . 53
4.2.2 Impossible to break . 53
4.2.3 Speed and memory footprint 55

4.3 Immediate mode rendering . 58
4.3.1 PC platform . 59
4.3.2 Other platforms . 59

4.4 Occlusion queries . 59
4.4.1 PC platform . 61
4.4.2 Other platforms . 61

Contents 7

5. Related work on visibility algorithms 65
5.1 Visibility Culling . 65

5.1.1 Backface Culling . 66
5.1.2 View-Frustum Culling 66
5.1.3 Occlusion Culling . 67
5.1.4 Online vs. offline culling 67

5.2 Spatial Data Structures . 68
5.2.1 Bounding Volume Hierarchies 69

6. Implementing online occlusion culling on multiple platforms . . 71
6.1 Hierarchical View-Frustum Culling 71

6.1.1 N- and P-Test . 73
6.1.2 Exploiting Temporal Coherence 73
6.1.3 BVH Plane Masking 75

6.2 Stop-and-Wait Occlusion Culling 75
6.3 CHC – Coherent Hierarchical Culling 79
6.4 CHC++ – Coherent Hierarchical Culling Revisited 80

6.4.1 Reducing state changes 80
6.4.2 Batching previously invisible nodes 81
6.4.3 Batching previously visible nodes 81
6.4.4 Batching draw calls . 81
6.4.5 Visible node randomization 81
6.4.6 Multiqueries . 82

6.5 Optimized CHC++ . 82
6.5.1 Finding optimal parameters 82
6.5.2 Fixed-size stack . 83
6.5.3 Fixed-size queue . 83

7. Results . 87
7.1 Test Environment . 87
7.2 PC platform . 91
7.3 Xbox360 platform . 93
7.4 PlayStation 3 platform . 95
7.5 Wii platform . 97
7.6 Comparison . 98

8. Summary and future work . 100
8.1 Conclusion . 100
8.2 Future work . 101
8.3 Main contributions . 102

Contents 8

List of Figures . 103

List of Tables . 103

List of Listings . 104

Bibliography . 105

Acknowledgements . 112

Chapter 1

Introduction

Today, game developers are always looking for solutions which allow them
to render more geometry in less time, striving to get more and more perfor-
mance out of each console generation, satisfying rising customer expectations.
Visibility algorithms are one such solution, and this thesis explores whether
current state-of-the-art visibility algorithms can be used on game consoles in
a feasible manner, by detailing implementation issues faced when developing
a multi-platform rendering engine.

The first chapter provides an overview of the thesis’ scope and focus,
introduces the Daedalus engine developed for this thesis, and shows the main
contributions and structure of this thesis.

1.1 Scope of the work

This thesis deals with the design and implementation of a professional, multi-
platform rendering engine for Microsoft Windows, Microsoft XBox360, Sony
PlayStation 3 and Nintendo Wii, as well as the theory and implementation
of state-of-the-art visibility algorithms integrated into this engine.

The first part of the thesis concerns itself with the development of the
engine, which was built to be used by Austria’s leading game development
studio Sproing Interactive Media GmbH [65], serving as a replacement for
the company’s used engine at the time of writing, allowing Sproing to focus
on building new technology, tools and games for today’s major platforms. As
such, it was extremely crucial that the developed engine fitted the company’s
requirements and allowed for easy integration into the existing code base and
tool-chain.

The second part of this thesis deals with the integration of modern visi-
bility algorithms into the engine and tool-chain, exploring new methods and
ways in which the original algorithms can be enhanced, allowing for maxi-
mum performance on vastly different hardware.

Chapter 1. Introduction 10

1.2 Daedalus Engine

The Daedalus engine was developed over a period of two years from August
2007 to July 2009 in close collaboration with Sproing’s technical director
Gerhard Seiler, building upon the company’s core technology and code base
from day one. At the time of writing, the Daedalus engine is an integral part
of Sproing’s own Athena game engine, and is being used in the development
of the studio’s future multi-platform titles. The necessity for an in-house de-
veloped engine arose because Sproing is focusing on using own, custom-built
technology in order to become more and more independent from middleware
providers.

1.3 Main contributions

The following list provides an overview of the major contributions:

∙ Chapter 3 provides insights into professional multi-platform engine de-
velopment, detailing information previously unpublished. Parts of the
technology found in Daedalus have already been successfully put to use
in shipped games, most notably Cursed Mountain [16], the company’s
prestige AAA-title that hit the shelves in August 2009.

∙ Chapter 4 introduces a novel mechanism for making hardware occlusion
queries available on platforms which do not natively support them. Our
hand-crafted occlusion queries use hardware GPU metrics, interrupts
and custom-made CPU-GPU synchronization, resulting in queries that
are way faster than query functionality on other platforms.

∙ Chapter 4 provides a new implementation of render state functionality
using advanced C++ features such as template specialization. The
implementation is very fast, robust and has an extremely small memory
footprint.

∙ Chapter 4 details a multi-platform interface for immediate mode ren-
dering, providing a device for fast rendering of ad-hoc primitives, opti-
mized using special capabilities of each platform.

∙ Chapter 6 implements optimizations in parts of the hierarchical view-
frustum culling algorithm using branch-free operations on console hard-
ware.

∙ Chapter 6 establishes an optimized CHC++ algorithm using fine-tuned
parameters on console hardware, a branch-free fixed-size stack and a

Chapter 1. Introduction 11

branch-free fixed-size queue which serve as a replacement for the stan-
dard STL containers used in CHC++, proving CHC++ to be feasible
on console hardware.

Fig. 1.1: Daedalus technology used in Cursed Mountain. (Image courtesy of Game-
ZONE)

1.4 Thesis structure

The thesis is structured into different chapters as follows:

∙ Chapter 2 explains the basics of real-time rendering and APIs (Appli-
cation Programming Interfaces) used therein, works on the differences
between game and rendering engines, and identifies requirements of a
professional engine.

∙ Chapter 3 deals with the architecture of today’s gaming platforms and
their differences, general multi-platform code abstraction methodolo-
gies, different rendering schemes, and Daedalus specific design deci-
sions.

∙ Chapter 4 builds on the design patterns introduced in the previous
chapter, details some low-level implementations in the Daedalus engine,

Chapter 1. Introduction 12

which build the foundation for implementing visibility algorithms, and
concludes the first part of the thesis with a discussion of how occlusion
queries have been implemented in the engine.

∙ Chapter 5 introduces general visibility terminology and algorithms, and
discusses related work on visibility algorithms.

∙ Chapter 6 shows the basic implementation of online occlusion culling
algorithms in the Daedalus engine. Additionally, optimizations to these
algorithms are introduced.

∙ Chapter 7 shows results that were achieved using the visibility algo-
rithms built into the Daedalus engine, and provides a thorough evalu-
ation and discussion of those results.

∙ Chapter 8 finally summarizes the thesis’ contents, and concludes the
second part of the thesis with possible future enhancements.

Chapter 2

Real-Time Rendering Engines

2.1 Real-Time Rendering

Rendering is concerned with generating an image from a 3d representation
of a virtual world. Real-Time Rendering further expresses the fact that
these images have to be generated in real-time by an application. Real-time
in this context means that 15 or more frames are generated each second,
otherwise the images appear to be flickering to the viewer [68]. The speed or
performance of such real-time rendering applications is measured in frames
per second (fps) or Hertz (Hz).

Although 15 fps begin to appear interactive, more than 30 or 60 fps are
often desirable, especially in applications which have to convey a realistic
appearance of the underlying virtual world, which is commonly the case in
computer games. At a rate of 60 Hz, this means that a new image has to be
generated approximately every 16 milliseconds. For applications which tax
the hardware this is quite ambitious.

Compared to offline or photorealistic rendering, real-time rendering is not
so concerned about getting physically correct results, but rather physically
plausible ones in a much shorter time period. Therefore, real-time rendering
applications often take shortcuts in rendering physical phenomena. These
shortcuts are sometimes barely visible even to a trained eye, and certainly
not to the average gamer.

Nonetheless, real-time rendering applications often use offline rendering
for certain pre-processing tasks, e.g. baking static, view-independent lighting
information into texture maps using state-of-the-art global illumination algo-
rithms. These texture maps are then used at run-time, and can significantly
improve the quality of pictures rendered in realtime. One such example of
pre-computed lightmaps is shown in Figure 2.1.

However, these texture maps take up memory during rendering – memory
which is very limited on consoles. Additionally, because these tasks often take
hours or even days to complete, it might be less expensive to invest in a real-

Chapter 2. Real-Time Rendering Engines 14

Fig. 2.1: Screenshot from Mirror’s Edge, courtesy of EA Digital Illusions Creative
Entertainment. Global Illumination baked with Beast [6].

time solution once or buy middleware, and settle with slightly worse quality,
shortening turn-around times significantly. This cost-quality tradeoff has to
be evaluated on a per-project basis.

Furthermore, as the gap between offline and real-time rendering closes
further with every new hardware generation, these tasks will become more
seldom. Figures 2.2(a) and 2.2(b) clearly show how much real-time rendering
has advanced over the last five years.

Real-time rendering research is also one of the biggest research areas
in computer graphics with game developers contributing papers to major
conferences like SIGGRAPH [63] or Eurographics [23]. Of course, many
of the algorithms seen in computer games today are heavily influenced or
inspired by research done in that area.

2.2 Rendering pipeline

According to [68], the real-time rendering pipeline can be categorized into
conceptual stages, functional stages and pipeline stages, as depicted in Fig-
ure 2.3.

Each stage can either be a pipeline (like the geometry stage), or can be
parallelized (like the rasterizer stage). The application stage itself can be
pipelined or parallelized, depending on the developer’s implementation.

Chapter 2. Real-Time Rendering Engines 15

(a) Screenshot from Far Cry, 2004

(b) Screenshot from CryEngine 3, 2009

Fig. 2.2: Real-time rendering comparison

The stages itself exhibit the following properties:

∙ Application Stage: Completely executed on the CPU, the developer is

Chapter 2. Real-Time Rendering Engines 16

Fig. 2.3: Stages of the rendering pipeline. (Image courtesy of A.K. Peters Ltd.,
taken from ”Real-Time Rendering, Third Edition” [2])

responsible for providing input to the geometry stage.

∙ Geometry Stage: Typically executed on the GPU, it takes care of most
per-vertex operations.

∙ Rasterizer Stage: Completely executed on the GPU, this stage takes
the geometry stage’s input and outputs pixels on the screen.

An overview of the different conceptual stages will be given in the fol-
lowing subsections. A more thorough explanation of different stages and
pipelines can be found in [68].

2.2.1 Application Stage

The implementation of the application stage is completely determined by
the developer. He is responsible for generating rendering primitives (e.g.
points, lines, triangles or quads) which are then sent to the geometry stage.
Generating these primitives is the last and also the most important task of
the application stage.

Usually, the application stage updates entities in a game according to
user input, performs tasks such as collision detection, physics update, and
visibility culling, and sends the remaining entities to the geometry stage.

2.2.2 Geometry Stage

The geometry stage is responsible for performing transformations from and
to several 3d spaces. The most commonly used spaces are the model space,
world space and camera space, which is also known as view space or eye space.
Additionally, shading is computed for each input vertex, and projection,
clipping and screen-mapping is performed on the resulting coordinates. These

Chapter 2. Real-Time Rendering Engines 17

coordinates consist of x- and y-coordinates, as well as a z-coordinate used for
depth-testing.

In modern hardware, the geometry stage is completely implemented in
the GPU, and parts of it can be programmed via vertex shaders.

2.2.3 Rasterizer Stage

The rasterizer stage interpolates various triangle attributes across a primitive
using scan conversion, and performs pixel shading on each fragment. Pixel
shading uses the interpolated properties as input, and produces one or more
colors for each pixel, which are then passed on to the next stage. Most
modern effects are implemented using pixel shaders.

Lastly, the merging stage of the rasterizer stage defines how the output
of the pixel shading stage is combined with the color currently stored in the
color buffer. Most parts of this stage are highly configurable, such as: Z-test,
alpha-test, stencil-test, and ROPs (Raster Operations) or blend operations.

2.3 Graphics APIs

An API (Application Programming Interface) defines the software or source-
code interface which is to be used by the developer in order to be able to use
the underlying hardware, and as such defines a standard for accessing and
programming hardware. Contrary to an ABI(Application Binary Interface),
it does not expose any machine-code or operating-system interfaces, or details
thereof.

A graphics API or 3d API enforces a standard to be used by the developer
when programming graphics hardware. Low-level functionality supported by
the hardware is made available in the API, and the developer doesn’t have to
worry about hardware details - it is the API’s responsibility to yield the same
output on vastly different hardware. In addition to low-level functions, a 3d
API may provide convenience functions and utilities to shorten development
time.

Speaking in terms of the rendering pipeline, a graphics API allows the
developer to implement the application stage, exchange programmable parts
in the geometry and rasterizer stage such as vertex shaders and pixel shaders,
and configure parts of the rasterizer stage, such as z-testing, alpha-testing or
stencil-testing.

The following section shows an overview of popular 3d APIs, and addi-
tionally gives a brief bit of history.

Chapter 2. Real-Time Rendering Engines 18

2.3.1 Direct3D 9

Direct3D 9 is a subset of Microsoft’s DirectX API [21], which serves as the
standard API for developing multi-media applications for Microsoft Win-
dows. The first version of DirectX 9 was made available in June 2004, and
back then consisted of components for 2d and 3d rendering, playing back
sounds and music, interfacing with input devices like keyboard, mouse, and
joysticks, and networking and streaming video support. Of all components,
Direct3D is by far the biggest and most widely used part of the API.

One of the innovations of Direct3D 9 in comparison to its predecessors
is HLSL (High Level Shading Language), which allows developers to write
graphical effects using a high-level language for vertex- and pixel-shaders in-
stead of assembler code. Furthermore, DirectX 9 improved upon D3DX (Di-
rect3D Extension), which is a high-level supplemental API for Direct3D 9.
It exposes functions for common calculations with vectors, matrices, quater-
nions, and the like. Because D3DX is contained in DLLs, the APIs function-
ality can be improved with every new Direct3D update.

Today, DirectX 9 works on almost any hardware and Windows OS up
until Windows XP.

2.3.2 Direct3D 10

Direct3D 10 [22] was concurrently introduced with Windows Vista [73], and
featured the new Shader Model 4.0. Along other features, Shader Model 4.0
introduced the new geometry shader, which allows geometry to be generated
within a shader, introducing completely new possibilities for common algo-
rithms such as generating shadow volumes, generating fur, and rendering to
cube maps.

Figure 2.4 shows the rendering pipeline introduced by Direct3D 10.
Additionally, Direct3D 10 defines a set of hardware capabilities which

must be available on all Direct3D 10 compatible hardware. This lessens the
burden on developers to write different codepaths for some hardware not
capable of displaying certain effects and features, like it had to be done in
DirectX 9. Of course, this means that games targeting DirectX 10 hardware
will only run on Windows Vista and newer operating systems.

Some of the most noteworthy features of Direct3D 10 are the following:

∙ Full shader-only pipeline, fixed pipeline is no longer supported

∙ Shader model 4.0, new integer instructions, and geometry shaders

∙ Texture arrays

Chapter 2. Real-Time Rendering Engines 19

Fig. 2.4: Direct3D 10 rendering pipeline. (Illustration after [18])

∙ Predicated rendering

∙ Faster state changes

∙ Stream Output, which means that the Geometry Shader can output its
results to both the rasterizer and the Input Assembler

Direct3D 10.1

Shortly after Direct3D 10 had been introduced, Microsoft announced Di-
rect3D 10.1 which is now included with the first service pack for Windows
Vista. Direct3D 10.1 is fully backwards-compatible with Direct3D 10, and
adds the following features:

∙ More developer control over anti-aliasing (multisampling and super-
sampling)

∙ Shader model 4.1

Chapter 2. Real-Time Rendering Engines 20

∙ Mandatory 32-bit floating-point filtering

Direct3D 10.1 is only a minor update to Direct3D 10 and mainly adds
parts of the specification which were not available at the time Direct3D 10
was introduced.

2.3.3 Direct3D 11

Direct3D 11 was first presented at Microsoft’s Gamefest 2008 [27]. As of
today, no specification has been made publicly available, but the following is
a non-exhaustive list of features which will be introduced in Direct3D 11:

∙ Hardware supported tessellation

∙ True multi-threaded rendering: Draw calls can be submitted from sev-
eral different threads

∙ Compute shaders: Allow to take advantage of the GPU’s resources
for computation-expensive tasks such as stream processing and physics
calculations

∙ Shader model 5.0

∙ New texture compression formats better suited for high-dynamic range
imaging

The first release candidate of Windows 7 is the first OS to provide Di-
rect3D 11 support.

2.3.4 OpenGL

OpenGL (Open Graphics Library) [50] emerged from IrisGL, a standard de-
veloped by SGI (Silicon Graphics International) [62]. The OpenGL stan-
dard is defined by the OpenGL ARB (Architecture Review Board) [51] which
consists of several industry big players like AMD/ATI, Dell, IBM, Intel,
NVIDIA, and more. In 2006, control over the specification was transferred
to the Khronos Group [38], a member-funded industry consortium.

One major aspect of OpenGL is its extensibility. New functionality can be
added by graphics hardware vendors by exposing so-called extensions to the
developer. Extensions to OpenGL typically follow the subsequent scheme:

∙ Vendor extensions: If an extension is exposed by one vendor only, the
extension is appended with a particular postfix for this vendor, e.g. NV
for NVIDIA[45].

Chapter 2. Real-Time Rendering Engines 21

∙ EXT extensions: If more vendors agree to expose the same functional-
ity, an extension is postfixed with ”EXT”.

∙ ARB extensions: If the ARB agrees to standardize this extension, it is
postfixed with ”ARB”.

Most of the standardized extensions by the ARB will sooner or later get
integrated into the core of the OpenGL specification. From there on, the
extensions’ postfix is removed.

While on the one hand this mechanism keeps OpenGL extensible, on the
other hand it can lead to what is known as ”extension hell”, where devel-
opers have to write different code paths for e.g. NVIDIA and AMD/ATI[3]
cards. This is partly the reason why OpenGL is not so popular among game
developers, the second reason being that OpenGL drivers often fall behind
DirectX drivers in terms of functionality and stability.

Nevertheless, OpenGL is widely used in professional 3d software, CAD
applications, flight simulators, and visualization because it still is the only
platform-independent standard. OpenGL is available for a multitude of plat-
forms.

2.4 Rendering engines

A Rendering engine is what enables developers to write programs using the
graphics hardware, without having to deal with platform or API details. It
abstracts those details and allows the developer to run the same rendering
code on different platforms. A rendering engine is also commonly being
referred to as 3d engine or graphics engine.

Such an engine provides low-level functionality such as rendering prim-
itives, issuing occlusion queries, switching render targets, changing render
states and much more. Ideally, it is possible to exchange some of those
low-level implementations with own code, or at least enhance the engine’s
low-level functionality.

Additionally, high-level features allow the developer to use e.g. lighting
effects, shadowing algorithms, post-processing effects and many more with
only a few lines of code out of the box. New features or rendering effects
can be integrated into the engine by the developer using either low-level
functionality or building on top of already existing high-level code.

Furthermore, a good rendering engine provides spatial data structures,
visibility algorithms and other high-level algorithms and building blocks with
which the developer can build games of a vast amount of different genres,
be it first-person shooters, racing games, indoors or outdoors. Any good

Chapter 2. Real-Time Rendering Engines 22

3d engine should not focus on one specific scenario in games development,
although even many commercially available engines pose this restriction. In
essence, a well-engineered 3d engine should not dictate the developer how to
use it, but rather let him use his own workflow and tools, and allow him to
leverage the engine’s feature set with ease.

Conceptually, a rendering engine is a subset of a game engine, implement-
ing a game engine’s rendering module. A 3d engine usually does not concern
itself with core features such as file I/O, debugging functionality, but rather
builds upon a common codebase, or lets the developer plug in his own core
routines. Furthermore, a strict rendering engine doesn’t provide tools such
as an editor or world builder. However, many engines don’t adhere to such a
strict distinction and provide a complete tool-chain, exporters for commercial
art packages, and other tools - which is not necessarily a bad thing.

2.4.1 OGRE - Open Source 3D Graphics Engine

Today, OGRE [49] is most probably the best known open source graphics
engine. Started in 2000, it is being used by amateur game developers and
universities for small projects as well as bigger ones, be it games, scientific
visualization, or others. One of the positive aspects of OGRE is that it
provides support for many advanced effects, for example different shadowing
algorithms, hence the learning curve for starting developers is not very steep.
A well-established forum and a big community, as well as exporters for both
commercial and open-source art packages like Maya and Blender make it
even more appealing for hobby developers.

However, OGRE severely lacks in the extensibility department. Alter-
ing low-level rendering features or extending high-level functionality such
as the renderer is either impossible or only doable with a huge amount of
work. Furthermore, the engine’s abstraction facilities rely way to much on
inheritance and abstract interfaces, making it a bad choice for commercial
multi-platform development because of the negative performance impact this
poses on today’s game consoles.

OGRE is available for Microsoft Windows, Linux, and Apple Mac OSX.

2.4.2 Irrlicht

Like OGRE, the open-source engine Irrlicht [37] is also very popular among
hobby game developers. Irrlicht comes with a lot of nice features, and is
extremely easy to use, even for beginners in the 3d graphics area. A simple
demo containing animated models, lighting, and a FPS-like camera can be

Chapter 2. Real-Time Rendering Engines 23

built with approximately 100 lines of code. Irrlicht claims to be lightning fast,
in comparison to commercial engines this statement however is not true.

Almost all of the engine’s low-level features are abstracted like in OGRE
using abstract interfaces and virtual functions, hence suffering the same
shortcomings from a commercial development point-of-view.

Irrlicht is available for Microsoft Windows, Linux, Apple Mac OSX, and
Sun Solaris.

2.4.3 Open Scene-Graph

Open Scene-Graph [52] is another open source rendering toolkit mainly used
for visual simulation, scientific visualization and modelling. Open Scene-
Graph is implemented on top of OpenGL, and therefore supports a multitude
of different operating systems.

The engine itself provides a clean and generic abstraction of scene graphs,
and supports many features like shadow generation, visibility culling, and
particle systems out of the box. Additionally, it supports advanced technol-
ogy like multi-threaded rendering and support for large terrain data.

2.5 Game Engines

A Game engine is the complete driving force behind game technology, and
usually consists of several parts or engines itself. These parts can be any of
the following:

∙ Core technology: Memory management, file I/O, debugging, exception
handling, threading, serialization, containers such as arrays, vectors,
lists, maps, ...

∙ Rendering engine: Examples would be the Irrlicht Engine [37],
OGRE [49], and Open Scene-Graph [52].

∙ Physics engine: Examples would be Havok [34], PhysX [55], and
ODE [47].

∙ Audio engine: Examples would be Miles Sound System [43] and
FMOD [25].

∙ Networking engine: Examples would be RakNet [60] and GNE [29].

∙ Artificial intelligence technology: An example would be AI Implant [1].

∙ Scripting language: Examples would be LUA [39] or Squirrel [66].

Chapter 2. Real-Time Rendering Engines 24

∙ Real-Time editor: Examples would be CryEngine’s Sandbox [61] or
Valve’s Hammer [32].

∙ Exporters for commercial art packages.

∙ Technology for automatically parallelizing tasks on multi-core CPUs or
offloading code to the SPUs: Examples would be Emergent’s Flood-
gate [24] and Codeplay’s Offload [48].

Using a game engine allows the developer to focus almost completely on
the game and game play itself, saving time and money during the develop-
ment process. Examples of such game engines which provide almost all of
the above would be Epic’s Unreal Engine 3 [69], Crytek’s CryEngine
3 [15], Valve’s Source Engine [64] and Emergent’s Gamebryo [26]. A
complete list of engines used in commercial game development can be found
in [17].

2.5.1 Unreal Engine 3

Being in its third version, this engine is hands down the most widely used in
the games industry. Many of today’s AAA games leverage Epic’s technology
to the fullest. One area where the Unreal Engine 3 absolutely shines is in
the content creation tools, giving complete control to artists, designers and
scripters. This amount of control is essential in professional games develop-
ment, where many areas of a game sometimes have to be fine-tuned because
otherwise the engine would not be able to render the scene in real-time. Ad-
ditionally this allows the developer to fake certain graphical effects to the
maximum possible extent.

Unreal Engine 3 is available for Microsoft Windows, Microsoft XBox360
and Sony PlayStation 3, with older versions of the engine supporting many
more platforms.

2.5.2 CryEngine 3

The third version of the CryEngine is the first multi-platform version of this
engine, with previous versions being for PC only. Like the CryEngine 2 did
on the PC platform, CryEngine 3 defines a new graphical standard for games
running on Microsoft Windows, Microsoft XBox360 and Sony PlayStation 3
with unprecedented visual quality. In addition, CryEngine 3 also offers var-
ious built-in editing tools for assets, animation, physics, and more. Being
available for consoles only recently, it still has to prove itself as true competi-
tor to the Unreal Engine 3.

Chapter 2. Real-Time Rendering Engines 25

2.5.3 Gamebryo

Emergent’s Gamebryo is probably the second biggest game engine used in the
industry. Featuring tools and a complete framework for rapid prototyping,
game prototypes can be built in a fraction of the time needed with other en-
gines. Unlike Unreal Engine 3 and CryEngine 3, Gamebryo also supports the
Nintendo Wii out-of-the-box, which is the console with the largest installed
userbase of any of today’s consoles except the PlayStation 2.

Gamebryo is available for Microsoft Windows, Microsoft XBox360, Sony
PlayStation 3 and Nintendo Wii .

2.6 Rendering Engine Requirements

Concluding this chapter, a list of requirements of a rendering engine intended
to be used for professional game development is gathered.

∙ Usability: The engine should be easy to use, and hard to misuse –
both for junior as well as senior programmers and experts in the field.
If possible, misuse should be flagged at compile-time rather than run-
time.

∙ Cross-platform: The engine should provide the same interface for all
platforms. Different platform technologies (e.g. SPU stream processing
on the PlayStation 3 versus multi-core programming on the Xbox360
versus single-threaded programming on the Wii) should be abstracted
into the same interface.

∙ Performance: The engine should yield the best possible performance by
having a small memory footprint, avoiding memory allocations, paral-
lelizing tasks, and making use of dedicated hardware. If parts of the en-
gine are not optimized, it should be easy for the developer to exchange
that part with his own implementation, possibly gaining performance.

∙ Scalability: It should be the developer’s choice which parts of an engine
he wants to use. The engine should not dictate a certain work-flow to
the developer, but rather support him in developing his own. The
engine should provide basic building blocks which allow the user to
develop his own high-level rendering algorithms.

∙ Modularity: It should be possible to completely exchange parts of the
engine with own implementations, while still keeping the engine’s func-
tionality intact.

Chapter 2. Real-Time Rendering Engines 26

∙ Prototyping support: The engine should provide prototyping facilities
which enable the developer to prototype features, effects and algorithms
quickly and easily.

∙ Accessibility: The developer should have access to all low-level func-
tionality exposed by the platform. If some part of the platform’s API
is not abstracted in the engine, it should be possible to work directly
with the platform API.

∙ Comprehensibility: The engine should not require an expert- or guru-
level programmer in order to fully understand it. The code should
adhere to an easy-to-understand coding style.

∙ Documentation: Each single part of the engine should be documented
in a clear and concise fashion. Furthermore there should be a docu-
mentation about how the engine works as a whole, so the developer is
able to understand interdependencies between different parts.

Daedalus, the rendering engine developed for this thesis, was built with
all these requirements in mind, and Chapter 3 and 4 show how these require-
ments were fulfilled.

Chapter 3

Introduction to cross-platform design

This section discusses design and code abstraction necessities when working
on multiple platforms, deals with general multi-platform development prob-
lems, shows differences between the platforms’ rendering APIs, and touches
upon multi-platform rendering, cache coherency, CPU-GPU synchroniza-
tion and multi-threaded rendering. Technical implementation details are
discussed thoroughly in chapter 4 of this thesis.

3.1 Platform capabilities

First and foremost it is exceptionally important to know each platform’s
feature set, its API, and its bugs and quirks. It is not unusual that game
consoles exhibit hardware bugs, which at best are worked around in the SDK.
If not, the developer has to pay attention to not trigger these bugs.

As a bare minimum, each platform’s hardware capabilities and architec-
ture should be known before getting started. Although code can be refac-
tored and retrofitted at a later point during development, this often results
in suboptimal performance and degraded code quality. To some extent, code
refactoring always has to happen sooner or later, but it is best to get intricate
details sorted out in the beginning.

3.1.1 PC platform

Of all the platforms described in this section, the PC is clearly the easiest
to develop for. At times, developing for a vast amount of different hardware
and operating systems can be harder than programming for fixed-hardware
platforms, but this flaw is easily outweighed by the fact that there is a wealth
of information, a large array of debugging tools and profiling tools available,
and turn-around times are the shortest among major platforms.

The following is a collection of the PC platform’s characteristics:

Chapter 3. Introduction to cross-platform design 28

∙ Multi-Core: With multi-core systems gaining popularity even in entry-
level desktop systems, the PC can generally be classified as a multi-core
platform. Nowadays, the average desktop PC consists of two cores,
whereas hardcore gamers own four-core or even eight-core systems.

∙ GPU memory: The GPU has its own memory dedicated to vertex
buffers, index buffers, textures, and rendering resources in general. Ac-
cording to the latest hardware survey by game developer Valve [70], an
average PC has at least 256 MB graphics memory for the GPU to work
with.

∙ CPU-GPU synchronization: The graphics API takes care of CPU-GPU
synchronization.

∙ Cache coherency: The operating system and graphics API take care of
invalidating instruction and data cache, and vertex buffer and texture
cache, respectively.

∙ Unified shader architecture: Since Direct3D 10, shaders are unified,
yielding better performance in vertex- or pixel-shader bound scenes,
because more shader computing units can be allocated to either vertex-
or pixel-shaders, depending on their workload.

∙ GPU main memory access: Since Direct3D 10, it is possible to store
primitives generated by the geometry shader in a buffer accessible by
the GPU, using Stream Out. The GPU accesses graphics memory via
PCI-E [53], which is the de-facto standard interface between the GPU
and the CPU on the PC.

Figure 3.1 depicts a simplified design for a dual-core PC.

Chapter 3. Introduction to cross-platform design 29

Fig. 3.1: Simplified overview of the PC architecture for a dual-core PC.

Chapter 3. Introduction to cross-platform design 30

3.1.2 Xbox360 platform

On the CPU-side, the Xbox360 platform features the so-called Xenon CPU
based on IBM’s PowerPC, consisting of 3 cores with 2 hardware threads each.
Even though all cores can be used by the developer, some hardware threads
have to share their resources with API specific tasks like sound decoding and
mixing, and OS related activities.

GPU-wise, the Xbox360 features ATI’s Xenos GPU [20], which is the
predecessor of ATI’s R600 graphics card series. However, there are many
differences compared to a PC graphics card.

The Xenos GPU consists of two separate silicon dies: The main GPU chip
and its daughter chip. The main GPU chip also serves as a memory controller,
which means that the CPU accesses system memory through the GPU chip,
which essentially leads to a Unified Memory Architecture. Furthermore, the
GPU is connected to the CPU’s L2 cache, of which parts can be locked to
be accessible by the GPU (shown in Figure 3.2).

The main GPU supports a superset of Shader Model 3.0 with additional
features such as MEMEXPORT, which allows the GPU to write directly into
main memory by using dedicated assembler instructions in vertex shaders.
Additionally, the Xenos GPU is built upon a Unified Shader Architecture
supported by an additional load-balancing hardware unit, and also offers a
dedicated hardware tesselation unit.

The GPU’s daughter chip features 10 Megabytes of embedded DRAM
(eDRAM) and own dedicated logic for anti-aliasing, alpha- and depth-testing,
and other related operations. Because the GPU can only render into the
eDRAM, all frame buffers (color buffers, z-buffer and hierarchical z-buffer,
render targets) have to reside in the eDRAM. Render targets and the back-
buffer have to be resolved from eDRAM into main memory before they can
be used as textures or the frontbuffer by the GPU.

The design of the daughter chip brings both advantages and disadvan-

Fig. 3.2: Xbox360 Xenos GPU

Chapter 3. Introduction to cross-platform design 31

tages. Because multi-sampling is handled by dedicated logic in the daughter
chip, even 4xMSAA at 720p or 1080i does not cause significant performance
drops. Furthermore, rendering to eDRAM and resolving into main memory
is extremely fast because of the bandwidth between the main chip and the
daughter chip.

However, the eDRAM’s limited size of 10 megabytes poses a problem
when rendering in HD resolutions. For example, 4xMSAA frame buffers do
not fit into eDRAM at once, hence rendering needs to be done on different
tiles with intermediate results being resolved to main memory in between.
This can cause problems when rendering certain full-screen effects.

Figure 3.3 depicts a simplified design of the Xbox360.

Chapter 3. Introduction to cross-platform design 32

Fig. 3.3: Simplified overview of the Xbox360 architecture.

Chapter 3. Introduction to cross-platform design 33

3.1.3 PlayStation 3 platform

The PlayStation 3 features the Cell Broadband Engine (CBE) [11] as its CPU,
and NVIDIA’s RSX as its GPU. The RSX is basically a modified Geforce
7800, fully supporting Shader Model 3.0. CPU and GPU are equipped with
256 MB of XDR and GDDR3 memory, respectively, and both of them can
access each other’s memory via the FlexIO interface which connects the CBE
with the RSX. While the RSX reading from main memory is supported at
full bandwidth, reading from RSX memory on the CBE is the slowest path
in the pipeline, and should be avoided if possible.

The CBE consists of a PowerPC Processor Element (PPE) and eight
additional Synergistic Processor Elements (SPE). The PPE itself offers two
hardware threads, and serves as the part of the CPU which runs general-
purpose code, and distributes computations to the SPEs. Even though the
CBE consists of eight SPEs, only six of them are available for development.
One SPE is disabled in order to increase die yields, and one SPE is reserved
by the OS. The PPE, SPEs and the FlexIO interface are connected through
the Element Interconnect Bus (EIB), which is an extremely fast bus with
more than 200 GB/s bandwidth [59].

The SPEs itself each consist of a memory controller and a Synergistic
Processor Unit (SPU). Each SPU is built as a pure SIMD-processor, and can
be seen as a heterogeneous processing unit optimized for localized computa-
tions, bearing resemblance to the stream processing units in GPU graphics
pipelines. As such, an SPU should not be used for general-purpose code, but
rather as a processor acting on streams of data, in small pieces of data at a
time.

SPUs cannot access main memory or any other memory other than its own
Local Storage, which is 256 KB in size. Data from the local storage of other
SPUs or data from main memory must first be transferred via DMA. Each
SPU can handle multiple such DMA transfers in parallel to computation.

In order to leverage the full potential of the PlayStation 3, the SPEs must
be used to the fullest extent possible. This, however, brings a paradigm shift
for developers because code which was previously executed on GPUs exclu-
sively now has to be written for the SPEs. As an example, developers use
the SPEs for skinning, backface culling, and fullscreen effects in order to free
some milliseconds off of the RSX. Speaking in terms of the rendering pipeline,
the SPEs can be used to implement parts of the geometry stage, essentially
making the PlayStation 3 a hybrid CPU-GPU rendering architecture.

More information about the CBE and the PlayStation 3 graphics pipeline
can be found at [11], [41] and [54].

Figure 3.4 depicts a simplified design of the PlayStation 3.

Chapter 3. Introduction to cross-platform design 34

Fig. 3.4: Simplified overview of the PlayStation 3 architecture.

Chapter 3. Introduction to cross-platform design 35

3.1.4 Wii platform

Originally codenamed Revolution, the Nintendo Wii features a PowerPC-
based Broadway processor developed by IBM and Nintendo as CPU, and
ATI’s Hollywood as GPU.

Wii offers 24 MB of internal memory called MEM1, and 64 MB of external
GDDR3 memory called MEM2. Both MEM1 and MEM2 can be accessed by
the CPU and the GPU, but most of the time MEM1 is used for code and
general data structures, while MEM2 is being used for vertex data, index
data, and textures.

The CPU is the only CPU of all current-generation consoles which offers
neither multiple cores nor multiple threads.

The GPU itself is similar to the GPU found in the Nintendo GameCube,
but is approximately 1.5 or 2 times as fast as its precursor. Of all the current-
generation GPUs, Hollywood is the only one which doesn’t support shaders
by using a high-level shading language or something similar, but rather uses
a fixed-function pipeline. Nevertheless, developers can program up to 16
Texture Environment (TEV) Stages and an indirect texturing unit, allowing
them to simulate nearly a full Shader Model 2.0 feature set. Programming
these TEV stages is somewhat similar to programming the early NVIDIA
register combiners [46].

Figure 3.5 depicts a simplified design of the Wii.

Chapter 3. Introduction to cross-platform design 36

Fig. 3.5: Simplified overview of the Wii architecture.

Chapter 3. Introduction to cross-platform design 37

3.2 Separation of low-level and high-level code

One of the major design aspects when writing multi-platform code is to
clearly separate low-level from high-level code.

Low-level code can be thought of as the inner core of an engine which
has to abstract the different hardware capabilities and APIs of each platform
behind a clear interface, which in turn is used by either the client using the
engine or the engine’s high-level code itself. Perfect examples of low-level
code would be classes responsible for abstracting render states, occlusion
queries, vertex and index buffers, and so forth.

High-level code builds upon the engine’s low-level code and will almost
always share one common implementation on every platform. Some exam-
ples of high-level code would be classes implementing shaders, materials, and
scene graphs. High-level code should only be written in a platform-dependent
manner for optimization purposes, where parts of high-level code are imple-
mented differently in order to gain performance.

3.3 Granting access to platform-dependent functionality

In addition to having a cleanly abstracted low-level interface, it must be
possible for clients to make use of platform-specific capabilities, e.g. different
render states which are only available on certain hardware. Basically, there
are two main methodologies which can be leveraged to accomplish this:

∙ Add the functionality to the platform-independent interface, and leave
the platform-dependent parts empty on platforms where the function-
ality is not supported.

∙ Leave it to the user to use preprocessor #ifs in his own code to explicitly
state that access to such parts is wanted. An example is given in
Listing 3.1.

Daedalus exclusively uses the latter variant because it makes it much more
obvious where access to platform-dependent parts is needed. Furthermore,
for some platform-exclusive functionality like render states it is simply not
possible to implement the first strategy.

Some graphics engines even grant the user access to inner details such
as the Direct3D device, but Daedalus restrains itself from doing so. This
strategy can completely wreak havoc with the inner workings of an engine,
and should therefore be avoided at all costs.

Chapter 3. Introduction to cross-platform design 38

{
RenderState noCull(RenderStates::CULL_MODE_NONE);

#if WINDOWS
// fog done in Shader on other platforms
RenderState fog(RenderStates::FOG_LINEAR);

#endif

// rendering code
...

}

Listing 3.1: Client code using #if

3.4 Ease of use

Quoting the C++ language’s designer Bjarne Stroustrup:

”C makes it easy to shoot yourself in the foot; C++ makes it
harder, but when you do it blows your whole leg off”,

it is essential that an engine (or library, for that matter) makes it hard for the
user to use it in a wrong way. There are several techniques for accomplishing
this feat, sorted in descending order of their usefulness:

∙ Disallow misuse by hiding as much code as possible behind protected
and private interfaces: The compiler will make sure that neither pro-
tected nor private interface parts are used wrongly, and error messages
are clean and concise.

∙ Flag errors at compile-time (e.g. by employing static assertions and
templates): Compile-time errors caused by static assertions should be
made easy to understand.

∙ Flag errors at run-time (e.g. by employing assertions and sanity checks):
As much detail as possible as to when, how, and what went wrong
should be provided.

∙ Generate run-time warnings and errors: Detection of misuse should go
alongside displaying readable warning or error messages.

∙ Gracefully abort the current operation at critical errors: If something
unexpected happens, the engine should gracefully abandon its current
operation, inform the user, but just not crash silently.

Chapter 3. Introduction to cross-platform design 39

Keeping the above in mind, sometimes it is simply not possible or un-
desirable to design code for absolute ease of use, e.g. when dealing with
high-performance code. Nevertheless, trading performance for possibly hard-
to-find bugs should only seldom be necessary.

3.5 Judicious use of language features

Far too often, language features are used in wrong ways. Such abused C++
features are inheritance and virtual functions, for example. Granted, poly-
morphism and dynamic binding are very useful language features which have
their uses, but they are often utilized for the wrong task. Dynamic polymor-
phism should be used when dealing with derived classes which can coexist
at run-time and one needs to work with base class interfaces, nonetheless
this kind of polymorphism is often used for abstracting different platforms
behind interfaces. C++ supports advanced language features like templates
which are often more suited for this task. Especially static polymorphism
and the Pimpl Idiom or Bridge Pattern prove to be useful in multi-platform
development as can be seen in Section 4.

More C++ idioms can be found in [28] and at [14].

3.6 Abstracting low-level interfaces

Undoubtedly the single biggest mistake in multi-platform development is ab-
stracting different platforms by using interfaces with solely pure virtual func-
tions, which are implemented in concrete classes for each platform. From an
object-oriented programming perspective this may be arguable, but consid-
ering both the performance penalty on today’s hardware and the fact that
none of these interfaces can co-exist at run-time, this is not practical.

There are many hobbyist and amateur engines which suffer heavily from
this problem, putting more than 100 virtual functions in an abstract interface.

It should be understood that the penalty of invoking virtual functions
stems not only from the fact that an extra level of indirection is added upon
each call, but rather introduces several more penalties:

∙ Virtual function calls cannot be inlined: Even the best compilers and
aggressive optimizers cannot inline virtual function calls. This is only
possible in very rare circumstances.

∙ Possible instruction and/or data cache miss: Both types of cache misses
are amongst the number one performance hits on modern hardware.

Chapter 3. Introduction to cross-platform design 40

∙ Possible pipeline hazard because of mispredicted branches: Due to the
fact that virtual functions cannot be inlined, mispredicted branches are
more likely to happen. Branch prediction on a PowerPC based archi-
tecture is different to the x86 architecture, hence the performance im-
pact on console hardware is higher because every platform is PowerPC
based. The PlayStation 3 SPUs do not have any branch prediction at
all.

∙ Virtual functions cannot be run on an SPU without requiring an awful
lot of work.

That being said, it should be noted that virtual function calls should
not be avoided at all costs – interfaces and virtual functions can increase
productivity and make code more reusable, they should just not be used
carelessly. Emulating virtual functions almost always results in a slower
version of what the compiler can do, and hence should be avoided.

Fortunately, there are several solutions to the problem of having to pro-
vide one interface to the user, but having different implementations for each
platform. None of these solutions require virtual functions.

3.6.1 Preprocessor directives

Perhaps the most simple solution is to implement all interfaces in the same
file, with each implementation being wrapped with preprocessor directives
for inclusion/exclusion of the respective code for each platform.

Although this solution solves the original problem of not relying on ab-
stract interfaces, it clearly introduces some new, serious problems:

∙ Unreadable, unmaintainable code: Every method is cluttered with ugly
preprocessor directives.

∙ Possible code duplication for some platforms.

∙ Tedious to add new platforms: New platforms must be added to every
method and file.

∙ Missing implementations are tedious to flag at compile-time: Respec-
tive preprocessor commands would have to be put into every method
and file.

Chapter 3. Introduction to cross-platform design 41

class Interface
{

...

void Method(void)
{

#if _WINDOWS
// Windows code here

#elif _XBOX360
// XBox360 code here

#elif _PS3
// PlayStation 3 code here

#elif _WII
// Wii code here

#endif
}

};

Listing 3.2: Using preprocessor directives in a single file

3.6.2 Splitting interfaces across files

A better solution is to split the different implementations, put them into
separate files and keep them in distinct folders. Preprocessor directives are
only used in the header file which is being used in client code:

#if _WINDOWS
#include "InterfaceWindows.h"

#elif _XBOX360
#include "InterfaceXBox360.h"

#elif _PS3
#include "InterfacePS3.h"

#elif _WII
#include "InterfaceWii.h"

#else
#error "Unknown platform!"

#endif

Listing 3.3: Header file used by client code

Each one of the Interface*.h files contains the implementation of the
respective interface for one platform. This solution offers several major ad-
vantages over the first one:

∙ Clear code.

Chapter 3. Introduction to cross-platform design 42

∙ Clear separation of platforms.

∙ New platforms can be added easily, missing platforms can be flagged
at compile-time.

This solution is perfectly valid when an interface’s implementation proves
to be completely different for each and every platform. However, most of the
time interfaces or classes need a more sophisticated solution because they
consist of both a platform-independent and a platform-dependent part. Using
the above solution in such circumstances would result in unnecessary code
duplication distributed over several implementations. This can be tedious to
find and refactor when used in huge amounts of code.

There is always the idea to put platform-independent parts into a base
class, and let platform-dependent parts derive from that class. However, this
solution is sometimes not feasible because of the following reasons:

∙ If the base class needs a virtual destructor, a virtual function table
is added for every instance of the class. This can be undesired for
serialization, in-place loading, and so forth.

∙ Adding overloads in the derived class can lead to unwanted function
hiding.

∙ If other classes such as utility classes need to work with base-class
pointers, they can never access the platform-dependent parts, unless
ugly casts are used.

∙ As a general rule, inheritance should model an ”is-a” relationship. In-
heritance should not be abused to inherit common functionality.

3.6.3 Modified PIMPL idiom

A more elegant solution is to utilize the PIMPL (Private Implementation)
idiom [56], and modify it by passing the implementation as a template pa-
rameter to the interface, which in turn now becomes a class template. This
is illustrated with the simplified Texture class shown in Listing 3.4.

As can be seen, platform-dependent methods simply delegate their work
to the given implementation. By using a template parameter, the implemen-
tation is subject to static binding, hence the compiler will inline all these
calls. The implementation files for each platform additionally contain a type-
def which makes the template-class completely transparent to the user, as
shown in Listing 3.5.

Chapter 3. Introduction to cross-platform design 43

template <class Impl>
class TextureBase
{
public:

...

// Platform-independent interface
unsigned int GetWidth(void) const { return width; }
unsigned int GetHeight(void) const { return height; }

// Platform-dependent interface
void Lock(void) { impl->Lock(); }
void Unlock(void) { impl->Unlock(); }

...

private:
...
unsigned int width;
unsigned int height;
...
Impl* impl;

};

Listing 3.4: Modified PIMPL

// In TextureWindows.h:
typedef TextureBase<TextureImplWindows> Texture;

...

// In TexturePS3.h:
typedef TextureBase<TextureImplPs3> Texture;

Listing 3.5: Template typedefs

Chapter 3. Introduction to cross-platform design 44

Using this pattern and a corresponding header file to be included by
the client as suggested in Section 3.6.2, this approach solves all the original
problems and provides the following characteristics:

∙ Best performance, no virtual function calls.

∙ Clear separation of platforms.

∙ Clear separation and abstraction of platform-independent and plat-
form-dependent code.

∙ Absolutely no redundant code.

∙ Platform-dependent code can be changed to platform-independent code
without hassles (and vice versa).

If desired, forward declarations of the template classes can be added to a
separate header file, similiar to the iosfwd.h [36] of the standard template
library. This ensures that the client code does not need to include both
the platform-independent and platform-dependent parts in every header, but
rather uses the correct forward declarations instead.

Additionally, it should be noted that the implementation class does not
need a pointer to the platform-independent base class for accessing common
functionality. If designed accordingly, all common functionality can be placed
in utility classes or free functions, which can be used by both base and
implementation classes.

3.7 Multi-platform rendering

Although the platform’s graphics hardware is somewhat similar to a certain
degree, the underlying APIs provide different levels of hardware access, which
lead to several possible strategies for writing rendering code on multiple
platforms. These strategies will be discussed in the following sections.

3.7.1 Submission-based vs. buffer-based rendering

These two rendering schemes describe how rendering commands are issued to
the graphics hardware. They do not deal with the fact when these commands
are issued.

Chapter 3. Introduction to cross-platform design 45

Submission-based rendering

In principle, rendering nowadays can be done in two different ways, with
submission-based rendering being the more common one. Submission-based
rendering describes the way most rendering APIs work, e.g. Direct3D 9 and
OpenGL. Rendering is done by submitting lists, strips or fans of primitives
(triangles, quads, or lines) to the graphics hardware using the respective API
calls, which are known as drawcalls.

Because each such drawcall has to go through the DirectX DLL and
the graphics driver before finally arriving at the hardware, drawcalls still
take up a significant amount of CPU time in rendering code on the PC
platform. Newer versions of DirectX (DirectX 10 and 11) somewhat alleviate
this problem, but it still is a concern to game developers.

The advantage of submission-based rendering is that dealing with prim-
itives is still done in a fairly high-level way, and both the graphics API and
the graphics driver are responsible for building commands for the GPU to
execute, which essentially puts less burden on the developer and makes the
rendering process less error-prone.

The disadvantage of this kind of rendering scheme is that every drawcall
has to be re-submitted every frame, hence rendering instructions can’t be
cached between frames and can take up a considerable amount of CPU time.

APIs mainly provide submission-based rendering when they have to work
on a multitude of different hardware, keeping intricate hardware details away
from the developer.

Buffer-based rendering

Buffer-based rendering is mostly present in rendering APIs for consoles, and
allows developers to take full control over the hardware and leverage the
GPUs capabilities to its fullest extent possible. In buffer-based rendering,
so-called command buffers consisting of plain GPU commands are submit-
ted directly to the graphics hardware, which of course offers a great deal
of performance optimizations like pre-compiled command buffers, exploiting
temporal coherency, and so forth.

In exchange, buffer-based rendering exhibits much bigger sources of error
than submission-based rendering, mainly because now the developer has to
deal with hardware bugs, elaborate hardware details and CPU-GPU synchro-
nization himself.

Despite being primarily submission-based rendering APIs, Direct3D 10/11
and OpenGL offer a very limited form of buffer-based rendering via contexts
and display lists, respectively. It should be noted that rendering in Direct3D

Chapter 3. Introduction to cross-platform design 46

3 was based on execute-buffers, which were later abandoned in favor of the
DrawPrimitive API.

3.7.2 Immediate vs. delayed rendering

Contrary to the aforementioned schemes, these two rendering schemes de-
scribe when rendering commands are issued to the graphics hardware.

Immediate rendering

In immediate rendering, every rendering command is immediately submitted
to the API during a frame’s rendering. These commands can be cached
and buffered transparently, and the API or driver will decide when these
commands are to be processed by the GPU. Both submission-based and
buffer-based rendering schemes can easily be used to implement immediate
rendering.

A perfect example of immediate rendering would be writing commands
directly into the GPU’s primary ring-buffer, with these commands being
fetched by the GPU, immediately performing the respective tasks.

Delayed rendering

In delayed rendering, a whole frame’s worth of commands is buffered in
memory before being submitted to the GPU at once. The well-established
standard is to submit commands for frame n to the GPU, while building
commands for frame n+1 on the CPU. In essence, this enables the CPU
and GPU to run almost completely in parallel. Naturally, a buffer-based
rendering scheme is more suitable for delayed rendering than submission-
based rendering, but makes CPU-GPU synchronization harder.

3.8 Multi-threaded rendering

With multi-core CPUs becoming more and more mainstream, it is essential
that a rendering engine supports efficient multi-threaded rendering. Efficient
in this context means that it’s not an option to wrap low-level engine calls
with mutexes or critical sections, but rather use lock-free algorithms and
more elegant solutions.

With the Nintendo Wii being a single-core platform, it is furthermore
essential that the engine’s design does not hurt the rendering performance
on single-core platforms, but scales well on multi-core platforms. This is
further complicated by the fact that Direct3D 9 only allows drawcalls to

Chapter 3. Introduction to cross-platform design 47

be submitted from one thread, while newer APIs support multi-threaded
rendering.

By the nature of its design, submission-based rendering lends itself harder
to multi-threaded rendering, because CPU-GPU synchronization is implic-
itly done upon submitting primitives to the API. This makes it hard to use
hardware resources with the maximum amount of parallelization across dif-
ferent threads, because each thread can possibly stall upon submission to the
API.

In contrast, buffer-based rendering is harder to get bug-free when dealing
with multiple threads and delayed rendering, because the additional one
frame of lag makes it hard to track which resources are still in use and
which can be accessed safely across different threads.

3.9 Comparison between rendering schemes

Submission-based Buffer-based

Implementation Easy Hard
Frame coherency No Yes
Multi-threaded rendering Hard Easier

Immediate Delayed

CPU-GPU synchronization Easier Harder
Performance Average Best
CPU-GPU parallelism Average Best

Tab. 3.1: Comparison of different rendering schemes.

3.10 CPU-GPU synchronization

Synchronization between the CPU and the GPU needs to be done to prevent
the GPU from using resources while they are being altered on the CPU at
the same time. When working with APIs such as Direct3D or OpenGL, this
is automatically done by the API. On consoles, this has to be taken care of
by the developer because the used APIs are much more low-level.

Basically, synchronization has to be done when dynamically updating re-
sources like vertex buffers, index buffers or textures, but also when dealing

Chapter 3. Introduction to cross-platform design 48

with render targets and occlusion queries, where subsequent rendering oper-
ations rely on previous ones. Implementation details for each platform are
discussed in Section 4.1.

3.11 Cache coherency

Another issue which can be completely ignored in PC development is keeping
memory and cache in a coherent state, which is usually handled by the oper-
ating system. Some APIs provide fine-grained control over zeroing, prefetch-
ing and flushing ranges of memory, and have to be used accordingly by the
developer. Manually zeroing or prefetching cache lines can greatly improve
performance in critical code, and flushing the data cache has to be done
whenever the CPU alters GPU resources because these are directly fetched
from main memory by the GPU.

Additionally, invalidating the GPU’s vertex and textures caches has to be
done by the developer. Cache coherency can be tricky to get right because
invalidating caches too often can lead to performance losses, whereas doing
it only rarely leads to rendering artifacts at best – most of the time, it will
cause subtle and hard-to-find bugs.

3.12 Platform APIs

3.12.1 Microsoft Windows Direct3D 9

Direct3D is the de facto standard in rendering APIs used by games today.
With Windows Vista and Windows 7 not being mainstream at the time of
writing, using Direct3D 9 instead of version 10 or 11 for the PC version of
the proposed engine was a natural choice. This also offers a greater amount
of backwards compatibility with older hardware. Section 2.3.1 deals with
Direct3D 9 in more detail.

3.12.2 Microsoft XBox360 Direct3D

The XBox360 API basically is a mix between the Direct3D 9 and Direct3D
10 API, and offers some Xbox360-only features such as memory export,
which can enable DX10-class functionality such as stream-out. However,
the Xbox360 does not offer a full DirectX 10 feature set.

3.12.3 Sony PlayStation 3 LibGCM

The PlayStation 3 offers two different graphics APIs: PSGL and LibGCM.

Chapter 3. Introduction to cross-platform design 49

PSGL is a graphics API based on OpenGL ES 1.0 with extensions for
modern GPUs, and is primarily a high-level API. As such, it can be used for
prototyping or porting applications from OpenGL to the PlayStation 3, but
almost all games use LibGCM because it allows the developer to exploit the
hardware’s full capabilities. On the other hand, PSGL is available even to
hobby developers working with Linux on the PlayStation 3.

LibGCM provides low-level access to the graphics hardware, and is used
by professional game developers.

3.12.4 Nintendo Wii GX

The GX family of functions builds the graphics API for the Nintendo Wii,
which bears resemblance to the OpenGL API.

3.12.5 Comparison

Of all platforms, the PC and Xbox360 are the best choice for rapid devel-
opment and getting started with 3d rendering, mainly because the Direct3D
API is relatively easy to understand, both platforms integrate well into the
Visual Studio IDE, and there is a vast amount of documentation available.
However, mastering the Xbox360 is significantly more complex than master-
ing the PC.

In contrast, developing for the PlayStation 3 needs thorough understand-
ing of the hardware and API, even when just getting started. Mastering
the platform is notoriously hard, and requires elaborate software engineer-
ing skills. However, the PlayStation 3 provides the most horsepower of all
consoles.

Chapter 4

Implementing the occlusion query
functionality on multiple platforms

This section discusses parts of the Daedalus engine which are crucial for
enabling the occlusion query functionality on all platforms. Almost all vis-
ibility algorithms described in the later parts of this thesis make extensive
use of this functionality. All provided source code listings are taken from the
Daedalus engine, which has been developed for this thesis.

Main contributions in this chapter are the following:

∙ A new implementation of render states using advanced C++ features,
which is very fast, robust and has an extremely small memory footprint.

∙ A multi-platform interface for immediate mode rendering, providing a
device for fast rendering of ad-hoc primitives, optimized using special
capabilities of each platform.

∙ A novel low-level mechanism for enabling occlusion query functionality
on platforms without hardware-support was invented.

4.1 CPU-GPU synchronization

As discussed in Section 3.10, CPU-GPU synchronization is crucial for many
low-level parts of a graphics engine. However, the user should not have to deal
with synchronization himself, but rather use different means for accessing
shared data between the CPU and GPU.

Low-level resources like vertex buffers, index buffers, and textures all
offer two methods for granting access to their data in Daedalus: Lock and
Unlock, as shown in Listing 4.1. As soon as a resource is locked, it can be
accessed by the engine or user, and must be freed again by a call to Unlock,
otherwise the GPU might stall forever.

Different kinds of locks allow the user to specify the desired level of ac-
cess - either read-only, write-only, or read-and-write. This allows for certain

Chapter 4. Implementing the occlusion query functionality on multiple platforms 51

class VertexBuffer
{

...

/// Locks the vertex buffer
void Lock(unsigned int vertexOffset, unsigned int

vertexCount, VertexBufferLock lock);
void Lock(unsigned int vertexOffset, unsigned int

vertexCount, VertexBufferLock lock) const;

/// Unlocks the vertex buffer
void Unlock(void);
void Unlock(void) const;

...
};

class IndexBuffer
{

...

/// Locks the index buffer
void Lock(unsigned int indexOffset, unsigned int indexCount,

IndexBufferLock lock);
void Lock(unsigned int indexOffset, unsigned int indexCount,

IndexBufferLock lock) const;

/// Unlocks the index buffer
void Unlock(void);
void Unlock(void) const;

...
};

class Texture
{

...

/// Locks the texture object
void Lock(const IRect& region, TextureLock lock, unsigned

int mipLevel);
void Lock(const IRect& region, TextureLock lock, unsigned

int mipLevel) const;

/// Unlocks the texture object
void Unlock(unsigned int mipLevel);
void Unlock(unsigned int mipLevel) const;

...
};

Listing 4.1: Accessing resources on the CPU

Chapter 4. Implementing the occlusion query functionality on multiple platforms 52

optimizations on some platforms, e.g. as long as the user only reads from a
resource the GPU is allowed to access its contents as long as they are not
altered by the GPU itself.

The following subsections describe the implementations for all platforms.

4.1.1 PC platform

Fortunately, Direct3D 9 provides easy access to resources via Lock and Un-
lock methods. CPU-GPU synchronization is handled inside the API and
driver, hence there’s no need to implement any additional functionality.

4.1.2 Other platforms

On the other platforms, CPU-GPU synchronization must be implemented
manually. The process is somewhat similar to issuing events in Direct3D 9.
Basically, specific GPU commands are written to the command-buffer, which
can be used to let the GPU tell the CPU about certain graphical states or
events. As an example, events such as occlusion queries report the number
of rendered pixels, which can be read on the CPU.

Similarly, by issuing events using a monotonically increasing value, the
CPU can find out which values have already been encountered by the GPU,
and this value in turn can be used for synchronizing the CPU and GPU. Im-
plementations on the driver-level of such functionality (such as in Direct3D
on the PC platform) are probably similar to a custom low-level implemen-
tation, but details about the underlying strategy are not available for the
Direct3D API.

Details and source code for our implementation are available on request.

4.2 Render states

Changing render states like alpha-blending, z-testing, backface-culling and
others is one of the most common operations when rendering a frame. Fur-
thermore, render states are also among the number one source of errors when
using graphics engines, mainly because they can be in a wrong state for cer-
tain operations like drawing transparent geometry if not properly reset by
the developers. Experience shows that this can lead to obscure bugs, and
even more obscure bug-fixes. Additionally, most visibility algorithms using
occlusion queries rely on render states being implemented in a fast way.

Hence, Daedalus makes the following demands on render states:

Chapter 4. Implementing the occlusion query functionality on multiple platforms 53

∙ They must be cached internally, so only changed states get propagated
to the hardware before rendering.

∙ They must be impossible to break, e.g. rendering should not be faulty
because a certain state was not properly reset by the developer.

∙ They must be extremely fast because they are used so often, especially
in visibility algorithms using hardware occlusion queries.

∙ They must have an extremely small memory footprint.

The following subsections explain how these demands are satisfied.

4.2.1 Caching

Internal caching of render states is easy - rather than setting a render state
directly on the hardware, we store its current value (the one set by the
user) and the current value set on the hardware. Upon submitting the next
drawcall, we flush the render states cache and set only those states whose
value differs from the value set on the hardware.

Internally, a render state is defined as in Listing 4.2.

struct InternalRenderState
{

RenderStates::Type type;
RenderStates::Value hardwareValue;
RenderStates::Value value;
u8 padding[4];

};

Listing 4.2: Internal render state

In a global cache, we store one InternalRenderState instance for each ren-
der state exposed by the hardware. Whenever the engine submits a drawcall,
the cache gets flushed, and changed render states are set on the hardware,
as seen in Listing 4.3. Note that the listing leaves out some important opti-
mizations that will be explained in one of the following sections.

4.2.2 Impossible to break

Caching makes setting redundant render states faster, but does not solve
the problem that the user might change render states when using a certain

Chapter 4. Implementing the occlusion query functionality on multiple platforms 54

void RenderStatesCache::Flush(void)
{

...
unsigned int i;
for (i=0; i<RenderStates::COUNT; ++i)
{

// check if the hardware value actually differs
if (states[i].hardwareValue != states[i].value)
{

// yes, so set the new value
device->SetRenderState(states[i].type, states[i].value);
states[i].hardwareValue = states[i].value;

}
}
...

}

Listing 4.3: Flushing the render states cache

technique or shader, and not restore them to their original state, potentially
breaking some other rendering code. The solution to this problem is to make
all render state operations completely stack-based.

Basically, we use one global stack for pushing and popping render states.
Each stack entry stores the type and value of the render state, and the index
into our cache, as seen in Listing 4.4.

struct StackState
{

int index;
RenderStates::Type type;
RenderStates::Value value;
u8 padding[4];

};

Listing 4.4: Render states stack entry

Using stack-based render states makes the user’s life easier, but he still
might forget to pop certain states from the stack. Therefore, neither the
RenderStatesCache nor the RenderStatesStack can be accessed directly by
the user. Instead, a single RenderState must be used, which automatically
pushes the new state onto the stack in its constructor, and pops the value
from the stack in the destructor.

Chapter 4. Implementing the occlusion query functionality on multiple platforms 55

Although stack-based render states help a lot, there is still room for break-
ing them. A naive implementation would let the user specify both type and
value of a render state, opening the door for mismatch errors between types
and values which can only be flagged at run-time. However, we can do much
better than this and let the compiler work for our benefit.

In C++, each enum acts as a separate type, hence we can define an
enum for each render state type, and add all valid values for this state to the
respective enum, as shown in Listing 4.5.

By making the aforementioned RenderState class take a template param-
eter, the compiler will automatically deduce the enum type for us, so render
state type and value mismatches can no longer occur. The RenderState class
is shown in Listing 4.6.

There are still two issues left to solve:

∙ So far, the compiler knows the type of the enum. But how do we get
the respective type needed for the low-level API call?

∙ Which index of the render states cache does each type occupy?

Both of these issues can be solved by using another advanced C++ fea-
ture, namely template specialization.

4.2.3 Speed and memory footprint

By using template specialization on each enum type, we can basically assign
an index and type to each render state at compile-time. Listing 4.7 shows how
this is done on the PC platform. Furthermore, this gives room for another
kind of optimization.

Each time a render state is set in our cache, we can keep track of the
minimum and maximum index of all render states touched since the last flush.
This way, we need to only check a small range of render states upon each
cache flush, instead of all states supported by the engine. This drastically
reduces the cost of each render states cache flush.

Furthermore, by assigning proper indices in the template specializations,
we can group more commonly used render states together, further reducing
the cost of each cache flush. This could even be implemented by the user to
fine-tune the engine to his needs, if desired.

Memory-wise, each RenderState takes up one stack variable, which amounts
to 32 bytes on each platform. The stack and cache are global for the whole
program and take up about 4 kB as a whole by default, which allows for
more than 200 render states to be pushed onto the stack. The stack size

Chapter 4. Implementing the occlusion query functionality on multiple platforms 56

enum CullMode
{

CULLMODE_NONE = D3DCULL_NONE,
CULLMODE_CW = D3DCULL_CW,
CULLMODE_CCW = D3DCULL_CCW

};

enum ZTest
{

ZTEST_FALSE = D3DZB_FALSE,
ZTEST_TRUE = D3DZB_TRUE,
ZTEST_USE_W = D3DZB_USEW

};

enum ZWrite
{

ZWRITE_FALSE = FALSE,
ZWRITE_TRUE = TRUE

};

enum ZFunction
{

ZFUNCTION_NEVER = D3DCMP_NEVER,
ZFUNCTION_LESS = D3DCMP_LESS,
ZFUNCTION_EQUAL = D3DCMP_EQUAL,
ZFUNCTION_LESSEQUAL = D3DCMP_LESSEQUAL,
ZFUNCTION_GREATER = D3DCMP_GREATER,
ZFUNCTION_NOTEQUAL = D3DCMP_NOTEQUAL,
ZFUNCTION_GREATEREQUAL = D3DCMP_GREATEREQUAL,
ZFUNCTION_ALWAYS = D3DCMP_ALWAYS

};

enum AlphaTest
{

ALPHATEST_FALSE = FALSE,
ALPHATEST_TRUE = TRUE

};

enum AlphaFunction
{

ALPHAFUNCTION_NEVER = D3DCMP_NEVER,
ALPHAFUNCTION_LESS = D3DCMP_LESS,
ALPHAFUNCTION_EQUAL = D3DCMP_EQUAL,
ALPHAFUNCTION_LESSEQUAL = D3DCMP_LESSEQUAL,
ALPHAFUNCTION_GREATER = D3DCMP_GREATER,
ALPHAFUNCTION_NOTEQUAL = D3DCMP_NOTEQUAL,
ALPHAFUNCTION_GREATEREQUAL = D3DCMP_GREATEREQUAL,
ALPHAFUNCTION_ALWAYS = D3DCMP_ALWAYS

};

Listing 4.5: An example of render state enums

Chapter 4. Implementing the occlusion query functionality on multiple platforms 57

class RenderState : private NonCopyable
{
public:

template <typename T>
RenderState(T value)
{

RenderStatesStack::Push(RenderStatesCache::Get<T>());
RenderStatesCache::Set(value);

}

˜RenderState(void)
{

RenderStatesCache::Set(RenderStatesStack::GetTopIndex(),
RenderStatesStack::GetTopState(), RenderStatesStack::
GetTopValue());

RenderStatesStack::Pop();
}

};

Listing 4.6: RenderState class

namespace RenderStateTypes
{

template <typename T> struct Extract {};
...
template <> struct Extract<RenderStates::CullMode> { enum {

TYPE = D3DRS_CULLMODE, INDEX = 0 }; };
template <> struct Extract<RenderStates::ZTest> { enum {

TYPE = D3DRS_ZENABLE, INDEX = 2 }; };
template <> struct Extract<RenderStates::ZWrite> { enum {

TYPE = D3DRS_ZWRITEENABLE, INDEX = 3 }; };
template <> struct Extract<RenderStates::AlphaBlending> {

enum { TYPE = D3DRS_ALPHABLENDENABLE, INDEX = 8 }; };
...

}

Listing 4.7: Render state template specialization for Direct3D 9

Chapter 4. Implementing the occlusion query functionality on multiple platforms 58

can furthermore be customized by the user, leaving a very small memory
footprint.

Listing 4.8 shows how the final render states are used in client code.

{
RenderStates noCull(RenderStates::CULLMODE_NONE);
RenderStates noZTest(RenderStates::ZTEST_FALSE);
RenderStates zWrite(RenderStates::ZWRITE_TRUE);

// rendering code
...

}

Listing 4.8: Client code using the RenderState class

4.3 Immediate mode rendering

Most online visibility culling algorithms require the engine to render bound-
ing boxes of certain objects or nodes of a hierarchy in order to determine
their visibility. Using unique vertex- and index-buffers for each bounding
box is certainly too slow on most platforms, and additionally each submitted
draw call incurs a slight performance overhead. Therefore, it is crucial that a
small amount of simple ad-hoc primitives can be rendered as fast as possible,
using the RenderImmediate interface.

In games, such immediate mode primitives must be rendered e.g. when
rendering completely dynamic geometry such as in-game texts, some HUD
elements, or particles. As described in Section 3.7.2, immediate mode means
that every rendered primitive is sent to the hardware as soon as possible.

In principle, the RenderImmediate class wraps the low-level access to the
GPU’s command buffer on each platform. The RenderImmediate interface
offers methods for putting vertices, texture coordinates, normals, colors, and
other data into the underlying buffer. A typical usage for immediate mode
rendering is shown in Listing 4.9, which shows how debug text is rendered
using the interface.

The following subsections describe how immediate mode rendering is im-
plemented on different platforms.

Chapter 4. Implementing the occlusion query functionality on multiple platforms 59

RenderImmediate::Begin(shader, material, vertexDeclaration,
PRIMITIVE_TYPE_QUAD_LIST, numCharacters*4, numCharacters);

{
...
for (i=0; i<numCharacters; ++i)
{

...
RenderImmediate::Vertex(x, y, 0);
RenderImmediate::Color(nativeColor);
RenderImmediate::TexCoord(u, v);
...

}
...

}
RenderImmediate::End();

Listing 4.9: Immediate mode rendering

4.3.1 PC platform

Unfortunately, Direct3D 9 on the PC platform doesn’t grant access to such
low-level details as command buffers, therefore an abstraction layer must be
built. In this case, RenderImmediate manages its own dynamic vertex buffer
which is used as a ring-buffer so as to not overwrite previously rendered data,
in order to avoid possible GPU stalls. However, as soon as a wrap-around
in the ring-buffer occurs, the old data is discarded and the buffer is filled
from the beginning again. This all happens completely transparent to the
user. Internally, the different RenderImmediate methods fill this ring-buffer,
as seen in Listing 4.10.

4.3.2 Other platforms

RenderImmediate on the console platforms makes use of special PowerPC
instructions in order to improve performance. Additionally, console-specific
features are used, resulting in code that is more than 10 times faster than
simply writing the values into memory via straightforward C++ code. De-
tails and source code are available on request.

4.4 Occlusion queries

Typically, an API offers facilities to query the GPU about different kinds of
data, such as cache utilization, bandwidth timings, pipeline timings, and the

Chapter 4. Implementing the occlusion query functionality on multiple platforms 60

class RenderImmediate : private MonoState
{
public:

...
static inline void Vertex(float x, float y, float z)
{
register u8* __restrict ptr = (u8* __restrict)iterationPtr;

((f32)(ptr)) = x;

((f32)(ptr + 4)) = y;

((f32)(ptr + 8)) = z;
iterationPtr = ptr+12;

}

static inline void TexCoord(float x, float y)
{
register u8* __restrict ptr = (u8* __restrict)iterationPtr;

((f32)(ptr)) = x;

((f32)(ptr + 4)) = y;
iterationPtr = ptr + 8;

}
...

};

Listing 4.10: Parts of the RenderImmediate interface on the PC

number of rendered pixels. The latter is usually called an occlusion query,
and is used to determine how many pixels survived the z-test when issuing
drawcalls inside a query.

Occlusion queries in Daedalus provide the interface shown in Listing 4.11.
Typically, an OcclusionQuery object is used the following way:

∙ Begin the query by calling Begin().

∙ Issue drawcalls to the hardware.

∙ End the query and flush the command buffer by calling End().

∙ Either poll the query status by calling IsFinished() while working on
other data, or stall the CPU and wait until data is available by contin-
uously calling IsFinished() in a loop.

∙ Retrieve the data by calling GetNumVisiblePixels().

The following subsections explain how occlusion queries are implemented
on different platforms.

Chapter 4. Implementing the occlusion query functionality on multiple platforms 61

class OcclusionQuery
{
public:

...
/// Begin the query
void Begin(void);

/// End the query
void End(void);

/// Returns whether the query has finished and data from the
GPU is available

bool IsFinished(void) const;

/// Returns the number of visible pixels inside the query
unsigned int GetNumVisiblePixels(void) const;
...

};

Listing 4.11: Occlusion queries in Daedalus

4.4.1 PC platform

The Direct3D API provides several kinds of queries which can be used to
retrieve different performance metrics. Conveniently, one such query type is
an occlusion query, and commands issuing these queries can be put into the
rendering pipeline with ease, as shown in Listing 4.12.

On the PC, issuing queries can take up a huge amount of clock cycles
whenever the command buffer is to be flushed, because a mode transition
from user mode to kernel mode takes place, as described in [58].

4.4.2 Other platforms

For platforms on which occlusion queries are not offered by the API, we
devised a novel mechanism for enabling this functionality using GPU metrics
and hardware interrupts in conjunction with a special kind of CPU-GPU
synchronization.

Normally, each GPU (and therefore probably each API) exposes functions
for retrieving metrics such as the number of rendered pixels. Using such an
API, the number of pixels rendered by the GPU up to a certain point in
time can be gathered by simply subtracting such values, which are retrieved
in OcclusionQuery::Begin() and OcclusionQuery::End().

However, that solves only part of the problem, because reading metrics

Chapter 4. Implementing the occlusion query functionality on multiple platforms 62

OcclusionQuery::OcclusionQuery(void) :
query(NULL),
numPixels(0)

{
RenderDevice::Instance()->GetDevice()->CreateQuery(

D3DQUERYTYPE_OCCLUSION, &query);
}

void OcclusionQuery::Begin(void)
{

query->Issue(D3DISSUE_BEGIN);
}

void OcclusionQuery::End(void)
{

query->Issue(D3DISSUE_END);

// flush the command buffer to give the GPU a chance to
actually finish

query->GetData(NULL, 0, D3DGETDATA_FLUSH);
}

bool OcclusionQuery::IsFinished(void) const
{

return (query->GetData(&numPixels, sizeof(DWORD),
D3DGETDATA_FLUSH) == S_OK);

}

Listing 4.12: Implementation of OcclusionQuery on the PC platform

usually does not insert a command into the command buffer, but rather ex-
tracts the GPU’s metrics at the time of calling. Depending on the GPU’s
workload and the filling level of the command buffer, the GPU might be ren-
dering primitives completely unrelated to the occlusion query, which would
ultimately lead to wrong and fluctuating results.

This can be worked around by using events as described in Section 4.1.2.
If available, an event triggers an interrupt during which the GPU metrics can
be read. This makes sure that even though rendering is done in parallel, the
metrics are still read at the correct time. Unfortunately, while the CPU is
handling those interrupts, the GPU might already be consuming commands
from the buffer again, resulting in slightly wrong occlusion query results.

Chapter 4. Implementing the occlusion query functionality on multiple platforms 63

This race condition can be avoided by making the GPU stop consuming
further commands whenever an event used for occlusion queries is encoun-
tered. As soon as the corresponding interrupt for an event is handled, the
GPU can start fetching commands again. Even though this stalls the GPU
for a very short amount of time, the achieved occlusion query functionality
makes up for this shortcoming.

Figure 4.1 shows a complete timeline for a successful occlusion query,
using the aforementioned algorithm. Details and source code of our imple-
mentation are available on request.

Chapter 4. Implementing the occlusion query functionality on multiple platforms 64

Fig. 4.1: Timeline for a successful occlusion query

Chapter 5

Related work on visibility algorithms

This chapter discusses visibility culling in general as well as current state-of-
the-art visibility algorithms, and describes the theory behind the algorithms
implemented in the Daedalus engine.

5.1 Visibility Culling

Visibility culling describes the process of removing parts of the scene which
upon rendering will not contribute to the rendered image. This means that
e.g. objects which cannot be seen from the current camera’s point-of-view
are not sent down the rendering pipeline. Visibility culling can improve an
application’s performance greatly because of the following reasons:

∙ If culled, some objects like particle systems and skinned meshes can
abandon their simulation part. This can save great amounts of CPU
time.

∙ Culled objects are not sent to the graphics driver, saving CPU cycles.

∙ Culled objects are not transformed, saving vertex shader cycles.

∙ Culled objects are not shaded, saving pixel shader cycles.

∙ Culled objects are not rasterized, saving raster operations.

With multi-core CPUs more and more becoming the trend nowadays, vis-
ibility culling is crucial for every real-time rendering application because the
GPU will almost always be the bottleneck, especially on console hardware.
Thus, improving the GPU’s performance by limiting the number of rendered
primitives is an essential prerequisite for real-time rendering.

The next sections will explain some of the employed algorithms.

Chapter 5. Related work on visibility algorithms 66

5.1.1 Backface Culling

Backface culling discards all primitives of closed, opaque objects which do not
face the camera, and hence do not contribute to the final image. Determining
whether a triangle faces the camera can be done by computing the normal
of the triangle in screen-space, and discarding it if the normal turns out to
be pointing away from the camera.

Backface culling can be configured easily by setting appropriate render
states in the graphics API, enabling either backface or frontface culling, or
disabling culling completely. The latter is useful when rendering transparent
primitives or double-sided materials, for example.

Although backface culling reduces the number of rendered triangles and
therefore increases rasterization performance, it puts more load on the ge-
ometry stage, where the computations are usually done. Because of that, it
proves to be beneficial to carry out backface culling on the CPU/SPU if there
is enough computational power left to spare, and the GPU has slow triangle
and vertex setup, as it is the case on the PlayStation 3. Typically, one of the
SPUs performs culling of back faces and micro-triangles on an input stream
of primitives, and generates a new index buffer for each draw call [4].

5.1.2 View-Frustum Culling

As can be seen in Figure 5.1, every perspective camera describes a frustum,
capped at the camera’s near and far plane. Because every primitive outside
the camera’s frustum ends up being outside the unit cube in clipping space,
it need not be sent down the rendering pipeline. The process of determining
and discarding such primitives which lie outside the view frustum is called
view-frustum culling.

Fig. 5.1: View frustum described by a perspective camera. (Image courtesy of
A.K. Peters Ltd., taken from ”Real-Time Rendering, Third Edition” [2])

Chapter 5. Related work on visibility algorithms 67

Typically, bounding primitives such as axis-aligned bounding boxes (AABBs)
or oriented bounding boxes (OBBs) (see Section 5.2.1) instead of single trian-
gles are tested against the view frustum. Therefore, even for a large amount
of rendered triangles, the number of performed frustum tests is quite small,
normally less than a thousand tests per frame. As described in Section 6.1,
these tests can be further optimized, and can benefit from hierarchical data
structures as well as temporal coherence. In typical game scenarios, view-
frustum culling can already tremendously increase rendering performance.

Because of its simplicity, generality and good performance characteris-
tics, view frustum culling is still one of the most common culling algorithms
implemented in games nowadays, even though the idea is more than 30 years
old [12]. Section 6.1 deals with this algorithm in more detail.

5.1.3 Occlusion Culling

Occlusion culling makes use of the fact that objects which are completely oc-
cluded by other objects in the scene do not need to be rendered. Determining
the set of occluded primitives is easily understood in theory, but can be hard
to implement in a real-time rendering context. As such, occlusion culling
algorithms are among the most complex culling algorithms to implement.

Naturally, the performance improvement obtained by employing occlusion
culling depends very much on the scene itself. If the rendered scene exhibits
almost no occlusion to take benefit of, the algorithm itself will only add
overhead, but no performance gain. Nevertheless, a major advantage of
online occlusion culling is that it can be used for both static and dynamic
geometry, and there is no need to differentiate between these two kinds of
geometry.

Many different occlusion culling algorithms have been developed over the
last years, some of them using available hardware functionality [35], others
being based on software solutions [13] [31] [74].

Sections 6.2, 6.3, 6.4 and 6.5 of this thesis describe the theory and imple-
mentation behind a naive implementation as well as two of the most com-
mon occlusion culling algorithms used today, which can be completely imple-
mented using consumer graphics hardware. Game development studios such
as Insomniac Games successfully use occlusion culling algorithms in their
games [33].

5.1.4 Online vs. offline culling

Online visibility culling algorithms determine the set of visible objects every
frame, without any precomputation. This does not necessarily mean that

Chapter 5. Related work on visibility algorithms 68

these algorithms have to do redundant work each frame, quite the contrary – a
good online culling algorithm makes use of temporal coherence. Furthermore,
a good culling algorithm makes use of spatial data structures in order to work
in a hierarchical fashion.

Offline visibility culling algorithms accomplish most of their work using
a precomputed set of data, which is calculated in an offline process. At run-
time, usually not much is left to be done, hence offline culling algorithms
tend to not have such a performance impact as other online algorithms do.
Usually, using offline culling does not add significant overhead to the render-
ing phase, even when almost no objects can be culled. However, depending
on the algorithm and the data set, the amount of precalculated data can
be quite substantial, therefore increasing an application’s memory footprint.
Additionally, offline culling algorithms can only be used for static geometry.

These kinds of algorithm determine a PVS (Potentially Visible Set) [40]
of objects for predefined viewpoints in an offline process. These viewpoints
do not need to follow any spatial alignment, and can be grid-based, sector-
based or completely arbitrary. Each such region of viewpoints is typically
called a view cell.

The PVS of each view cell describes a set of other objects which can
possibly be seen from this cell in any direction. Depending on the type of
application and the number of view cells, this amount of data can be quite
large, requiring efficient packing to be employed. Most of the time, however,
the number of view cells is in the range of a few hundred cells, and only
one bit needs to be stored to signal whether another view cell is visible or
not. Even for 1000 view cells, the visibility data needs approximately 120KB
storage.

Because all the visibility information is precalculated in an offline process,
the geometry of those view cells needs to stay static, which is one of the major
drawbacks of PVS culling algorithms. Still, PVS culling is an extremely
popular culling mechanism because it can be used in conjunction with other
culling algorithms for dynamic geometry, and its only run-time cost boils
down to a few simple comparisons of single bits.

5.2 Spatial Data Structures

In culling algorithms, spatial data structures serve as a means to drastically
lessen the number of performed queries such as intersection or visibility tests.
Such data structures are very useful for other types of queries such as collision
detection as well, and can generally be applied to n-dimensional space, not
only two-dimensional and three-dimensional problems.

Chapter 5. Related work on visibility algorithms 69

A spatial data structure is usually organized in a hierarchical fashion,
such that an object in the hierarchy fully encloses all its children. This
way, the complexity of queries can typically be reduced from O(n) to O(log
n), introducing a significant speed up when n is large. There are many
different types of spatial data structures, such as bounding volume hierarchies
(BVHs), binary space partitioning (BSP) trees and octrees. Because all of
the implemented algorithms use BVHs, we limit the remaining discussion to
this kind of spatial data structure.

5.2.1 Bounding Volume Hierarchies

As the name implies, a bounding volume hierarchy is built using a set of
bounding volumes, organized in a hierarchical fashion. Such a bounding
volume itself encloses a set of objects, and is typically a simple primitive
such as a bounding sphere, axis-aligned bounding box (AABB) or oriented
bounding box (OBB). A common trait shared by all bounding volumes is that
queries on them are relatively simple compared to the objects they contain.
As an example, testing two AABBs for intersection is much easier and faster
than to test all individual objects inside each AABB for intersection.

Generally speaking, a bounding sphere is the fastest volume to query but
encloses the biggest volume, whereas OBBs provide the tightest fit around
objects, but are the computationally most expensive bounding volumes to
query. Of course, actual bounding volume metrics vary depending on the
nature of the application where they are used. Therefore, all implemented
algorithms use hierarchies consisting only of AABBs in order to provide a
good compromise for game applications. Figure 5.2 depicts such a BVH made
of AABBs.

An AABB hierarchy is organized in a tree structure, and distinguishes
between three different kinds of nodes:

∙ Root node: The root node is the topmost node in the hierarchy, and
does not have any parent nodes.

∙ Leaf nodes: Leaf nodes do not have any child nodes, and contain the
actual geometry to be rendered.

∙ Internal nodes: Internal nodes store pointers to its child nodes.

Each and every node in the tree is assigned a bounding volume which
completely encloses the objects in its entire subtree. Thus, depending on the
type of query, a decision can be made on a whole subtree at once, without

Chapter 5. Related work on visibility algorithms 70

(a) BVH at depth 1 (b) BVH at depth 3

(c) BVH at depth 5 (d) BVH at depth 7

Fig. 5.2: BVH consisting of AABBs

having to test subtrees further down the hierarchy. This can tremendously
reduce the number of needed computations.

Based on the fact that any kind of bounding volume is normally stored
at the mesh level in games, a BVH can be built by starting from a root
node fully enclosing all bounding volumes, and subdividing nodes using a
top-down approach. Many different strategies can be used to build such a
hierarchy [57] [67], such as the surface area heuristic (SAH) [71]. All AABB
hierarchies used in this thesis have been built using this heuristic.

It should be noted that – depending on the data set and heuristic – BVHs
can take some time to build, and are therefore generated in an offline process
for static geometry. For dynamic geometry, a separate BVH hierarchy can
be rebuilt from scratch each frame using the spatial median split heuristic.
After rebuilding the hierarchy, the visibility classification of each object can
be used to reconstruct the visibility classification of the hierarchy nodes.
Using this method, some hundred dynamic objects can easily be handled.

Chapter 6

Implementing online occlusion culling on
multiple platforms

This chapter describes the implementation of the occlusion culling algorithms
implemented in the Daedalus engine. Additionally, optimizations to some
algorithms are introduced, resulting in better performance on all platforms.

Main contributions in this chapter are:

∙ Optimization of parts of the hierarchical view-frustum culling using
branch-free operations on console hardware.

∙ A custom tool used for evaluating optimized parameters for CHC++
on fixed-hardware platforms.

∙ An optimized CHC++ algorithm using fine-tuned parameters on con-
sole hardware, a branch-free fixed-size stack and a branch-free fixed-size
queue which serve as a replacement for the standard STL containers
used in CHC++.

6.1 Hierarchical View-Frustum Culling

Basic view-frustum culling determines whether a given bounding volume such
as an AABB is either completely outside the frustum, intersects the frustum,
or is completely inside the frustum. Figure 6.1 shows a scenario displaying
each of these three cases.

Each frustum is defined by six planes which are used to perform the
inside/outside test. A basic, naive intersection test will perform this test
against all frustum planes for each of the eight corners.

Due to the frustum’s nature, some AABBs might falsely be classified
as being intersecting the frustum while they are outside. Such bounding
volumes and their primitives must be treated as being visible, otherwise
rendering artifacts will occur.

Chapter 6. Implementing online occlusion culling on multiple platforms 72

(a) Frustum culling using AABBs

(b) Frustum culling using AABBs, seen from above

Fig. 6.1: Non-hierarchical view frustum culling. Green AABBs are completely
outside the frustum, yellow AABBs are intersecting the frustum, and red AABBs
are completely inside the frustum.

Chapter 6. Implementing online occlusion culling on multiple platforms 73

By utilizing a BVH, the basic view-frustum culling algorithm can be
extended to work in a hierarchical manner, cutting down on the number of
performed culling tests. This is based on the two following observations:

∙ If a node is classified as being outside the frustum, all of its children
must be outside the frustum as well. Hence, the node and its whole
subtree can be discarded from rendering.

∙ If a node is classified as being inside the frustum, all of its children
must be inside the frustum as well. Hence, the node and its whole
subtree can be rendered immediately. Child nodes then need not be
tested further.

Following these two simple rules can already cut the number of performed
frustum tests from O(n) down to O(log n), where n is the number of single
bounding volumes. The next sections introduce further optimizations for the
test itself, as well as strategies how to further exploit the BVH and take
advantage of temporal coherence.

6.1.1 N- and P-Test

Instead of testing each of the eight corners against all planes, only two points
need to be tested [30] in order to classify the AABB, namely the two points
called the n- and p-vertices, which form a diagonal that is aligned with the
plane’s normal, passing through the box center [5]. The p-vertex has a greater
signed distance from the plane than the n-vertex. Listing 6.1 shows the view-
frustum culling implementation taking advantage of this optimization.

The comparisons inside the IsOutsidePlane() and IsIntersectingPlane()
functions are perfect candidates to take advantage of the fsel instruction
(Floating-Point Select) which produces a branchless selection based on floating-
point values. By using these instructions, possible floating-point pipeline
stalls triggered by branches do not occur. Unfortunately, the fsel instruction
is only available on PowerPC-based platforms, and not on the x86 archi-
tecture – but the latter possesses good branch prediction facilities anyway,
hence this is not really a penalty.

6.1.2 Exploiting Temporal Coherence

Assuming that the frustum planes do not change significantly each frame,
the plane which culled a bounding volume last frame can be stored for each
volume. When performing the test against this plane first, it is likely that
the bounding volume can be culled immediately, without performing tests
for the other planes afterwards.

Chapter 6. Implementing online occlusion culling on multiple platforms 74

Frustum::IntersectionResult Frustum::Intersects(const AABB&
box) const

{
// test if the box is fully outside
unsigned int i;
for (i=0; i<NUM_PLANES; ++i)
{

if (IsOutsidePlane(box, planes[i]))
return IR_OUTSIDE;

}

// test if the box intersects at least one plane
for (i=0; i<NUM_PLANES; ++i)
{

if (IsIntersectingPlane(box, planes[i]))
return IR_INTERSECTING;

}

return IR_INSIDE;
}

bool IsOutsidePlane(const AABB& box, const Vec4& plane)
{

const Vec3& boxMin = box.GetMin();
const Vec3& boxMax = box.GetMax();

// p-vertex
const float x = Math::FSel(plane.x, boxMax.x, boxMin.x);
const float y = Math::FSel(plane.y, boxMax.y, boxMin.y);
const float z = Math::FSel(plane.z, boxMax.z, boxMin.z);

return (x*plane.x + y*plane.y + z*plane.z + plane.w) < 0;
}

bool IsIntersectingPlane(const AABB& box, const Vec4& plane)
{

const Vec3& boxMin = box.GetMin();
const Vec3& boxMax = box.GetMax();

// n-vertex
const float x = Math::FSel(plane.x, boxMin.x, boxMax.x);
const float y = Math::FSel(plane.y, boxMin.y, boxMax.y);
const float z = Math::FSel(plane.z, boxMin.z, boxMax.z);

return (x*plane.x + y*plane.y + z*plane.z + plane.w) < 0;
}

Listing 6.1: View Frustum Culling

Chapter 6. Implementing online occlusion culling on multiple platforms 75

6.1.3 BVH Plane Masking

If a node is completely inside a certain plane of the view-frustum, then the
bounding volumes of the node’s children also lie completely inside the same
plane [7]. When traversing the BVH, a simple bit-mask can then be used to
identify which planes need not be tested against. The deeper we are in the
hierarchy, the more likely it is that fewer planes need to be tested.

There are more optimizations, but some of them very specific, pertaining
only to certain situations [5]. Therefore, some of them were not implemented
in the Daedalus engine.

6.2 Stop-and-Wait Occlusion Culling

This algorithm demonstrates occlusion culling in its simplest and purest form.
As such, it is easy to implement and aids in debugging more advanced occlu-
sion culling algorithms, but is likely to be slower than any other algorithm.

Basically, the algorithm first sorts all objects to be rendered based on
their distance to the camera. The objects are then rendered in front-to-back
order, while performing the following steps for each object:

1. Disable writes to the depth and color buffer.

2. Start an occlusion query, and draw the object’s bounding volume.

3. Stop the occlusion query, and wait until the bounding volume has been
drawn.

4. Retrieve the number of pixels rendered in Step 2 using the occlusion
query.

5. If the number of visible pixels is greater than a certain threshold, the
object is considered to be visible, and the algorithm continues with
Step 6. Otherwise, the object is invisible, and is not rendered at all.

6. Enable writes to the depth and color buffer again.

7. Render the object.

Steps 1-4 are commonly referred to as issuing an occlusion query.
As can easily be seen, this will give perfect occlusion culling as long as the
threshold in Step 5 is set to be zero pixels. Any other threshold will produce
small rendering artifacts, which however might be unnoticed, as long as the
threshold is reasonably small (approx. 10 pixels).

Chapter 6. Implementing online occlusion culling on multiple platforms 76

One thing to keep in mind is that objects whose bounding volume in-
tersects the frustum’s near plane must be rendered immediately. Otherwise,
the occlusion query might report zero pixels being rendered due to backfaces
being culled, while the object might very well be visible. Figure 6.3 shows a
scene rendered using occlusion culling.

The way occlusion queries are used in this algorithm severely hinders the
performance gained from occlusion culling. By constantly waiting for the
GPU to report its results to the CPU, they both are effectively no longer
working in parallel, but rather in an alternating fashion. The CPU is stalled
while waiting for the result of the occlusion query, and the GPU is starving
for new commands after the CPU has received a result. This procedure is
depicted in Figure 6.2.

Fig. 6.2: CPU stalls and GPU starvation. (Image courtesy of Michael Wimmer)

Furthermore, the algorithm introduces even more overhead because of the
following two reasons:

∙ An occlusion query must be issued for each rendered object. Depending
on the number of objects, the number of queries can skyrocket.

∙ Additional geometry must be rendered for each object, which adds
further draw calls and possible render state changes.

However, depending on the platform, even this naive algorithm still yields
better performance than just frustum culling for occlusion-heavy scenes, as
can be seen in the next chapter.

Listing 6.2 gives an implementation of the Stop-and-Wait algorithm.

Chapter 6. Implementing online occlusion culling on multiple platforms 77

(a) Occlusion culling using AABBs

(b) Occlusion culling using AABBs, seen from above

Fig. 6.3: Scene rendered using occlusion culling. Blue AABBs are completely
occluded, cyan AABBs intersect the frustum’s near plane.

Chapter 6. Implementing online occlusion culling on multiple platforms 78

void VisibilitySystemSAW::Render(void)
{

sortedObjs.clear();

for (size_t i=0; i<objects.size(); ++i)
{

// calculate view-space Z approximation using
// center of AABB, and add to list
AddObject(objects[i]);

}

SortObjects<FrontToBack>();

SortedObjects::iterator it;
for (it=sortedObjs.begin(); it!=sortedObjs.end(); ++it)
{

RenderObject* object = it->first;

// if the object intersects the near plane,
// it must be assumed that it is visible
if (frustum.IsIntersectingPlane(object->GetAABB(),

Frustum::PLANE_NEAR))
{

object->Render();
continue;

}

{
RenderState colorWrite(RenderStates::COLORWRITE_FALSE);
RenderState zWrite(RenderStates::ZWRITE_FALSE);

query->Begin();
RenderSolidAxisAlignedBox(object->GetAABB());
query->End();

}

while (!query->IsFinished())
{

// busy-wait for the query to finish
}

if (query->GetNumVisiblePixels() > 0)
{

// object is not occluded -> render it
object->Render();

}
}

}

Listing 6.2: Stop-and-Wait Occlusion Culling

Chapter 6. Implementing online occlusion culling on multiple platforms 79

6.3 CHC – Coherent Hierarchical Culling

CHC [9] tries to remedy the shortcomings of naive occlusion culling algo-
rithms such as Stop-and-Wait by taking advantage of spatial and temporal
coherence. The latter can be taken advantage of by using the visibility infor-
mation from the previous frame when rendering the current frame. Assuming
moderate camera movement, it is highly likely that most BVH nodes stay
visible after they have been visible the last frame, and occluded nodes are
similarly going to stay occluded in the current frame. Hence, as an initial
guess, the algorithm assumes a node’s visibility to stay the same from the
previous to the current frame.

However, because the visibility classification of nodes will sooner or later
change, the algorithm has to verify whether those estimates have been correct
or not. If not, it needs to rectify its choices.

Depending on how a node’s visibility has changed during two consecutive
frames, one of the following two scenarios can occur:

∙ The node has been visible the previous frame, but is actually occluded
in the current frame. Although the node has been processed unneces-
sarily, all that needs to be done is to update the node’s classification.

∙ The node has been occluded the previous frame, but became visible in
the current frame. This situation needs to be remedied by rendering
the node, otherwise objects will be missing in the current frame.

Classification of nodes is again done by issuing occlusion queries, like in
the Stop-and-Wait algorithm. By cleverly interleaving the traversal of the
spatial hierarchy and handling the results of issued queries, we arrive at the
original CHC algorithm:

∙ Traverse the BVH in a front-to-back order.

∙ If the node is an interior node and was visible in the previous frame,
process it immediately.

∙ For all other nodes, issue an occlusion query, and store this query in a
queue called the query queue. Additionally, if the node is a leaf node
which has been visible the previous frame, render it immediately.

∙ Check the results of the query queue after each visited node. If a node
was visible in the previous frame, and became occluded, simply update
its classification. If a node was occluded in the previous frame, and
became visible, process it immediately.

Chapter 6. Implementing online occlusion culling on multiple platforms 80

One crucial observation is that no query needs to be issued for interior
nodes that have been visible in the previous frame, because their classification
can be deduced from its children at the end of each frame. This decreases the
number of issued queries, and potentially saves a huge amount of fill rate.

Another useful observation is that previously visible leaf nodes will al-
ways be rendered, hence it does not make sense to use a bounding volume
when issuing the occlusion query, but rather the actual geometry. This saves
additional fill rate, draw calls and state changes. More in-depth algorithmic
details can be found in [9] and [72].

Like other algorithms, CHC also has its disadvantages:

∙ In scenes with average occlusion, CHC becomes even slower than view
frustum culling because of the additional overhead caused by issuing
many occlusion queries and changing render states. This is especially
true on platforms which exhibit a high query overhead, such as the PC.

∙ CHC is hard to integrate into rendering engines having optimized ren-
dering loops, because the issuing of queries, state changes and draw
calls is arbitrarily interleaved. This does not allow for highly optimized
sorting of shaders, materials, textures or state changes, as is often the
case in rendering engines. Although this can be somewhat alleviated
by drawing a depth-only pass first, this is not possible in vertex-bound
scenes.

6.4 CHC++ – Coherent Hierarchical Culling Revisited

CHC++ [42] [8] describes an improved version of the CHC algorithm, try-
ing to eradicate its shortcomings by introducing further optimizations and
batching strategies.

6.4.1 Reducing state changes

One of the biggest problems in the original CHC algorithm is the fact that
state changes are required for every issued occlusion query. States to be
changed include depth and color writes, as well as a change of shaders.
Depending on the platform, its API and driver implementation, such state
changes can be costly, and should be kept to a minimum during rendering.

CHC++ proposes several strategies for batching occlusion queries and
performing other operations, which are described in the following sections.

Chapter 6. Implementing online occlusion culling on multiple platforms 81

6.4.2 Batching previously invisible nodes

By introducing a new queue for previously invisible nodes (called the i-
queue), queries to be issued can be added to this queue until a user-defined
batch size b is reached. Only then are the rendering states changed and the
queries issued for each node contained in the i-queue.

Essentially, the i-queue constitutes a trade-off between performing less
state changes, and introducing additional query latency, because visibility
changes need longer to be detected. Therefore, the optimal value of the
parameter b depends on the scene’s complexity, and the engine’s capabilities
to handle state changes and caching thereof.

6.4.3 Batching previously visible nodes

Comparable to the i-queue for previously invisible nodes, CHC++ introduces
another queue called the v-queue for previously visible nodes. Because the
results of the queries for these nodes need to be available only at the end of
each frame, those nodes can be batched into the v-queue. Nodes are added to
the v-queue as long as either nodes can be traversed or results from previously
issued queries are available.

As soon as the CHC algorithm is idle waiting for query results to arrive,
nodes from the v-queue are processed. This results in batching of state
changes for previously visible nodes.

6.4.4 Batching draw calls

By introducing a third queue called the render queue, draw calls can be
batched and state sorting can be performed by the rendering engine. When-
ever CHC++ needs to render a node, it gets added to the render queue
instead. All nodes from this queue can then be rendered by a single engine
API call, and the engine can perform whatever sorting it wants to.

6.4.5 Visible node randomization

One optimization to reduce the number of occlusion queries is to make the
assumption that a visible leaf will stay visible for at least n frames. Although
this will reduce the number of issued queries by a factor of n, it introduces
frame rate spikes whenever queries get issued in the same frame, as is the
case when different nodes become visible in the same frame.

This problem of temporally aligned nodes can be solved by randomizing
the amount of assumed visible frames only the first time a query is issued.

Chapter 6. Implementing online occlusion culling on multiple platforms 82

As long as the node stays visible, a query will then be issued only every
n-th frame. The optimal choice for the parameter n depends on the scene
complexity, rendering engine and platform capabilities.

6.4.6 Multiqueries

Multiqueries provide another strategy to cut down on the number of used
occlusion queries. By grouping occlusion queries for invisible nodes which
are likely to stay invisible, a single query can be used to determine the new
visibility classification for each node belonging to such a group. At worst,
one occlusion query is wasted for each group if one of the nodes becomes
visible.

Determining which invisible nodes are grouped together is done by evalu-
ating a cost-benefit heuristic. The exact details can be found in the original
paper [42] and a follow-up article [8].

6.5 Optimized CHC++

While CHC++ provides a significant enhancement over CHC, it can still
be optimized to each platform’s peculiarities by tweaking the parameters b
and n. The original CHC++ algorithm was developed with common PC
hardware and drivers/APIs in mind, and proposes values for b to be between
20-80, and n to be between 5-10.

Although CHC++ works excellently on the PC platform, first results on
other platforms show that CHC++ sometimes performs worse than hierar-
chical view frustum culling for certain viewpoints, although not much. The
reason for this is the fact that API overhead is much less on console platforms
compared to the PC, hence the algorithmic requirements and optimizations
must be slightly shifted.

According to the DirectX documentation [19], flushing the command
buffer on the PC causes a kernel mode transition, which incurs a large penalty
when issuing occlusion queries. Measurements on the console platforms show
that occlusion queries are more than twice as fast on both the Xbox360 and
the PlayStation 3 compared to the PC, and have even less overhead when
using our custom-made occlusion queries described in Section 4.4.2.

6.5.1 Finding optimal parameters

Because it is desirable to have one algorithm which outperforms all others
in almost any situation, a tool was developed in order to collect the optimal

Chapter 6. Implementing online occlusion culling on multiple platforms 83

CHC++ parameters for a scene. The tool itself is a command-line tool which
utilizes the Daedalus engine, and renders the scene from a large amount of
different viewpoints, using different values for both b and n according to
minimum and maximum values for both parameters given as command-line
arguments.

The viewpoints can be predefined or follow along a camera-path, e.g.
depicting the player’s progression through a level in a game scenario. Addi-
tionally, replays can be used as well, making it possible to use automatically
recorded walkthroughs rather than manually built camera-paths for view-
points.

Values for b and n are determined by starting at average values for both,
and searching the whole range of possible values for values which will yield
better performance, using binary search on the range of values.

For each combination of parameters b and n, the tool renders the scene
from all viewpoints, and logs the time needed for rendering into a CSV
(comma-separated values) file. The values contained in the CSV can then be
evaluated offline, which allows for using optimized values for different scenes
on each platform.

The optimal values for each of the CHC++ parameters are presented in
the next chapter.

6.5.2 Fixed-size stack

The CHC++ algorithm makes heavy use of common data structures such as
stacks and queues. Even though each standard STL implementation provides
both containers, it has proven to be beneficial to implement a custom fixed-
size stack and queue. Using containers with a fixed size makes sure that
absolutely no memory allocations happen during the CHC++ algorithm,
and that all data is stored contiguously in memory. Both traits are crucial
for performance.

Listing 6.3 shows the implementation of the fixed-size stack. The macro
INLINE ensures that the compiler inlines a certain method, on each plat-
form.

6.5.3 Fixed-size queue

The fixed-size queue is internally implemented as a ring-buffer of elements,
using separate indices for read and write operations. Additionally, wrapping
at the end of the ring-buffer is implemented using branch-free operations
instead of a simple if-statement, making this implementation especially fast

Chapter 6. Implementing online occlusion culling on multiple platforms 84

template <typename T>
class fixed_size_stack
{
public:

fixed_size_stack(void) : data(NULL), dataSize(0), index(0)
{}

˜fixed_size_stack(void) { delete[] data; }

void reserve(size_t numElements)
{

delete[] data;
dataSize = numElements;
data = new T [dataSize];

}

INLINE void clear(void) { index = 0; }

INLINE void push(const T& value) { data[index++] = value; }

INLINE void pop(void) { --index; }

INLINE const T& top(void) const { return data[index-1]; }

INLINE bool empty(void) const { return (index == 0); }

INLINE size_t size(void) const { return dataSize; }

private:
T* data;
size_t dataSize;
size_t index;

};

Listing 6.3: Fixed-size stack

Chapter 6. Implementing online occlusion culling on multiple platforms 85

on platforms with long pipelines and almost no branch prediction, such as
some console platforms.

Listing 6.5 shows the implementation of the fixed-size queue. Listing 6.4
shows the branch-free implementation of wrapping values, taken from an
article from Mike Acton [10].

INLINE static uint32_t WrappingInc(const uint32_t value, const
uint32_t minValue, const uint32_t maxValue)

{
const uint32_t result_inc = value + 1;
const uint32_t max_diff = maxValue - value;
const uint32_t max_diff_nz = (uint32_t)((int32_t)(max_diff |

-max_diff) >> 31);
const uint32_t max_diff_eqz = ˜max_diff_nz;
const uint32_t result = (result_inc & max_diff_nz) | (

minValue & max_diff_eqz);
return (result);

}

Listing 6.4: Branch-free wrapping increment

Chapter 6. Implementing online occlusion culling on multiple platforms 86

template <typename T>
class fixed_size_queue
{
public:

fixed_size_queue(void) : data(NULL), dataSize(0), readIndex
(0), writeIndex(0) {}

˜fixed_size_queue(void) { delete[] data; }

void reserve(uint32_t numElements)
{

delete[] data;
dataSize = numElements;
data = new T [dataSize];

}

INLINE void clear(void) { readIndex = 0; writeIndex = 0; }

INLINE void push(const T& value) { data[writeIndex] = value;
writeIndex = WrappingInc(writeIndex, 0, dataSize); }

INLINE void pop(void) { readIndex = WrappingInc(readIndex,
0, dataSize); }

INLINE const T& front(void) const { return data[readIndex];
}

INLINE bool empty(void) const { return (readIndex ==
writeIndex); }

INLINE uint32_t size(void) const { return dataSize; }

private:
T* data;
uint32_t dataSize;
uint32_t readIndex;
uint32_t writeIndex;

};

Listing 6.5: Fixed-size queue

Chapter 7

Results

This chapter provides results gathered for all implemented algorithms on
each platform. Additionally, the results are discussed and compared between
different platforms.

7.1 Test Environment

The test scene is a model of New York City which consists of roughly one mil-
lion triangles, and offers a large amount of occlusion between the buildings.
Parts of the scene are shown in Figure 7.1.

This scene is used to gather the following data during rendering:

∙ Frametime: The time it takes in milliseconds to render the scene from
a certain viewpoint.

∙ Draw calls: The number of draw calls issued for rendering the scene
itself, and additional bounding geometry (if any).

∙ Issued queries: The number of queries issued (if any).

∙ Triangles: The number of triangles rendered for the scene itself, and
additional bounding geometry (if any).

∙ State changes (SW): The number of render state changes in software.
This equals the number of local RenderState variables constructed.

∙ State changes (HW): The number of render state changes in hardware.
This equals the number of API calls to set a new state after caching of
changes has been performed by the engine.

In order to provoke both a best-case and worst-case scenario for the algo-
rithms, all data is gathered from ground-level as well as sky-level viewpoints,
respectively. Viewpoints above the ground exhibit the largest amount of

Chapter 7. Results 88

(a) Part of NYC

(b) Part of NYC

Fig. 7.1: New York City Scene.

Chapter 7. Results 89

occlusion in the test scene, while viewpoints in the sky convey the most
overhead for some algorithms.

All presented results are gathered from multiple viewpoints following a
camera path, in order to be able to exploit temporal coherence. All following
data is gathered by averaging the measured data of all viewpoints. Two
representative viewpoints for both ground-level and sky-level camera paths
are shown in Figure 7.2.

Both used camera paths moved the camera from one end of the model of
New York City to the other, taking 30 seconds at a frame rate of 60 Hz.

Chapter 7. Results 90

(a) Ground-level viewpoint

(b) Sky-level viewpoint

Fig. 7.2: Sample viewpoints.

Chapter 7. Results 91

7.2 PC platform

The following results were gathered on an Intel Core 2 Duo CPU at 3 GHz
with 2 GB RAM, and a Geforce 9500 GT GPU with 512 MB RAM. On the
PC, no results for the optimized CHC++ algorithm are provided because its
parameters are heavily influenced by the underlying hardware. The CHC++
algorithm uses values of n=20 and b=50 on all platforms.

Ground level
Time Triangles Draw

calls
Issued
queries

SW state
changes

HW state
changes

No culling 8.25 1,059,654 1,898
HVFC 4.90 747,936 1,235
Stop-and-
Wait

18.40 81,083 1,294 1,227 7,362 361

CHC 4.75 260,000 510 300 600 180
CHC++ 2.30 103,600 195 45 40 10

Sky level
Time Triangles Draw

calls
Issued
queries

SW state
changes

HW state
changes

No culling 8.20 1,059,654 1,898
HVFC 4.95 775,077 1,295
Stop-and-
Wait

32.20 563,496 2,125 1,295 7,770 4,985

CHC 10.90 736,000 1,434 500 400 300
CHC++ 5.10 670,000 1,180 60 200 14

Tab. 7.1: Results on the PC platform.

As can be seen in Table 7.1, hierarchical view-frustum culling almost dou-
bles the performance compared to performing no culling at all. As expected,
stop-and-wait occlusion culling is unusable on the PC platform because of
the high cost of occlusion queries and state changes, even though the least
amount of triangles is rendered using this algorithm. For worst-case view-
points with only few occlusions, almost 5000 state changes are performed at
the driver level, respectively on the hardware.

While CHC performs well in situations offering a lot of occlusion, it per-
forms poor for worst-case scenarios, as stated in the original paper. Still, even

Chapter 7. Results 92

in moderate scenarios CHC offers only the same performance as hierarchical
view-frustum culling, even though only a third of all triangles is actually
rendered. On the other hand, CHC++ performs really well in all situations,
even worst-case. Therefore, it can be used as a drop-in replacement for every
other culling algorithm on the PC platform.

Figure 7.3 shows a comparison of the different algorithms.

Fig. 7.3: Results on the PC platform.

Chapter 7. Results 93

7.3 Xbox360 platform

The optimized CHC++ algorithm uses values of n=12 and b=20 on the
XBox360 platform for the NYC scene.

Ground level
Time Triangles Draw

calls
Issued
queries

SW state
changes

HW state
changes

No culling 14.25 1,059,654 1,898
HVFC 10.90 747,936 1,235
Stop-and-
Wait

16.25 68,056 1,297 1,227 7,362 377

CHC 4.85 230,000 470 300 600 150
CHC++ 3.15 98,000 180 45 34 8
Optimized
CHC++

3.00 99,000 190 50 40 16

Sky level
Time Triangles Draw

calls
Issued
queries

SW state
changes

HW state
changes

No culling 14.25 1,059,654 1,898
HVFC 11.40 775,077 1,295
Stop-and-
Wait

29.95 549,923 2,125 1,295 7,770 4,983

CHC 13.20 722,000 1,380 500 400 300
CHC++ 11.40 665,000 1,160 60 100 12
Optimized
CHC++

11.25 665,000 1200 90 120 24

Tab. 7.2: Results on the XBox360 platform.

The results on the XBox360 are similar to those on the PC, with a few
minor changes. Generally speaking, the performance gap between hierarchi-
cal view-frustum culling and CHC is smaller than on the PC, for both ground
and sky level viewpoints.

Similarly, CHC++ provides a significant enhancement over CHC, albeit
not as large as on the PC. This stems from the fact that occlusion queries
and state changes are way cheaper on the XBox360, hence the number of
rendered triangles has more impact on the final performance, also due to the

Chapter 7. Results 94

fact that the XBox360 hardware is less powerful compared to the PC.
Optimized CHC++ manages to gain an extra 1-5% of performance, al-

though more queries are issued and more state changes have to be performed
on average. In all the viewpoints used during testing, there was never a
situation where optimized CHC++ performed worse than hierarchical view-
frustum culling.

Figure 7.4 shows a comparison of the different algorithms.

Fig. 7.4: Results on the XBox360 platform.

Chapter 7. Results 95

7.4 PlayStation 3 platform

On the PlayStation 3, values of n=8 and b=30 were used for the optimized
CHC++ algorithm.

Ground level
Time Triangles Draw

calls
Issued
queries

SW state
changes

HW state
changes

No culling 43.00 1,059,654 1,898
HVFC 30.80 747,936 1,235
Stop-and-
Wait

38.40 80,460 1,293 1,227 7,400 370

CHC 14.60 230,000 500 300 620 210
CHC++ 7.85 102,000 195 45 110 25
Optimized
CHC++

7.75 102,000 190 50 120 29

Sky level
Time Triangles Draw

calls
Issued
queries

SW state
changes

HW state
changes

No culling 41.00 1,059,654 1,898
HVFC 28.50 775,077 1,295
Stop-and-
Wait

110.00 563,496 2,130 1,295 7,808 5,038

CHC 35.00 736,000 1,300 500 450 280
CHC++ 28.50 672,000 1,180 60 210 29
Optimized
CHC++

27.70 675,000 1200 110 350 33

Tab. 7.3: Results on the PlayStation 3 platform.

Similar to both the PC and XBox360 platform, it is quite clear that
the CHC++ algorithm manages to dramatically reduce both the number of
issued occlusion queries as well as the number of performed state changes,
compared to all other occlusion culling algorithms.

Because the PlayStation 3 is the platform offering the weakest GPU com-
pared to its CPU (PPU), the naive stop-and-wait algorithm performs excep-
tionally bad. Furthermore, the architecture of the PlayStation 3 benefits the
most from rendering large command-buffers at once, and as such its render-

Chapter 7. Results 96

ing performance is weakened by submitting hundreds of small draw calls,
respectively command-buffers.

Cutting down the number of draw calls is also what makes CHC and
CHC++ perform so good on this platform, at least for ground level view-
points. There, CHC and CHC++ are two times and four times as fast as
ordinary view-frustum culling.

Figure 7.5 shows a comparison of the different algorithms.

Fig. 7.5: Results on the PlayStation 3 platform.

Chapter 7. Results 97

7.5 Wii platform

Values of n=7 and b=25 have been used for the optimized CHC++ algorithm
on the Wii platform.

Ground level
Time Triangles Draw

calls
Issued
queries

SW state
changes

HW state
changes

No culling 113.55 1,059,654 1,898
HVFC 81.60 747,936 1,235
Stop-and-
Wait

32.25 64,700 1,293 1,227 7,362 353

CHC 28.85 212,000 180 300 650 190
CHC++ 14.80 102,000 200 45 80 8
Optimized
CHC++

14.45 105,000 350 45 150 16

Sky level
Time Triangles Draw

calls
Issued
queries

SW state
changes

HW state
changes

No culling 113.55 1,059,654 1,898
HVFC 84.60 775,077 1,295
Stop-and-
Wait

82.60 536,000 2,100 1,295 7,770 4,839

CHC 87.00 736,000 1,320 550 450 250
CHC++ 75.80 658,000 1,150 65 140 12
Optimized
CHC++

73.90 658,000 1,150 130 160 20

Tab. 7.4: Results on the Wii platform.

The Wii platform offers one peculiarity, and that is the stop-and-wait
algorithm performing so well. This is due to the following reasons:

∙ Extremely low overhead for occlusion queries: Even issuing 1000 oc-
clusion queries takes up only 1 ms, which is marginal compared to the
whole frametime.

∙ Weakest GPU of all platforms: Because the GPU is relatively weak
compared to the other platforms, it is beneficial to cut down the number

Chapter 7. Results 98

of rendered triangles, even if a lot of state changes have to be performed.

While even the naive implementation performs well, CHC++ still pro-
vides a performance gain of up to 200% compared to this algorithm, for
viewpoints exhibiting a lot of occlusion. At ground-level viewpoints, this en-
ables the Daedalus engine to render the NYC scene with a steady 60 frames
per second, which is quite an impressive feat considering the fact that the
scene consists of more than a million triangles. Even AAA-games on the
Wii usually render no more than 250,000-300,000 triangles at 30 frames per
second.

Figure 7.6 shows a comparison of the different algorithms.

Fig. 7.6: Results on the Wii platform.

7.6 Comparison

Considering the fact that hierarchical view-frustum culling is still the most
employed culling algorithm in games today, and CHC++ performed the best
on all platforms, those two algorithms are compared in Figures 7.7 and 7.8.

Evidently, CHC++ offers tremendous performance gains compared to tra-
ditional culling algorithms. Even in worst-case scenarios, CHC++ manages
to perform at least equal to or even slightly better than other algorithms.

Chapter 7. Results 99

Fig. 7.7: Comparison of results for ground-level viewpoints.

Fig. 7.8: Comparison of results for sky-level viewpoints.

Tailoring CHC++ to specific scenes and platforms can gain another few per-
cent performance, although this is only possible on fixed hardware.

Chapter 8

Summary and future work

In this last chapter, a summary of the thesis is given, and ideas for future
algorithms are explored.

8.1 Conclusion

In this thesis, the design and implementation of parts of a real-world multi-
platform rendering engine as well as visibility algorithms and their imple-
mentation was presented.

The first chapters of the thesis covered general aspects of rendering en-
gines, and provided an overview of other available engines, both free and
commercial ones. The majority of the first part of the thesis concerned
itself with vastly differing hardware capabilities, low-level rendering engine
design, multi-platform rendering issues, CPU-GPU synchronization and plat-
form API differences. This part showed that it is no easy challenge to design
a rendering engine for four different platforms, three of them being exceed-
ingly different to each other. Thus, possible solutions for solving several
design problems were given.

Building upon the design foundation laid out in the aforementioned chap-
ters, the final chapter of the first part detailed the low-level implementation of
the Daedalus engine, describing the building blocks needed for implementing
the visibility algorithms described in the second part of the thesis.

Consecutively, strategies for solving the problem of CPU-GPU synchro-
nization were deployed, and implementation details for render states, imme-
diate mode rendering and occlusion queries were given. This part of the thesis
concluded with devising a new algorithm for enabling occlusion queries on the
Nintendo Wii, showing a complete implementation thereof in the Daedalus
engine.

The second part of the thesis introduced current state-of-the-art visibility
algorithms, and provided parts of their implementation in the Daedalus en-
gine, along with possible optimizations on console hardware. The achieved

Chapter 8. Summary and future work 101

results prove that integrating newer visibility algorithms into a real-world
multi-platform engine is easily possible, whether the engine has been de-
signed for this kind of algorithm in the first place or not, provided the engine
is sufficiently structured.

Finally, the results speak for themselves and evidence that algorithms
like CHC and CHC++ are worthy replacements for visibility algorithms em-
ployed in today’s rendering engines, on all currently available major plat-
forms.

8.2 Future work

Even though state-of-the-art visibility algorithms can be used on current-gen
platforms, there is still a lot of room for improvement, especially concerning
the occlusion culling algorithms described in this thesis.

Both CHC and CHC++ could be slightly improved by using the con-
ditional rendering facilities available on the Xbox 360 and PlayStation 3
platforms. Conditional rendering allows primitives to be rendered based on
the outcome of a previously issued query, completely without any CPU in-
tervention. This could be used to reduce CPU stalls and idle-times.

Software rasterization

Another possibility would be to resort to software rasterization for occlusion
culling. At the time of writing, almost every console game is GPU-limited,
the power of the PlayStation 3 SPUs still needs to be completely harnessed,
and multi-core CPUs are more and more becoming mainstream. Therefore,
there is a lot of CPU/SPU power available for completing other tasks, such
as rasterizing depth for occlusion culling algorithms. Especially SPUs are
notorious for performing such tasks.

One of the reasons for CPU idle times in CHC and CHC++ is the fact
that the result of an occlusion query is not available until all operations inside
a query have been completed. When rendering primitives using software
rasterization, many of those idle-times could be avoided by making use of
early-out optimizations. After rasterizing a scanline, a simple check could
test whether any pixel was written to the framebuffer, which would allow the
algorithm to continue without having to wait for the primitive to be rendered
completely.

Furthermore, software rasterization allows for other optimizations to be
performed when rasterizing depth values only, such as rendering at lower
resolutions, because the depth-buffer is not needed for subsequent GPU ren-
dering. Thus, the rasterizing process can be carried out at e.g. only 1/4 of

Chapter 8. Summary and future work 102

the original resolution without introducing noticeable artifacts. In this case,
the gathered visibility information is no longer exact, but provides a good
approximation.

As an additional optimization, depth rasterization could be performed in
16-bit or fixed-point, depending on the platform’s capabilities.

Finally, software rasterization does not need any render state changes
at all, and puts less burden on the GPU’s vertex unit. Using the GPU
for color rasterization and the CPU for depth rasterization in the occlusion
culling algorithms would therefore reduce CPU-GPU stalls, and completely
eliminate some of the needed render state changes.

Commercial engines such as CryEngine 3 from Crytek [44] and Frostbite
from DICE [4] already use software rasterization for the purpose of occlusion
culling.

8.3 Main contributions

Chapter 3 provided an introduction to intricacies of console hardware pro-
gramming, and pointed out difficulties in cross-platform engine development
along with appropriate solutions. It showed how to solve reoccurring prob-
lems in professional engine development, as well as console-specific program-
ming problems such as CPU-GPU synchronization.

Chapter 4 introduced a novel mechanism for making hardware occlusion
queries available on platforms which do not natively support them by using
hardware GPU metrics, interrupts and custom-made CPU-GPU synchro-
nization, resulting in queries that are way faster than query functionality
on other platforms. Furthermore, it provided an implementation of render
state functionality using advanced C++ features, resulting in very fast and
robust render states. Additionally, it introduced a multi-platform interface
for immediate mode rendering, optimized using special capabilities of each
platform.

Chapter 6 showed optimizations to current visibility culling algorithms
using branch-free operations on console hardware, and additionally detailed a
tool for evaluating optimal CHC++ parameters on fixed-hardware platforms
such as consoles.

Chapter 8 presented possible future enhancements to the algorithms in-
troduced in Chapter 6 by making use of specific hardware features and ca-
pabilities, potentially increasing the algorithms’ performance even more.

List of Figures

1.1 Daedalus technology used in Cursed Mountain 11

2.1 Screenshot from Mirror’s Edge 14
2.2 Real-time rendering comparison 15
2.3 Stages of the rendering pipeline 16
2.4 Direct3D 10 rendering pipeline 19

3.1 Simplified overview of the PC architecture 29
3.2 Xbox360 Xenos GPU . 30
3.3 Simplified overview of the Xbox360 architecture. 32
3.4 Simplified overview of the PlayStation 3 architecture. 34
3.5 Simplified overview of the Wii architecture. 36

4.1 Timeline for a successful occlusion query 64

5.1 View frustum described by a perspective camera 66
5.2 BVH consisting of AABBs . 70

6.1 Non-hierarchical view frustum culling 72
6.2 CPU stalls and GPU starvation 76
6.3 Scene rendered using occlusion culling 77

7.1 New York City Scene. 88
7.2 Sample viewpoints. 90
7.3 PC platform results . 92
7.4 XBox360 platform results . 94
7.5 PlayStation 3 platform results 96
7.6 Wii platform results . 98
7.7 Results comparison (ground-level) 99
7.8 Results comparison (sky-level) 99

List of Tables

3.1 Rendering schemes . 47

7.1 PC platform results . 91
7.2 XBox360 platform results . 93
7.3 PlayStation 3 platform results 95
7.4 Wii platform results . 97

List of Listings

3.1 Client code using #if . 38
3.2 Using preprocessor directives in a single file 41
3.3 Header file used by client code 41
3.4 Modified PIMPL . 43
3.5 Template typedefs . 43

4.1 Accessing resources on the CPU 51
4.2 Internal render state . 53
4.3 Flushing the render states cache 54
4.4 Render states stack entry . 54
4.5 An example of render state enums 56
4.6 RenderState class . 57
4.7 Render state template specialization for Direct3D 9 57
4.8 Client code using the RenderState class 58
4.9 Immediate mode rendering . 59
4.10 Parts of the RenderImmediate interface on the PC 60
4.11 Occlusion queries in Daedalus 61
4.12 Implementation of OcclusionQuery on the PC platform 62

6.1 View Frustum Culling . 74
6.2 Stop-and-Wait Occlusion Culling 78
6.3 Fixed-size stack . 84
6.4 Branch-free wrapping increment 85
6.5 Fixed-size queue . 86

Bibliography

[1] AI Implant. http://www.ai-implant.com/.

[2] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time
Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[3] Advanced Micro Devices. http://www.amd.com/uk/Pages/

AMDHomePage.aspx.

[4] Johan Andersson. The Intersection of Game Engines and
GPUs – Current and Future. Technical report, Graphics Hard-
ware, 2008. http://www.graphicshardware.org/presentations/

andersson-game_engines_and_GPUs.pptx.

[5] Ulf Assarsson and Tomas Möller. Optimized view frustum culling algo-
rithms for bounding boxes. J. Graph. Tools, 5(1):9–22, 2000.

[6] Illuminate Labs Beast. http://www.illuminatelabs.com/.

[7] Lars Bishop, Dave Eberly, Turner Whitted, Mark Finch, and Michael
Shantz. Designing a pc game engine. IEEE Comput. Graph. Appl.,
18(1):46–53, 1998.

[8] Jǐŕı Bittner, Oliver Mattausch, and Michael Wimmer. Game-engine-
friendly occlusion culling. In Wolfang Engel, editor, SHADERX7: Ad-
vanced Rendering Techniques, volume 7, chapter 8.3. Charles River Me-
dia, March 2009.

[9] Jǐŕı Bittner, Michael Wimmer, Harald Piringer, and Werner Purgath-
ofer. Coherent Hierarchical Culling: Hardware Occlusion Queries Made
Useful. Computer Graphics Forum, 23(3):615–624, September 2004.
Proceedings EUROGRAPHICS 2004.

[10] Increment and decrement wrapping values. http:

//cellperformance.beyond3d.com/articles/2006/07/

increment-and-decrement-wrapping-values.html.

http://www.ai-implant.com/
http://www.amd.com/uk/Pages/AMDHomePage.aspx
http://www.amd.com/uk/Pages/AMDHomePage.aspx
http://www.graphicshardware.org/presentations/andersson-game_engines_and_GPUs.pptx
http://www.graphicshardware.org/presentations/andersson-game_engines_and_GPUs.pptx
http://www.illuminatelabs.com/
http://cellperformance.beyond3d.com/articles/2006/07/increment-and-decrement-wrapping-values.html
http://cellperformance.beyond3d.com/articles/2006/07/increment-and-decrement-wrapping-values.html
http://cellperformance.beyond3d.com/articles/2006/07/increment-and-decrement-wrapping-values.html

Bibliography 107

[11] Cell Broadband Engine Resource Center, IBM. http://www.ibm.com/

developerworks/power/cell/index.html.

[12] James H. Clark. Hierarchical geometric models for visible surface algo-
rithms. Commun. ACM, 19(10):547–554, 1976.

[13] Satyan Coorg and Seth Teller. Real-time occlusion culling for models
with large occluders. In SI3D ’97: Proceedings of the 1997 symposium
on Interactive 3D graphics, pages 83–ff., New York, NY, USA, 1997.
ACM.

[14] More C++ Idioms. http://en.wikibooks.org/wiki/More_C++_

Idioms.

[15] CryEngine 3. http://www.crytek.com/technology/cryengine-3/

specifications/.

[16] Cursed Mountain. http://cursedmountain.deepsilver.com.

[17] Mark DeLoura. Game engine showdown. Game Developer, 16(5):7–12,
May 2009.

[18] Direct3D 10 Pipeline. http://msdn.microsoft.com/en-us/library/

bb205123(VS.85).aspx.

[19] DirectX Query Documentation. http://msdn.microsoft.com/en-us/

library/ee422167(VS.85).aspx.

[20] Michael Doggett. Xenos: Xbox 360 GPU. GDC Europe 2005, 2005.

[21] Microsoft DirectX. http://msdn.microsoft.com/directX.

[22] Microsoft DirectX 10. http://global.gamesforwindows.com/de-DE/

aboutGFW/directX10.aspx.

[23] Eurographics - European Association for Computer Graphics. http:

//www.eg.org/.

[24] Emergent’s Floodgate. http://www.emergent.net/Products/

Gamebryo/Technical-Details/Floodgate/.

[25] FMOD. http://www.fmod.org/.

[26] Gamebryo. http://www.emergent.net/.

http://www.ibm.com/developerworks/power/cell/index.html
http://www.ibm.com/developerworks/power/cell/index.html
http://en.wikibooks.org/wiki/More_C++_Idioms
http://en.wikibooks.org/wiki/More_C++_Idioms
http://www.crytek.com/technology/cryengine-3/specifications/
http://www.crytek.com/technology/cryengine-3/specifications/
http://cursedmountain.deepsilver.com
http://msdn.microsoft.com/en-us/library/bb205123(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb205123(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee422167(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee422167(VS.85).aspx
http://msdn.microsoft.com/directX
http://global.gamesforwindows.com/de-DE/aboutGFW/directX10.aspx
http://global.gamesforwindows.com/de-DE/aboutGFW/directX10.aspx
http://www.eg.org/
http://www.eg.org/
http://www.emergent.net/Products/Gamebryo/Technical-Details/Floodgate/
http://www.emergent.net/Products/Gamebryo/Technical-Details/Floodgate/
http://www.fmod.org/
http://www.emergent.net/

Bibliography 108

[27] Microsoft Gamefest 2008. http://www.xnagamefest.com/

presentations08.htm.

[28] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994–1995.

[29] Game Networking Engine. http://www.gillius.org/gne/.

[30] Ned Greene. Detecting intersection of a rectangular solid and a convex
polyhedron. pages 74–82, 1994.

[31] Ned Greene, Michael Kass, and Gavin Miller. Hierarchical z-buffer vis-
ibility. In SIGGRAPH ’93: Proceedings of the 20th annual conference
on Computer graphics and interactive techniques, pages 231–238, New
York, NY, USA, 1993. ACM.

[32] Valve Hammer. http://developer.valvesoftware.com/wiki/

Category:Hammer:de.

[33] Al Hastings. Occlusion – Visibility determination for static and dynamic
objects. Technical report, Insomniac Games R&D, 2007. http://www.

insomniacgames.com/tech/articles/1107/occlusion.php.

[34] Havok. http://www.havok.com/.

[35] K. Hillesland, B. Salomon, A. Lastra, and D. Manocha. Fast and simple
occlusion culling using hardware-based depth queries. Technical report,
2002.

[36] Forward declarations to template classes in the STL. http://msdn.

microsoft.com/en-us/library/1af12yty(VS.80).aspx.

[37] Irrlicht Engine. http://irrlicht.sourceforge.net/.

[38] The Khronos Group. http://www.khronos.org/.

[39] LUA. http://www.lua.org/.

[40] David Luebke and Chris Georges. Portals and mirrors: simple, fast
evaluation of potentially visible sets. In SI3D ’95: Proceedings of the
1995 symposium on Interactive 3D graphics, pages 105–ff., New York,
NY, USA, 1995. ACM.

[41] Dominic Mallison and Mark DeLoura. CELL: A New Platform for Dig-
ital Entertainment. Game Developers Conference, March 2005, 2005.

http://www.xnagamefest.com/presentations08.htm
http://www.xnagamefest.com/presentations08.htm
http://www.gillius.org/gne/
http://developer.valvesoftware.com/wiki/Category:Hammer:de
http://developer.valvesoftware.com/wiki/Category:Hammer:de
http://www.insomniacgames.com/tech/articles/1107/occlusion.php
http://www.insomniacgames.com/tech/articles/1107/occlusion.php
http://www.havok.com/
http://msdn.microsoft.com/en-us/library/1af12yty(VS.80).aspx
http://msdn.microsoft.com/en-us/library/1af12yty(VS.80).aspx
http://irrlicht.sourceforge.net/
http://www.khronos.org/
http://www.lua.org/

Bibliography 109

[42] Oliver Mattausch, Jǐŕı Bittner, and Michael Wimmer. Chc++: Coherent
hierarchical culling revisited. Computer Graphics Forum (Proceedings
Eurographics 2008), 27(2):221–230, April 2008.

[43] Miles Sound System. http://www.radgametools.com/miles.htm.

[44] Martin Mittring. The Importance of Multi-Core for Game Development
at Crytek. Technical report, Go parallel – Technical University Mu-
nich, 2008. http://www.crytek.com/fileadmin/user_upload/inside/
presentations/2008/MunichIntel_eng.ppt.

[45] NVIDIA Corporation. http://www.nvidia.com.

[46] NVIDIA Register Combiners. http://developer.nvidia.com/object/
registercombiners.html.

[47] Open Dynamics Engine. http://www.ode.org/.

[48] Codeplay’s Offload. http://offload.codeplay.com/.

[49] Ogre. http://www.ogre3d.org/.

[50] OpenGL. http://www.opengl.org.

[51] OpenGL Architecture Review Board. http://www.opengl.org/about/

arb/.

[52] Open Scene-Graph. http://www.openscenegraph.org.

[53] PCI-E Specification. http://www.pcisig.com/specifications/

pciexpress/.

[54] Cedric Perthuis. Introduction to the graphics pipeline of the PS3. Euro-
graphics 2006, Graphics Meets Games Talks, 2006.

[55] PhysX. http://www.nvidia.com/object/physx_new.html.

[56] PIMPL Idiom. http://www.gotw.ca/publications/mill04.htm.

[57] Stefan Popov, Iliyan Georgiev, Rossen Dimov, and Philipp Slusallek.
Object partitioning considered harmful: space subdivision for bvhs. In
HPG ’09: Proceedings of the Conference on High Performance Graphics
2009, pages 15–22, New York, NY, USA, 2009. ACM.

[58] Accurately Profiling Direct3D API Calls. http://msdn.microsoft.com/
en-us/library/bb172234(VS.85).aspx.

http://www.radgametools.com/miles.htm
http://www.crytek.com/fileadmin/user_upload/inside/presentations/2008/MunichIntel_eng.ppt
http://www.crytek.com/fileadmin/user_upload/inside/presentations/2008/MunichIntel_eng.ppt
http://www.nvidia.com
http://developer.nvidia.com/object/registercombiners.html
http://developer.nvidia.com/object/registercombiners.html
http://www.ode.org/
http://offload.codeplay.com/
http://www.ogre3d.org/
http://www.opengl.org
http://www.opengl.org/about/arb/
http://www.opengl.org/about/arb/
http://www.openscenegraph.org
http://www.pcisig.com/specifications/pciexpress/
http://www.pcisig.com/specifications/pciexpress/
http://www.nvidia.com/object/physx_new.html
http://www.gotw.ca/publications/mill04.htm
http://msdn.microsoft.com/en-us/library/bb172234(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb172234(VS.85).aspx

Bibliography 110

[59] Sony Playstation 3 Element Interconnect Bus. http://www.sony.net/

SonyInfo/technology/technology/theme/cell_01.htm.

[60] RakNet. http://www.jenkinssoftware.com/.

[61] CryEngine Sandbox. http://doc.crymod.com/SandboxManual/.

[62] Silicon Graphics International. http://www.sgi.com/.

[63] ACM SIGGRAPH - Special Interest Group on Graphics and Interactive
Techniques. http://www.siggraph.org/.

[64] Source Engine. http://source.valvesoftware.com/.

[65] Sproing Interactive Media GmbH. http://www.sproing.com.

[66] Squirrel. http://squirrel-lang.org/.

[67] Martin Stich, Heiko Friedrich, and Andreas Dietrich. Spatial splits in
bounding volume hierarchies. In HPG ’09: Proceedings of the Conference
on High Performance Graphics 2009, pages 7–13, New York, NY, USA,
2009. ACM.

[68] Eric Haines Tomas Akenine-Möller. Real-Time Rendering, Third Edi-
tion. A.K. Peters, Ltd., Wellesley, Massachusetts, USA, 2008.

[69] Unreal Engine 3. http://www.unrealtechnology.com/.

[70] Valve Hardware Survey. http://store.steampowered.com/hwsurvey.

[71] Ingo Wald. On fast construction of sah-based bounding volume hierar-
chies. In RT ’07: Proceedings of the 2007 IEEE Symposium on Inter-
active Ray Tracing, pages 33–40, Washington, DC, USA, 2007. IEEE
Computer Society.

[72] Michael Wimmer and Jǐŕı Bittner. Hardware Occlusion Queries Made
Useful. In Matt Pharr and Randima Fernando, editors, GPU Gems 2:
Programming Techniques for High-Performance Graphics and General-
Purpose Computation. Addison-Wesley, March 2005.

[73] Microsoft Windows Vista. http://www.microsoft.com/germany/

windows/windows-vista/.

http://www.sony.net/SonyInfo/technology/technology/theme/cell_01.htm
http://www.sony.net/SonyInfo/technology/technology/theme/cell_01.htm
http://www.jenkinssoftware.com/
http://doc.crymod.com/SandboxManual/
http://www.sgi.com/
http://www.siggraph.org/
http://source.valvesoftware.com/
http://www.sproing.com
http://squirrel-lang.org/
http://www.unrealtechnology.com/
http://store.steampowered.com/hwsurvey
http://www.microsoft.com/germany/windows/windows-vista/
http://www.microsoft.com/germany/windows/windows-vista/

Bibliography 111

[74] Hansong Zhang, Dinesh Manocha, Tom Hudson, and Kenneth E. Hoff,
III. Visibility culling using hierarchical occlusion maps. In SIGGRAPH
’97: Proceedings of the 24th annual conference on Computer graphics
and interactive techniques, pages 77–88, New York, NY, USA, 1997.
ACM Press/Addison-Wesley Publishing Co.

Acknowledgements

”The way your heart sounds makes all the difference, it’s what
decides if you’ll endure the pain that we all feel. The way your
heart beats makes all the difference in learning to live.”

– Dream Theater, ”Learning To Live”

First, I want to thank Gerhard Seiler and Harald Riegler for making this
diploma thesis possible by letting me use Sproing’s development equipment.

Secondly, thanks to Michael Wimmer for giving me the opportunity to work
on this topic the way I wanted it.

Sincere thanks to Oliver Mattausch for all the fruitful discussions, and for
his help whenever I needed it.

Thanks to all my co-workers at Sproing for making everyday’s life so much
more enjoyable, with extra credit to ”The guys from the Mario Room” – you
guys rock!

Special thanks to all my friends who still bear with me, given the fact that
I have spent so many evenings, nights, and weekends at the office.

Last but not least, I’d like to express my gratitude to my family for all their
support over the past years.

	Introduction
	Scope of the work
	Daedalus Engine
	Main contributions
	Thesis structure

	Real-Time Rendering Engines
	Real-Time Rendering
	Rendering pipeline
	Application Stage
	Geometry Stage
	Rasterizer Stage

	Graphics APIs
	Direct3D 9
	Direct3D 10
	Direct3D 11
	OpenGL

	Rendering engines
	OGRE - Open Source 3D Graphics Engine
	Irrlicht
	Open Scene-Graph

	Game Engines
	Unreal Engine 3
	CryEngine 3
	Gamebryo

	Rendering Engine Requirements

	Introduction to cross-platform design
	Platform capabilities
	PC platform
	Xbox360 platform
	PlayStation 3 platform
	Wii platform

	Separation of low-level and high-level code
	Granting access to platform-dependent functionality
	Ease of use
	Judicious use of language features
	Abstracting low-level interfaces
	Preprocessor directives
	Splitting interfaces across files
	Modified PIMPL idiom

	Multi-platform rendering
	Submission-based vs. buffer-based rendering
	Immediate vs. delayed rendering

	Multi-threaded rendering
	Comparison between rendering schemes
	CPU-GPU synchronization
	Cache coherency
	Platform APIs
	Microsoft Windows Direct3D 9
	Microsoft XBox360 Direct3D
	Sony PlayStation 3 LibGCM
	Nintendo Wii GX
	Comparison

	Implementing the occlusion query functionality on multiple platforms
	CPU-GPU synchronization
	PC platform
	Other platforms

	Render states
	Caching
	Impossible to break
	Speed and memory footprint

	Immediate mode rendering
	PC platform
	Other platforms

	Occlusion queries
	PC platform
	Other platforms

	Related work on visibility algorithms
	Visibility Culling
	Backface Culling
	View-Frustum Culling
	Occlusion Culling
	Online vs. offline culling

	Spatial Data Structures
	Bounding Volume Hierarchies

	Implementing online occlusion culling on multiple platforms
	Hierarchical View-Frustum Culling
	N- and P-Test
	Exploiting Temporal Coherence
	BVH Plane Masking

	Stop-and-Wait Occlusion Culling
	CHC – Coherent Hierarchical Culling
	CHC++ – Coherent Hierarchical Culling Revisited
	Reducing state changes
	Batching previously invisible nodes
	Batching previously visible nodes
	Batching draw calls
	Visible node randomization
	Multiqueries

	Optimized CHC++
	Finding optimal parameters
	Fixed-size stack
	Fixed-size queue

	Results
	Test Environment
	PC platform
	Xbox360 platform
	PlayStation 3 platform
	Wii platform
	Comparison

	Summary and future work
	Conclusion
	Future work
	Main contributions

	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Acknowledgements

