
Dr. House – Developer Documentation
This application is a basic graphical user interface framework for experiments on
architectural meshes. The meshes are displayed in the form of wires or polygons inside the
window and can be modified using custom controls in the control box at the left border of the
window. By the support of OGRE3D, arbitrary information concerning the displayed meshes
can be overlaid at 3D coordinates. The mesh can be translated and rotated using the mouse
and keyboard.

Microsoft .NET controls that provide custom test procedures can easily be added using the
Visual Studio GUI.

The following documentation is based on a symmetry detector that is implemented within the
Dr. House framework.

Contents
Developer Documentation..1

Directories and Files..2
Core Part Outline...3

The Core Object..3
The Mesh Object...3
Settings and CustomControl Objects..4
The DefaultInputHandler and VertexPicking Objects..4
The Progress Class..4
The Octree Class...5

Custom Part...6
Very Important: The Rerender Flag..6
Important Hint: Use the internal access modifier for controls..6
Custom Controls...6
Control Placement, ResultsForm Window..7

Example Implementation of a Custom Application..8

Developer Documentation
Basically, the program underlying Dr. House is split into two elementary parts: the core part
and the customizable part. The former provides code that ideally doesn't need any
adjustments, for instance OGRE initialization, navigation or mesh visualization procedures.
In contrast, the customizable part is a skeleton for custom code that is controlled by custom
user controls (please refer to the User Documentation) and operates on data provided by the
core part as well as its own data.

The following sections inform about the project directories and outline the relevant classes of
the core part, followed by a customization tutorial.

- 1 of 8 -

Directories and Files
Subversion repository: https://svn.cg.tuwien.ac.at/data/svn/semhouse
DrHouse main project directory

papers pertinent publications

DrHouse/doc documentation

DrHouse/*.cs complete C# source code

DrHouse/cpp custom C++ parts in the form of a self-contained DLL project called dll (the
DLL contents are referenced by the main project's C# code)

ANN: Approximate Nearest Neighbor Search

FAMS: Fast Adaptive Mean Shift (efficient clustering algorithm)

DrHouse/bin binaries (DLL assemblies and executables)

DrHouse/skeleton configuration files and resources required during runtime

DrHouse/Properties some Visual Studio generated files

Files located in DrHouse/skeleton are automatically copied to the Debug or Release binary
directory after the solution successfully compiled. In the project properties of the main
project, the copy commands may be altered. Currently, the following commands are defined:
if $(ConfigurationName) == Debug copy "$(ProjectDir)\skeleton\mogre-release*" "$
(TargetDir)"

if $(ConfigurationName) == Debug copy "$(ProjectDir)\skeleton\debug-config*" "$
(TargetDir)"

if $(ConfigurationName) == Release copy "$(ProjectDir)\skeleton\mogre-release*"
"$(TargetDir)"

if $(ConfigurationName) == Release copy "$(ProjectDir)\skeleton\release-config*"
"$(TargetDir)"

copy "$(ProjectDir)\skeleton\scene*" "$(TargetDir)"

copy "$(ProjectDir)\skeleton\settings*" "$(TargetDir)"

- 2 of 8 -

Core Part Outline

The Core Object
(class DrHouse.Core)

Partial Class File Contents
Core.cs constructor, singleton instance, accessors
Core.Init.cs initialization and mesh loading
Core.OutputUpdate.cs update of the OGRE window
Core.Query.cs auxiliary settings query procedures

The Core object is used as singleton. It is the program's object reference pool and furthermore
provides vital initialization and data output methods. It can be regarded as the application's
central object. The code of the Core object can be extended using the CustomCore class.

Especially the initialization sequence may be of particular interest: It is located in the
Core.init method and invoked by DrHouseForm.DrHouseForm_Load.

Accessors of important objects the references of which are held by the Core object:

Form The application window (link to the application window's controls).

OgreWindow The panel that displays the OGRE output and receives navigation input from
the mouse and keyboard.

Window, Camera, Viewport, SceneManager, *Node... OGRE's actual render window and
further objects owned by OGRE.

ResultsForm A small control and log output window.

Mesh The loaded mesh.

*Vis (e.g. MeshVertexVis) mesh overlays (vertices, edges, selections).

Settings Link between controls, algorithms and hard disk.

The Mesh Object
(class Geometry.Mesh)

Provides the mesh's vertices in the form of Geometry.Vertex objects. They are queried from
the internal OGRE mesh structure by the GetMeshInformation and
compileVertexArrayAndEdgeArray procedures. A Geometry.Vertex object provides the
following information:

index a unique identifier

position x, y and z coordinates

normal normal vector provided by OGRE
neighbors set of the neighboring vertices

- 3 of 8 -

OGRE-related information:

ogreMeshIndex identifies the underlying OGRE mesh (generated by the
compileVertexArrayAndEdgeArray method)

ogreEdges list of edges that end at the vertex, provided in the form of Mesh.Edge objects
that contain a reference to the OGRE edge, the end vertices of the edge and the normal
vectors of the adjacent polygons.

The mesh object is stored in the DrHouse.Core singleton instance and can be accessed at
using the Mesh accessor.

Settings and CustomControl Objects
(classes DrHouse.Settings and DrHouse.CustomControl<T>)

The Settings object is a central data base that stores all settings, basic settings as well as any
custom settings. Since individual settings are usually manipulated by individual controls, the
settings keys are named by the corresponding controls. For instance, the navigation speed
setting is called speedTrackBar. Effectively, the settings object is a non-volatile control cache,
the contents of which survive on the hard disk.

Currently, the Settings object can store and deliver data of the types string, bool, int and float
(however internally, data is always string).

CustomControl is convenience wrapper for System.Windows.Forms.Controls that provides a
built-in link to the Settings object as well as an event handler skeleton. The usage is described
in the course of the custom part description (section Custom Part). Usage examples can be
found in the partial class file DrHouseForm.Controls.cs, where CustomControl is used for the
core part controls.

The DefaultInputHandler and VertexPicking Objects
(classes DrHouse.DefaultInputHandler and DrHouse.VertexPicking)

All input handling is processed by the DefaultInputHandler object. Except for the vertex
picking handlers, which are added by Core.init (because the VertexPicking object is
maintained by the Core object), all input handlers are added in the DefaultInputHandler
constructor.

The VertexPicking object is responsible for vertex selection. To reduce processing time for
large meshes, it makes use of Core.VertexOctree.

The Progress Class
(Interaction.Progress)

The Progress class is the interface to the mainProgressBar control (located below the Open
mesh... button) and can also be used for other progress bars. It can be connected to a
System.ComponentModel.BackgroundWorker object, which supports threaded execution.
However, in any case, the progress should be reported using the Progress.setFraction and
Progress.setPercent methods (which internally call BackgroundWorker.ReportProgress). If
mActiveBackgroundWorker is set to null, the progress bar is directly modified by the

- 4 of 8 -

Progress object.

If a BackgroundWorker object is used, adhere to the following recommendations:

• The existence of the THREADED preprocessor determines whether the
BackgroundWorker's delegates are directly called or called by a separate thread.

• Increment the BackgroundWorking member of the Core object by 1 before a separate
thread is started. After the thread finishes, decrement BackgroundWorking by 1. You
can use this variable to test how many threads are currently active.

• Set the ActiveProgress member of the Core object to the Progress object if one exists
(or otherwise set the ActiveBackgroundWorker object to the BackgroundWorker
object), to indicate that the thread is cancellable. After the thread finishes, unset the
ActiveProgress member by assigning null. This information is used by the
cancelButton_Click event in DrHouseForm.cs.

• Set the Form.cancelButton.ForeColor to Color.Red before a separate thread is started
and back to Color.Teal after the thread finishes.

The following code snippet shows the invocation of the initialization thread (file:
Core.OutputUpdate.cs):
if(BackgroundWorking < 1)
{
 initBackgroundWorker_Prepare(Form.initBackgroundWorker, null);
#if THREADED
 Form.initBackgroundWorker.RunWorkerAsync();
#else
 initBackgroundWorker_DoWork(Form.initBackgroundWorker, null);
 initBackgroundWorker_ProgressChanged(Form.initBackgroundWorker, new
ProgressChangedEventArgs(100, null));
 initBackgroundWorker_RunWorkerCompleted(Form.initBackgroundWorker, null);
#endif
}

Except for initBackgroundWorker_Prepare, the initBackgroundWorker* methods are added to
the BackgroundWorker object by the init method (file: Core.Init.cs). The *_Prepare method
increments BackgroundWorking, *_RunWorkerCompleted decrements it.

The Octree Class
(Geometry.Octree)

Provides an octree for vertex picking, but can be used for arbitrary purposes and extended if
necessary.

- 5 of 8 -

Custom Part
Use the custom part to implement your application.

The skeleton of the custom part consists of the classes or files

• DrHouse.CustomCore (which is derived from DrHouse.Core)

• DrHouseForm.Controls.Custom.cs

• DrHouse.CustomScene

• Geometry.CustomMesh (which is derived from Geometry.Mesh)

Arbitrary additional classes may be added to the project in order to provide custom
functionality.

The CustomCore class is meant for application-specific object references and initialization
procedures. The initCustom method is called by the Core.init initialization sequence. Use the
following methods for output update:

updateAllCustom(flags) This is the general update handler. Currently, flags will only be 0
(unspecific update) or CORE_EVENT_VERTEX_SELECTED (selection of a vertex
happened). Usually, it simply performs a vertex/edge/... visualization update.

clearSelection turn selection off (afterwards, usually vertex/edge/... visualization is updated)

The connection between your custom controls and the settings data base is located in the
DrHouseForm.Controls.Custom.cs file, the OGRE scene can be customized in
CustomScene.build (add ground plane, lights, materials) and CustomMesh allows for
application-specific mesh processing.

Very Important: The Rerender Flag
Set the Core.RerenderRequired flag to true in order to inform the renderer that something
changed. Otherwise, changes will not immediately be rendered. It will automatically be reset
when the rendering is done.

Important Hint: Use the internal access modifier for controls
In order to directly access controls of arbitrary forms from arbitrary classes, set the control's
Modifiers to Internal (instead of Private) in the Designer of Visual Studio.

Custom Controls
CustomControl is convenience wrapper for System.Windows.Forms.Controls that provides a
built-in link to the Settings object as well as an event handler skeleton. Usage examples can
be found in the partial class file DrHouseForm.Controls.cs, where CustomControl is used for
the core part controls.

- 6 of 8 -

Currently, the following types are supported:

Type Controls
CustomControl<bool> CheckBox and RadioButton
CustomControl<int> NumericUpDown and TrackBar
CustomControl<float> NumericUpDown
CustomControl<string> ComboBox and CheckedListBox

If an event handler is required, for the sake of clarity a CustomEventHandlerProc procedure
should be set when the CustomControl object is initialized and preferred over the Visual
Studio Designer's double-click generated event handlers.

Usually, a CustomControl object is created in a one-liner, as demonstrated by the following
example:
new CustomControl<bool>(polygonsCheckBox, s,
true).setCustomEventHandler(boolUpdateVis);

The boolUpdateVis procedure for this control is defined as follows:
CustomControl<bool>.CustomEventHandlerProc boolUpdateVis = delegate(object sender,
System.EventArgs e, bool defaultValue) { mCore.updateVis(); };

The following snippet shows the corresponding condensed version:
new CustomControl<bool>(polygonsCheckBox, s,
true).setCustomEventHandler(delegate(object sender, System.EventArgs e, bool
defaultValue) { mCore.updateVis(); });

Special Case CheckedListBox
The checked lines of a CheckedListBox control (wrapped by CustomControl<string>) are
handled in the form of space-separated tokens in a string, for instance "2 5 7" if the items 2, 5
and 7 of the list 1, 2, 3, 4, 5, 6, 7, 8 are checked.

Example:
new CustomControl<string>(numSimSigListBox, s, "2 5 7");

Control Placement, ResultsForm Window
Preferably, custom controls are placed in the area below the Visualization box. For lack of
space, additional controls may be placed in the ResultsForm window (button Show
Results+Nav Window), which in any case shows log outputs generated using
System.Diagnostics.Debug.Print statements, provided that the DEBUG constant is defined. If
the DEBUG constant is not defined, the log output tab can be used for higher level
information.

- 7 of 8 -

Example Implementation of a Custom Application
The symmetry detection outlined in the document symmetry-detection.pdf is implemented
within the source code of this Visual Studio Solution and demonstrates the customization of
Dr. House.

The following files are part of the example implementation and can be deleted together with
the contents of custom procedures without affecting the common core application:

• CustomCore.CurvatureTensorEstimation.cs

• CustomCore.HighlightBackgroundWorker.cs

• Diagram.cs

• GeoGen.cs

• KdTree.cs

• MeanShiftTools.cs

• Neighborhood.cs

• Symmetry*.cs

- 8 of 8 -

	Developer Documentation
	Directories and Files
	Core Part Outline
	The Core Object
	The Mesh Object
	Settings and CustomControl Objects
	The DefaultInputHandler and VertexPicking Objects
	The Progress Class
	The Octree Class

	Custom Part
	Very Important: The Rerender Flag
	Important Hint: Use the internal access modifier for controls
	Custom Controls
	Control Placement, ResultsForm Window

	Example Implementation of a Custom Application

