
Forschungsseminar aus Computergraphik und Digitaler Bildverarbeitung (WS2009)
Michael Wimmer (Editor)

Symmetry detection in architectural meshes

C. Niederreiter

Institut für Computergrafik und digitale Bildverarbeitung, TU Wien, Austria

Abstract
3D city simulations or city planning applications often require a huge number of distinct architectural models in
order to appear realistic. One way to generate many different models is to provide some template files to a com-
puter program which automatically performs changes on the template in that it exchanges window elements, doors
or structure elements of the facade and stores the result in a model database. But many models are available in the
form of monolithic meshes without any information about their structure or exchangable parts. I pursued which
methods are applicable for detection of structure elements which occur at least two times and implemented two
approaches, a flood-fill based approach and a clustering based approach. The approaches regard local geometric
characteristics in order to calculate vertex signatures that describe surface points of the mesh in a comparable
way. Signature comparison yields evidences for symmetry relations that may be part of a larger symmetry relation
between two instances of a structure element such as a window or door.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Hierarchy and geometric
transformations

1. Introduction

Geometric meshes often contain information that is not di-
rectly accessible. For instance, meshes constructed by com-
puter graphics modelers using modeling tools such as 3D
Studio Max mostly do not include any usable semantic data.
Also, 3D scanning devices that digitize real-world surfaces
are not able to produce semantic information. But semantic
information is important to make geometric data alterable.
Humans are inherently able to extract it from R3 → R2 pro-
jections even if it is not a known part of the geometric data
file. They are swift in cognizing structural regularities such
as symmetry relations, which are a form of semantic infor-
mation.

This paper is aimed at finding ways to extract such in-
formation from architectural meshes in a computer process.
Primarily, this is useful for computer graphics applications
that require a huge number of virtual buildings which are
based on few manually drawn building models that are used
as template objects and are to be altered in order to gain
an appreciable variety of buildings. This is often the case if
large conglomerates of buildings such as cities are to be ren-
dered, based on real cities where each house looks slightly
different from each other. A suchlike city structure is used

in [WMWG09], but this paper does not go into details con-
cerning the modelling of buildings.

A possible solution for creating city structures is to fol-
low a hierarchical approach from the very first (i.e. bottom-
up): [WWSR03] introduce the term split grammar, char-
acterized as a set grammar that is able to balance auto-
mated construction and fulfillment of user-defined preset-
tings. Alike, [Mer07] describes a further way to achieve au-
tomated object synthesis. Both approaches operate on 2D or
3D shape elements and put them together according to apt
rules.

On the contrary, monolithic meshes require a top-down
approach regarding the entire mesh. The pertinent objective
is to find segmentations of the mesh the cells of which con-
sist of sensibly exchangeable parts of the mesh. That is, for
architectural models, the cells represent windows, doors and
possibly other structure elements. According cells are sur-
face areas on the mesh that may be findable only if they can
be uniquely described. Since the detection process should
operate fully automated on arbitrary architectural models,
it is restricted to detection of geometric regularities, but
not user-defined feature characterisics. The term “geometric
regularities” can be split into the subclasses symmetry rela-
tions and similarity transforms. Symmetry relations can oc-

c© ICGA/TU Wien WS2009.

C. Niederreiter / Symmetry detection

cur within a cell (mirror symmetry in double-shuttered win-
dows), but also between cells (similar-looking windows or
doors).

The following section informs about the objectives that
are to be achieved. Afterwards, two approaches for imple-
mentations are proposed, the first of which developed during
my work on the topic.

The second approach this paper introduces tries to ex-
tend [MGP06] which describes a way of finding symme-
tries in samples taken from a geometric object with a smooth
surface, such as an animal. This is achieved by regarding
local shape descriptors of surface points that depend on
unique main curvature directions in order to compute point-
specific characteristics called signatures. However, most ar-
chitectural objects primarily consist of orthogonal or other
non-smooth elements that contain surfaces the derivation of
which is non-continuous, or vertices in plain surfaces, so
either the curvature calculation cannot be adopted as is or,
worse yet, main curvatures cannot even be calculated be-
cause they are both 0 (in some respects such surface points
are umbilical).

Finally, the extensible software framework used to inves-
tigate the problem and test the approaches is introduced.

2. Objectives

A typical architectural object is stored in a geometric object
file according to the 3DS, OBJ or BLEND file format spec-
ifications. There are more handy and program-independent
alternatives to these formats publicly specified and available
on the Web that are human-readable, namely COLLADA and
Ogre MESH XML, which basically provide capabilities sim-
ilar or even superior to the capabilities of aforementioned
formats, but, anyway, are better suited for analytic purposes
when speed is not of major importance. Sometimes, they are
not recommended for end-user applications because of their
performance drawbacks (decompression of packed files and
parsing) or high storage overhead.

A COLLADA file fulfills the XML specification and stores
the vertices xi ∈ R3 of one or several geometric meshes, as
well as their normal vectors n j ∈ R3 that specify the surface
normal directly at the vertex. The vertices of a mesh and also
the normal vectors live in distinct (independent) and unstruc-
tured ASCII-arrays and are indexed by polygon structures,
usually representing triangles, consisting of integer scalars,
the indices pointing to the vectors in the vertex-array that
describe the polygon’s corner locations. Furthermore, ref-
erences to texture images and texture mapping coordinates
(u,v) ∈ R2 are usually part of the file.

As the polygon corners are indexed, even a COLLADA
file is a trade-off between human-readability and computa-
tional performance, but they are far from a usable data struc-
ture that allows identification of semantically sensible parts

of the mesh. So the first objective is to transform the file con-
tents in the form of their structure to an analyzable form in
the computer’s memory. This task is to be performed by the
model loader. If the file contains several meshes, these might
be parts of an architectural object that is already split up in
a semantic manner. This should be regarded when the model
is loaded: The model loader should be cautious if it intends
to join the submeshes, otherwise, semantic information gets
lost.

In order to gain as much information about symmetry re-
lations in a mesh as possible, it is necessary to discover its
local features. Cross-polygon neighborhood relations of ver-
tices can be used to calculate vertex signatures that mathe-
matically describe the vertices, as well as the local surface
curvature can contribute to the signature. Vertices differ in
their neighbor vertex counts, neighbor distances and rela-
tive neighbor locations. If two vertices or surface points on
a mesh have similar signatures, they might be part of a sym-
metry relation: A symmetry relation consists of more than
just relations between individual points, rather it consists of
many point relations between at least two groups of points.
These point groups are linked by groups of similar trans-
formations, i.e. if a transformation that links two groups is
applied to an arbitrary point that is part of the first group, the
point moves close to one of the points with a similar signa-
ture that should live in the other group.

One objective of the second, curvature-based approach
introduced in this paper is to find transformations that are
part of a symmetry relation and finally drop transformations
that are not part of large-scale symmetry relations.

The most general transformation (homography or projec-
tive transformation) can be described using an invertible 4x4
matrix. But since it is necessary to compare transformations
in order to group them, a more compressed representation
is desirable. According to [MGP06], a vector x ∈ R7 is suf-
ficient to describe a transformation that contains translation
(R3), rotation (R3) and a scale factor (R).

"roof"

"door" "door"

"window"

Figure 1: From mesh to semantic information

The grouping of transformations is a clustering task. Since

c© ICGA/TU Wien WS2009.

C. Niederreiter / Symmetry detection

the number of groups is unknown (number of structure el-
ements that are to be found, e.g. windows), the clustering
algorithm by itself must be capable of detecting the right
number of clusters in order to avoid user interaction.

The final objective is the appropriate naming (and clas-
sification) of detected structure elements, as drafted in fig-
ure 1. Naming means attachment of verbal semantic infor-
mation. This is to be done via human interaction, since a
computer program is not always capable of robustly guess-
ing the meaning of individual structure elements, whereas
humans are quick and reliable in doing so. [AMAK07] ex-
amine the problem of semantic labelling of 2D image parts.
Labels such as “sky” or “person” are attached to image re-
gions after matching a region’s calculated visual descriptor
with visual descriptors from a database. This approach could
be adopted for labelling structure elements of buildings. In
fact, it is not possible to define a visual descriptor, for in-
stance for a door, because in reality, the visual appearance
of doors overlaps with the visual appearance of windows.
But considering “typical” doors and “typical” windows hav-
ing different visual descriptors might be sensible. Bounding-
box aspect ratios or texture image based visual descriptors
are conceivable for automatic pre-classification. Subsequent
precise labelling is to be done by the user.

3. Approaches

3.1. Simple Approach

Basically, this approach features a flood-fill procedure ap-
plied on vertices that is controlled by vertex signature com-
parison. The flood-fill’s result is a group of vertices and fur-
ther groups of vertices that form a structure element on the
architectural mesh. Detection of a structure element usually
relies on its multiple existence on the model, i.e. there must
be at least two instances at different locations.

The following steps are to be performed in order to find
structure elements on a mesh:

1. Model loading

a. Find edges as well as accordant neighboring vertices
for every vertex of the mesh or submeshes. Every ver-
tex is stored in an object that contains the vertex coor-
dinates as well as references to the edges and neigh-
boring vertices.

b. Compile vertex signatures. Two types of signatures
are calculated: A short signature ss ∈ R and a long
signature which consists of n vectors xi ∈ R3, where
n is the number of direct neighboring vertices (the
path to the neighboring vertex is exactly one edge).
The former contains the sum of Manhattan distances
to the neighboring vertices ∑

n
i=1 δx +δy +δz and can

be used for quick preselection of presumably similar
long signatures. The latter describes the direct neigh-
boring relations of a vertex in detail. It contains the

neighbor count n and the distance vectors di ∈ R3 to
the neighbors.

c. Signature comparison and accumulation. If the mesh
does not contain more than 50000 vertices (this value
is estimated based on current hardware capabilities),
it is recommendable to accumulate vertices that have
similar signatures for every vertex of the mesh as final
step of the model loading process. Signature compari-
son is explained in detail in the section 3.1.1 Signature
comparison and accumulation.

2. Structure detection

a. Flood-fill. Starting with a single vertex vi on a mesh
or submesh, all neighboring vertices are visited. For
vertex vi and for each neighboring vertex v j, if not al-
ready performed in step 1.c., vertices with similar sig-
natures are searched on the entire mesh. The number
ni + 1 of similar-signatured vertices inclusive of the
vertex vi, or an integer multiple or fraction of ni + 1,
if greater than a threshold t ≥ 1 (t ∈ N), indicates
whether a vertex v j with n j +1 similar-signatured ver-
tices (inclusive of v j) is part of the same structure el-
ement or not. If it is, i.e. xsimilar = true (equation 2),
the vertex is used as a new flood-fill seed point in a
recursive procedure. The threshold t requires human
interaction and can be preset to 1.

mmin = min(ni,n j)+1 mmax = max(ni,n j)+1 (1)

xsimilar =

{
true if mmin > t ∧0 ≡ mmax modmmin,
f alse else.

(2)
In order to make this step more robust, the number of
neighbors with the same number of similar-signatured
vertices can be compared to a minimum threshold pa-
rameter tsimneigh,min, so, for instance, only if a neigh-
boring vertex has at least tsimneigh,min neighbors with
the same number of similar signatures, it is considered
a part of the same structure.
Submeshes are usually not connected to the main sub-
mesh or the other submeshes and often smaller than
a sensibly exchangable structure element, i.e. they are
part of a structure element together with further sub-
meshes, for instance window sills. To overcome this, a
sparkover distance (vertex-to-plane or plane-to-plane)
could be defined interactively, that allows the flood-fill
process to change the mesh. A spatial data structure
such as an octree can restrict the sparkover search to
nearby submeshes and thus enhance performance.

b. Structure element selection. In order to make individ-
ual structure elements selectable or exchangable as a
whole, the flood fill must be performed on each in-
stance of the structure element.

c© ICGA/TU Wien WS2009.

C. Niederreiter / Symmetry detection

Figure 2: Simple approach: The pink vertex is the user-
selected seed point

Figure 3: Simple approach: Frequent occurrence of a struc-
ture element (window)

3.1.1. Signature comparison and accumulation

Short signatures as described above in step 1.b. are used to
compare and select vertices in a quick manner. Vertices that
have similar short signatures (within a predefined range of
tolerance) are evidence for a symmetry relation. This evi-

dence is confirmed or revoked by comparing the long signa-
ture values (also within a predefined range of tolerance).

3.1.2. Results

Figures 2 and 3 show the results of this approach. The pink
square is the user-selected seed point and the blue squares
mark the vertices representing the structure elements.

3.1.3. Drawbacks of this approach

Robustness. Sometimes, the number of similar signatures is
not sufficient for sensible structure detection and the flood-
fill expands too far. Thus, a more robust type of signature
is needed or even a more sophisticated approach than the
flood-fill method. A superior solution is described in the next
section.

3.2. Curvature-based approach

This approach is an adoption of the technique introduced in
[MGP06], which works best with smooth surfaces.

3.2.1. Surface descriptor

Unlike the signatures used in the previous approach, sig-
natures exclusively contain information about the second
derivative of the surface of the mesh at a point on the sur-
face, more precisely, they consist of the principal curvatures.
Smooth meshes as well as non-smooth meshes are merely
rough approximations of imaginary smooth surfaces, so the
principal curvatures need to be estimated. [MGP06] suggest
the method described in [ACSD∗03] which simultaneously
estimates principal curvatures and their orientation vectors
as well as the surface normal at a given vertex based on the
surface normals at surrounding surface points.

3.2.2. Procedure

Vertices are chosen as surface sample points. For each
point, a surface descriptor as described above is calculated.
The surface descriptor consists of the principal curvatures
κ1 (smaller curvature) and κ2 (greater curvature). Umbilic
points with κ1 = κ2 provide less comparable information,
therefore points that feature a large κ1/κ2 ratio are omitted.

The next step is called pairing. Two vertices i and j are
regarded at a time. Vertices that passed the previous selec-
tion based on the curvature ratio are iteratively connected
to all other vertices that passed the selection. Vertices that
provide evidence for a symmetry relation must have similar
principal curvatures, other vertex pairs are rejected. Both κi,1
and κi,2 are compared to κ j,1 and κ j,2, respectively. Vertices
that pass this test are connected by a seven-dimensional vec-
tor containing a scale component s ∈ R, a rotational compo-
nent R∈R3 and a translational component t∈R3. The scale
component is estimated by comparing both principal curva-
tures between the vertices i and j: s = κi,1/κ j,1+κi,2/κ j,2

2 . The

c© ICGA/TU Wien WS2009.

C. Niederreiter / Symmetry detection

rotational component provides three euler angles that can be
applied to rotate the surface patch around the vertex i so that
the main curvatures of the patch are oriented similar to the
main curvatures of the patch around vertex j. The transla-
tional component describes the move from vertex i to vertex
j.

After the pairing step, each regarded vertex is connected
to each other vertex by a transformation T ∈ R7. Vertex
transformations that go from one instance of a structure ele-
ment to another instance of the same structure element form
a cluster in R7. Thus, in order to identify symmetry rela-
tions, it is necessary to find clusters of transformations. The
k-means clustering algorithm is very popular but cannot be
used for this purpose, because the number of clusters is not
known a priori and also cannot be guessed easily by the
user. [MGP06] recommend the Mean-shift clustering algo-
rithm, a non-parametric clustering algorithm which is treated
in detail and enhanced by [CMM02] for use in image pro-
cessing applications. The mean-shift algorithm is explained
in the next section.

For further details about the general procedure please re-
fer to [MGP06].

Figure 4: Transformations between pairs of points after
clustering on a smooth mesh

3.2.3. Mean-shift clustering

Mean-shift clustering is a gradient-based clustering method.
Unlike the k-means clustering algorithm that requires the
number of seed points, i.e. the number of clusters to be
known, the mean-shift algorithm relies on automatic seed
point selection that delivers a representative subset of the
data points. The mean-shift algorithm is more computation-
ally expensive, as several seed points are required to find
one of the clusters (k-means requires only one seed point per
cluster). In the d-dimensional data space, every seed point
is moved following the local gradient of point density in Rd

in a stepwise manner, and finally most of the shifted seed
points converge to a density maximum. Several points that

meet at a density maximum vote for one cluster, the location
of the density maximum in Rd is called a mode.

Figure 5: Adaptive mean shift

Figure 5 shows the functioning of the adaptive mean-shift
procedure. The basics of adaptive meanshift are explained
in [CRM01]. The blue arrow to the lower right cluster points
to the mode of this cluster (red point). It marks a location of
maximum density. The arrow starts at a data vector that is
chosen as one of the representative sample points and lies in
a region that is comparatively sparse. Sparse regions may be
far away from the associated cluster center (mode). Further-
more, representative information about the density in sparse
regions can only be gained if a large hypersphere is queried.
The query range depends on the size of the filter kernel (blue
circles in figure 5) that is used to select the local neighbor-
hood. Hence, sparse regions require a larger kernel in order
to constrain the variance of the estimated densities during
the shift procedure and the shift vector should have a large
magnitude. The magnitude of the shift vector is adjusted ac-
cording to the local density, otherwise the procedure might
overshoot the mode.

Thus, the adaptive mean-shift procedure allows for faster
convergence than a fixed-bandwidth mean-shift. Therefore,
for cluster detection/mode finding I chose the Fast Adaptive
Mean Shift algorithm that is described in [GSM03] and im-
plemented in C++.

3.2.4. Edges and umbilic points

Non-smooth meshes such as architectural models frequently
contain vertices on orthogonal edges or plane surfaces (um-
bilic points). Both are special cases with respect to the sur-
face descriptor based on principal curvatures. Umbilic points
are removed by the first selection step (3.2.2 Procedure), so
they are not available for transformation calculation. Points
on orthogonal edges or corners are problematic because the
normals and curvatures are estimated completely wrong.

c© ICGA/TU Wien WS2009.

C. Niederreiter / Symmetry detection

estimated estimated
normalnormal

normal from normal from
filefile

Figure 6: Normal estimation: The normal vector is a
byproduct of curvature estimation

Figure 6 shows characteristics of the curvature estimation
method described by [ACSD∗03]. A sphere around the ver-
tex is regarded. The angles between the blue lines are the an-
gles between the face normals of adjacent triangles. Together
with the vectors (orientations) of the edges within the sphere
they influence the resulting curvature tensor. The principal
curvature orientations as well as the normal vector (orange)
are eigenvectors of the curvature tensor, the eigenvalues cor-
respond to their magnitudes.

At corner points, the curvature tensor is not calculated as
expected (figure 7). The same applies for vertices on flat sur-
face areas (figure 8). This need not be problematic, since for
similar vertices the tensor is similar anyhow. But a more ro-
bust solution for non-smooth meshes are edge signatures:

Edge signatures. A way out of the problem is to use a sig-
nature calculation method that is suitable for the particular
form of architectural meshes. It is not necessary nor sensi-
ble to calculate accurate curvatures at edge vertices. Rather
the centers of edges can be regarded instead of vertices. The
smaller principal curvature κ1 of an edge’s center is always
0. However, the greater principal curvature κ2 is either 0
(edges on a flat surface) or greater than 0. If the curvature
is greater than 0, it cannot actually be calculated, but it can
be replaced by the angle between the adjacent triangle sur-
faces with normals na and nb, respectively, of the edge with
orientation and length defined by the vector e (equation 4, e
is used in equation 5). These curvature replacements, k1 and
k2, can be used instead of real curvatures.

k1 = κ1 = 0 (3)

k2 = cos−1na ·nb (4)

k2 = (cos−1na ·nb)|e| (5)

Equation 5 includes the length of the edge |e| in order to
enhance the uniqueness of k2 and therefore the signature.

estimated estimated
normalnormal

normal normal
from filefrom file

Figure 7: Non-smooth surface, corner: The estimated nor-
mal vector points into a completely different direction than
the corner tip

estimated estimated
normalnormal

normal normal
from filefrom file

Figure 8: Flat area

3.2.5. From modes to structure elements

In order to locate and select entire structure elements, the
modes resulting from the clustering procedure (vectors in
R7) are used to find the transformation vectors of the clus-
ter. Every transformation vector is associated with the pair of
points it links. The nearest neighbors of a mode in transfor-
mation space are searched until a certain distance threshold
is exceeded. The threshold can be adjusted by regarding the
distances of the already accumulated neighbors.

c© ICGA/TU Wien WS2009.

C. Niederreiter / Symmetry detection

The first points pTk ,1 of the point pairs of the accumulated
neighboring transformations Tk are points/vertices of one in-
stance of a structure element, just as the second points pTk ,2
are points/vertices of another instance.

3.3. Results

Figure 9: Curvature-based approach: transformations

Figure 9 shows the transformations that are nearest to
the modes. They identify large-scale symmetry relations be-
tween the ends of the rain pipes as well as between the win-
dow shutters.

4. Framework

The research was conducted using a home-brewed testing
application called SemHouse alias “Dr. House”, that is a
combination of the Ogre3D framework and a .NET-based
GUI window. The .NET framework provides the program-
mer with the ability to combine the convenient but bytecode-
based C# programming language for GUI development and
less expensive algorithmic tasks with fast machine code pro-
cedures written in C++. The bridge between C# and mere
C++ is provided by the C++/CLI language which extends
the C++ language by .NET elements and therefore allows to
produce and interact with .NET objects.

4.1. Ogre3D

Ogre3D is a 3D engine that features high-level access to
low-level graphics application programming interfaces such
as OpenGL or DirectX. It provides the programmer with
basic R3 navigation (keyboard and mouse) and a simple

model loader that is capable of loading Ogre MESH files that
contain geometric models. The MESH format can be trans-
formed into an XML file which allows the programmer to
examine its contents in a text editor.

The link between Ogre3D and .NET is called Mogre,
which is an Ogre3D wrapper written in C#. Mogre is avail-
able in the form of a dynamic-link library for Visual Studio
.NET. Standard Ogre3D functions such as geometric trans-
forms or navigation can be conveniently accessed through
.NET-style methods and properties that are supplied by Mo-
gre, but the access to geometric elements such as vertices or
edges is not intended and requires the use of unsafe blocks
of C# code.

4.2. C++/CLI

The C++/CLI language binds the C++ language to the .NET
common language infrastructure. Performance of C++ pro-
grams remains the same as with a pure C++ compiler, but
there is one drawback: The link between .NET and C++ is
not transparent, so function parameters cannot be passed by
reference or pointer but rather need to be duplicated. This af-
fects speed and memory consumption and therefore reduces
the adoption of C++/CLI to C++ algorithms with moderate
parameter size and comparatively costly tasks such as fre-
quent nearest neighbor searches after passing the vectors to
build the search structure or performing the Fast Adaptive
Mean Shift clustering as described above (3.2.3 Mean-shift
clustering).

4.3. User interface

Figure 10 shows the controls rack of the testing application,
which can be arbitrarily expanded by adding new controls
if required. The selected tab (“Meanshift-based”) shows pa-
rameters for the curvature-based approach. The Fast Adap-
tive Mean Shift algorithm requires the parameters K, L for
locality-sensitive hashing and the parameter k for pilot den-
sity estimation (number of neighbors). They are conserva-
tively preset and can be reduced in order to gain optimal
performance (please refer to [GSM03]).

5. Conclusion

I introduced two different approaches to detect symmetry re-
lations in architectural models. Both of them can be used
for detecting structure elements that are instanced at least
two times on a monolithic mesh. Depending on the geomet-
ric characteristics of a structure element, such as the vertex
count or the uniqueness of the local surface patches around
its vertices, detection will succeed or fail. Further research
might be geared towards regarding a model’s textures as an
additional source of information for symmetry detection.

c© ICGA/TU Wien WS2009.

C. Niederreiter / Symmetry detection

6. Acknowledgements

I thank Michael Wimmer for his support, particularly in the
early stages of my work.

References

[ACSD∗03] ALLIEZ P., COHEN-STEINER D., DEV-
ILLERS O., LÉVY B., DESBRUN M.: Anisotropic polyg-
onal remeshing. ACM Trans. Graph. 22, 3 (2003), 485–
493.

[AMAK07] ATHANASIADIS T., MYLONAS P., AVRITHIS

Y., KOLLIAS S.: Semantic image segmentation and ob-
ject labeling. IEEE Transactions on Circuits and Systems
for Video Technology 17, 3 (March 2007), 298 – 312.

[CMM02] COMANICIU D., MEER P., MEMBER S.: Mean
shift: A robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine In-
telligence 24 (2002), 603–619.

[CRM01] COMANICIU D., RAMESH V., MEER P.: The
variable bandwidth mean shift and data-driven scale se-
lection. In in Proc. 8th Intl. Conf. on Computer Vision
(2001), pp. 438–445.

[GSM03] GEORGESCU B., SHIMSHONI I., MEER P.:
Mean shift based clustering in high dimensions: A texture
classification example. In ICCV ’03: Proceedings of the
Ninth IEEE International Conference on Computer Vision
(Washington, DC, USA, 2003), IEEE Computer Society,
p. 456.

[Mer07] MERRELL P.: Example-based model synthesis.
In In I3D ’07: Proceedings of the 2007 symposium on
Interactive 3D graphics and games (2007), ACM Press,
pp. 105–112.

[MGP06] MITRA N. J., GUIBAS L. J., PAULY M.: Par-
tial and approximate symmetry detection for 3d geometry.
ACM Trans. Graph. 25, 3 (2006), 560–568.

[WMWG09] WEBER B., MÜLLER P., WONKA P.,
GROSS M.: Interactive geometric simulation of 4d cities.
EUROGRAPHICS 2009 28, 2 (2009).

[WWSR03] WONKA P., WIMMER M., SILLION F., RIB-
ARSKY W.: Instant architecture. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers (New York, NY, USA, 2003),
ACM, pp. 669–677. Figure 10: Controls rack

c© ICGA/TU Wien WS2009.

