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Abstract

Virtual texturing (as presented by Mittring in ’Advanced Virtual Texture Topics’ and in
distinction to clipmap-style systems, to which this term is also applied) is a solution to
the problem of real-time rendering of scenes with vast amounts of texture data which
does not fit into graphics or main memory. Virtual texturing works by preprocessing
the aggregate texture data into equally-sized tiles and determining the necessary tiles
for rendering before each frame. These tiles are then streamed to the graphics card and
rendering is performed with a special virtual texturing fragment shader that does texture
coordinate adjustments to sample from the tile storage texture.
A thorough description of virtual texturing and related topics is given, along with an
examination of specific challenges including preprocessing, visible tile determination,
texture filtering, tile importance metrics and many more. Tile determination in view
space is examined in detail and an implementation for compressing the resulting buffer
in OpenCL is presented. Rendering with correct texture filtering from a texture which
contains de-correlated texture tiles is attained by using tile borders with specific coordi-
nate adjustment and gradient correction in the fragment shader.
A sample implementation is described and serves to provide results concerning perfor-
mance and correctness with different settings and architecture choices. Integration into
Open Scene Graph for usage within a hybrid point-cloud / polygonal renderer enables
rendering of high resolution paintings within catacombs modeled with point clouds. An-
other application is presented, the real-time display of a highly detailed model of New
York with more than 60 GB textures.
Quantitative analysis reveals that frame-rates above 200 FPS are attainable on complex
scenes with multi-million polygons even with outdated hardware. At the same time
quality remains high, results indicate that ”fallbacks”, that occur when a needed texture
tile is not ready in time, occur only for 0.01% of the pixels on average. These results
show that virtual texturing can be a competitive solution for games, scientific and indus-
trial applications, allowing for real-time rendering of scenes that could not be displayed
previously, while maintaining acceptable visual quality.
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Kurzfassung

Virtual Texturing (so wie von Mittring in ’Advanced Virtual Texture Topics’ präsentiert
und im Gegensatz zu Clipmap-artigen Systemen, welche ebenfalls genauso bezeichnet
werden) ist eine Lösung für das Rendern von Szenen mit enormen Texturdaten die nicht
in den Graphik- oder Hauptspeicher passen. Virtual Texturing funktioniert indem die
gesamten Texturdaten in gleich große Teile vorverarbeitet werden und die benötigten
Teile vor jedem Frame festgestellt werden. Diese Teile werden dann zur Graphikkarte
gestreamt und das Rendern findet mit einem speziellen Fragmentshader statt, der eine
Koordinatenanpassung vornimmt, um von der Teilspeichertextur zu samplen.
Eine detailierte Beschreibung von Virtual Texturing und verwandten Themen wird ge-
geben, ebenso eine Untersuchung von spezifischen Herausforderungen, sowie das Her-
ausfinden von den sichtbaren Teilen, Texturfilterung, Metriken für die Teilgewichtung
und viele mehr. Das Bestimmen von sichtbaren Teilen im Bildraum wird detailliert un-
tersucht und eine Implementation für das Komprimieren des resultierenden Buffers in
OpenCL wird präsentiert. Das Rendern mit korrekter Texturfilterung von einer Textur,
die unkorrelierte Texturteile beinhaltet, wird durch Teilränder und spezifische Koordi-
natenanpassung sowie Gradientenanpassung im Fragmentshader ermöglicht.
Eine Beispielimplementation wird beschrieben und liefert Resultate bezügliche der Per-
formance und der Korrektheit mit verschiedenen Wahlmöglichkeiten und Architektu-
rentscheidungen. Integration in den Open Scene Graph für die Benutzung in einem
hybriden Punktwolken / polygonalen Renderer ermöglicht die Darstellung von hoch-
auflösenden Malereien in Katakomben, die mit Punktwolken modelliert sind. Noch eine
weitere Anwendung wird präsentiert, die Echtzeitdarstellung eines detaillierten Modells
von New York, das mehr als 60 GB Texturdaten beinhaltet.
Quantitative Analysen zeigen, dass Frameraten jenseits von 200 FPS auch bei komple-
xen Szenen mit Millionen Polygonen selbst mit veralteter Hardware möglich sind. Die
Tests zeigen, dass dabei auch die Qualität hoch bleibt, das Zurückfallen auf niedrig-
auflösende Teile, welches vorkommt wenn die Benötigten nicht rechtzeitig verfügbar
sind, kommt durchschnittlich nur bei 0.01% der Pixel vor. Die Resultate belegen, dass
Virtual Texturing eine praktikable Lösung für Spiele, sowie wissenschaftliche und In-
dustrieanwendungen ist. Virtual Texturing erlaubt die Echtzeitdarstellung von Szenen,
die vorher nicht dargestellt werden konnten, mit akzeptabler visueller Qualität.



Contents

1. Introduction 1

1.1 Background & Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim & Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Methodology & Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Related Work 6

2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Texture Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Texture Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Graphics Memory Virtualization . . . . . . . . . . . . . . . . . . . . . 10
2.5 Texture Streaming & Caching . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Texture Streaming . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Texture (Tile) Caching . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Clipmapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.4 MegaTexture . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.5 Virtual Texturing . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Overview 17

3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Detailed Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4. Virtual Texturing 24

4.1 The Virtual Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.1 Tile-Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Maximum Virtual Texture Size . . . . . . . . . . . . . . . . . . 29
4.1.3 Texturing for a Virtual Texture aka ’Unique Texturing’ . . . . . 30
4.1.4 Assembling the Virtual Texture . . . . . . . . . . . . . . . . . . 33



Contents vi

4.1.5 Storing the Virtual Texture . . . . . . . . . . . . . . . . . . . . 34
4.1.6 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Tile Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Exact Tile Determination in View Space . . . . . . . . . . . . . 38
4.2.2 GPGPU Buffer Compression for View-Space Tile Determination 43
4.2.3 Other Tile Determination Methods . . . . . . . . . . . . . . . . 47
4.2.4 Adapting Rendering to Tile Determination . . . . . . . . . . . . 47

4.3 Tile Streaming System & Texture Updates . . . . . . . . . . . . . . . . 48
4.3.1 Tile Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Physical Texture Updates . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Pagetable Texture Updates . . . . . . . . . . . . . . . . . . . . 56

4.4 Virtual Texturing Shader . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Problems, Challenges, Advanced Features & Miscellaneous . . . . . . . 61

4.5.1 The Virtual Texturing Runtime Pipeline . . . . . . . . . . . . . 61
4.5.2 Texture Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Texture Compression . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.4 LoD Pop-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.5 Tile Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5.6 Texture Atlas Problems . . . . . . . . . . . . . . . . . . . . . . 69
4.5.7 Virtualized Pagetable Texture . . . . . . . . . . . . . . . . . . . 70
4.5.8 Texture Virtualization for Arbitrary Textures . . . . . . . . . . . 70
4.5.9 Tile Importance . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.10 Tile Request Substitution . . . . . . . . . . . . . . . . . . . . . 74
4.5.11 Recursive Virtual Textures . . . . . . . . . . . . . . . . . . . . 74
4.5.12 Modifying the Virtual Texture . . . . . . . . . . . . . . . . . . 75
4.5.13 Decals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.14 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.15 Multitexturing & Multiple Virtual Textures . . . . . . . . . . . 77
4.5.16 Texture Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Hardware Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5. Implementation & Results 81

5.1 LibVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 New York Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Open Scene Graph Integration / Scanopy & Terapoints . . . . . . . . . 86
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6. Conclusion 94



Chapter 1

Introduction

Computer graphics is a growing field that by now most people are exposed to daily, due
to the ubiquity of electronic devices and digital media. Texture mapping is an integral
part to many computer graphics applications. The problem of ever increasing texture
data and limited texture memory is solved by virtual texturing, the topic this thesis is
dedicated to.

1.1 Background & Motivation

Real-time 3D surface rendering today is nearly exclusively done by polygon rasteriza-
tion. Objects are approximated by meshes built out of polygons and the rasterization
converts the polygons to a raster image, i.e., the output pixels on screen. Texture map-
ping is a ubiquitously supported method of adding details by projecting images repre-
senting the surface color onto the polygons. However, real-time rendering usually can
only be performed if the geometry and the textures representing a scene fit into the finite
graphics memory of the graphics card.

Virtual texturing is a solution that allows real-time rendering of scenes that contain
texture maps that exceed available graphics and even main memory, and therefore con-
stitutes a so-called out-of-core rendering solution. There has been a lot of research on
out-of-core rendering, but most of it has been focusing solely on the geometric side,
and nearly all of those resources that address textures have been restricted to terrain (or
at least planar) scenes. This problem has remained unsolved up until recently, when
programmable GPUs with adequate performance began to enable a solution in the form
of so-called virtual texturing. The importance of a solution to this problem cannot be
overstated because the texture data requirements for real-time applications are rising,
not only due to the improved resolution of e.g. aerial imaging and scanning devices
but also because of the continuing trend to convert geometric details to texture data
(“normal mapping”) as well as the desire for visually convincing virtual worlds. While
interest in virtual texturing seems to be very high, there are still few public resources on
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this subject, and most of them are relatively informal in nature. The most informative
resource on this subject to date still remains Sean Barrett’s “Sparse Virtual Texturing”
webpage [Bar08], which features a video and a sample implementation concerning vir-
tual texturing. There is not a single scholarly paper published in a scientific magazine
on this topic yet. High demand combined with little “supply” were part of the motiva-
tion for working on virtual texturing, but the elegantly simple nature of this solution for
a sophisticated problem and the endless interesting possibilities it enables were just as
important. It is our hope that this thesis, eliminates the lack of resources around this
topic and serves as a comprehensive reference.

1.2 Aim & Scope

The aim of this thesis is to evaluate the feasibility of virtual texturing for different use
cases (with respect to performance and correctness), to be the most comprehensive re-
source on virtual texturing, to provide a detailed examination of all basic components
and issues and to supply empirical data (e.g., benchmarks) for all tradeoffs that have to
be made while developing a virtual texturing system. Additionally, we aim to present re-
lated ideas as well as our specific implementation (LibVT) and a compelling real-world
use-case (New York scene).

This thesis assumes familiarity with computer graphics principles and programming
matters related to real-time 3D rendering, including knowledge of 3D graphics APIs
and shader development.

The scope of this thesis is virtual texturing and all directly related subjects. The
scope includes all components that are common to ordinary virtual texturing implemen-
tations as well as solutions to universal problems like filtering. This thesis also includes
some indirectly related subjects, connected ideas and matters that are only of importance
to some use-cases, however, it does not try to be exhaustive in this area. Put differently,
the aim of this thesis is not to include every possible idea that is somehow connected to
virtual texturing or may be useful only in a subset of the virtual texturing applications.

This thesis tries to strike a middle ground between a high-level scientific description
and a focus on practical applicability. The guideline followed here is that we provide
exact details where we deem them to be non-obvious and important but resort to a more
elevated explanation in cases where details are considered apparent. For instance we do
provide example shader code for virtual texturing because it is considered an integral
but not evident part, however, we do not provide any low-level details for developing a
page-loading thread because that should be obvious to any programmer.

It is not the aim of this thesis to provide a thorough examination of all virtual tex-
turing matters that are of importance only to a subset of the use-cases, e.g., the gaming
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industry. While we do provide some insights for the applicability of virtual texturing in
games, these are by no means detailed or exhaustive, and only cover basic issues and
not supplementary ideas. Additionally, we try to avoid covering non-essential issues in
detail if they have already been handled by other virtual texturing resources. See Sec-
tion §2.5.5 for complemental virtual texturing resources and particularly [MG08] for an
examination from a game-developer point of view.

1.3 Structure

This thesis is structured into the following chapters:

1. Introduction:
This very chapter.

2. Related Work:
This chapter evaluates the related work that enables usage of large texture datasets
including texture compression, texture synthesis and texture caching and provides
a general view of all resources on virtual texturing to date.

3. Overview:
Provides an outline of the virtual texturing system to ease the understanding of
the more detailed main chapter.

4. Virtual Texturing:
This is the main chapter of this thesis and covers virtual texturing and related
issues.

5. Implementation & Results:
Our implementation, our real-world test scene and results from our tests are pre-
sented here.

6. Conclusion:
This chapter concludes this thesis by providing a summary of our findings and
provides suggestions for future research areas.

1.4 Contribution

The contributions made during this thesis can be categorized into the following items:
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• Detailed explanation of virtual texturing, categorized into its three distinct parts:
tile determination, tile streaming and the virtual texturing shader.

• Examination of all problems and challenges related to virtual texturing including
thorough investigation of their solutions.

• Delivery of hard data through tests and benchmarks to quantify most of the trade-
offs and choices to be made in a virtual texturing implementation. Data has also
been collected for facts which are only indirectly related to virtual texturing, e.g.,
the relation between file size and file loading time.

• Research of novel ideas related to virtual texturing of varying importance. Some
ideas have also been developed independently in parallel with other current virtual
texturing efforts (e.g., the GPGPU buffer reduction idea and the first correspond-
ing kernel). Other examples of novel ideas are presented under the terms “tile
importance” and “tile request substitution”.

• Implementation of a complete and configurable library for virtual texturing in
OpenGL applications called “LibVT”. The universal integrate-ability of the li-
brary has been proven by integrating it into two different rendering engines.

• Development of a pipeline for converting (OBJ file based) scenes to virtual tex-
turing, including a texture atlas tool and a tool that generates the virtual texture
tile store on disk.

• Processing, conversion and import of a real-world 3D scene (“New York”) with
high geometric complexity and exorbitant high texture requirements for a first-
time display of the combined scene in real time, serving as a proof of concept.

1.5 Methodology & Setup

The methodology used during this thesis is to generate knowledge by creating and test-
ing a virtual texturing implementation. More specifically:

1. Basics:
A basic virtual texturing is implemented to learn about the three main components
of a virtual texturing system and their interaction.

2. Problems:
The main problems and difficulties for virtual texturing systems are solved within
our sample implementation to completely understand the problems and their so-
lutions.
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3. Options:
Many configurable options are implemented within our test system to be able to
quantify the impact and tradeoffs of different choices within a virtual texturing
system (tile-size, PBO usage, fallback entries vs. shader looping, read-back per-
formance & correctness, etc).

4. Data:
For options and choices that are difficult to quantify within a virtual texturing
system, independent benchmark applications are developed. Examples include:
tile de/compression libraries, coupled & decoupled tile loading, texture sampling
methods, etc.

First priority during the tests is given to repeatability, only repeatable results are
published. For example, during tests that include hard disk access, repeatability is en-
sured by disabling the page cache (caching of files by the OS) and clearing the disk
buffer (caching of files by the hard disk). Results are generated from 5 test runs (or
more) and the charts include the standard deviation as error bars. The tests that contin-
uously track values over time are also performed multiple times to ensure repeatability,
but the resulting graph is picked from a single run. Tests involving real-time rendering
are performed with view-frustum culling, but without other forms of culling.

All tests are performed with this computer setup:
Mac Pro Quad-core 2006 (2 x Intel Xeon DP 5150 @ 2.66 GHZ, 7 GB DDR2 ECC
FB-DIMM, NVIDIA GeForce 8800 GT 512MB graphics card, Seagate 7200.12 1TB
hard disk, Mac OS X 10.6)

The only exception is the benchmark testing the time to read files of varying file
sizes, which is performed with a “Hitachi Travelstar 7K320 320 GB”.



Chapter 2

Related Work

This chapter aims to provide an overview of the history of texture mapping with special
emphasis given to the support for very large texture maps and reveals the progression
to the current state of the art, i.e., virtual texturing. The chapter starts with a short
introduction to texture mapping and then examines different approaches for handling
large texture data sets, namely compression, synthesis and multiple caching variants.
The chapter concludes with an examination of the current state of the art with respect to
virtual texturing.

2.1 Fundamentals

Texture mapping, a technique to add surface details without adding geometric complex-
ity, was pioneered in 1974 in [Cat74] and could be called the most successful idea in
computer graphics. It was already used in the first computer animations in the eighties
and is now in ubiquitous use as an integral part of real-time rendering, CGI, computer
gaming, visualization and many more. Texture mapping also expanded its scope be-
yond representing only the surface colors by introducing additional texture maps for
properties like normal vector perturbation, specularity, transparency, light, shadows,
and diffuse and environmental reflection [Hec86]. Texture mapping in real time was pi-
oneered by computer games in the early nineties [Wik10b] and the inclusion of texture
mapping as an integral part of the first consumer 3D graphics accelerators in the late
nineties [Wik10a] further validated the technique and led to the fact that texture map-
ping today is an integral part to nearly all computer graphics applications. While there
has been a lot of texture mapping research for example in the areas of parametrization
and (pre)filtering [Hec86], this thesis focuses on texture mapping with vast data sets that
do not fit completely into memory. Unfortunately most of the research on out-of-core
rendering to date has been focused solely on managing geometric complexity, [GM05]
provides an overview over common techniques and [CESL+03] is an example of the
increasingly involved solutions.
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Texture mapping works by projecting an image, called texture (and composited of
“texels” instead of pixels), onto the geometric primitives to add colors and simulate
more geometric detail. To be able to position, orient and scale the textures onto the
geometry in exactly the desired way some form of “texture parametrization” is neces-
sary. The most common way to do texture parametrization is called “UV mapping”,
here each vertex of the 3D object receives additional parameters “u” and “v” that index
into the two-dimensional image-plane of the texture. Setting up this mapping between
a three-dimensional object (in object space x/y/z) to a two-dimensional texture (in “tex-
ture space ” u/v) is also called “UV unwrapping”. Two goals during unwrapping are
minimizing wasted space in the texture that is not projected onto the model and mini-
mizing the distortion of the texture.

During rendering with texture mapping, “texture filtering” takes place. If the tex-
tured object is so close to the virtual camera position that each texel maps to multiple
pixels of the screen “texture magnification” happens. “Magnification filtering” can be
either off (i.e., use the value of the nearest texel, GL NEAREST in OpenGL terms) or
bilinear, that means the texture contribution for each screen pixel is determined by the
weighted average of the four nearest texels (GL LINEAR in OpenGL terms). Texture
filtering usually refers to “minification filtering” though. Here the object is further away
and therefore multiple texels should contribute to a single pixel on screen. However,
calculating the average from a large number of texels every time this minification hap-
pens would not be possible with sensible performance. Because of this a technique
called “mipmapping” is performed. The texture is not only stored in its full resolu-
tion on the graphics card, but also in half, quarter, 1/8, ... 4x4, 2x2 and 1x1 resolution
versions. These multiple differently sized versions of the same texture are called the
“mipmap-chain”. The base version in full resolution is called “mipmap-level 0”, the
half-resolution version is mipmap-level 1, and so on. The total memory requirements
for every texture are increased only by one third by this technique. During rendering ei-
ther the closest matching “mipmap-level” is selected (called ‘level of detail selection”),
or the two closest ones are selected and the result is linearly interpolated, which is called
“trilinear filtering”.

One problem during hardware-accelerated real-time rendering is that changing the
current texture is an expensive process (also because it requires breaking up the draw
calls) [Cor04]. The “texture atlas” solution to this problem is to pack multiple textures
into a single larger texture, and use this larger texture instead [Cor04]. This permits ren-
dering more geometry with a single call and requires less texture switches. However,
adjustment of the texture coordinates is obviously necessary and there can be some
problems related to texture filtering [Cor04]. We refer to the individual textures that
have been assembled to construct a larger texture as “sub-textures”. Packing a texture
atlas should follow some constraints to prevent a problem called “mipmap-chain pol-
lution”, which occurs when the downsampling to generate the mipmap-chain produces
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a texel by downsampling adjacent texels from different sub-textures. Making sure that
the sub-textures are power-of-two in size and do not unnecessarily cross power-of-two
boundary lines prevents this pollution [Cor04].

2.2 Texture Compression

Texture compression applies the methods of image compression to texture data in order
to reduce its memory consumption (and bandwidth requirements). The main difference
to image compression is the fact that very fast decompression of arbitrary parts of the
texture is necessary during texture sampling (optimized random access). Additionally,
some textures like normal maps do not exhibit the same visual properties as common
images. Texture compression was pioneered in [BAC96], they achieved a 1:35 com-
pression ratio by using vector quantization (but required additional storage for a large
“codebook”). The DXT family of compression algorithms built into all recent graphics
accelerators is built on a modification of vector quantization but only achieves a com-
pression rate of 1:4 - 1:8 [Wei04]. The new generation of texture compression formats
built into graphics cards, namely BPTC (BC6/BC7) only achieves 1:3 - 1:6. However,
programmable GPUs theoretically allow using compression formats that are not directly
supported in the hardware.

In [KE02] compression through adaptive resolution and exploitation of free space is
proposed, but the technique mainly works in higher dimensions and has problems with
filtering and mip-mapping.

[LD07] describe a novel data structure for texture parametrization that works by stor-
ing square texture tiles into the leaves of an octree surrounding the surface – a method
that natively supports adaptive resolution.

Although texture compression reduces the memory footprint for given textures, it
does so by a constant factor and as such is no complete solution for the usage of large
texture sets, but should be seen as a complementary aid. Adaptive resolution is a use-
ful but also limited memory-savings technique. For one it only applies to single large
objects (since distinct objects can be textured with different resolutions anyway) that ex-
hibit strong varying texture resolutions. Additionally, one can work around the problem
by texturing the object with multiple textures with different resolution or with special
UV-unwrapping. It should also be noted here that virtual texturing also supports limited
adaptive resolution properties, see Section §4.1.6.
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2.3 Texture Synthesis

Texture synthesis could be seen as a more extreme form of texture compression that
takes advantage of the structural content, therefore allowing the compression ratio to
approach infinity [Wei04]. [Wei04] categorizes texture synthesis algorithms into three
distinct classes:

• So-called example-based techniques that synthesize arbitrarily large textures from
small image samples. [WLKT09] notes several example-based synthesis meth-
ods, including pixel-based synthesis and patch-based texture synthesis. Most
methods are too slow to execute in real time and therefore do not result in memory
savings because the resulting textures have to be precomputed [Wei04].

• Methods that work by generating texture coordinates instead of pixels [Wei04].

• Procedural texture generation algorithms that are suited to real-time generation
of textures (e.g., on the GPU) but are limited to specific repetitive texture classes
like wood, marble, etc [Wei04].

Texture tiling: Texture tiling is a special form of texture synthesis that uses one or few
small texture tiles to generate a larger texture. The most simple form is repeating
a special texture with seamless opposing edges. Although the results are often
visually insufficient because the repetition is readily apparent, this is the most
common form of texture synthesis. Support for this method of texture synthesis
is even built into every graphics card and activated is by setting the texture wrap
type to “repeat” or “mirror”. This simple scheme is also the most common way
to circumvent the graphics memory limitation in games: the designers build their
game worlds with multiple blended repeated base texture layers (some can be of
lower resolution to break the tiling look) and by adding detail textures [MG08].
The aim of this process is to simulate a uniquely textured world with few textures
that fit into memory.

There are more complex texture tiling methods that use multiple base tiles and
give better results even with a single layer. [LN03] combines patterns proce-
durally using an indirection texture. [SD03] introduces stochastic tiling using
Wang tiles with interesting results, an approach that is later implemented for pro-
grammable GPUs in [Wei04].

Although texture synthesis can approach infinite compression and therefore seems to
solve the memory consumption problem even for scenes with arbitrarily detailed texture
requirements, it cannot be classified as a complete solution to rendering with very large
texture maps. There are several reasons:
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• Many texture synthesis techniques cannot be performed on the GPU and therefore
do not actually result in memory savings because the textures have to be pre-
computed.

• Texture synthesis mainly works for generating surface color textures.

• Texture synthesis can only generate some image-classes.

• Most importantly: texture synthesis is no drop-in solution that can convert a given
scene to another scene with synthesized textures that looks exactly the same.

So, texture synthesis is a special-case solution, but it can still be useful as a complemen-
tary technique within a virtual texturing solution. For example, when creating a large
uniquely textured scene, it is practically impossible to create each pixel from scratch.
Texture synthesis can be used for the initial texturing of the scene from which to im-
prove with detail textures and more variation. Secondly, texture synthesis could be used
in collaboration with virtual texturing, e.g., to lessen the performance requirements by
having some parts of the scene covered with synthesized textures. In any case, the pro-
grammability and performance of modern GPUs enables many more texture synthesis
methods than simple repeating of a single tile, a fact that is largely ignored, e.g., game
worlds still consist of simple tiling and blending. However, it remains doubtful if a
complex scene with multiple layers of synthesized textures gives higher performance
(let alone visual quality) than a full-blown virtual texturing solution where all the layers
can be combined, including high-quality precomputed lighting.

2.4 Graphics Memory Virtualization

The Windows Vista Display Driver Model (WDDM) and the Direct3D 10 graphics API
provide “virtualized” video memory to applications [Cor06]. This is a more general
technique for using resources on the GPU that are too large to fit into the graphics mem-
ory, but of course it applies to textures too. The method works similar to the ubiquitous
main memory virtualization: if the data exceeds memory, it is paged out to a slower
storage medium (the disk in the standard case and the main memory in this new case)
and paged back in on demand. The method also allows using a texture data set that is
larger than main memory (only) because of the fact that main memory is already vir-
tualized. Although certainly useful, this technique has several severe drawbacks in the
use case of rendering scenes with a vast amount of texture data, therefore it cannot be
considered a (complete) solution.

• Although details on this technique are very sparse (even within the Direct3D 10
SDK) we expect it to be much slower than (texture) specific solutions that are
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realized within the application, since the GPU is stalled on a “page fault” until the
required data is paged in. The newer version Direct3D 10.1 allows the GPU to
continue performing other work even after a “page fault”, but the render command
responsible for the fault is still stalled until “page-in”. In contrast, virtual texturing
allows applications to continue rendering at full speed even if some texture tiles
are missing, and uses lower resolution fallback textures in the interim time.

• Relying on this technique is not feasible for texture data sets that exceed main
memory in a renderable format (i.e., uncompressed or DXT/BPTC compressed),
since this is only supported due to the fact that main memory is also virtualized.
This is prohibitive from a performance standpoint. Also by its very nature this
method requires converting the whole texture data to a renderable format (i.e.,
uncompressed or DXT/BPTC compressed) before rendering, which will result in
the mentioned memory oversubscription. In a dedicated texture streaming solu-
tion like virtual texturing, only the necessary texture parts can be decompressed
on demand from an highly compressed format like JPEG , resulting in a dispro-
portionally lower memory requirement.

• The restriction to applications using Direct3D 10 on PCs running Windows Vista
with Direct3D 10 capable GPUs is not desirable.

2.5 Texture Streaming & Caching

Even when applying texture compression, the texture data may exceed the available
memory, but only a very small subset of the aggregate texture data is actually necessary
at any point in time. Depending on filtering, 1 - 32 texels are needed for every pixel on
screen. Texture streaming takes advantage of this fact by allowing rendering with only
a subset of the whole texture data being stored on the graphics card. The difference
between texture streaming and texture caching, which of course does streaming too, is
the granularity: while texture streaming operates on whole textures (or mipmap-levels),
caching works on parts of whole textures.

2.5.1 Texture Streaming

Texture streaming is a facility mostly used in computer games to reduce memory usage.
Instead of loading all textures at once, they are loaded and unloaded on a per-need basis.
The difficult part is determining when to load or unload the textures. Simple systems
subdivide the scene into separate distinct areas and (un-)load textures according to pre-
defined lists when entering areas or buildings. This subdivision of the scene into smaller
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sub-scenes could be classified as avoiding instead of solving the problem. According to
[MG08], texture streaming is becoming a necessity in games. Texture streaming can be
done on a per-mipmap basis for some finer granularity to increase the memory savings,
but according to [MG08] this is basically impossible to do on the PC without introducing
stalls. One drawback of texture streaming is performance problems with creating and
destroying textures at runtime [MG08], this can be avoided by reusing identically sized
textures.

2.5.2 Texture (Tile) Caching

Splitting the texture (or better, the whole mipmap-chain) into tiles allows texture stream-
ing on a much finer granularity and permits higher memory savings (i.e., more output-
sensitivity). The largest drawback of these systems has been the restriction that either
the geometric primitives had to be aligned with tile boundaries, forcing unwanted tes-
sellation, or expensive clipping and masking had to be used [CNF+07]. This restriction
has been lifted with the arrival of programmable graphics hardware, giving new impor-
tance to the old fundamental work. Both clipmapping and virtual texturing are based
on texture tile caching. Besides operating on tiles the major difference to (previous)
texture streaming solutions is that texture tile caching methods automatically determine
the needed texture tiles.

[Cos94] pioneered real-time terrain rendering using high-resolution textures and first
described the (pre-)tiling of the texture (called mosaic by him).

[CE98] mentioned that most texture caching solutions at that time were application-
specific solutions while some others were not real time capable. They developed a tex-
ture caching solution that calculates (a superset of the) necessary tiles of the “quadtree
MIP map” (as they call the pre-tiled mipmap-chain) by means of a geometric computa-
tion per polygon [CE98] – and caches just these tiles. Polygons must be split according
to the texture tiling. Their system allows them to treat the texture as a bandwidth-limited
resource instead of a finite resource [CE98].

2.5.3 Clipmapping

Clipmapping is a solution to allow the usage of very large textures on terrain meshes
while only using a small part of the texture (the “clipped” portion) at runtime. [Cor07]
defines a clipmap as a “partial representation of a mipmap pyramid which holds all
information needed for texturing at every single frame”. Since terrain is mostly flat
(two-dimensional) and linearly mapped with a single texture, we can define a “center
of interest” in texture space which is directly dependent on the world space position of
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Fig. 2.1: Graphical explanation of the clipmap system. Image from [Cor07].

the virtual camera. The needed resolution of the texture decreases in concentric circles
around this center of interest since these areas map to smaller screen space projections
by virtue of being further away, as seen in Figure 2.1. So, the highest resolution data
(mipmap-level 0) is only loaded for a quadratic portion around the center of interest. The
size of this square is called the “stack size” and is chosen to approximate a 1:1 mapping
of texels to pixel area [Cor07]. From higher mipmap-levels similarly sized portions
are loaded, but each of them covers a four-fold increased world-space region. When
the center of interest moves, a clever updating mechanism called “toroidal addressing”
decreases the amount of work to be done.

Clipmapping was pioneered at SGI, first mentioned in 1996 and later described in
[TMJ98]. The initial implementation required specialized graphics hardware available
from SGI, but several years later the increasing programmability of GPUs paved the way
for implementations on commodity hardware, and that is where later research headed
[Cor07] [SLT+07] [CNF+07]. Other research on clipmap-like systems has been done
adapting them for non-color data [EC06] and dynamic texture updates [TSH09].

[Hüt98] invented an alternative to clipmaps called MP-grids, also specialized for ter-
rain rendering. In contrast to clipmaps, they tile the whole texture into several mipmap-
pyramids, and required texture parts are determined by a geometrical test instead of
specifying a center of interest in texture space [Hüt98]. They also proposed modified
hardware to prevent the necessity for real-time clipping, but their modifications have not
been incorporated.
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2.5.4 MegaTexture

In 2005, id Software announced a computer game that would use a new technology
called “MegaTexture”, allowing the usage of a high-resolution 32k2 pixel texture on
the terrain [iS05]. Facts on the implementation of this technology were scarce and it
was only in 2007 after the game had shipped that it was confirmed to be just an imple-
mentation of a clipmap-like system for commodity hardware using the fragment shader
[CC05]. However, only shortly after announcing “MegaTexture”, John Carmack an-
nounced his intent to revise the technology to work on arbitrary geometry [Car05] and in
2006 he confirmed that a newer version (later called “MegaTexture v2”) already worked
on any geometry [DC06]. Again there were few details on the exact implementation,
nevertheless it spurred a lot of interest in virtual / unique texturing and eventually it was
confirmed in 2009 [vW09b] that “MegaTexture v2” is essentially virtual texturing as
described and implemented by others since that time.

2.5.5 Virtual Texturing

Virtual texturing generalizes previous approaches by adding a level of indirection, i.e.,
a pagetable, similar to virtual memory subsystems in modern operating systems. The
pagetable (texture) allows each fragment to access a suitable tile depending on the re-
quired resolution according to standard OpenGL mipmapping calculations, instead of
relying on heuristics like distance to viewpoint (as used in clipmapping). Put differently,
the major distinction to previous approaches is that virtual texturing allows “level of de-
tail selection” per-pixel, instead of per geometric primitive. Incidentally, this also lifts
the restriction of previous approaches to terrain rendering and the required tile-aligned
geometry tessellation. The different methods vary in the way they detect and handle
“page faults”. New features of virtual texturing include rendering all geometry in one
call, correct filtering (see Section §4.5.2) and handling of dynamic geometry. The in-
direction in the fragment shader is facilitated by sampling the “pagetable texture” for
coordinate translation, as first mentioned by [KE02] in a slightly different context.

The first virtual texturing system (in our sense) was developed by 3Dlabs and built
into their graphics cards as a way to support client applications with large textures
[Sem99]. The system split textures into 4KB (322 pixel) pages and fetched these pages
on-demand with a page-fault DMA engine from main memory without CPU interven-
tion [Sem99]. An on-chip virtual memory management unit (MMU) provided for the
necessary address translation. In distinction to later virtual texturing systems the sys-
tem was not able to fall back to lower resolution pages during rendering but introduced
unwanted stalls. This proprietary extension is similar to SGIs support of clipmaps, with
the difference that clipmaps only work with terrain meshes and required special appli-
cation support. Unfortunately this support has not been implemented by other vendors
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and 3Dlabs eventually ceased their GPU business, but, just as with clipmapping, pro-
grammable GPUs allow re-creation of the system on arbitrary hardware.

[LDN04] were the first to describe a modern virtual texturing system that works on
arbitrary geometry, but their work received little attention. Their system already looked
largely similar to later virtual texturing implementations, with the notable difference
being their novel idea of doing tile determination by rendering to UV space.

Interest in virtual texturing grew in and after 2006 when John Carmack reported
having a system capable of real-time rendering a uniquely textured world [MG08], how-
ever he did not provide technical details (see Section §2.5.4). This eventually spurred
Sean Barrett to independently recreate a virtual texturing system and he presented his
system at GDC 2008 as “Sparse Virtual Texturing” and provided his sample implemen-
tation under public domain as well as a video explaining virtual texturing [Bar08]. The
video and the implementation already provided answers to many important questions
surrounding virtual texturing, including fast & correct filtering. Many details and de-
velopments around virtual texturing were eventually published on the Sparse Virtual
Texturing Forum [Spa10] maintained by him.

Martin Mittring from Crytek presented “Advanced Virtual Texture Topics” at SIG-
GRAPH 2008 and a similarly named chapter appeared in the accompanying class course
book [MG08]. Mittring expanded on Barrett’s work and provided new insights regard-
ing tile determination (see Section §4.2), virtual texture atlas layout (see Section §4.5.6),
mesh parameterization, efficient texture updates (see Section §4.3.2) and mipmap gen-
eration. He also gave special insights of importance from a gaming industry standpoint
(Direct 3D implementation details and “combo textures”).

Also in 2008, “Making Art Studios” released some informal details on their virtual
texturing implementation [Stu08].

At SIGGRAPH 2009, J.M.P. van Waveren from id Software provided new details
about their virtual texturing system, confirming that it is especially similar to Barrett’s
re-creation as well as providing some new ideas about LoD bias adaption (see Section
§4.3.2) and LoD snap prevention (see Section §4.5.4) [vW09b]. Unfortunately only
the slides of the presentation are publicly available, somewhat limiting the use of this
resource.

Additional informal resources that appeared during 2009 are the sample virtual tex-
turing implementation with source code from Brad Blanchard [Bla09] and the weblog of
Sander van Rossen that features notes of interest concerning his implementation [vR09].

Finally, in 2010 the book “GPU Pro: Advanced Rendering Techniques” was pub-
lished, containing two chapters about virtual texturing. [HPLdW10] provided insight
how to speed up virtual texturing using CUDA (see Section §4.2.1) and [CESL10] pre-
sented an introduction to the subject as well as some new insights. Since these chapters
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have been developed during the same timeframe and were published around the same
time as this thesis, they contain some similar (but independently developed, unless oth-
erwise noted) insights.

The latest resource on virtual texturing is the bachelor thesis of Andreas Neu which
includes a comprehensive overview of the subject, novel ideas that aim to improve the
visual quality as well as quality assessment methods [Neu10].



Chapter 3

Overview

This chapter addresses the terminology used throughout this thesis and provides a short
introduction to “virtual texturing” and its challenges.

3.1 Terminology

A terminology mismatch currently exists in the field of texture caching. Some papers
apply the term “virtual texturing” to all systems that use a texture that only partly re-
sides in memory (“virtual texture”) and specifically to clipmap-like systems [TSH09]
[EC06] [Wei04] [SLT+07]. Other papers and resources apply the term to a newer and
considerably different method for large texture support that works on arbitrary geom-
etry [MG08] [CESL10] [HPLdW10]. Barrett has referred to the new virtual texturing
as “sparse virtual texturing” for differentiation, a term that has not achieved universal
acceptance. This mismatch can be resolved either by inventing a new name for the new
method to distinguish it from the old technique (as Barrett tried), or by applying the
term “virtual texturing” only to the new method. We chose to use the second option
(also because of a lack of a more fitting name for the new technique), i.e., in this the-

sis the term “virtual texturing” is restricted to apply only to systems that work on

arbitrary geometry. There is no need to call clipmaps “virtual textures”, we can just
call them by their original name: “clipmaps”. This also makes sense insofar as the new
technique exhibits similarities to the fundamental concept of “virtual memory”, while
the old method does not.

Additionally, it should be noted that the few resources that exist on virtual texturing
do not use a common terminology. Table 3.1 is a translation table for some of the
most important terms. We chose to use a terminology very similar to [Bar08], which
is in contrast to the terminology of [MG08] and [LDN04]. We also refer to the tiles
of the virtual texture as “tiles” in contrast to the term “pages”. The reason that we call
the translation texture “pagetable texture” although we are referring to “tiles” and not
“pages” is that the “pagetable” is an established term in computer sciences.
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Tab. 3.1: Different terminology of virtual texturing terms.

This Thesis Mittring [MG08] Hollemeersch et al. [HPLdW10] Lefebvre [LDN04]
Physical Texture Tile Cache Physical Page Texture Tile Pool
Pagetable Texture Indirection Texture Page Table Texture Indirection Grids
Tile Determination Computing Local LOD Page Resolver Texture Load Map Comp.

3.2 Outline
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Visible Tiles
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Fig. 3.1: A simplified virtual texturing system.

Virtual texturing is a texture tile caching method, meaning it determines the cur-
rently needed tiles of the aggregate texture data, streams these tiles to the GPU and
enables rendering from just these needed tiles. Virtual texturing requires all textures of
the scene to be combined into a single very huge texture. As a preprocessing step this
texture and all its mipmap-levels are tiled into equally sized tiles. At runtime a virtual
texture system has three main tasks, as outlined in Figure 3.1.

• Tile determination:
Determining which tiles of the virtual texture are visible from the current virtual
camera position and orientation and therefore necessary for rendering.
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• Tile streaming:
The necessary tiles have to be loaded from their storage location and streamed to
a storage texture on the GPU (“physical texture”).

• Virtual texturing shader:
A special fragment shader uses a texture (“pagetable texture”) that contains the
coordinates of all tiles in the physical texture to transform the virtual texture co-
ordinates to the physical coordinates used to sample the right tile at the right
position.

The main advantage of virtual texturing compared to older texture caching methods
is the indirection in the virtual texturing fragment shader, which enables rendering from
a small tile cache texture without forcing unwanted tessellation, or expensive clipping
and masking. This is enabled by programmable graphics cards with dependent texture
fetches. Previous methods were restricted to terrain rendering and tile-aligned geometric
primitives [TMJ98]. The other main benefit of virtual texturing over the previous state
of the art is a vastly improved method for efficient determination of the needed tiles –
previous methods often relied on geometric computations per polygon [CE98], which is
not feasible given the amount of polygons in current scenes. A third important property
is that the system does not stall while tiles needed for rendering are streamed in. Virtual
texturing continues rendering at full speed and uses lower resolution fallback tiles in the
meantime.

3.3 Detailed Overview

Figure 3.2 provides a more detailed overview over the main parts of a virtual texturing
system.

The virtual texture and its whole mipmap-chain are stored in pre-computed, equally
sized tiles. If the virtual texture is not only used to texture a contiguous mesh, it will
consist of multiple textures for different objects, thus essentially being a very large
texture atlas [Cor04]. In addition to the generation and pre-tiling of the virtual texture,
the geometry has to be textured just as if the virtual texture really existed in memory.
Therefore we will name these texture coordinates “virtual texture coordinates”, since
they refer to the virtual texture. Offsetting the texture coordinates has to be done to
compensate for the combination of multiple textures in a single larger texture as with
any texture atlas [Cor04].
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Fig. 3.2: An overview over virtual texturing rendering.
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• Tile determination:
This subsystem determines which tiles of the virtual texture are visible from the
current virtual camera position and orientation and therefore necessary for render-
ing. This is usually done with a pre-pass that is rendered with a special shader that
outputs the address of the visible tile at each pixel. The results of this pre-pass are
read back to the CPU.

• Tile streaming & texture updates:
The necessary tiles have to be loaded from their storage location (e.g., the hard
disk) and streamed to a storage texture on the GPU, called the “physical texture”.
The tile streaming system consists of one or more background threads that contin-
uously load and decompress requested tiles. The texture updating operates on the
main thread, just before rendering the main pass the tiles that have been loaded
so far are streamed to the physical texture. The “pagetable texture” is updated
with the translation from “virtual texture coordinates” to “physical texture coor-
dinates”. To be more concrete, the pagetable texture has a pixel for every tile in
the virtual texture – if the virtual texture is 2562 tiles at the base level, then the
“pagetable texture” is a 2562 pixels texture. Every pixel in the pagetable texture
contains the storage address of the tile it is representing in the physical texture.
For tiles that are not currently stored in the physical texture, the address of a “fall-
back entry” can be stored in the pagetable texture. This just means that the address
of the proximate stored lower resolution tile that covers the same texture space is
stored instead.

• Virtual texturing shader:
The virtual texturing fragment shader uses the pagetable texture to transform the
virtual texture coordinates (the ones the geometry is textured in) to the physi-
cal coordinates used to sample the right tile from the physical texture. Since all
virtual textured objects share the same (virtual) texture they can all be rendered
with a single draw call. To get the address of the right tile that should be used
for rendering, the shader just samples the pagetable texture with the virtual tex-
ture coordinates (the ones the geometry is textured in) and an appropriate bias to
compensate for the size difference between the pagetable texture and the virtual
texture. This texture fetch will yield the address the appropriate tile for rendering
in the physical texture, or the address of the next lower resolution tile if the native
tile is not currently stored. An alternative to storing these “fallback entries” in the
pagetable texture is to adjust the shader to perform the fetch from the pagetable
texture with increasing bias in a loop until a valid address is found.

Performing the tile determination, doing the texture updates and rendering the main
pass with the virtual texturing shader have to be performed every frame, in this order.
The tile streaming runs asynchronously all the time in background threads.
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3.4 Challenges

There are two main challenges during the implementation of a virtual texturing sys-
tem. The first issue is correctness, which means the visual output produced with virtual
texturing should be the same as with a theoretical system that supports these large tex-
ture sizes . The other issue is performance. Virtual texturing needs to yield performance
comparable with normal rendering or other methods for large texture support to be com-
petitive. In practice these two issues are closely intermingled because if the visible tex-
ture tiles are not streamed fast enough, lower resolution fallbacks are used, producing
visible artifacts. Several other issues constitute a third category of challenges. Note
that these challenges have not been known upfront, but only have been progressively
identified during the development of the thesis and implementations. Therefore not all
of these challenges have been completely solved within our implementation.

3.4.1 Correctness

Precision limitations within GPUs are an important factor affecting the correctness of
virtual texturing, especially when increasing the virtual texture size [MG08]. Limita-
tions within the GPU programming model, e.g., the undefinedness of texture fetches
inside loops [LK06] are also limiting. Enabling correct texture filtering (or DXT com-
pression) for virtual textures takes even more considerations [vW09b]. Correctness is
also affected when necessary tiles are missing during rendering – a virtual texturing
system with asynchronous texture streaming is by its very nature prone to these kinds
of artifacts. The amount of artifacts depends on the speed of the tile streaming, the
ability of the tile determinations system to “look into the future” and the number and
divergence of the necessary tiles (see below).

3.4.2 Performance

A virtual texturing system is a complex system and performance problems can arise
from individual components being too slow or from the interaction of these components
in the pipeline. An example for a performance-critical operation within the virtual tex-
turing system is the tile determination. This is commonly done by rendering the scene
in a pre-pass with a special shader that outputs the visible tile coordinates at each pixel
[Bar08]. This approach is only feasible if performed at a lower resolution or when com-
pressing the resulting buffer before reading it back to the CPU. The question whether
the read-back of the results should be delayed until the next frame demonstrates how
the interaction of the components affects performance.
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The factor that is affecting runtime performance (and also correctness) the most is
actually the virtual texture layout, which is determined in a pre-processing step. The
layout of the virtual texture affects how many tiles are necessary during rendering and
how divergent this set is from frame to frame.

3.4.3 Miscellaneous

There are a multitude of miscellaneous challenges related to virtual texturing: support
for transparent geometry, making artifacts less noticeable, handling non-exact tile de-
termination, coping with low maximum texture sizes of the GPU, tile cache strategies,
decal support, the virtual texturing content pipeline, i.e., how to generate virtually tex-
tured scenes and the virtual textures themselves, etc.



Chapter 4

Virtual Texturing

This chapter provides a detailed examination of the virtual texturing system as described
by [LDN04], [Bar08] and [MG08]. It is possible to build a virtual texturing system
that looks quite different from the system described here, and in fact such systems have
been proposed and implemented. Garney describes a virtual texturing system that works
entirely within the vertex shader, has variably sized tiles and does analytical tile deter-
mination [Spa10]. This thesis is restricted to discussion of virtual texturing systems
in the style of [Bar08] since this is the only setup where significant details have been
published.

At first the basis to virtual texturing is examined, the virtual texture itself. The
following three sections each deal with one of the three major distinct parts of a virtual
texturing system: tile determination, tile streaming and the virtual texturing shader.
The “Problems, Challenges, Advanced Features & Miscellaneous” section deals with
different topics related to virtual texturing. Finally, hardware improvements that could
help with virtual texturing are investigated.

4.1 The Virtual Texture

A virtual texture is a very high-resolution mipmapped texture that resides only partly
in (graphics) memory during rendering [MG08]. The term “virtual” refers not only to
the texture not being completely available in memory, but is also chosen in analogy to
“virtual memory”, which allows transparent access to a virtual address space [MG08].
“Very high-resolution” in this context means that the texture is substantially larger than
the largest texture size of a recent GPU. Current virtual texture sizes range from 32k2 -
256k2 pixels.

The virtual texture and its whole mipmap-chain are tiled into equally sized tiles.
Figure 4.1 provides an illustration.

The tiling of the mipmap-chain of the virtual texture stops with a single tile of the
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Fig. 4.1: The tiles of a virtual texture with a mipmap-chain length of 10. If the tile-size is 2562

pixels, then the full virtual texture size is 128k2.

given tile-size. There are no tiles stored with a lower than tile-size resolution to ac-
commodate for the highest mipmap-levels. This is in contrast to normal mipmapping
and clipmapping, where the highest mipmap-level always consists of a single pixel.
[HPLdW10] explains why this does not result in artifacts: it is very unlikely that the
virtual texture is ever viewed from so far away that the screen projection falls below
the (effective) tile-size. [MG08] also considers this to be a non-issue for most cases
and offers workarounds in case they really are required. Since the highest mipmap-level
always consists of a singe tile, the length of the mipmap-chain is not only dependent
on the (virtual) texture size, but also on the tile-size. Each tile of the virtual texture is
uniquely addressable with the tuple (x, y, mip-level).

The tiling of the virtual texture into equally sized tiles is crucial to the virtual textur-
ing system: in principle the virtual texture system has to determine the needed “parts”
of the virtual texture and provide them to the virtual texturing shader. This is (only)
efficiently possible since the “parts” are precomputed equally sized tiles.

The tiled virtual texture is stored on a hard disk or optical medium and streamed to
the GPU at runtime. It is also possible to store the tiles on a server and stream the tiles
over the network [MG08], although it has not been demonstrated that the performance
of such a setup is acceptable.

Instead of pre-creating the virtual texture, it is also feasible to generate the virtual
texture at runtime with procedural generation [MG08] [Bar08]. While still being a
virtual texturing system, this would be different from the system described in this thesis,
since there is no need to load and decompress virtual texture tiles from the hard disk.
Presumably, the scene would still be “textured”, but not with the surface color texture
map but rather with input for the procedural generation system. Note that the Sparse
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Virtual Texture demo [Bar08] does simple procedural generation of the tiles. Unless
performance is much better when doing runtime procedural generation it may still be
beneficial to pre-calculate the procedural content into tiles and stream them normally,
because this allows additional artist refinements, baked light-maps and multiple layers
“for free”.

4.1.1 Tile-Size

Common tile-sizes range from 642 to 2562 pixels [MG08] [Bar08] [vW09b]. The tile-
size is an important factor in a virtual texturing system as it directly determines the
amount of pixels needed from the virtual texture to do the rendering. A lower tile-
size means that about three times as many tiles but fewer overall pixels are needed.
As the tile-size approaches one pixel, the amount of pixels needed in the physical tex-
ture approaches the amount of pixels in the viewport. Virtual texturing is therefore an
output-sensitive algorithm, since the amount of texture data needed is proportional to
the viewport size and not the amount of texture data in the scene. So, decreasing the
tile-size decreases the amount of “wasted” pixels in the physical texture, i.e., pixels that
have to be there just by virtue of being in a tile that is partly visible. However, decreas-
ing the tile-size also increases the mipmap-chain length and the number of visible tiles.
This has the following effects:

• Longer mipmap-chain:
An increase of the mipmap-chain length by one increases the overall tile count by
a factor of roughly 4. To be more exact, the factor is dependent on the current
mipmap-chain length n:

�
4(n+1) − 1

�

(4n − 1)
(4.1)

Since the pagetable texture (covered in Section §4.3.1) has one pixel per tile, its
size is also increased by a factor of 4, contributing to (graphics) memory con-
sumption. Considering the common use of tile borders for correct filter (see Sec-
tion §4.5.2), the “wasted” memory for border-pixels also increases, on hard disk
as well as in graphics memory. Updating the pagetable texture also becomes more
CPU intensive with a longer mipmap-chain, when fallback entries are used (see
Section §4.3.1). A longer mipmap-chain is also undesirable because the maxi-
mum coordinates in the identifying tuple (x,y,mip-level) for a single tile increase.
When the mipmap-chain length is 9 (e.g., a 64k2 pixels virtual texture with 2562

pixel tiles), there are 256 by 256 tiles at the lowest mipmap-level. This means
the (x,y) coordinates of the tiles fit into a single byte each. If the mipmap-chain
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length increases, the overflowing bits of the (x,y) coordinates may have to be
stored elsewhere, mandating some bit-shifting.

• More visible tiles:
Having more (but smaller) visible tiles negatively changes the performance char-
acteristics of the tile streaming. Additionally, the increase of operations that have
to be done for every new tile has negative implication on the runtime perfor-
mance. Examples include: finding an empty slot in the physical texture, updating
the pagetable (texture), updating data structures and updating the RAM cache.

Figure 4.2 and 4.3 show the relation between the tile-size and the necessary phys-
ical texture size. Results can be below zero because some parts of the screen are not
covered by virtually textured objects, i.e., the skybox is using a traditional texture. The
unfavorable results from the New York scene can be attributed to a problematic virtual
texture layout of this particular scene, see Section §5.2.1.
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Fig. 4.2: Test showing the number of texels in the physical texture that are needed for every pixel
in the viewport (walkthrough New York scene).
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Fig. 4.3: Test showing the number of texels in the physical texture that are needed for every pixel
in the viewport (walkthrough terrain scene).
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4.1.2 Maximum Virtual Texture Size

As mentioned above, the virtual texture size is dependent on (or reversely: affects) the
tile-size and the mipmap-chain length. Although there is no theoretical limit to the
maximum virtual texture size, there are restrictions in the current graphics hardware
that limit the useful virtual texture size:

• Mipmap-chain length:
Having a mipmap-chain length of 11 results in a pagetable texture of size 10242

pixels and is the current upper limit in our implementation. A longer mipmap-
chain results in substantial memory waste and considerable performance hit for
pagetable updates. However, Barrett has had success with pagetables up to a size
of 40962 [Bar08], which already approaches the texture size limitation.

• Tile-size:
Increasing the tile-size above 2562 pixel is not advisable since the tiles necessary
for rendering any particular view do not fit into the largest possible physical tex-
ture on current-generation GPUs when using complex scenes (see Section §4.1.1).
The basis for this claim is provided by tests with the New York scene, see Section
§5.2. (Note: options to overcome the texture size limit with the physical texture
are explored in Section §4.3.2.) The amount of necessary tiles is influenced not
only by the tile-size but also by the viewport size, the virtual texture atlas lay-
out and the geometry and how it is textured. The “best case” in this regard is a
contiguous (terrain) mesh with a linearly mapped virtual texture. A 5122 pixel
tile-size is possible in this case, but in this scenario clip-mapping could also be
used instead of virtual texturing anyway.

The combination of the maximum mipmap-chain length of 12 with the maximum
tile-size of 2562 pixels leads to the current limitation of the practical virtual texture size
to 256k2 pixels. This is a practical and not a theoretical limit and subject to change with
future CPU/GPU hardware. Mittring comes to a similar conclusion [MG08]. When
combining this tile-size with a 40962 pagetable, the maximum virtual texture size is
1024k2. The currently common maximum texture size 81922 effectively limits the max-
imum virtual texture size (with 2562 tiles) to 2048k2, but this can be worked around by
virtualizing the pagetable texture, see Section §4.5.7.

An issue that prevents effortless scaling to higher resolution virtual textures is that
(as mentioned) the maximum (x,y) coordinates for the tiles increase. This can be a prob-
lem when using the tile determination method of rendering in view space and reading
back the tile coordinates (see Section §4.2.1), because the coordinates of the visible tiles
have to be packed into the frame buffer. Up to the maximum of 256 by 256 tiles on the
lowest mipmap-level (mipmap-chain length: 9) it is possible to store these coordinates



Chapter 4. Virtual Texturing 30

in a byte/channel each. Up to a mipmap-chain length of 11 one can fit the remaining
bits into the mipmap-level channel. Above 11, a fourth byte/channel becomes necessary
to store the coordinates. When leaving one bit free for distinguishing discarded pixels,
one can fit information for a mipmap-chain length of 14 into a 4 byte render target (x 15
bit, y 15 bit, mip 4 bit, 1 bit distinction, 1 bit free).

According to Mittring, another issue that bounds the maximum virtual texture size
is (floating point) precision within the GPU:

“With a typical implementation using floating point math to run on older
hardware the precision of the float computations becomes a problem when
the virtual texture resolution becomes close to 65K. [...] integer maths [sic]
avoid this all together.”[MG08]

On an NVIDIA GeForce 8800 GT we have not seen obvious precision artifacts even
with a 128k2 virtual texture. On an ATI Radeon HD 2600 PRO precision problems are
visible even with much smaller virtual texture sizes.

Precision issues for the texture coordinates may also play a role for the texture co-
ordinates when increasing the virtual texture size if some polygons occupy only a very
small space of the texture space. At some point switching to double precision texture
coordinates may become necessary, alternatively using multiple virtual textures is pos-
sible.

4.1.3 Texturing for a Virtual Texture aka ’Unique Texturing’

The geometry has to be textured just like the virtual texture would really exist in mem-
ory. If multiple objects are used, their textures are combined into the virtual texture
exactly like with a texture atlas [Cor04]. The only difference here is that texture atlases
usually do not exceed the size of the texture size limit on the GPU. Offsetting the texture
coordinates is done to compensate for the packing of the textures.

Using a virtual texturing system provides a large enough texture space so that it is no
longer required to simulate detail in a scene with a repeating base texture blended with a
detail texture [MG08]. Instead, a virtual world can be “uniquely” textured with a single
non-repeating texture. Figure 4.4 serves to illustrate the visual benefits resulting from
a uniquely textured world. While unique texturing has been possible for the terrain
for some time [Mal00], with virtual texturing it can be applied to arbitrary geometry.
Benefits of unique texturing include that tiling patterns can be completely eliminated
[Mal00] and if static lighting is used, the light-map can be baked right into the (surface
color) virtual texture [Mal00], allowing for much higher effective light-map resolution
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Fig. 4.4: The visual quality resulting from a uniquely textured virtual world is the biggest selling
point of virtual texturing. Image copyright by id software.

than traditionally possible. This prevents stepping and banding, common artifacts with
light map implementations.

Using virtual texturing requires geometry that is UV-unwrapped [MG08] (but alter-
natively combining virtual texturing with a texture parametrization that does not require
unwrapping is also possible). According to Mittring, using an unwrapping algorithm
that is aware of the tile borders at different mipmap-levels (quad-tree) can save mem-
ory on the hard disk and more importantly in the physical texture [MG08]. The empty
space that occurs in all unwrapping methods should cover few tiles fully instead of
many tiles partly. This is an important optimization to reduce the amount of needed
tiles at runtime. Unique unwrapping is not generally needed by virtual texturing but
made necessary when non-shareable additional data like light maps or bump maps are
used [MG08].

The ability to create uniquely textured virtual scenes lifts a limitation of previous
real-time rendering systems, but it also means that creating a uniquely textured scene
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(a 128k2 texture contains more than 16 billion pixels) is more work than just using a
repeating base texture blended with different details. It is suggested to move from a
“manipulate individual pixels” approach to an approach where pre-created detail tex-
tures are stamped onto the scene [Car07].

When creating a scene and textures for a virtual texturing system using standard
3D-suites and image manipulation software, there are issues to be aware of. These
tools currently do not use a virtual texturing system and therefore are not able to use or
manipulate very large images. Intermediate images should not exceed 16k2, since 32k2

images are prohibitively slow and 64k2 images cannot even be imported or exported by
common software. When viewing the scene in 3D-suites, only as many textures as fit
into graphics memory should be enabled.

Adding up these problems results in a difficulty to create a large uniquely textured
scene using currently common software. A possible solution is to write a custom tool
that combines 3D editor, image manipulation functionality and virtual texturing. id
Software has built such an editor for virtual textured scenes, allowing artists to texture
a large scene in real time with a stamp system [Car07].

Unique textured scenes do not necessarily have to be created by artists from scratch.
3D scenes and the accompanying textures are also commonly created by 3D scanning
(3D vision), aerial photography and satellite imagery. These methods already often
result in so large amounts of data that it is difficult to display them in real time using
established methods. Virtual texturing can be used very well to display these scenes, as
demonstrated in Section §5.2.

Virtual texturing enables rendering with a very large virtual texture, but it makes
still sense to consider how large a scene (or virtual world) textured with a common
virtual texture size actually can be. For a very high quality output it is desirable to
have a 1:1 mapping of texels to pixels [Cor07]. We assume a virtual world that consists
only of relatively flat terrain. The camera is placed at two meters above the ground,
which is reasonably similar to the height of standing humans (when the virtual character
crouches the texturing resolution does not have to be perfect). We also assume the
camera has a field of view of 90 degrees and is looking straight down to the ground.
This means that the terrain portion rendered to the screens is about four “virtual” meters
wide. Considering a medium-resolution display with a resolution of 1024 by 768 we
want these four virtual meters to be textured with 1024 pixels to maintain the perfect
1:1 texel-to-pixel mapping. With this same texture density even a 128k2 virtual texture
would only provide data for 512 by 512 meters of terrain. For a more realistic virtual
world size of 8 kilometers by 8 kilometers, this virtual texture would only have 64 pixels
per four meters. This results in the fact that even a virtual texturing system which allows
using very large textures is not enough to texture the terrain of a large virtual world at
high detail. Adding detail textures to the terrain may still be necessary, and in fact may
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be easy to implement with virtual texturing when storing additional data for the detail
texture id and blend factor.

4.1.4 Assembling the Virtual Texture

There are three steps to assembling the virtual texture:

• Merge to a texture atlas:
As already mentioned, if the virtual texture covers multiple objects with distinct
textures, they need to be merged into a single texture atlas. The usual rules gov-
erning texture atlas creation have to be followed, e.g., it is preferable to align sub-
textures at power-of-two boundaries to prevent mipmap-chain pollution [Cor04]
(see also Section §4.5.6 for a discussion of points to be aware of, and problems
that can result from using a texture atlas). Since the texture atlas in this case is as
large as the virtual texture, it does not fit completely into memory. Only as many
sub-textures as fit into memory should be loaded at a single time. Also, as men-
tioned above, images above 16k2 should not be generated, so this stage either has
to output multiple images or should be merged with the next step. Additionally,
the texture atlas stage has several virtual texturing specific constraints:

– Retain empty tiles that have been produced by the tiling-aware unwrapping
algorithm (see above) by not placing sub-textures at arbitrary positions. This
point is moot if this step is combined with the texture unwrapping, which
could be preferred but is probably only possible in a very integrated pipeline.

– Aim for similarity between texture space and world space to reduce the
amount of needed tiles at runtime [MG08].

– Do not position sub-textures with highly divergent texel-to-world density
ratios within single tiles, see Section §5.2.1.

• Tiling and mipmapping:
Mipmaps have to be generated and every mipmap-level has to be stored in equally
sized tiles. It is again necessary to ensure that the memory is not oversubscribed,
since the uncompressed virtual texture may exceed 192 GB in size [Duf06]. [MG08]
discusses out-of-core mipmap generation as well as different downscaling kernels
and their properties. If the virtual texture consists of multiple textures and there-
fore constitutes a texture atlas, care must be taken to avoid mipmap-chain pollu-
tion during downsampling [Cor04]. Additionally, borders for artifact free filtering
are generated at this stage.

• Format and layout:
The tiles have to be transcoded into a specific format and stored according to the
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chosen layout, this is explained in the next subsection. Since this stage operates
on the individual tiles, memory constraints are not a problem and the stage is
easily parallelizable.

4.1.5 Storing the Virtual Texture

As mentioned above it is possible to stream the virtual texture tiles over the network or
procedurally generate them at runtime, but the common setup is to store them on a local
storage device. Two choices to make are the format and the layout of the tiles.

• Format:
Since the virtual texture tiles are just normal pictures, using any image format
is possible. There are basically three choices: uncompressed, compressed and
GPU-compressed (compression formats that can be used directly on the GPU like
DXTC).
A fourth option would be to use DXT compressed textures but compress them fur-
ther for on-disk storage, e.g., by compressing the DXT color blocks using JPEG.
This option is explored and dismissed as unsatisfactory in [vW06b]. Implications
of the format choice and benchmarks are discussed in Section §4.3.1.
Computer games or visually advanced simulations typically do not use only a sur-
face color texture map, but also additional data like the bump map and specular
map. Using this data is possible with virtual texturing, in the simplest case the
same UV-mapping is used for the additional data. That means for every surface
color RGB pixel in the virtual texture, we also have a bump/specular pixel spec-
ifying the additional properties at the very same object-space position [MG08].
Retaining the same UV-mapping but using differently sized tiles for different data
types is also possible [MG08]. A more complex and flexible system for multi-
texturing is proposed in [Bar08] and described in Section §4.5.15. When choosing
a compressed format for the tile storage, it has to be determined if the compres-
sion format is also acceptable for the additional data, but this is not different from
a system without virtual texturing. Differently compressed “layers” are obviously
possible. Three conflicting requirements for compressed tile formats are:

– Decompression speed: since the tiles have to be decompressed during stream-
ing, they should be very fast to decompress. Uncompressed or DXT com-
pressed tiles do not have to be decompressed but are too large to be streamed
efficiently.

– Tile-size: the compression rate of the tiles should be high to lessen the band-
width requirements during streaming. This is even an issue with storage on
the hard disk and even more so with optical media or network streaming
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– Visual quality: the compression should result in low visual degradation. If
the tiles are stored DXT compressed in the physical texture, the best option
here is to use DXT pre-compressed tiles, because an offline DXT compres-
sor achieves higher quality. Additionally, this prevents “adding” the com-
pression artifacts of two different lossy formats.

• Layout:
The simplest layout for the virtual texture tiles is to store each tile into a sin-
gle file. Storing the tiles in a lossy compression format means that the size of
a single (1282 pixel) tile is relatively small, typically ranging from 5 to 25 kilo-
bytes. Tiles with good compression attributes will even fall below the common
cluster or block size of the hard disk, resulting in wasted space. Due to the way
rotational/mechanical storage devices work, reading such small files is not signif-
icantly faster than reading files that are a few times larger, latency is the defining
factor here. Figure 4.5 shows the relation between file size and the average time
needed to read the file. Reading a 256KB file takes only about twice as long as
reading a 4KB file, although it is 64 times larger.

4KB

8KB

16KB

32KB

64KB

128KB

256KB

512KB

1024KB

0 10 20 30 40

30,71

21,10

16,46

12,65

10,80

9,72

9,46

9,16

7,97

Time needed to read files in dependence on their size

Milliseconds

Fig. 4.5: The performance of file reading in dependence on file size.

Considering these issues it is preferable to pack the virtual texture tiles into fewer
files or even a single file. [CESL10] come to a similar conclusion. The tiles can
be grouped inside the file(s) so that multiple tiles that are likely to be visible at
the same time can be loaded at the same time. Heuristics for this could include
packing tiles that are adjacent in word space, alternatively data about simultane-
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ous loads could be gathered from runtime experiments. Considering Figure 4.5,
the optimal size of data to read in at once probably is between 64 and 256 KB.
Also, fragmentation of the tiles is expected to be less severe when storing them
as a single file. [MG08] offers some insights on efficient streaming from a single
file on disk. The test in Figure 4.5 disables the effects of the page cache with
/usr/bin/purge and the effects of the disk buffer by previously accessing
unrelated files that amount to a few times the size of the disk buffer. Actual file
reading happens with fopen() / fread().

These issues (and the general issue of latency when streaming tiles) will be much
less serious on the upcoming solid-state drives.

However, with optical media the issue is more severe (higher latency, lower through-
put [MG08]), but the layout can also be controlled better on read-only media.
[vW09a] provides a comprehensive discussion of streaming from slow storage
devices for a clipmap-like texture streaming system.

4.1.6 Data Reduction

In storage-constrained situations, the virtual texture may require too much space
even after applying lossy compression to the tiles. Moreover the virtual texture
can contain high-resolution textures that are never visible anyway in the simula-
tion due to movement constraints. For many types of simulations it is possible to
determine which parts of the scene are textured with higher density than will be
used at runtime. Analytical or brute-force solutions are thinkable, and in video
game settings, test player runs could be analyzed. After determining that parts
of the scene are textured with unnecessarily high detail, there are two options:
Reducing the size of the sub-textures for these parts, leading to different texture
coordinates after coordinate adjustment. The second option is to leave the tex-
ture coordinates as-is and delete the relevant tiles from the lowest mipmap-level.
This option is preferable (only) if the scene is (to be) textured with equal texture
density, e.g., to ease tile determination. The second option also allows reducing
the resolution only for parts (tiles) of sub-textures, instead of whole sub-textures,
providing a crude form of adaptive resolution.

Additionally, there likely are empty tiles because any UV-unwrapping always
leaves some areas unused, these can also be deleted [MG08] since they will not
be requested anyway.
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4.2 Tile Determination

The tile determination system has to find out which of the tiles of the virtual texture are
currently visible, so they can be transferred to the GPU before rendering. Tile deter-
mination is not a new technique that is unique to virtual texturing, but an established
component of all (tile-based) texture caching methods. However, previous attempts
cannot be used for virtual texturing: approaches like [CE98] rely on doing geometric
computations per polygon, which is not feasible with current polygon counts ranging in
the millions. Other approaches like clipmaps define a center of interest in texture space
and are therefore limited to terrains [TMJ98].

While cached tiles can be transferred to the GPU in the same frame, tiles that are
not cached take multiple frames to be loaded from the hard disk, decompressed and
re-compressed. It is desirable to know in advance which tiles will be visible in a few
frames, so these tiles can be streamed just in time, preventing artifacts. This is only
possible in controlled walkthroughs where the virtual camera path is predetermined,
but not in an interactive simulation where the user controls the camera position and
orientation.

Tile determination systems can be categorized into exact, conservative, aggressive
and approximative systems, in analogy to visibility. Exact systems deliver the exact set
of tiles currently visible, while conservative systems also include tiles that are currently
not visible (but might become visible soon). Aggressive systems, which do not find out
all visible tiles, are not particularly useful because they result in artifacts. Approxima-
tive systems may be useful with changes to the virtual texturing shader. All exact tile
determination systems and other systems which take occlusion into account can be seen
as a superset of the functionality of an occlusion culling algorithm and therefore could
be classified as a “hard problem”.

Our tests have shown that complex scenes (with suboptimal virtual texture layout)
need so many tiles that they barely fit into the limit for the physical texture (see Sec-
tion §5.2). Therefore an exact system is necessary and a conservative system is not
acceptable for some scenes. However, since conservative systems commonly include
tiles that might become visible soon, they can be useful in addition to an exact system.
While only requests from the exact system are streamed to the physical texture, during
idle times requests from the conservative system are served, to have these tiles already
stored decompressed in the cache. Also, other setups with simpler scenes, better virtual
texture layout, smaller viewport or larger physical texture may very well get along with
just a conservative tile determination system. Mittring also prefers a conservative sys-
tem [MG08]. Besides correctness, performance and the ability to “look into the future”,
a good tile determination system should also be able to sort tile requests by priority –
tiles that cover more screen pixels should be loaded first.
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An important point between the tile determination and the tile streaming system is
the handling of tiles that were requested in previous frames but are not visible any-
more. These requests should be discarded to prevent a worst case scenario: if tiles
are requested at a faster rate than they can be streamed (for example when the camera
moves very fast), this would result in the tile streaming system falling behind the tile
determination more and more, only loading tiles that have been visible some seconds
ago.

4.2.1 Exact Tile Determination in View Space

Barrett devised and implemented a method where the scene is rendered with a special
fragment shader that outputs the tile coordinates at each pixel into the frame-buffer
[Bar08]. The buffer is read back to the CPU. The benefit of the method is that it is
completely exact, takes occlusion into account and is simple to implement. Additionally
it uses the GPU to solve the relevant issues of visibility and occlusion. Drawbacks
include necessitating another render pass, the cost and latency of reading back the buffer
to the CPU, the fact that the buffer is a large list of the necessary tile at each pixel and
not a small list of unique tiles that are necessary.
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Performance can be increased by doing this render pass at a lower resolution than the
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viewport at the cost of exactness. Reducing the width/height by powers of two is par-
ticularly easy: if the width/height is shifted right by “x” then a subtraction of “x” from
the determined mipmap-level in the shader compensates for the smaller resolution. Re-
ducing resolution not only increases the speed of rendering this pass, more importantly
it also reduces the time for transferring the buffer to the CPU and post-processing it
there. Less detailed geometry can also be used for rendering this pass. When halving
the resolution of the tile determination pass, visible tiles that only occupy single pixels
may be lost. Conversely, the resulting artifacts are limited to single pixels too. It is com-
mon that multiple adjacent pixels necessitate the same tile, therefore artifacts caused by
reducing the resolutions are infrequent. Note that a smaller tile-size increases the ar-
tifacts because more tiles will be missed. We experienced good performance and few
artifacts when rendering at quarter resolution (480 x 300) with 2562 pixel tiles. Figure
4.6 provides a performance overview of the method at different resolutions. Note that
the read-back can occur asynchronously using a PBO, which frees the CPU to do other
work during the transfer but does not usually reduce the total transfer time. Suppos-
edly the cost of the read-back is much lower on gaming consoles [Spa10]. Additionally,
more efficient implementations may lower the costs of iterating even over large buffers.

Figure 4.7 illustrates the percentage of the visible tiles that are determined at lower
resolutions. The terrain scene is the best case scenario for this test because the virtual
texture is mapped linearly over the terrain-mesh, so each tile occupies a large contiguous
area in screen space and is therefore “hard to miss” even at lower resolutions. The
New York scene represents a mediocre case since each of the thousands of buildings
occupies only a few pixels on the screen but pulls in different tiles that are missed at
lower resolutions – a fact that is mainly caused by problems with the texture atlas layout
of this particular scene (see Section §5.2.1) and not by the geometry. The problem
mainly occurs in flyover scenarios when viewing most of the scene, but not from a
“normal” viewpoint near the ground. Scenes that do have a better virtual texture layout
should see significantly better results than the New York scene.

Program 1 shows an example GLSL fragment shader for performing the tile de-
termination pass. This example calculates the mipmap-level of the visible tiles using
dFdx() / dFdy(). Unfortunately the OpenGL standard leaves the actual mipmap
selection function up to each implementation (see the OpenGL specification, Section
3.8.11 [Gro09]), so it is impossible to match all implementations with a single calcu-
lation function. The shader can be modified to determine the mipmap-level (and even
the coordinates) of the visible tiles by sampling from a texture instead of calculation, to
get exactly the result the host OpenGL implementation provides. To do this one writes
distinct values to the different mipmap-levels of a texture, the result of the fetch then
indicates from which mipmap-level the fetch has been performed. This wastes mem-
ory, but although a texture fetch now incurs, the performance is the same as with the
calculation. When using the texture fetch just to determine the mipmap-level (and not
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Fig. 4.7: The correctness of the view-space tile determination in half, quarter and 1 / 8 resolution.

the coordinates), the required data can be stuffed into the pagetable texture to prevent
an increase of texture unit and texture memory requirements. More concretely, depend-
ing on the implementation, the pagetable texture may still have a free channel left, e.g.,
the alpha-channel. This channel can be filled with different values, depending on the
mipmap-level, so that a fetch from this texture yields the selected mipmap-level of the
tile. However, if it is desired that the x/y coordinates of the tile are also determined from
the fetch to save shader calculation instructions, a dedicated texture for this purpose is
necessary. A third option is the new OpenGL extension ARB texture query lod, which
provides exactly the functionality needed – determine the mipmap-level that would be
used if a texture were sampled – but is not commonly available just yet. The example
shader stores the (x,y) coordinates of visible tiles in one channel each (red and green) of
the frame-buffer/FBO and therefore restricts the maximum coordinates to 255 (mipmap-
chain length 9).

Barrett later proposed refining the method to allow reducing the resolution com-
pletely without artifacts by means of temporal subsampling:

“You can reduce your read-back bandwidth by 75% by only drawing
one quarter of the screen each frame, and cycling through those quarters.
Naively, you would divide the screen into physical quarters: top left, top
right, etc. More sensibly, you’d chunk the naive pixels into 2x2 clusters and
only render a particular subpixel of all clusters each frame. This amounts
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Program 1 A GLSL fragment shader for exact tile determination in view space with a
render pass. Based upon Barrett’s SVT demo shader [Bar08].
const float readback_reduction_shift = 2.0;
const float vt_dimension_pages = 128.0;
const float vt_dimension = 32768.0;

uniform float mip_bias;

// analytically calculates the mipmap level similar to what OpenGL does
float mipmapLevel(vec2 uv, float textureSize)
{

vec2 dx = dFdx(uv * textureSize);
vec2 dy = dFdy(uv * textureSize);
float d = max(dot(dx, dx), dot(dy, dy));

return 0.5 * log2(d) // explanation: 0.5*log(x) = log(sqrt(x))
+ mip_bias - readback_reduction_shift;

}

void main()
{

// the tile x/y coordinates depend directly on the virtual texture coords
gl_FragColor.rg = floor(gl_TexCoord[0].xy * vt_dimension_pages) / 255.0;
gl_FragColor.b = mipmapLevel(gl_TexCoord[0].xy, vt_dimension) / 255.0;
gl_FragColor.a = 1.0; // BGRA: mip, x, y, 255

}

to rendering a 1/4 sized screen but displacing it by a subpixel amount each
frame to try to hit any thin stuff. Which means if you’re already doing
subresolution, you can view it as a way to reduce resolution further, or to
keep the current resolution but improve quality. You’d want any tile IDs
you hit to stay valid for at least 4 frames, which might slightly decrease
overall quality.” [Spa10].

A simpler method that tries to do the same thing in a less sophisticated way is randomly
jittering the viewport in each frame by a small amount.

In OpenGL, reading back rendered content can be done either by rendering to the
back-buffer or to a FBO. The actual read-back can be done using glGetTexImage()
or with glReadPixels(). We have implemented and tested all four possible com-
binations. Micro-benchmarks of the read-back operation proved to be indecisive, there-
fore we tested whole-application performance, the results can be seen in Figure 4.8.

The tile determination render pass can be combined with any other render pass (e.g.:
z-only, deferred pre-pass, main render pass) by writing out the tile determination infor-
mation into another render target (MRT). The drawback here is that this forces the tile
determination pass to be done at full resolution, and the full-resolution buffer is pro-
hibitively slow to transfer back and post-process (see Figure 4.6). Regardless of the
combination with another render pass, the buffer can be converted using GPGPU into a
smaller buffer, for faster transfer to and usage on the CPU.
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Fig. 4.8: Whole-application performance with different read-back methods during a terrain fly-
over.

Expansion of Barrett’s method to include tiles that are not currently visible is pos-
sible, effectively transforming it into a conservative method. The Field of View (FoV)
can be increased during rendering so that tiles outside the real view frustum are also
marked as needed, which gives improvements when the virtual camera is rotated. The
calculated mipmap-level of the tiles has to be corrected to adjust for the FoV-change,
and the method can no longer be combined with other passes. This idea is also noted
by [CESL10], they get away without adjusting the mipmap-level because they only
increase the FoV slightly. Other ideas include performing additional tile determination
passes in other viewing directions (to help with rotation) or from an extrapolated camera
position/orientation. [Neu10] had the same idea and performed tests with a “LookAhead
Camera”, with mixed results.

Regardless of the used tile determination method it is also possible to try to derive
tiles that might become visible soon from the tiles that are currently visible. Lower or
higher mipmap-levels of currently visible tiles can become visible in the future. For the
parts of the virtual texture that have a high affinity of texture space to world space (e.g.,
parts that cover linearly mapped terrain) one can also load adjacent tiles.
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4.2.2 GPGPU Buffer Compression for View-Space Tile
Determination

The resulting buffer of a view-space tile determination pre-pass contains the address of
the requested tile for each pixel. Since neighboring pixels are very likely to request the
same tile, most adjacent positions in the buffer contain the same value. What we are
actually interested in, is not the repetition of these same values over and over again, but
a list of unique values, i.e, the list of visible tiles. The number of visible tiles usually
only ranges in the hundreds. Therefore we want to compress the buffer to this list of
unique visible tiles.

Converting the buffer to a more compact representation serves two purposes. Read-
ing back a compact representation of the necessary information significantly reduces the
time to transfer the data to the CPU and processing it there. Furthermore this allows the
tile determination pass to be done at full resolution, which means it can be combined
with other render passes, eliminating the requirement of an additional pass.

Having to compress a very large buffer that only sparsely contains useful informa-
tion is not a new problem unique to virtual texturing, but is commonly known under the
terms stream compaction or stream reduction [BOA09]. Prefix sum-based algorithms
[SLO06] are an established and common solution that also operate on GPUs. [BOA09]
proposes a new solution developed with GPU/SIMD architectures in mind. Recent ad-
vanced shadow-mapping solutions also face a very similar problem to ours, they also
generate tile requests on the GPU and have to compress this request buffer for efficient
read-back performance [LSO07]. [LSO07] compress their request buffer with the fol-
lowing stages:

• Removing some redundant requests between neighboring pixels by marking re-
quests which differ from their neighbors.

• Elimination of invalid requests.

• Removing all remaining redundant requests by sorting the requests, marking unique
elements and finally removing the non-unique requests.

This method could be used for virtual texturing as is, but the necessity of sorting a
very large amount of data suggests there might be performance problems – additionally
the process is comparably complicated.

[HPLdW10] have presented a much simpler method to convert the buffer to a com-
pact list of needed tiles in CUDA. We have implemented the same method using OpenCL.
While the first stage (kernel) was developed independently from [HPLdW10], the sec-
ond stage is directly based on their sample code.



Chapter 4. Virtual Texturing 44

Program 2 First OpenCL kernel for buffer reduction - converts to a quadtree.
kernel void buffer_to_quadtree(image2d_t img, global uchar *pagetable,

constant int *offsets, constant int *widths,
constant int frame)

{
int image_width = get_image_width(img);
int image_height = get_image_height(img);
int x = get_global_id(0);
int y = get_global_id(1);

// only process if if are inside the real buffer dimensions
if ((x < image_width) && (y < image_height))
{

// read the values from the tile determination pass
float4 clr = read_imagef(img, CLK_NORMALIZED_COORDS_FALSE |

CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST,
(float2)(x, y));

uchar indx_x, indx_y, indx_mip;
indx_x = convert_uchar_sat(clr.x * 255.0f); // extract x coordinate
indx_y = convert_uchar_sat(clr.y * 255.0f); // extract y coordinate
indx_mip = convert_uchar_sat(clr.z * 255.0f); // extract mipmap-level

// the offsets into the pagetable buffer are passed to the kernel
int index = offsets[indx_mip] + indx_y * widths[indx_mip] + indx_x;
pagetable[index] = frame; // mark tile as used in the pagetable buffer

}
}

Program 2 shows the first kernel, it processes the buffer as produced by program 1
and marks the visible tiles in a pagetable structure that contains an element per existing
tile (this quadtree/pagetable is conceptually identical to the pagetable texture). Program
3, the second kernel, processes this quadtree and inserts the marked visible tiles into
a fixed-length list. This list is then transferred to the CPU. Basically the first kernel
“uniquifies” the tile requests and the second kernel compacts the requests by inserting
only the visible tiles into a list. This two-stage method circumvents the need for any
sorting of the requests for redundancy elimination. Each kernel has a bottleneck. The
first kernel is throttled by the common access from different work-items to the same
global memory locations in the pagetable. Although the pagetable needs only one bit
per tile, we use one byte per tile because the bit-packing would intensify this bottleneck
and severely slow down the kernel. A side effect of this memory-waste is that it allows
us to tag tiles by frame-id, reducing the need for clearing the pagetable from every
frame to every 1/255th frame. Note that OpenCL, in distinction to CUDA, has no
memset() built in, therefore clearing memory must be done either with a kernel or
by overwriting the memory with a buffer transferred from the CPU. We use a kernel to
clear the quadtree every 1/255th frame, but use a transfer to clear the list index every
frame.

The bottleneck of the second kernel is also the common access to shared memory, in
this case the result list. However, since there usually are only a few hundred visible tiles,
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Program 3 Second OpenCL kernel for buffer reduction – converts to a list. Based upon
the CUDA kernel with the same purpose in [HPLdW10].
kernel void quadtree_to_list(global uchar *pagetable, constant int numItems,

global uint *tileList, constant int frame)
{

int x = get_global_id(0);

if (x < numItems)
{

// if the tile is used this frame, i.e. marked with the frame number
if (pagetable[x] == frame)
{

int i = atom_inc(tileList); // increase the list size (element 0)
tileList[i+1] = x; // and append the item to the list

}
}

}

this is manageable. The second kernel only works correctly if there are less tiles visible
than fit into the fixed-length list. With dynamic LoD adjustment (see Section §4.3.2) and
an appropriately sized list this can be easily ensured, alternatively an additional check
is necessary. The original kernel presented in [HPLdW10] does not have this issue
because the CUDA atomic increment function allows to set an upper bound. Compared
to the original kernel we have also dropped the calculation of tile coordinates to write
to the list and just write the indices into the quadtree. This allows us to simplify the
kernel (reducing register usage), and these tile coordinates can be easily calculated on
the CPU from the quadtree indices. A specific problem that was encountered during
the implementation is that it is not possible to start using OpenGL before OpenCL has
completely finished (which is ensured by clFinish()). This includes the read-back
of the final list. Although the list is small and the read-back takes minimal time, it would
be preferable to have this transfer run asynchronously while other (OpenGL) commands
are issued. A possible workaround would be to copy this list to a buffer with OpenCL
(a fast GPU to GPU copy) and then start the transfer through OpenGL via PBOs.

Figure 4.9 provides a performance overview of view-space tile determination with
the presented OpenCL buffer reduction. When comparing the results with the results
without OpenCL from Figure 4.6 we see a performance increase by a factor of 3 to 4.
The CPU is also free to do other work during kernel execution, unless clFinish()
is called “too early”. The performance difference to [HPLdW10], which claim a buffer
reduction time of 1.2 milliseconds, can be explained by the different GPU hardware,
the GeForce 8800 GT we used is the earliest generation hardware supporting GPGPU.
Additionally, OpenCL is still relatively new and not as mature as CUDA, but since it
is a vendor independent technology we see it as more future-proof. It should be noted
that it is trivial to perform the buffer reduction on a lower resolution than is actually
rendered. E.g., it is possible to combine the tile determination render pass with the main
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Fig. 4.9: The performance of the view-space tile determination in full, half, quarter and 1 / 8
resolution when doing OpenCL buffer reduction.

render pass, write out the tile requests using MRT and still do the buffer analyzing using
OpenCL only on every 4th element. In contrast to [HPLdW10] we did see a significant
speed difference between processing a full-resolution and a half-resolution buffer.

A downside of using this OpenCL buffer reduction is the loss of some information: it
is no longer known how many pixels request a given tile. This information can be used
to sort tile requests by importance for improved visual quality (seen Section §4.5.9).
This information can be retained during the buffer reduction, one option is to store
the quadtree in ushort instead of uchar format, doubling the memory requirement
(since tiles can be requested by more than 256 pixels). The size of the final list also
doubles since it alternately contains tile numbers and their pixel usage.

The new OpenGL extension EXT shader image load store finally introduces scat-
tered memory writes to GLSL shaders and can be of considerable help for tile deter-
mination. One possibility to explore is writing out the tile requests from the shader
directly in the quadtree format. This would save time and memory because the first
kernel becomes redundant.
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4.2.3 Other Tile Determination Methods

Various other tile determination methods are possible:

• Pre-calculated conservative tile determination – Potentially Visible Set for virtual
texture tiles:
For static environments it is possible to pre-calculate the tiles that can potentially
be visible from designated areas (cells) in the virtual world, similar to the Poten-
tially Visible Set (PVS) system for occlusion culling [Air90]. The tradeoffs are
similar to the existing PVS for occlusion culling: no runtime overhead, limitation
to static geometry and overestimation of the exact set.

• Conservative tile determination in texture space:
Tile determination by rendering in texture space was first proposed in [LDN04].
This method does not take occlusion into account, a deficiency which could also
be used to advantage by interpreting it as a tile prediction method. This provides a
definite benefit when large parts of the scene suddenly become disoccluded. The
method can be performed either on the GPU or the CPU. Refer to [LDN04] and
[MG08] for an elaboration of the method.

• Approximative tile determination in world space:
Mittring mentions distance-based approximative tile determination systems – the
required tiles can be calculated per triangle or draw call [MG08]. Content with a
varying texture density requires more complicated treatment [MG08]. Approx-
imative tile determination is easiest to do with height-map-based terrain: the
mipmap-level borders are at concentric circles or squares around the center of
interest. This is tile determination as done in clipmaps systems [TMJ98].

• Special cases:
There are some special cases where the tile determination becomes easier. For
example building an image viewer based on virtual texturing technology results
in an orthographic projection with a constant perpendicular viewing angle and
therefore makes tile determination trivial.

4.2.4 Adapting Rendering to Tile Determination

As mentioned above, calculation of mipmap-levels in the shader is not able to exactly
match the mipmap-level-selection that OpenGL does. This results in the fact that even
“exact” tile determination in view space is not really “exact” but only requests approx-
imately the right tiles. (Unless mipmap-level calculation by texture fetching is used, as
explained above.) Approximative algorithms do not even try to fetch exactly the “right”
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tiles. Since the exact mipmap-level calculation is not clearly defined in the OpenGL
specification (see above), algorithms that do not use the OpenGL mipmap-level calcula-
tion (via texture sampling or ARB texture query lod) will never exactly match the tiles
OpenGL would use.

Because sampling from the pagetable texture uses the OpenGL mipmap-level cal-
culation, there is a discrepancy to the tile determination system, which in the worst case
can result in a fallback to a low-resolution tile for rendering. Consider the following
example: the tile determination system requests a tile from mipmap-level 0 for a group
of pixels. However, OpenGL selects mipmap-level 1 for these pixels, which is not avail-
able, therefore the fallback entry from mipmap-level 4 is used, resulting in a completely
blurred result at these pixels.

The solution is to either adapt the fallback mechanism or the sampling from the
pagetable to the tile determination system. For example when using view-space tile
determination with mipmap calculation, one should adapt the virtual texturing shader to
sample into the pagetable with texture2DLod(), with the mipmap-level calculated
in the same way as during the tile determination. This prevents the mismatch with the
OpenGL mipmap-level calculation. When using an approximative tile determination,
one could adapt the fallback mechanism so that the approximated tile is used.

A related question is whether the fallback should fall back to higher resolution tiles
too, i.e., should we consider also higher resolution tiles or only lower-resolution tiles
for rendering when the native tile is not currently available.

4.3 Tile Streaming System & Texture Updates

The tile streaming system has to load visible tiles from the storage medium. If the
loaded tiles are stored compressed, they have to be decompressed. They also have to be
re-compressed, if the tiles should be stored compressed on the GPU. It is also possible
to store the tiles already compressed in a GPU compression format, so only loading and
no transcoding has to be done. The tile streaming happens asynchronously in additional
threads, while the texture updates are usually performed on the render thread, just before
the main render pass with the virtual texturing shader. For the texture updates, “new
tiles” are considered, i.e., tiles that have been loaded by the tile streaming since the
last frame. These will be needed during rendering but are not currently available in
the physical texture. These new tiles are streamed to the physical texture on the GPU.
Additionally, the pagetable texture has to be updated. Figure 4.10 provides an overview
of the tile streaming system.

The following subsections describe the tile streaming and the texture updates.
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Fig. 4.10: An example tile streaming system.

4.3.1 Tile Streaming

The tile streaming system loads virtual texture tiles from the storage medium, de-
compresses them if they are compressed, and re-compresses them if they should be
stored compressed on the GPU. Since the tile determination system cannot look into
the future (and often requests too many tiles if it tries to) the time needed to stream
tiles from the storage medium to the GPU is a determining factor for the visual qual-
ity of virtual texturing. The performance of the tile streaming system can be measured
by the latency (time from request to arrival) and the related factor of throughput. The
latency is a factor that affects visual quality continuously, the throughput is more of a
“binary” factor, either it is high enough to cope with the demand, or it is too low. Figure
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4.11 provides an overview of throughput of common JPEG and PNG decompression
libraries. Note that this and other benchmarks concerning tile streaming are performed
on 1024 tiles of size 2562 pixels. The JPEG tile store is compressed 1:10.8, the PNG
tile store is compressed 1:2.1 (the PNG tiles are over 5 times larger than JPEG). The
results suggest that the PNG format is not particularly suited to high performance de-
compression – the fastest library (libpng) reaches 17,6 megapixels per second. JPEG
decompression throughput is much higher, with the fastest contender (libjpeg-turbo

[liba]) decompressing at nearly 100 megapixels per second.
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Fig. 4.11: Throughput of common JPEG and PNG decompression libraries.

However, the tiles have to be streamed from the storage device and not from mem-
ory. Figure 4.11 shows the performance when loading and decompressing the tiles.
Some results are labeled as “decoupled”, which means the decompression is done in a
separate thread. The de-coupling helps immensely with the throughput. Throughput for
libjpeg [Gro] and libpng [libb] is much lower for decompressing from hard disk than
for decompression from memory, unless the loading and decompression are decoupled.
In the decoupled case libjpeg and libpng nearly achieve the same throughput as when
decompressing from memory. De-coupling also helps much for libjpeg-turbo, but only
2/3 of the speed of decompression from memory is achievable, because libjpeg-turbo is
so fast that the disk loading becomes the bottleneck here. In this case a higher compres-
sion rate could increase the throughput because disk loading times are decreased. We
expect the throughput to be the same as when decompressing from memory with a com-
pression ratio above 1:20. While decoupling increases the throughput, the latency is not
decreased. One result here is this: Decompressing tiles from memory is not significantly
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faster than doing decoupled loading from hard disk and decompression. A conclusion
to draw from this result is that it does not make much sense to cache JPEG or PNG
compressed tiles. Since it is just as fast to load and decompress them, one should rather
cache the tiles uncompressed (or DXT compressed), even if less tiles fit into the cache.
The situation is completely reversed on gaming consoles, where latency and bandwidth
are far worse (when streaming from an optical medium) and RAM is limited. It is also
possible to use both caches in combination, see Section §4.5.5.
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Fig. 4.12: Throughput when loading and decompressing from hard disk. The uncompressed and
DXT compressed tiles are only loaded.

As discussed in Section §4.1.5, it may be beneficial to store multiple or all tiles in
a single file, and read multiple tiles in one batch. A request scheduler could combine
multiple requests, sort them according to disk layout, etc. No tests have been done
measuring performance of this technique.

There are also caches outside of the virtual texturing application: there is the disk
cache built into the hard disk (“disk buffer”), additionally the operating system caches
recently used files in RAM (“page cache”). Since we concluded above that we do not
want to cache compressed tiles, it makes sense to prevent the operating system from
caching the files. This allows the whole available RAM to be used to cache decom-
pressed tiles within the application. On Mac OS X one can turn off caching for a file
descriptor using:

fcntl(file_descriptor->_file, F_GLOBAL_NOCACHE, 1);
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Mittring states that under Windows, I/O Completion Ports can be used for efficient file
access with disabled page cache [MG08].

Figure 4.12 also features loading times for uncompressed and DXT compressed
formats in addition to the decompression times. It can be seen that throughput of un-
compressed tiles is much lower even though no decompression is necessary, because so
much more data has to be loaded. Even PNG provides higher performance. Tiles that
are pre-compressed in DXT provide better performance than uncompressed or PNG,
they are on par (DXT1) or below (DXT5) slow JPEG libraries. The upshot of using
DXT pre-compressed tiles is an extremely simplified texture streaming system. Ad-
ditionally, offline DXT compression algorithms generally provide much higher quality
than real-time algorithms. In the JPEG case the artifacts of the lossy JPEG compression
are added to the artifacts of the real-time DXT generation. When using virtual texturing
in a controlled environment where storage space is not an issue and the highest possible
throughput is not necessary, DXT tiles might be an acceptable choice. Fast disks or
SSDs can also greatly help with the throughput – DXT1 loading on a fast SSD could
even outpace libjpeg-turbo.
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Fig. 4.13: The performance of publicly available CPU DXT compression libraries.

So far we have only covered the loading and decompression performance. Convert-
ing the tiles to DXT before storing them in the physical texture gives several benefits:
significantly reduced memory requirement for the physical texture, increased perfor-
mance when streaming the tiles to the physical texture and the fact that more tiles can be
cached in RAM. Downsides are quality reductions (especially because of the real-time
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compression) and the further reduced tile streaming performance. Figure 4.13 measures
the performance of commonly available high-performance DXT compression libraries
that perform compression on the CPU. The NVIDIA Texture Tools were not measured
because its CPU compressor only wraps the already benchmarked libraries. ImageLib

[Dor] had too low performance to be included. According to [Cor10] the fastest avail-
able CPU DXT compression code is “Extreme DXT Compression” [Uli], ranging
from 206 - 910 MP/s, but we could not run the provided code. The performance of the
measured libraries varies widely, depending on optimization and quality/performance
trade-offs. All libraries were benchmarked with their standard settings, only squish

[squ] was used with the “kColourRangeFit” setting to improve performance. [Cor10]
compares performance of CPU and GPU compressors, showing that GPU compressors
are an order of magnitude faster (up to 13000 MP/s). The disadvantage of GPU-based
compressors in a virtual texturing pipeline is that no bandwidth is saved when transfer-
ring tiles to the GPU, and, unless the compressed tiles are read back to the CPU, no
space is saved in the RAM tile-cache.

Real-time DXT compression is a well researched subject [vW06a] [vWC07], ex-
tensions for compressing normal maps have also been researched [vWC08]. [Blo08]
provides a detailed technical overview of the performance and quality of different DXT
compression implementations.

After evaluating the performance of commonly available libraries for JPEG / PNG
decompression and DXT compression on the CPU, we conclude that the fastest mea-
sured libraries are suitable for the texture streaming pipeline in a virtual texturing sys-
tem. A satisfactory pipeline can be built using libjpeg-turbo and FastDXT [Ren] (or,
presumably, Extreme DXT). If tile storage size is an issue, one should look at formats
providing higher compression ratios. In 2006, Waveren concluded that CPUs were not
yet fast enough for real-time tile streaming of tiles in more advanced formats but might
become fast enough later:

“As faster CPUs and systems with more CPUs or cores become avail-
able it will become advantageous to use compression formats that achieve
better quality and higher compression ratios at the cost of more expensive
decompression. As more CPU time becomes available compression for-
mats like JPEG 2000 and HD Photo typically achieve acceptable quality at
higher compression ratios and as such improve the streaming throughput
[...]” [vW06b].

JPEG 2000 decompression results are not included in the results because the available
open source decompression libraries are not tuned for performance yet. In a virtual
texturing pipeline there is no restriction to existing formats for tile storage. In [vW06b]
decompression performance of a format which is very similar to JPEG is discussed. The
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DXT5 compression can be modified to use the YCoCg color space for improved quality
[vWC07].

An interesting option for a texture streaming pipeline would be to do the decompres-
sion and re-compression completely on the GPU. This would minimize the necessary
upload bandwidth to the GPU, and many more tiles would fit into the RAM tile cache.
GPUs are already proven to be more than 10 times faster at DXT compression [Cor10].
However, decoding a complex format like JPEG on the GPU is not trivial and there are
non-parallelizable sub-tasks that do not map easily to the GPU programming model.
There is one project which does JPEG decoding on the GPU using CUDA [Din09]. An
additional possibility is to explore the usage of the new texture compression formats
BC6/BC7 (ARB texture compression bptc).

4.3.2 Physical Texture Updates

The physical texture is used to store the tiles of the virtual texture that are currently
necessary for rendering. Updates depend on how exactly the tiles are stored. We only
consider methods of storage that can apply (hardware) texture filtering during the texture
fetch:

• Single 2D texture: Using a single 2D texture is the method Mittring and Barrett
use. The tiles are stored in chequer pattern in the texture, tightly packed. 2D
textures are ubiquitously supported and feature all filtering modes. The limit-
ing factor here is the maximum size for a single 2D texture, which ranges from
20482 (Intel GMA / integrated graphics chips), 40962 (older hardware), 81922
(new hardware) to 163842 (new ATI hardware with very new drivers). Depending
on the scene, viewport size and texture atlas layout the actual requirements range
from 20482 up to over 81922. The method works fine if the maximum texture size
the hardware/driver provides matches the requirements.

• Multiple 2D textures: Using multiple textures is possible (either by fetching both
textures and masking the result or with a conditional) but slow [MG08].

• 3D texture: 3D textures can be used to overcome the size limitation of 2D textures,
but it is not possible to enable filtering only in two directions. When sampling
directly from the slices the results should still be correct, but the performance
may be even worse than multiple 2D textures.

• Texture arrays: Texture arrays would be the ideal way to store the necessary tiles
(although Mittring finds them to be a “bit” slow [MG08]), but unfortunately many
hardware/driver combinations do not provide enough array layers to store one tile
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per layer. (For comparison: a 81922 2D texture can hold 1024 2562 tiles or 4096
1282 tiles.) NVIDIA only offers 512 layers, Intel does not support texture arrays
at all and only recent ATI hardware can support 8192 layers.

Figure 4.14 shows the results of a simple benchmark measuring the sampling per-
formance from different texture sources.
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Fig. 4.14: Simple benchmark measuring the average time for a render pass (1920 x 1057) con-
sisting only of texture fetches from a specific texture source.

If the size restriction of the chosen physical texture storage method poses a problem,
there are at least four solutions:

• Dynamic LoD adjustment: One can dynamically adjust the bias used for the
mipmap-level calculation in the tile determination system so that the number of
necessary tiles is reduced until they fit into the physical texture [vW09b] [MG08].
This results in uniformly blurred output.

• Dropping “unimportant tiles”: If the physical texture is full, tiles that are deemed
to contribute only marginally to the visual quality can be dropped (as discussed in
Section §4.5.9). This results in some parts of the scene being blurrier.

• VRAM cache: An additional buffer in graphics memory, from which tiles can be
transferred to the physical texture very fast, is used [MG08]. Tiles that are not
currently visible but might become visible soon are transferred to the physical
texture on demand [MG08]. This is a solution to the predicted tiles not fitting into
the physical texture as opposed to the necessary tiles.
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• Multiple virtual textures: It is straightforward to use multiple virtual textures in
an application (e.g., one for terrain and one for objects), just like multiple stan-
dard textures are used nowadays. Although this necessitates multiple draw calls,
this should still be a reduction of draw calls. Each virtual texture has one asso-
ciated pagetable texture, the physical texture can either be shared or be unique to
a virtual texture. Tile determination in view space can be extended to determine
tiles for multiple virtual textures in one pass [Bar08], see Section §4.5.15 for more
information.

Regardless of the texture storage method (2D texture, texture array, etc.), a slot for
new texture tiles has to be found. If no slot is free, tiles that are not visible anymore can
be replaced, for example with the “least recently used” principle. Mittring discusses
several problems and solutions for updating parts (tiles) of a 2D texture, but they are
specific to Direct3D [MG08]. We experienced no problems updating the physical tex-
ture using glTexSubImage2D(). Pixel buffer objects can be used to hide the latency
of updating the texture, but since there is a variable number of new tiles per frame, a
threshold for the PBO buffer size must be set. This is a compromise between mem-
ory waste and the maximum amount of new tiles per frame. One can also transfer the
remaining tiles in frames with many tiles synchronously.

Texture memory on the PC/OpenGL architecture cannot be directly written to, and
the texture updates are performed through OpenGL with glTexSubImage2D(). Since
there is one context per thread in OpenGL this means that the physical texture updates
either have to happen on the main OpenGL thread (which is different from the thread
that loads the tiles) or the physical texture has to be shared between the main context and
another context on another thread. We have not explored updating the physical texture
from a shared context.

Finding a slot in the physical texture (amongst other tasks) necessitates a data struc-
ture that holds information about all tiles stored in the physical texture. A simple two
dimensional array of a structure containing the identifying tuple (x, y, mip-level) and
the lastVisibleTime sufficed in our case.

4.3.3 Pagetable Texture Updates

Each tile of the virtual texture is represented by a pixel in the pagetable texture that
stores the position of the corresponding tile in the physical texture. Because of this 1:1
correspondence between the tiles of the virtual texture and the pixels of the pagetable
texture, the pagetable texture has as many pixels on its lowest mipmap-level as there are
tiles on the lowest mipmap-level of the virtual texture. If the virtual texture has 5122 tiles
at the lowest mipmap-level, the pagetable texture is a 5122 pixel texture Additionally,
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the pagetable texture is mipmapped (because the virtual texture is mipmapped too), and
the pixels of the mipmap-levels of the pagetable texture correspond to the virtual texture
tiles of the same mipmap-levels. For more details see the Section §4.4. The pagetable
texture has to be updated every time a new tile is added to the physical texture (there are
no removals, only replacements). The pagetable texture and the physical texture do not
have to be synchronized during the virtual texturing rendering. The pagetable texture
updates can happen on the same thread as updates of the physical texture, which should
be the main rendering thread unless shared contexts are used.

Updates of the pagetable depend on storage of “fallback entries” in the pagetable.
If fallback entries are used, the pixels corresponding to the tiles that are not currently
stored in the physical texture are filled with the coordinates of “fallback tiles”. Usually
the highest resolution tile above the missing tile in the mipmap-chain that is currently
available is used as a fallback tile. Keeping the top tile of the mipmap-chain in the
physical texture all the time ensures the existence of a valid fallback tile at all times.
During rendering, a graceful fallback to lower resolution tiles happens for those tiles that
are not available because they have not yet been loaded, or have been missed by the tile
determination system. If no fallback entries are used, the fallback happens with looping
in the fragment shader, and the addition of a single tile to the physical texture only
necessitates the change of a single pixel in the pagetable texture. If fallback entries are
used, all pixels in the mipmap pyramid below the pixel have to be updated in the worst
case. More specifically, when mapping a tile, pagetable entries “below” the mapped
tile are evaluated recursively and if they are not “mapped” but store a fallback-entry,
the fallback-entry is updated. The recursion stops when encountering a mapped tile.
When un-mapping a tile, first the replacement fallback tile must be determined, it is
stored in the tile above the tile to be unmapped. Then the recursion replaces the fallback
entries from the to-be-unmapped tile with the other tile. Recursion again stops when
encountering a mapped tile. Usage of fallback entries complicates and slows down the
pagetable texture updates.

The information stored in the pagetable texture is necessary not only on the GPU
during rendering but is also needed in the CPU-based code. For example the tile deter-
mination system needs to know if a tile is already mapped. It is possible to use the same
format and structure for the pagetable on both the CPU and GPU. This saves the cost of
conversion and synchronization.

Updating the pagetable texture is a compromise between the number of OpenGL
calls and the wasted bandwidth & fill-rate. Minimizing draw calls can be done by re-
placement of the whole pagetable texture. Bandwidth & fill-rate can be minimized by
updating each changed pixel in the texture individually. Performance-wise the optimum
is somewhere in between, depending on the hardware and software setup.

Actual updating can happen either with glTexSubImage2D() or by rendering
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points / quads. When using glTexSubImage2D(), PBOs can be used to let the
transfer happen asynchronously. We implemented a simple compromise between draw
calls and bandwidth & fill-rate: For each mipmap-level of the pagetable texture, the
minimum and maximum coordinates of modified pixels are remembered. Only mod-
ified mipmap-levels are uploaded using glTexSubImage2D(), and only between
the minimum and maximum pixels. This results in a worst case of updating a whole
mipmap-level for just two pixels in opposing corners. Barrett developed a more sophis-
ticated method for pagetable updates because his pagetable is up to 40922 in size and he
is using fallback entries [Bar08]. Another interesting option is to create the pagetable
texture entirely on the GPU using geometry shaders, as described in [HPLdW10].

4.4 Virtual Texturing Shader

The virtual texturing shader has to transform the virtual texture coordinates (the ones the
geometry is textured in) to the physical coordinates, so that the right tile (in the physical
texture) is sampled at the right position. If the required tile is not in the physical texture,
a fallback to a lower resolution version is used. The “trick” to be able to do that effi-
ciently is the pagetable texture. The pagetable texture stores the position of the tile in
the physical texture for every tile in the virtual texture. The pagetable is a mipmapped
texture that has a pixel for every tile in the virtual texture. If the virtual texture has 5122
tiles at the lowest mipmap-level, the pagetable texture is a 5122 pixel texture. Every
pixel of the pagetable texture corresponds to a tile in the virtual texture and stores the
coordinates of the corresponding tile in the physical texture. If the corresponding tile
is not stored in the physical texture, it contains the coordinates of the fallback entry (if
those are used). The virtual texturing shader samples the pagetable texture (always with-
out filtering, i.e., GL NEAREST) with a bias balancing the size differences between the
pagetable texture and the virtual texturing shader. All lookups for virtual texture coor-
dinates that correspond to a specific virtual texture tile get the pixel from the pagetable
texture that holds the coordinates of this tile in the physical texture. Figure 4.15 tries to
illustrate this relation. For pixels that should be textured with the tile from the rightmost
bottom (and mipmap-level 0) of the virtual texture, the lookup into the pagetable texture
also goes to the rightmost bottom pixel, where the coordinates of the corresponding tile
in the physical texture are stored.

This explains how the fragment shader determines the coordinates of the visible tile
in the physical texture, but the coordinates within the tile are also necessary. The within-
tile coordinates (relative to the corner of the tile) depend on the mipmap-level of the
sampled tile because at higher mipmap-levels the same coordinate space is covered with
fewer pixels [Bar08]. The straightforward but inefficient way to calculate the within-
tile coordinates is to convert the texture coordinates to be measured in pixels (instead of
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Pagetable Texture (on the GPU)

Physical Texture (on the GPU)

Virtual Texture (stored on HD)

Fig. 4.15: Illustration for the relation between virtual texture, pagetable texture and physical
texture.

going from zero to one) and then mod them by the tile-size [Bar08]. The faster option
is to calculate exp2() of the reverse-mipmap-level, multiply this by the virtual texture
coordinates and take the fraction of the result [Bar08]. The reverse-mipmap-level is 0
for the highest mipmap-level, 1 for the second highest, etc.

Program 4 shows a simple unoptimized GLSL fragment shader for virtual textur-
ing. The division can be easily replaced with a multiplication and the exp2() can
also be avoided with constant or uniform arrays, or by passing the pre-calculated value
if the mipmap-chain is shorter than 10. By using a pagetable texture in floating point
format, most of the computation can be avoided altogether (since it is page-constant)
and the shading overhead of virtual texturing can be reduced to a dependent texture-
sample and a multiply-add instruction – at the cost of graphics memory [Bar08]. Ad-
justments are necessary for bilinear/trilinear/anisotropic filtering, or if no fallback en-
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Program 4 A GLSL fragment shader for virtual texturing rendering. Based upon Bar-
rett’s SVT demo shader [Bar08].
const float phys_tex_dimension_pages = 32.0;
const float page_dimension = 256.0;
const float page_dimension_log2 = 8.0;

uniform float mip_bias;
uniform sampler2D pageTableTexture;
uniform sampler2D physicalTexture;

// converts the virtual texture coordinates to the physical texcoords
vec2 calulateVirtualTextureCoordinates(vec2 coord)
{

float bias = page_dimension_log2 - 0.5 + mip_bias;
vec4 pageTableEntry = texture2D(pageTableTexture, coord, bias) * 255.0;
float mipExp = exp2(pageTableEntry.a); // alpha channel has mipmap-level
vec2 pageCoord = pageTableEntry.bg; // blue-green has x-y coordinates
vec2 withinPageCoord = fract(coord * mipExp);

return ((pageCoord + withinPageCoord) / phys_tex_dimension_pages);
}

void main(void)
{

vec2 coord = calulateVirtualTextureCoordinates(gl_TexCoord[0].xy);

vec4 vtex = texture2D(physicalTexture, coord);

gl_FragColor = vtex;
}

tries are stored into the pagetable texture. When using looping in the fragment shader, it
is required to avoid usage of texture2D() in the loop to prevent incorrect results be-
cause texture sampling is undefined in branches and loops [LK06]. The workaround
is to calculate the derivatives before the loop and use texture2DGrad() in the
loop. Since texture2DGrad() does not accept a bias argument, these must be en-
forced by dividing the derivatives by 2−bias. No adjustments are necessary when using
texture2DLod() to access the pagetable, this version works fine in loops.

Figure 4.16 compares the cost of a render pass with different shaders. Although
virtual texturing adds a dependent texture fetch and some math instructions, the per-
formance of a base virtual texturing shader is virtually identical to “normal” rendering.
The numbers are the average milliseconds for the main render pass of the terrain scene,
the virtual texture size is 32k2 and the texture size for the normal rendering is 8k2. The
shading cost of virtual texturing rises significantly when modes are used that necessitate
gradient calculation (trilinear or anisotropic), whereas these features are indistinguish-
able speed-wise with normal rendering (trilinear filtering is used in the tests for normal
rendering). The overhead of looping in the fragment shader is also noticeable (and rises
significantly when more tiles are missing), but it saves costs elsewhere.
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Fig. 4.16: Comparison of the performance of virtual texturing shaders.

4.5 Problems, Challenges, Advanced Features &
Miscellaneous

This chapter aims to cover problems and challenges during the implementation of a
virtual texturing system that are not directly related to the already covered main parts of
a virtual texturing system. Advanced features and miscellaneous issues are also covered
here.

4.5.1 The Virtual Texturing Runtime Pipeline

Arguably, the most difficult challenge when implementing virtual texturing is not de-
veloping any of the parts like the tile determination or streaming system, but rather
combining them in a high-performance pipeline that makes optimal use of the available
CPU and GPU resources. Simple examples for speedups in the pipeline are usage of
PBOs for asynchronous texture transfers or decoupled tile loading and decompression.
More speedups are possible by two frame-alternating PBOs for the same texture trans-
fer or by delaying the tile determination read-back until the next frame. As mentioned,
combining the view-space tile determination pass with another render pass is possible
and useful if one has a CUDA/OpenCL solution to compress the result efficiently. An
optimized pipeline needs to make sure the CPU and GPU are fully utilized and not
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stalled waiting for data. The best pipeline setup probably depends on the specific appli-
cation and settings, virtual texture layout, geometric and shading complexity, hardware,
etc. One problem with asynchronous transfers using PBOs is that there is no (built in)
way to know when the transfer is finished. Possible solutions are fence objects or doing
the transfer synchronously but in another thread with the help of context sharing.

4.5.2 Texture Filtering

The virtual texturing system as described in this chapter only works correctly (as far
as visual output is concerned) without hardware texture filtering (GL NEAREST in
OpenGL terms). Problems of hardware-based filtering when using “indirect” texturing
are well known and discussed e.g. in [LN03]. Adaptations are required for bilinear,
trilinear and anisotropic filtering. Regarding texture filtering, it should be noted that vir-
tual texturing using an unfiltered (GL NEAREST) physical texture already corresponds
to non-virtual textured rendering with GL NEAREST MIPMAP NEAREST because
sampling occurs from the closed matching mipmap-levels of the tiles. A virtual texture
is always mipmapped and rendering with a virtual texture always uses these mipmap-
levels. Virtual textured rendering with bilinear filtering (GL LINEAR on the physi-
cal texture) corresponds to normal rendering with GL LINEAR MIPMAP NEAREST.
(The terms “bilinear” and “trilinear” are not adequate for describing all texture filtering
possibilities.)
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Fig. 4.17: An example explaining why enabling bilinear filtering for virtual texturing results in
artifacts at tile boundaries.
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Bilinear filtering (aka GL LINEAR): Let us examine a part of the problem: the
physical texture contains de-correlated tiles from different parts of the virtual texture.
At tile borders the texture filtering will sample adjacent pixels from tiles that are adjacent
in the physical texture but not in the virtual texture. Figure 4.17 tries to explain this
with an example. This can result in artifacts since pixels from completely different parts
of the virtual texture are used for filtering at tile borders. There are various fixes to this
issue: add an empty border around tiles, use texture arrays instead of a single 2D-texture
or contract the texture coordinates within the tiles by half a pixel (sampling the dead
center of a pixel does not incur a fetch of neighboring pixels for the bilinear filtering).
Although these “solutions” fix artifacts from incorrectly sampling into neighboring tiles
in the physical texture, they are still not visually correct: the pixel at the tile borders
are still not filtered with the correct pixels, those that are adjacent to them in the virtual
texture. There is no correct filtering across tile boundaries.

One solution to provide correct bilinear filtering is to add a (1 pixel) border around
every tile that contains the pixels from the adjacent tiles. This ensures completely cor-
rect bilinear filtering across tile boundaries although it wastes memory [Bar08]. When
adding such a border (of any size) there are basically two options:

• Expand the tile-size:
The border is added to the tile-size, resulting in tiles that no longer have power-of-
two sizes, i.e., tiles are 1302 instead of 1282 pixels or 2582 instead of 2562 pixels.
Unfortunately this breaks the memory alignment of the tiles and also destroys
the power-of-two size property of the physical texture, resulting in performance
problems[MG08]. Padding can be used to circumvent the performance problems,
[MG08] but this results in even more memory waste. The benefit of this method is
that the (source) virtual texture dimensions are still a power-of-two. It should be
noted that there is no public virtual texturing implementation using this method
so the exact modifications necessary are not known – some math in the virtual
texturing shader depends on the power-of-two properties.

• Retain the tile-size:
With this method the physical tile-size stays the same but due to the border the
actually usable size is decreased, i.e., only 1262 pixels out of a 1282 are actually
used, except for the filtering. This method does not suffer from the problems
of the other approach but requires source virtual texture dimensions that are no
longer a power-of-two. Some additional math in the fragment shader is necessary
if no floating point pagetable is used – since we want to use only a subset of the
tiles now and the border pixels are there just for filtering we need a coordinate
contraction for the within-tile coordinates:
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withinPageCoord = withinPageCoord ∗ (page dimension−
border width ∗ 2.0)/page dimension+ border width/page dimension;

Mittring mentions that the visual quality suffers a lot when using this method “due
to aliasing in the mipmaps caused by the down sampling of the source texture to
slightly less than its half size”[MG08]. We cannot confirm this and are not sure
what he is referring to – there is only downsampling to exact half sizes going
on in our implementation. Perhaps he refers to using this method with a source
virtual texture which is still a power-of-two – this should obviously be avoided.
For example, when working with 128k2 virtual texture using a border of one pixel
means the artists can only fill a texture atlas of size 1300482 pixels instead of the
full 1310722 pixels. A drawback of this method is that since changes of the tile-
size or border size change the size of the required source texture atlas, not only
the atlas has to be re-generated but also the texture coordinate offsets change,
necessitating regeneration of the (texture coordinate adjusted) geometry.

Barrett mentions the possibility of using borders that are only on two sides of a
tile, effectively halving the memory waste [Bar08] [Spa10]. The memory waste
is not a significant problem when using just a one pixel border for bilinear filter-
ing, but larger borders are necessary for other filtering modes (see below). The
additional fragment shader line is changed to:

withinPageCoord = withinPageCoord∗(page dimension−border width)/
page dimension+ 0.5/page dimension;

Trilinear filtering (GL * MIPMAP LINEAR): As noted above, virtual texturing by
its very nature already samples from the closest matching tile mipmap-levels, corre-
sponding to GL * MIPMAP NEAREST filtering. “True” trilinear filtering, which inter-
polates between the two closest matching mipmap-levels (GL * MIPMAP LINEAR),
is possible by adding a second, half-resolution mipmap layer to the physical texture.
The physical texture already contains tiles from different mipmap-levels, the closest
matching tile for each pixel. By adding a half-resolution layer we have two tiles to in-
terpolate from for each pixel – there is no need for the physical texture to have a full
mipmap-chain.

There are three options for obtaining the down-sampled texture tiles. One option
is to down-sample all the textures after loading and decompression. We use this option
and it works fine performance-wise, however this is obviously not feasible for DXT pre-
compressed tiles. The second option is to store all the tiles in both full-resolution and
half-resolution versions, so that both versions are loaded at once. This only increases the
size of the tiles by one quarter. However, a down-sampled version of each tile, except
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the tile at the highest mipmap-level, already exists, namely the respective tile at the next
higher mipmap-level. Therefore the third option is to always load the tile below too for
every tile request and extract the down-sampled version from there (it covers just one
quarter of the tile). Compared to option two the size of the virtual texture tile store is
not increased, but a single tile request can necessitate loading two tiles. On the upside,
always having this lower resolution tile available can be beneficial in case it becomes
necessary for rendering.

When updating the physical texture, both mipmap-levels must be updated. The half-
resolution tile can either be generated at runtime or stored in the virtual texture (probably
only a good idea for DXT pre-compressed virtual textures, since DXT data cannot be
down-sampled directly).

Mittring and Barrett mention that the border around the tiles should be increased
(to two pixels) for trilinear filtering [MG08] [Bar08]. This makes sense since this still
leaves a one pixel border at the half-resolution tile. However, we have not observed any
noticeable artifacts when using trilinear filtering with a one pixel border.

Adaptation of the virtual texturing shader is also necessary. Trilinear sampling is
dependent on the gradients to select the mipmap-level factors, but these are not cor-
rect when sampling from the physical texture at the tile boundaries [Bar08]. The cor-
rect gradients have to be calculated and the physical texture must be sampled with
texture2DGrad() to ensure the correct result. texture2DGrad() allows pass-
ing a gradient to be passed to the texture fetch to be used instead of the built-in gradient
calculation. Also a bias of -0.5 is necessary in the tile determination and when access-
ing the pagetable texture. This is because we are not interested in “exactly matching”
tiles anymore, but tiles that are of a higher resolution, because we are interpolation this
higher-resolution tile with its down-sampled version when sampling from the physical
texture now. Program 5 shows the calculation of the corrected gradients.

Usage of texture2DGrad() requires either GL EXT gpu shader4 or OpenGL
3.0 and therefore is not ubiquitously supported. Barrett developed a workaround that
minimizes trilinear filtering artifacts on hardware without texture2DGrad() sup-
port.

Program 5 GLSL code for calculating the corrected gradients as first published by
Barrett [Bar08].
float page_unit_to_phys = ((page_dimension - border_width * 2.0) / page_dimension)

/ phys_tex_dimension_pages;
float gradient_scale = exp2(mip_bias + mip_trilerp_bias) *

page_unit_to_phys * mipExp;

vec2 gradx = dFdx(texcoord.xy) * gradient_scale;
vec2 grady = dFdy(texcoord.xy) * gradient_scale;



Chapter 4. Virtual Texturing 66

Anisotropic filtering: Virtual texturing with anisotropic filtering is a bit more in-
volved because enabling anisotropy changes the mipmap-level selection [Spa10]. Aniso-
tropy cannot be enabled on the pagetable texture (to get proper mipmap-level selection)
because the filtering would result in completely wrong values being returned from fetch
– pagetable entries contain the coordinates of the corresponding tiles in the physical tex-
ture and cannot be “filtered”. Therefore the modified mipmap-level must be calculated
in the shader and selected explicitly from the pagetable texture with texture2DLod().
Tile determination must also be changed accordingly. Note that the view-space tile de-
termination method with mipmap-level calculation by sampling from a texture (with
anisotropy enabled) did not work out for us. Calculation of the mipmap-level using a
formula derived from the anisotropy extension specification performs well. Program
5 shows the modified mipmap calculation function. The virtual texturing shader also
needs to use the same path as with trilinear filtering, meaning calculation of proper
derivatives and sampling of the physical texture with texture2DGrad(). What is
left is enabling anisotropy on the physical texture and making sure the tile border is at
least anisotropy / 2 pixels wide.

Program 6 Modified GLSL mipmap-level calculation method for the view-space tile
determination and for sampling from the pagetable texture.
float mipmapLevel(vec2 uv, float textureSize)
{

vec2 dx = dFdx(uv * textureSize);
vec2 dy = dFdy(uv * textureSize);
float Pmax = max(dot(dx, dx), dot(dy, dy));
float Pmin = min(dot(dx, dx), dot(dy, dy));

return 0.5 * log2(Pmax / min(ceil(Pmax/Pmin), max_anis * max_anis))
+ mip_bias - readback_reduction_shift;

}

“Software” filtering: Of course it is possible to ignore the hardware texture fil-
tering and do the texture filtering in the shader, but this requires 8 texture samples (4
into the pagetable texture, 4 into the physical texture) followed by an interpolation for
bilinear filtering [MG08]. [Neu10] determined this approach to be unfeasible from a
performance standpoint. Similar, anisotropic filtering is possible. Although this tech-
nique does not need additional borders around the tiles the performance likely is not
acceptable.

If one uses hardware bilinear filtering, it is possible to extend that to trilinear filtering
in the shader [MG08] with just an additional lookup into the pagetable and physical
texture. More concretely this would mean sampling the pagetable texture two times with
biases 0.5 and -0.5, then sampling the physical texture at both resulting coordinates and
interpolating the result in the shader. This way no second mipmap layer is needed for the
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physical texture [MG08]. [Neu10] successfully used this method. The tile determination
system must be modified to fetch the two closest matching tiles instead of only the single
closest tile.

4.5.3 Texture Compression

We have already discussed how (DXT) compression fits into the tile streaming pipeline,
but not which additional steps must be performed to render from a DXT compressed
physical texture. Using DXT compressed textures is transparent to the shader, and ne-
cessitates no adjustments to the virtual texturing shader. However, DXT is a block
compression (4x4) algorithm and the color compression is context dependent (the same
pixel can compress to different colors in different blocks) [Spa10]. Therefore the bor-
der around the tiles must be extended to 4 pixels to prevent artifacts [MG08] [Bar08].
This border width enables an anisotropy of 8 at the same time. Barrett notes that in the
trilinear filtering case, the DXT compression may require even (much) larger borders
[Bar08] [Spa10]. Using DXT with trilinear filtering is not fully explored and it is not
known how visible the theoretical artifacts are in practice.

4.5.4 LoD Pop-in

Even with an optimized tile streaming system there will be cases where a low-resolution
fallback of a tile has to be used, especially with a slow storage medium. When the
requested tile is finally available, the switch to the high-resolution tile texture will result
in a visible pop-in [vW09b] [Bar08] [MG08]. This is similar to the geometric LoD
pop-in and the solution is also similar: blending of the old low-resolution data with the
new high-resolution data. Waveren states: “If we used trilinear filtering, blending in
detail would be easy” [vW09b]. This could be done in the following way: When a new
tile arrives, map the half-resolution version (trilinear filtering means the physical texture
has mipmap-level one layer filled with half-resolution tiles) with scaled data from the
fallback tile. Store a blend factor in the pagetable entry that forces the lookup to the
half-resolution version. Gradually change the factor to blend in the high detail tile just
fetched. When the blending is done, replace the half-resolution version with the real
data.

If only bilinear filtering is used, the blending is more involved. It is still possible to
use a blend factor in the shader and gradually blend with a lower resolution version, but
the shader cost would likely be prohibitive, not to mention that the next lower resolution
tile is not necessarily available. Waveren proposes another solution: up-sample the
coarse tile immediately and gradually update and blend the tile with fine data every
frame until the blend factor for the high-resolution data reaches one [vW09b]. To save
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bandwidth, one can still transfer the new tile to the graphics memory only once (to
another buffer) and do the blending only on the GPU.

A completely different method that circumvents the LoD pop-in without dealing
with blending is discussed in [CESL10] and [Neu10]: by always first loading all the
ancestor tiles from low to higher resolution for a new tile request, the quality is im-
proved more gradually. Since this also makes more ancestors available in the physical
texture, this is also supposed to improve quality after rotations, at least in terrain scenes
[CESL10].

4.5.5 Tile Caches

Between the necessary parts of a virtual texturing system, the physical texture and the
tile storage on disk, various caches at different parts of the pipeline can be used. Figure
4.18 depicts these possible caches. As concluded in Section §4.3.1, it makes more sense
to cache tiles as they are sent to the GPU (DXT or uncompressed) and not as they
are stored on the disk (e.g., JPEG), at least when using a fast hard drive, and from a
“throughput perspective”. But this is not a mutually exclusive decision. It is possible
to use both caches together to unburden the hard disk bandwidth. Additionally, it is
possible to cache tiles in VRAM as Mittring mentions [MG08].

Tile Store

GPU

Physical 
TextureVRAM CacheRAM Tile 

Cache (JPEG)
RAM Tile 

Cache (DXT)

Main MemoryHD / Optical

Optional CachesNecessary Necessary

Fig. 4.18: Illustration of the various possible caches sitting between the tile store and the physical
texture.

To manage RAM caching, additional data structures are needed for their replacement
strategy. The RAM cache could be managed with an LRU algorithm, possibly with a
bias towards tiles from higher mipmap-levels. These data structures are used from the
tile determination system (to update the time of visibility), the tile streaming system (to
insert pages into the cache) and the rendering system (to transfer cached pages to the
GPU) and therefore could be considered a fourth integral part of the virtual texturing
system. The access from different threads mandates locking of the data structure. When
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using tile determination in view space without buffer reduction, it is necessary to iterate
over a quite large list of mostly similar pages to either touch their modification date or
request them for streaming. The cache management should be developed with special
emphasis on efficiency, since touching the cache management data structure can become
one of the bottlenecks of the virtual texturing system.

4.5.6 Texture Atlas Problems

Unless virtual texturing is used to render a single mesh with a single texture, there
is always a texture atlas involved. There are some well-known problems when using
a texture atlas for rendering [Cor04], as well as some new virtual texturing-specific
problems.

Virtual Texture Atlas Layout

The unwrapping and the layout of the sub-textures in a virtual texture (atlas) is one of
the most important factors contributing to the performance (and by extension, the visual
quality) of a virtual texturing system. See Section §4.1.4 and §5.2.1 for a discussion of
this vital point.

Filtering Problems

Problems that apply to texture atlas rendering apply to virtual texturing (with an atlas)
too and have to be handled. One problem is mip-chain pollution, which can be avoided
by a variety of measures [Cor04]. A second problem is that most objects are incorrectly
textured with the full (0-1) range for convenience (prior to coordinate offsetting), lead-
ing to sampling into neighboring textures even without texture filtering. This can be
avoided by additional coordinate adjustment in the atlas tool [Cor04]. Another problem
is that the texture filtering samples into different physical textures, resulting in artifacts
[Cor04]. This problem is related but not exactly the same as the problem mentioned in
the Section §4.5.2. To prevent artifacts here, we only need to prevent sampling across
the boundaries of individual textures (and not provide continuity across borders). Vir-
tual texturing provides us with a mechanism to combat texture atlas artifacts that normal
rendering does not have – the tiles and their borders. If the individual sub-textures are
aligned with tile boundaries, we can mark these edges and construct the border not from
the adjacent tile (because it contains a different sub-texture that we do not want to filter
into) but duplicate the outer pixels of the tile in the border. Alternatively one could
contract the texture coordinates for these tiles in the virtual texturing shader, so the bor-
der is not sampled for these tiles, but this would result in a runtime performance hit. In



Chapter 4. Virtual Texturing 70

any case, the texture atlas layout algorithm should prefer placing individual sub-textures
at tile border, so that this artifact prevention can be used. Padding can be used where
sub-texture borders do not align with the tile borders. Any artifact reduction technique
should only be applied if artifacts resulting from the texture atlas mechanism have been
observed and found to be a problem.

4.5.7 Virtualized Pagetable Texture

As discussed in Section §4.1.2, one limiting factor for the maximum virtual texture
size is the pagetable texture. Small tiles (less waste) and large virtual texture sizes are
desired, but this results in increasing memory waste for a large pagetable texture and
the performance problems with updating it. Supposedly there is an upcoming solution
for large textures: virtual texturing! The pagetable texture can be virtualized to save
memory. There is no need for an additional “tile determination” system because it
is already known which pixels of the pagetable texture will be accessed (when using
fallback entries). The necessary pixels of the pagetable texture are exactly those that
correspond to currently visible tiles. The modified system would look like this: the
shader looks into a “pagetable for the pagetable” texture to get the address of the right
pixel in the “pagetable physical” texture. The values of this pixel are then used to
determine the coordinates for sampling from the (real) physical texture, just as with
“normal virtual texturing”. The additional shader cost compared to normal rendering
would effectively double. One thing to consider is that the higher mipmap-levels of
the pagetable texture do not contain coarser versions of the data of the lower levels,
therefore a fallback mechanism makes no sense and is not possible. The “tile-streaming”
has to occur synchronously, so the textures are fully updated and current each frame.
Since no filtering is desired for the “pagetable physical” texture, the results should be
completely correct.

4.5.8 Texture Virtualization for Arbitrary Textures

Section §4.5.7 demonstrates that even the pagetable texture can be virtualized. But can
any texture (e.g., textures used for global illumination data) be virtualized? In fact, any
texture can be virtualized as long as a few (practical) restrictions are met:

• It can be determined in advance which parts of the texture will be required in this
frame, i.e., a tile determination system is possible.

• We can effectively calculate or load tiles of the texture, i.e., a tile streaming system
is possible.
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• The various artifacts that can occur for various reasons with virtual texturing do
not pose a problem. (Though, most of these can be worked around or depend on
the required filtering. A virtual texturing system with synchronous tile streaming
for an unfiltered texture should be completely correct. However, synchronous
streaming is not fast enough in most cases.)

• Only a small part of the texture is visible/necessary each frame and the necessary
parts have a high temporal coherency.

• The overhead when accessing the texture through indirection is acceptable.

One texture commonly used in real-time computer graphics where a really high res-
olution is desired, although only a small part of it is actually required each frame, is the
shadow-map. There are parts of a shadow-map that are accessed by a relatively large
portion of the screen and thus needed in high resolution, other parts are only needed in
low resolution or are not visible at all. Classic solutions try to combat this problem with
different parametrization or by splitting the shadow map into smaller parts [SWP10].
Newer and more complex adaptive algorithms like “Adaptive Shadow Maps” or “Res-
olution Matched Shadowmaps” already work similarly in spirit to a virtual texturing
system: they analyze the scene to determine which tiles of the shadow-map are required
[SWP10].

Using virtual texturing for shadow-mapping would entail a tile streaming system
that renders from the viewpoint of the light source to generate a tile. One could render
directly to the physical texture, so the actual streaming to the GPU would be omitted.
The tile determination part could be combined with the view-space tile determination
pass. One difference to normal virtual texturing is that all tiles would have to be inval-
idated when the light source moves and some, when objects in the scene move. The
performance of such a system would likely depend on the number of required new tiles
per frame, since each tile request necessitates a render pass. Since virtual texturing al-
ready provides a way to store high-resolution light-maps as a means to shadow static
objects, it is questionable if virtualized shadow-maps are useful in addition.

Other possible candidate textures for virtualization are high-resolution height-maps.
When combining height-map-based terrain rendering with geometry-clipmap style LoD,
only parts of the height-map are required in full resolution, those around the center of
interest. The required resolution would decrease in concentric circles or squares around
the center of interest. Tile determination for virtualized height-maps would therefore
be a simple, fast analytical calculation on the CPU. Although virtual texturing could be
applied in this case, it does not seem necessary: a 40962 height-map already provides
enough data for a height-field with 33 million triangles (without LoD).
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4.5.9 Tile Importance

When replacing tiles (in the RAM cache(s) or the physical texture) or when streaming
tiles, it would be beneficial to define a metric for the “importance” of a tile. Although
streaming tiles in FIFO order and replacing tiles with the LRU strategy works, a scheme
that considers the importance of a tile is expected to perform better. A possible definition
of importance is dependent on the use case:

Tile streaming and replacing a used tile in the physical texture: (Note:
used tiles are only replaced in the physical texture if no other method like automatic
LoD adjustment is used, see Section §4.3.2.) The importance of a tile in this context
is the visual impact that results from the existence of this tile in the physical texture.
The visual impact of a tile is dependent on the number of pixels the tile occupies on
the screen and the difference of the mipmap-level of the tile to the mipmap-level of the
fallback tile that would be used instead. Although these two factors are obvious, the
exact visual impact cannot be calculated since it is a function of the human visual and
perceptual system. We could define the visual impact for a tile like this:

vi(tile) = p(tile) ∗ d(tile) (4.2)

Where p(tile) is the number of pixels on the screen the tile would occupy and
d(tile) is the difference in mipmap-levels to the fallback tile that would be used.
To improve the result, we could modify d(tile) to take the perceived image differ-
ence between the mipmap-levels into account and not only the difference in mipmap-
levels. While building the virtual texture, the perceived image difference between the
mipmap-levels (scaled to the same size) should be pre-calculated (with an algorithm like
“Structural SIMilarity” (SSIM) [WBS+04]) and stored with the virtual texture. [Neu10]
also had the same idea, they calculate and store the “root mean squared errors”, which
they call NoiseValues, during the virtual texture creation for improved tile prioritiza-
tion during streaming. They also include a detailed analysis of the visual quality when
different tile importance metrics are used.

When streaming tiles, we can give preference to those with the highest visual impact,
similarly replacements are done on tiles with the lowest visual impact. Simpler approx-
imations for the visual impact use just the number of pixels on screen [CESL10] or the
absolute mipmap-level [Bar08]. Although dropping high-resolution tiles first from the
physical texture has been mentioned in both [CESL10] and [Bar08] we do not believe it
can be asserted that they contribute less to the visual quality than lower resolution tiles
in every case.

A very important factor that we left out here is time. A requested tile likely will not
be available within the same frame, and can even take multiple frames to load. There-
fore we are actually interested in the visual impact that a tile will make when it arrives
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from streaming and in all subsequent frames where it is visible. Unfortunately it is im-
possible to calculate these values exactly in interactive simulations. However, certain
methods and heuristics can try to predict the future importance. [Neu10] experimented
with a heuristic called “HotSpot” designed to help with tile streaming during rotations, it
gives preference to tiles located on the side of the screen where the rotation is headed to,
and de-emphasizes tiles on the side of the screen where the tiles are becoming invisible.
They also experiment with performing the tile determination pass from an extrapolated
camera position. Their results show that “HotSpot” helps with rotations, but not move-
ments, and the “LookAhead Camera” helps overall, but has some problem cases where
it performs worse then no prediction at all, e.g., when a fast rotations suddenly comes
to stop.

Screen space tile prediction: We propose a new method for predicting the future
tile importance: “screen space tile prediction”. Our idea is to calculate the screen-space
center of each tile, which should be easy and fast to perform, unless a buffer reduction
method is used. The comparison of the tile center positions with their last-frame val-
ues results in the movement vectors for the tiles. We now look at tiles that are located
near the screen borders: if their movement vectors point towards the screen edges, they
likely will become invisible and their importance can be decreased. Conversely if their
vectors show that they are moving to the screen center, their importance should be in-
creased. This method is designed to modify the already calculated visual impact (e.g.,
from the number of pixels on screen), and not serve as the only metric. In contrast to
the “HotSpot” method, this should give benefits also during movements and exhibit no
worst cases like the “LookAhead Camera”. The “HotSpot” method also favors tiles in
the screen center if no rotations are occurring, leading to the fact that important pages
that can be missed if they are moving from the screen edges towards the center, e.g.,
during backwards movement of the camera. Another benefit due to the screen-space
nature of the method is the handling of dynamic objects. A problem with this method
is that it is based on the assertion that most tiles contain texture-data from a single sub-
texture, or that if multiple sub-textures occupy the tile, either only one of them is visible
on screen or that they are correlated in their world-space and therefore also screen-space
positions. If multiple sub-textures that are placed on the tile (texture atlas!) are simulta-
neously visible at different regions of the screen, the concept of the screen-space center
looses its meaning. However, given that the size of the sub-textures used to construct
the virtual texture likely is larger than the tile size, and the texture atlas tool should strife
for tile-aligned sub-textures and texture to world space similarities anyway (see Section
§4.1.4), this seems like a reasonable assumption.

Replacing an unused tile in the physical texture or RAM cache: In this case
the importance of the tiles is different, because they are not currently visible, but might
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become visible again. Ideally we want to replace those tiles that will not become visible
again while retaining the tiles that will become visible soon. Additionally, we prefer to
replace those tiles that will have a low visual impact when becoming visible and retain
the tiles that will have a high visual impact. Most of these values are impossible to calcu-
late since there is no way to know when the tiles will become visible and what fallback
tiles are available when they become visible. Heuristics can be used, e.g., managing
the tiles in the cache with an LRU strategy and preferring to drop high-resolution tiles.
When using a conservative tile determination system (or with the special case of terrain)
information from the tile determination system can be used to obtain the likelihood of
the tiles becoming visible again.

4.5.10 Tile Request Substitution

We devised an improvement for a virtual texturing system named tile request substi-
tution. Imagine this scenario: a rapid camera movement or some other event leaves a
significant screen portion left with only a coarse fallback tile. Since the necessary tile
is not available in the cache, it is requested for streaming and will take several frames
to arrive, resulting in degraded image quality for this time. It is possible some higher
resolution fallback tile (perhaps even the mipmap-level just below) is available in the
RAM cache and could be placed in the physical texture quickly to drastically reduce the
image quality reduction until the necessary tile is available. The downside is the added
complexity (also with respect to removal of those pages from the physical texture) and
also a choice has to be made up to which difference in mipmap-levels this approach is
useful. The coarse-to-fine tile loading discussed in [CESL10] could lead to a similar
positive effect if implemented in a way that allows higher resolution tiles to outpace
coarser tiles when already available in the RAM cache.

Additionally, this idea can be combined with the replacement of visible tiles in the
physical texture. Instead of dropping single “unimportant” tiles without replacement
(see Section §4.5.9), multiple adjacent cached pages are dropped, but the tile directly
beneath them in the mipmap-chain is uploaded instead. This guarantees only a slight
quality decrease and saves up to three tile-slots in the physical texture. This is also
mentioned in [CESL10], but they only do this with tiles of the highest resolution.

A related idea is generating requested tiles on the fly by downsampling higher reso-
lution tiles, if all 4 corresponding higher resolution tiles are cached.

4.5.11 Recursive Virtual Textures

As noted in Section §4.1.2, the pagetable texture size (combined with the tile-size) lim-
its the effective virtual texture size. But if the fixed pagetable texture is replaced with a
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more generic quadtree structure, it could be allowed that quadtree nodes specify their an-
cestors as their children, creating a recursion in the pagetable quadtree structure. When
the corresponding tiles are specially crafted self-similar tiles (e.g., ones for “ rock” or
“bark”) this could simulate infinite texture detail. This is analogous to the “Infinite Sur-
face Detail” idea from Olick for voxel ray-casting [Oli08]. Baked shadows would pose
a problem with this idea, and accessing such a quadtree structure is likely much more
expensive than a simple texture lookup.

4.5.12 Modifying the Virtual Texture

Runtime modification of a virtual texture is an expensive operation that should be
avoided except when building an editor for a virtual textured scene. As discussed in
Section §4.1.3, an efficient pipeline for creating scenes for a virtual texturing rendering
system could require such an editor. Other cases that seem to necessitate virtual tex-
ture modifications possibly can be handled with decals or in some other way. Changing
a tile at the lowest mipmap-level (and only those should ever be modified, since the
other levels are derived) at least requires updates of the corresponding tiles in all higher
mipmap-levels. Only affected parts of higher mipmap-levels need to be touched, e.g.,
updating a tile only necessitates refreshing 1/4 of the next tile and 1/8 of the next but
one tile, etc. Once the changes contribute to less than a pixel, the filtering must also
consider pixels from unchanged parts of the virtual texture. Mittring explores different
kernels used for mipmap generation for virtual texture and their properties and speed
in detail [MG08]. The affected tiles need to be changed on disk and in the physical
texture. Doing runtime changes requires the virtual texture to be stored in an uncom-
pressed or lossless format so the compression artifacts do not add up. Modifying tiles
likely can still be done at interactive frame rates, but modifying the layout of the texture
atlas, that composes the virtual texture, can be much more expensive. Removing objects
from the scene or adding objects if there is still enough free space in the virtual texture
can be done with minimal updates when accepting sub-optimal virtual texture layout
until a full-rebuild. A full rebuild requires reading in all (uncompressed) tiles from the
base-level which can easily surpass 50 GB for complex scenes and therefore takes a few
minutes at the very least. Increasing the size of the texture for an object (or changing the
UV unwrapping) is not possible without relocation unless the sub-texture is surrounded
by free space or free space of the necessary size is available elsewhere. Adaptation
of texture coordinates is necessary too and can be done at runtime with texture matrix
manipulation when breaking up the draw calls. Building such an editor is not trivial.
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4.5.13 Decals

Static decals can be baked into the virtual texture just like the light-maps, because the
scene is uniquely textured anyway. However, in games/simulations there is also the need
for dynamic decals (skid marks, dirt, blood, etc.) to be added to the scene. Rendering
decals in another render pass is unwanted and can be avoided by adding the decals to
the virtual texture tiles (with different scales and coordinates depending on the mipmap-
level) when they are loaded. Adding decals directly to the virtual texture (tiles) is only
possible if a unique unwrapping is used [MG08]. Already loaded and affected tiles must
either be invalidated and re-loaded or the decals are rendered to the physical texture with
different scale factors to the affected tiles. It is also possible to cut the CPU-based decal
application and only do the GPU-based rendering of decals to the physical texture, but in
this case all decals must stay in graphics memory (instead of main memory) all the time.
Similar to runtime modification of the virtual texture (Section §4.1.2 above), applying
a decal affects at least as many tiles as there are mipmap-levels, but there are several
fundamental differences between both techniques.

Aim: Decals do not want to change the virtual texture as stored on the hard disk but just
change the rendered result, since decals are a dynamic addition to the scene.

Scope: Decal application only wants to change the texture data and never the texture
atlas layout.

Complexity: Since decal application is the simple addition of a limited number of small
alpha blended additional textures it can be done easily during tile loading. In con-
trast, an editor for a virtual textured scene may desire to make a larger number of
more complex changes to the texture data, making it “cheaper” to actually change
the tiles on the disk. However, a decal application system could be beneficial in
addition – if there is only a small number of limited changes they are added via
the decal system, but if the number of changes crosses some threshold the changes
are rendered to virtual texture tiles on the hard disk.

4.5.14 Transparency

Virtual texturing works fine with transparency (alpha blending) in principle, but the tile
determination method in view space does not. There are several options here:

• Use another tile determination method or an additional tile determination method
for transparent geometry.
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• Adapt the view-space tile determination to handle transparency, e.g., by using
multiple passes.

• If the amount of transparent textures is low and there is commonly free space in
the physical texture, then just keep the transparent tiles in the physical texture all
the time

• Just do not use virtual texturing for the transparent parts of the virtual world.

• Restrict to usage of alpha testing instead of alpha blending.

The alpha channel necessary for alpha blending also needs consideration. It is not
desired to waste a channel for the alpha values for opaque parts of the virtual texture.
It is possible to use the same channel for other values for opaque parts of the virtual
texture, e.g., as specular highlight. This necessitates the use of two slightly different
virtual texturing shaders, one for transparent geometry and one for opaque. Addition-
ally, it could be beneficial to restrict the parts of the virtual texture used for transparent
geometry to a subset with borders at power-of-two boundaries to prevent polluting this
channel at higher mipmap-levels.

4.5.15 Multitexturing & Multiple Virtual Textures

Section §4.1.5 mentions a simple way to support multiple texture layers in combination
with virtual texturing: reuse the same virtual texture layout and just provide additional
layers for additional data. Note that multiple surface color layers are not needed in a
virtual texturing system because they can be combined. Thus, additional data refers to
emissive/bump/specular/etc. layers.

Barrett’s implementation supports multiple virtual textures in the same scene with-
out needing more render or tile determination passes [Bar08]. One virtual texture can
be used for the terrain and another virtual texture can be used for the remaining objects.
However, it is not possible to use hundreds of virtual textures or even one virtual texture
per sub-texture (to circumvent the texture atlas requirement for virtual texturing render-
ing). A multitude of problems occurs when the number of virtual textures grows above a
few, so only some examples are mentioned: since the mipmap-chain of virtual textures
only goes down to a single tile, there would be artifacts when viewing these textures
minified below the tile-size. Additionally, the performance is expected to be severely
impacted, since when viewing several of these small virtual textures from a distance it
would be necessary to load the smallest tiles from each of these textures, whereas in a
normal virtual texturing situation the needed pixels would be combined into far fewer
tiles.
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The main motivation for using multiple virtual textures is because some parts of
the scene might need different layer combinations, but there is still the desire to share
common data/layers. Reusing the same tiles from different virtual textures is possible
[Bar08].

4.5.16 Texture Reuse

Current scenes used in real-time rendering often reuse the same texture data throughout
the scene by using the same texture in multiple places (often blended with different other
textures to make them look unique) or using “repeating” as the texture wrap mode.
Since these textures only exist as parts of the virtual texture, these techniques need
consideration. This section refers to the textures as sub-textures, because these source
textures are used in conjunction with other sub-textures to produce the virtual texture
with the texture atlas mechanism.

• Non-unique unwrapping:
Just as with any texture atlas, it is possible to reuse the same sub-textures at
multiple places in world space – Mittring calls this “non-unique unwrapping”
or “overlapping primitives in the texture space” [MG08]. Drawbacks include that
light-map baking can no longer be used and that the reused texture is completely
identical unless some additional method to blend details is used.

• Texture repeat wrapping:
Support of repeated textures is possible in some cases when the texture coordi-
nates prior to adjustment fall within the [0-1] range, i.e., the primitives are aligned
with the texture borders. This is actually a case of non-unique unwrapping but the
result looks like texture repeating. Real texture repeating (or mirroring and clamp-
ing) for texture atlas applications can be simulated by additional fragment shader
operations [Cor04] [MG08].

• Replication/Repeating in the virtual texture:
The same sub-texture can be used at multiple places in the virtual texture (space)
[Cor04], which leads to storage waste, but also allows baked light-maps and
unique details. This can be used to get a repeated or a replicated sub-texture.

• Replication/Repeating with tile sharing:
When replicating sub-textures in the virtual texture, it is possible to reduce the
storage overhead by sharing identical tiles [Bar08] [Spa10] (similar to the sharing
detailed in Section §4.5.15). This works with sub-textures that are aligned with
the tile borders in the virtual texture and are a multiple of the tile-size. Identical
tiles are marked and handled specially during tile-streaming, so it is not necessary



Chapter 4. Virtual Texturing 79

to store them twice on disk and in the physical texture. This allows for repli-
cated sub-textures to have limited variation, while only the parts with difference
are stored. The tile sharing only works at the lowest mipmap-level(s), at higher
mipmap-levels the tiles are uniquified by virtue of being a combination of differ-
ent context tiles and therefore cannot be shared [Spa10].

4.6 Hardware Support

Virtual texturing as described in this chapter already works on hardware supporting
GL EXT gpu shader4, but could still benefit substantially from changes made to the
GPU hardware or drivers. The following is a non-exhaustive list of possible improve-
ments:

• Fix per-mipmap texture streaming: This is not a suggestion to help with virtual
texturing but would rather make full-blown virtual texturing unnecessary in some
cases. Mittring claims that per mipmap streaming (see Section §2.5.1) is currently
basically impossible (on the PC) [MG08]. While the texture memory savings us-
ing per mipmap streaming are not nearly as high as with virtual texturing [MG08],
there are cases where it would be a sufficient solution if it worked.

• Larger 2D texture sizes and more texture array layers: As discussed in Section
§4.3.2, the size limitations for a single 2D texture pose a serious problem because
the required tiles for complex scenes with large viewports might not fit into the
largest possible texture. Some consumer graphics cards today ship with 2048MB
of graphics memory, which requires at least 8 uncompressed or 32 DXT5 com-
pressed or 64 DXT1 compressed textures of size 81922 to be filled. While a 81922
texture size should be enough for many or even most (virtual texturing) purposes,
we propose an increase to 163842 or preferable even higher (it needs 4 DXT1
compressed 327682 textures to fill up 2048 MB!) to prevent lagging behind the
hardware capabilities. ATI already moved to 163842 recently on new hardware,
but other vendors need to catch up. The 20482 limit on Intel GMA and some
other integrated “graphics cards” is so low that it might very well prevent a usable
virtual texturing implementation on this hardware (although this hardware often
drives low-resolution viewports). The same goes for texture array layers. The
limit on NVIDIA hardware of 512 layers prevents using this facility for virtual
texturing, at least when using one tile per layer.

• Help with tile determination: The read-back from view-space tile determination is
an expensive operation and large read-backs generally do not fit well within a real-
time rendering pipeline. Providing mechanisms to help with tile determination
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would be a great benefit. One example would be an extension that provides a
list of (unique) pixels that have been accessed from a specific texture during a
render pass. Enabling this feature on the pagetable texture would provide us with
a list of currently visible tiles. As a lesser aid, random access writes could also be
of use with tile determination, and they already arrived during the writing of this
thesis in the form of EXT shader image load store. Note that proposing hardware
modifications for tile determination is not new, but was first done by [GY98].

• Full virtual texture support: Full virtual texturing support had actually been built
into graphics cards from 3Dlabs starting in 1999 [Sem99] and eventually ending
with their GPU production halt. Current vendors could re-create that support
and build virtual texturing directly into the hardware/driver combination. The
application could create a virtual texture with a given size and tile-size. After
each frame, the GPU would report a list of missing tiles and use fallback tiles
instead of stalling during rendering. The application would stream in these tiles
as fast as possible (an additional conservative tile determination system could help
here). Pagetable and physical texture handling would be up to the GPU, as would
be filtering issues. It is questionable whether the improved performance of such a
system would outweigh the loss in flexibility.
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Implementation & Results

As part of this thesis, a virtual texturing library called “LibVT” was designed and im-
plemented. Additionally, a very large scene that represents New York was converted to
use virtual texturing and imported into the demo application to evaluate virtual texturing
for a real-world use case. Finally, some benchmarks were performed to assess the im-
portance and optimal settings of different parameters and tradeoffs in a virtual texturing
system from a performance and visual quality standpoint.

5.1 LibVT

LibVT is a library implementing virtual texturing in the style of [vW09b], similar to
Barrett’s demo [Bar08] (even using some of Barrett’s shader code), although it does not
do procedural generation, but tile streaming from disk. LibVT is available as an open-
source project at the following URL: http://www.sf.net/projects/libvt/

Features include:

• Written in C with C++ being used for data structures and threading.

• Using OpenGL with shaders in GLSL or Cg.

• Designed as a library to allow easy integration into existing rendering engines
(e.g., OpenSceneGraph integration has been done).

• Compatible with OpenGL ES 2.0 and support for iOS (iPhone / iPad).

• Tile determination in view space using a read-back:

– With either analytically calculated mipmap-level or determination by texture
sampling.

– With configurable lower resolution.

http://www.sf.net/projects/libvt/
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– Rendered either into the back-buffer or into a FBO.

– Read-back either with glGetTexImage() or glReadPixels().

– Optional buffer compression using OpenCL for faster read-back and combi-
nation with other render passes.

• Configurability of physical texture dimension, RAM-cache size, tile border, tile-
size, virtual texture size, resident mipmap-levels, cache warming, etc.

• Support for bilinear, trilinear and anisotropic filtering.

• Mipmap-chain length of up to 11, allowing a virtual texture resolution of 256k2

with 2562 pixel tiles.

• Multiple tile decompression libraries: LibPNG, LibJPEG, LibJPEG-Turbo, STBI

[Bar], ImageMagick [ima] and CoreGraphics [Com].

• Usage of compressed (JPEG, PNG, etc), uncompressed or DXT1/5 pre-compressed
tiles.

• Multithreaded and decoupled tile streaming using boost::thread and with optional
real-time DXT compression using FastDXT.

• All texture transfers (read-back, pagetable texture and physical texture) optionally
asynchronous using PBOs.

• Either stores fallback entries in the pagetable texture or uses looping in the frag-
ment shader.

• Optional dynamic adjustment of the LoD bias to fit visible tiles into the physical
texture.

LibVT also includes a pipeline for generating virtual textures out of individual tex-
ture files:

• generateTextureAtlas: can generate a large (128k2 at least) texture atlas (and a
coordinate offset file) out of individual texture files and can place a subset of the
files in a grid e.g. if part of the texture atlas should cover linearly mapped terrain.

• generateVirtualTextureTiles: build the virtual texture tiles of all mipmap-levels
out of a large picture (single texture or atlas).

• mergeVirtualTextureTiles: merge multiple virtual texture tile stores into a single
one.
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• convertVirtualTextureTiles: transcode a virtual texture tile store into another
image compression format.

• offsetObjTexcoords: applies the coordinate offset file produced by generateTex-

tureAtlas to an Alias Wavefront OBJ file so it uses a single (atlas) texture instead
of multiple textures.

5.2 New York Scene

Fig. 5.1: A screenshot from the New York scene.

The New York scene [BRO08] is a complex scene with very high texture require-
ments that has been used as a testbed for our virtual texturing implementation and the
content pipeline. Figure 5.1 depicts a screenshot from this scene. The dataset is com-
posed of 16 3DS Max scenes (.3ds). Each sub-scene has between 190k and 1094k
triangles. Each sub-scene has between 485 and 2062 textures, most of them consisting
of 10242 pixels. The fully combined scene has 8 million triangles, 9.4 million vertices
and about 19,500 textures. The textures are compressed to about 3.2 GB and would take
more than 60 GB uncompressed. The scene is composed of buildings and terrain.

Here is a rough outline of the steps performed to import the dataset into the virtual
texturing demo application:
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• Convert each of the 16 sub-scenes to OBJ file format and separate the buildings
and terrain into individual files (MeshLab [CCR08]).

• Connect the meshes (which were provided chopped in a checkerboard pattern)
and remove duplicate vertices.

• Combine the sub-scenes until there are only two files: one for the terrain and one
for the buildings.

• Reduce the terrain mesh with an edge collapse algorithm (MeshLab).

• Rotate and move the meshes to the coordinate origin and align them with the word
space axis.

• Combine the ∼5k terrain textures in their natural order to16 files (ImageMagick).

• Build a 128k2 texture atlas out of the ∼14k building textures (some have been
scaled down) and the 16 pre-combined terrain textures (generateTextureAtlas).

• Build a tiled virtual texture out of the texture atlas (generateVirtualTextureTiles).

• Apply the texture coordinate offsets produced alongside with the texture atlas for
the building mesh (offsetObjTexcoords).

• Import the final OBJ files into the demo application by converting to a custom
octree format.

5.2.1 Problems

There are problems with the New York dataset that result in very low performance
(quality) with virtual texturing. These problems are a direct result of the layout of the
individual sub-textures within the texture atlas. Nevertheless these results are interesting
from a scientific point of view since they lead to new knowledge about things to avoid
when doing virtual texturing. Specifically the texture atlas ignores both critical points
that Mittring raises, grouping free space to cover whole tiles and striving for world to
texture space similarity [MG08]. Even more importantly, the dataset violates a third
point that we discovered to be very significant: varying world-to-texel density ratios.
Within most tiles, sub-textures of different world-to-texel density ratios are combined,
leading to the fact that multiple mipmap-level versions of the same tiles are necessary
and additionally many tiles from high mipmap-levels are requested because they contain
at least one sub-texture with a low texel-to-world ratio. Figure 5.2 shows a minified
detail of the texture atlas. The source of this problem likely is the origin of the dataset,
since aerial photographs provide a different resolution depending on the angle. So,
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Fig. 5.2: Detail of the New York scene texture atlas that discloses some of the problems.

while virtual texturing does not require a fixed world-to-texel density and different ratios
for different larger objects pose absolutely no problem, the frequent changing of this
property within most individual tiles aggravates the problem that this dataset requests
“too many” tiles for rendering. Concretely, an example flyover with the terrain scene
requires 41 tiles on average per frame and a maximum of 68 tiles (2562 pixel tiles). An
example flyover in the New York scene takes 284 tiles on average and a maximum of
802 tiles in the worst frame. The average is nearly 7 times worse and the maximum case
is nearly 12 times worse compared to the terrain scene. Fixing all mentioned problems
is not (easily) possible for this dataset since the texture data is provided pre-combined
into small texture atlas files with a resolution of 10242 pixels and it would be necessary
to split these textures into their multiple sub-textures. The runtime performance of the
dataset would be significantly improved if the individual textures had been provided
(even though numbering in the hundred thousands) instead of pre-combined files with
large empty space areas.

It may be possible to use non-standard mesh parametrization, e.g., [THC04] to re-
duce the wasted texture space for virtually textured objects.
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5.3 Open Scene Graph Integration / Scanopy & Terapoints

The flexibility of both Open Scene Graph (OSG) and LibVT allows the usage of LibVT
and therefore virtual texturing within the OSG rendering framework, without tightly
integrating LibVT into OSG and therefore tying it to this specific framework. Using
LibVT from an OSG application can be done by attaching a “pre-pass camera” to the
scene-graph which renders the geometry with the tile determination shader. The pre-
pass camera is attached to an image object which is passed to LibVT in a so called
PostDrawCallback. The main pass is rendered with the virtual texturing shader.
Using a single-pass solution with OpenCL buffer reduction should be even simpler to
use, but has not been attempted yet.

Fig. 5.3: Screenshot of the Scanopy application featuring integration of virtually textured polyg-
onal models with point-rendering.

The Scanopy project [SP08], which has been succeeded by the Terapoints project,
aims to provide efficient algorithms for working with 3D laser scan data. They have
developed a point-rendering application within the OSG framework which is able to do
real-time out-of-core rendering of a dataset of the Domitilla Catacomb in Rome which
consists of (currently) 1.9 billion points. The dataset was provided by the FWF START-
Project “The Domitilla-Catacomb in Rome. Archaeology, Architecture and Art History
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of a Late Roman Cemetery” [oT09]. In addition to the point-data, the dataset features
polygonal meshes of the graves with high-resolution textures of the paintings. A single
grave can feature more than 20 textures of size 4064 x 2704, and there are 80 graves in
total, though not all are fully textured yet. Because of the high texture requirements the
graves could not be rendered previously, which is now possible with virtual texturing.
The aggregate texture data of the paintings is expected to fill a 128k2 virtual texture.

5.4 Results

Section §3.4 identifies performance and correctness as the two major challenges for a
virtual texturing implementation, consequently this section is focused on assessing these
two attributes. Since most settings only affect either the performance or the quality, the
benchmarks include only settings that make a difference for the tested attribute.

5.4.1 Performance
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Fig. 5.4: A benchmark comparing the performance of virtual texturing rendering with different
settings in the terrain scene with a 32k2 virtual texture and a tile-size of 2562.

Figure 5.4 compares the performance with different settings during a flyover in the
terrain scene. “base” denotes a baseline without special settings and uses mipmap-level
calculation by fetching from a texture. “mipcalc” does mipmap-level calculation an-
alytically. “loop” performs a loop in the fragment shader and does not use fallback
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entries. The results show that features which improve the visual quality like trilinear or
anisotropic filtering have a considerable impact on the performance. Similarly, looping
in the fragment shader (instead of storing fallback entries in the pagetable) also has a
large negative consequence, despite saving CPU time and bandwidth during pagetable
texture updates. Turning on real-time DXT compression increases the frame-rate be-
cause the implied slower tile streaming system mainly effects quality (and not perfor-
mance), but the rendering and bandwidth to the GPU is improved. Turning on PBO
transfers of the read-back, pagetable updates and physical texture updates did not make
a difference in this demo application because there are no other CPU-intensive calcula-
tions to be done, but is bound to provide speedups in most real-world applications. For
comparison, rendering this terrain scene without virtual texturing (with a 8k2 texture,
trilinear filtering, 2x anisotropy) achieves an average frame-rate of about 1150 FPS.
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Fig. 5.5: A benchmark comparing the performance of virtual texturing rendering with different
settings in the New York scene with a 32k2 virtual texture and a tile-size of 2562.

Figure 5.5 performs the same tests on the New York scene, with similar results. The
performance hit from looping in the fragment shader is slightly increased because in
the New York scene more needed tiles are missing and therefore more looping occurs.
Rendering the New York scene without virtual texturing (with a 8k2 texture, trilinear
filtering, 2x anisotropy) achieves an average frame-rate of about 760 FPS.

Figure 5.6 compares the render performance in the terrain scene with different tile
determination modes: reading back the visible tile buffer in the same frame, reading
back the buffer in the next frame and usage of the OpenCL buffer reduction kernel with
two render passes and with a single render pass. All tests are performed with a full, half
and quarter-resolution visible tile buffer. In the OpenCL single-pass solution, the visible
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Fig. 5.6: A benchmark comparing the performance of virtual texturing rendering with different
methods in the terrain scene with a 32k2 virtual texture and a tile-size of 2562.

tile buffer is rendered in full resolution and just processed in a lower resolution, all other
modes render the visible tile information in a lower resolution. The results show that the
modes using the OpenCL buffer reduction are three times as fast in a full-resolution set-
ting, nearly two times faster in half resolution, but slower in quarter resolution. Reading
back the buffer in the next frame is noticeably faster in half resolution and is especially
fast in quarter resolution, being the fastest solution with nearly a 25 % gap. Surprisingly
the OpenCL solution is faster in this case when integrated into a two-pass solution than
in a single pass. The reason for this is that this scene has so few polygons (between
5k and 50k triangles per frame) that the overhead of the additional render pass is lower
than the (fill-rate) hit from performing the visible tile calculation at full resolution.

Figure 5.7 performs the same tests as Figure 5.6, but on the New York scene,
which has much higher polygonal requirements (between 20k and 800k triangles per
frame). Note that this test does not use the 128k2 virtual texture, as other tests with
the New York scene do, but rather a 32k2 virtual texture. This is because our OpenCL
solution is not yet compatible with long mipmap chains. As expected, the single-pass
OpenCL solution is much faster in this scene, because it avoids having to render a large
number of triangles twice per frame. It outperforms the normal render-mode by nearly a
factor of two at half resolution and is still slightly faster at quarter resolution. However,
the fastest result overall is the non-OpenCL solution with quarter resolution and delayed
read-back. When discarding the quarter-resolution results because of its lowered quality,
the OpenCL solution is the best option from a performance standpoint. There are also
other factors that are in support of the OpenCL solution:
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Fig. 5.7: A benchmark comparing the performance of virtual texturing rendering with different
methods in the New York scene with a 32k2 virtual texture and a tile-size of 2562.

• The current OpenCL drivers are still immature and are expected to get faster.

• The tests were performed with a graphics card that is of the first generation of
GPGPU capable cards. Newer graphics cards likely provide disproportionally
faster OpenCL support.

• Our OpenCL solution has not received extensive tuning, and is especially im-
mature in comparison to our two-pass setup, which has been tested for months.
Areas for speedups within the shader itself are sharing of results that are currently
calculated twice for the two render target outputs, as well as usage of the new
OpenGL extension EXT shader image load store to eliminate the first kernel.

As mentioned above the New York scene flyover yields about 760 FPS and the ter-
rain scene about 1150 FPS without virtual texturing (with a significantly lowered texture
resolution of 8k2). This shows that virtual texturing has a severe performance hit (“nor-
mal” texturing is about 2.1 - 2.5x faster than the fastest virtual texturing result), but
there currently are no competing methods that would allow rendering these scene with
a 128k2 texture. However, since the “normal” texturing is a very cheap render-mode
that does not even use shaders in our test, the high FPS difference is a bit misleading.
Converting these numbers to milliseconds per frame shows that the overhead of virtual
texturing compared to this simplest rendermode is only between 1 millisecond (terrain
scene) and 2 milliseconds (New York scene) per frame. Additionally, virtual texturing
can replace current setups that use blending to simulate unique textures, which results in
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costly overdraw [MG08] and likely are not much faster, if at all. In any case, rendering
the semi-complex New York scene with nearly 300 frames per second shows that vir-
tual texturing is a valid technique from a performance point of view, even for outdated
(graphics) hardware.

5.4.2 Quality

To evaluate the visual quality of our virtual texturing implementation, we use a simple
metric, the average number of pixels that have to fallback to a lower resolution tile
because their “native” tile is not available.

half base

half delayedread

half dxt

half loop

quarter base

quarter delayedread

quarter dxt

quarter loop

0 45 90 135 180

134,8

141,2

171,5

139,4

137,8

157,7

179,5

137,5

Quality of a terrain flyover

Fallback pixels

Fig. 5.8: Quality of the terrain scene with different settings.

Figure 5.8 features the quality for 4 render-modes: normal virtual texturing, with
a delayed read-back, with DXT compression and with looping in the fragment shader.
Because of the randomness of hard disk accesses the results had a very high variation,
therefore we decided to include only the best result from each mode, instead of the
average of 5 runs. The results show that looping in the fragment shader has basically
no influence on the quality and the influence of DXT compression (which slows the tile
streaming) is marginal. The impact of delaying the read-back by one frame is noticeable,
but small. Because of the rendering speedup and the small influence on visual quality
this option is beneficial. The results also show that (with a tile-size of 2562 pixels) there
is practically no difference in visual quality when rendering the visible tile information
at quarter resolution. As mentioned in Section §4.2.1 this is especially true for terrain
scenes, but not for other scenes.
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Fig. 5.9: Quality of the terrain scene with different settings.

Figure 5.9 features options that have a much larger impact on the visual quality. The
figure shows that smaller tile-sizes lead to significantly worse image quality. Addition-
ally, the difference of doing the visible tile determination in quarter resolution becomes
much more pronounced. The negative influence of small tile-sizes could be lessened by
tuning the tile streaming system for (many) small tiles, i.e., combining multiple tiles into
fewer files and loading multiple tiles at the same time. The option which has the largest
negative effect on quality is the OpenCL buffer reduction. Because the buffer reduction
looses the “priority-information”, i.e., how many pixels reference a requested tile, tiles
are loaded in random order instead of sorted by priority. This shows that page-loading
sorted by priority has a vast effect on visual quality, We expect that an OpenCL buffer
reduction algorithm that retains this priority information is comparable in quality to a
read-back solution.

To put these results into perspective, we have to consider that this test was run at
1280 x 960, i.e., with 1,228,800 pixels. Even with OpenCL / without tile priority, only
every 164th pixel falls back to a lower resolution on average. This is about 0.6 percent.
With any of the 4 options in Figure 5.8, only 0.01 percent of the pixels fall back to
a lower resolution on average. Since the fallback to lower resolution tiles is the main
cause of artifacts in a virtual texturing application, we can conclude that virtual texturing
is an acceptable solution with respect to visual quality.

The New York scene has a problematic texture atlas layout (see Section §5.2.1),
which also results in degraded quality. The average number of pixels with fallbacks in
the “quarter base” setting is 7391, which is comparable to the terrain scene without tile
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priority. This confirms that the texture atlas layout affects quality more than most other
implementation details. Nevertheless, just as with the OpenCL solution, this still is only
a fallback for 0.6 percent of the pixels. Giving the application two seconds time at the
start to pre-cache some textures lowers the average number of fallbacks to about 5000.
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Fig. 5.10: Quality over time (terrain).

Figure 5.10 shows the number of fallback pixels plotted over time, calculated from
the average of 5 test-runs with the base settings. We can see that there are very few
fallback pixels most of the time, but there are some spikes, corresponding to sudden
rotations or movements that the tile determination system could not anticipate.
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Fig. 5.11: Quality over time (NewYork).

Figure 5.11 also shows the number of fallback pixels plotted over time, but for the
NewYork scene and with logarithmic scaling.
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Conclusion

Chapter §4 provided a comprehensive overview on the field of virtual texturing. Section
§4.1 started by examining the virtual texture itself, its assembly and storage, its maxi-
mum size (256k2 is easily attainable) and the issue of tile-size. It was shown that data
sizes below 64 kilobyte are not read efficiently by current hard disk drives, leading to
the fact that the method of storing each tile into a single file, while already suboptimal
for 2562 pixel tiles, becomes increasingly inefficient for smaller tile-sizes.

Section §4.2 concerned itself with the determination of the visible tiles. We ex-
amined the “exact tile determination in view space” in detail and determined that this
method is only feasible performance wise (on the PC) if either done at a lower resolu-
tion or when compressing the resulting data using a GPGPU program before reading it
back to the CPU. We presented such a buffer reduction solution using OpenCL, which
is based on a similar CUDA solution presented in [HPLdW10], and assessed its perfor-
mance as sufficient even on first-generation OpenCL hardware. The “exact tile determi-
nation in view space” was found to be especially valuable in scenarios where requesting
many tiles is not acceptable because the scene already borders on having tile require-
ments that exhaust the physical texture size and tile streaming performance. In any
scenario it would be beneficial to have a system that determines tiles that will become
visible in the future, but it is not known if this requirement is best served by having an
additional conservative tile determination system, or by some metrics that supplement
(e.g., loading adjacent tiles) or methods that expand on exact view space tile determi-
nation (e.g., increasing the FoV or extrapolating the camera position). Streaming such
predicted tiles is an area for future research.

Section §4.3.1 discussed the tile streaming system and evaluated common libraries
that can be used for the decompression step within this system. It was determined
that PNG is an unacceptable format for a virtual texturing implementation, but JPEG
is acceptable, especially when using a tuned decompression library like libjpeg-turbo,
which proved sufficient in our implementation. DXT pre-compressed tiles were shown
to yield performance of only about a third of libjpeg-turbo and therefore only prefer-
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able under very specific circumstances. Several CPU-based real-time DXT compres-
sion libraries were evaluated, and only FastDXT was found to have a good enough
performance. An area for later experiments within tile streaming is the usage of newer
compression formats with higher compression rates, as the hard disk throughput was the
limiting factor with a fast JPEG decompression. Section §4.3.2 presented several meth-
ods to work around the size limitation for the physical texture. We feel that while this
is an important point for hardware with a very low texture size limit (Intel), the limit on
ATI or NVIDIA cards should be high enough even for high definition viewports, unless
the texture atlas layout is sub-optimal.

Section §4.4 dealt with the virtual texturing shader that makes virtual texturing pos-
sible. We do not see much area for improvement in the virtual texturing shader – meth-
ods like using a floating point pagetable texture might provide constant time speedups,
but are likely of marginal importance compared with other factors in a virtual texturing
system.

Section §4.5 handled a plethora of other topics surrounding virtual texturing. Texture
filtering was discussed in detail and could be called a solved issue, although trilinear
and anisotropic filtering require a costly gradient correction which severely limits the
performance of the virtual texturing shader. One discovery here that has not been noted
in other resources is that it is sufficient to have the border on two instead of all four sides
of the tiles, effectively halving the waste.

Combined with the existence of fallbacks to low-resolution tiles, the issue of the
“LoD Pop-in” is the most severe visual artifact in a virtual texturing system. Solving this
issue can be done by gradually blending-in details or by loading unrequested ancestor
pages prior to the actually needed pages. Another topic that was referenced in this
section is the issue of the virtual texture atlas layout which was determined to be of
utmost importance. The New York scene as an example of a bad virtual texture layout
requires more than an order of magnitude more tiles for display than a terrain scene.
To combat artifacts that result from the texture atlas technique we proposed the idea to
prefer aligning sub-textures with tile borders and construct the borders of these tiles by
clamping the sub-texture instead of from the adjacent sub-texture.

The topics of “tile importance” and “tile request substitution” are (semi-)advanced
virtual texture topics that have only theoretically and briefly been touched and should
be focused in future work. We implemented just the simplest tile importance metric,
namely sorting tile requests by their pixel count, and this has proven to be of very high
importance in the quality benchmarks. We presented some novel ideas like “screen
space tile prediction” which should be evaluated in quantitative tests. The remainder of
this section dealt with other issues like decals, transparency and texture reuse.

Chapter §5 presented our implementation (LibVT), its applications (New York scene,
OSG Terapoints) and the results derived from it. The results section (§5.4) deals with
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the performance and the quality of virtual texturing. The performance results show that
when doing tile determination at full or half resolution, the fastest option is a single-pass
solution with the presented OpenCL buffer reduction method. In lower tile determina-
tion resolutions, the fastest option is a dual-pass solution with delaying the read-back
until the next frame. Of course the actual performance is subject to the specific applica-
tion and their other CPU and GPU requirements, but the results show that at full or half
tile determination resolution, the OpenCL solution is very performance competitive and
at lower resolutions a dual-pass solution is also viable. Doing tests on newer hardware
(which should provide much better OpenCL performance) and tests with an OpenCL
solution that retains tile importance information should prove worthwhile in the future.
An interesting possibility to explore is the exploitation of the functionality offered by
the new OpenGL extension EXT shader image load store, which should eliminate the
need for the first OpenCL kernel, saving time and memory. The quality results show that
the base virtual texturing implementation with 2562 pixel tiles provides very good qual-
ity with only 0.01 percent of the pixels being subject to a fallback on average. Settings
like delaying the read-back and DXT compression made only a marginal difference. We
determined that lower tile-sizes made a much larger difference, increasing the fallbacks
by a factor of about five (1282) respectively about 25 (642). We feel that only a small part
of this deterioration is caused by smaller pages being easier to “miss” at low-resolution
tile determination, and most of it is caused by the inefficiency of streaming small tiles
when they are stored in a file per tile. Combining the tiles into a single file and having an
intelligent tile streaming scheduler that streams multiple tiles per request is an area for
future work. The worst result quality wise (increase of fallbacks by a factor of 50) was
attained when using our OpenCL buffer reduction, but only because it does not retain
tile importance information yet. Nevertheless, this still only corresponds to an average
fallback of 0.6 percent, which we still deem acceptable. We expect the quality results
to be worse by an order of magnitude for the New York scene because of its aforemen-
tioned problems. Quality benchmarks on complex scenes remain an interesting topic
for future research.

Because there are no competing solutions to virtual texturing for real-time display
of arbitrary scenes with vast texture requirements, we could not compare virtual textur-
ing to other methods, but had to evaluate it on its own. We feel that the performance
and quality results confirm that virtual texturing is a good method for real-time ren-
dering of scenes with so high texture requirements that they could not previously be
displayed. Whether virtual texturing should be used depends on the particular appli-
cation. In computer games, these large scenes do not yet exist, because during the
scene creation methods like texture repeating are used to minimize the texture require-
ments. Virtual texturing would provide the possibility to switch to scenes that have real
unique details and therefore provide higher visual fidelity, at the expense of a runtime
performance hit as well as the cost of developing new content tools and changing the
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art pipeline. For scientific and industrial applications these scenes often already exist
and can now be displayed entirely instead of only partly or only with scaled down tex-
tures – as depicted in Figure 6.1. However, as we have seen with the New York scene,
these scenes, which are often automatically generated (e.g., from aerial imaging), can
have properties that can make them perform suboptimal in a virtual texturing applica-
tion. Therefore we see the automatic generation of optimized texture atlases for virtual
texturing as the most important area for future research. The results also showed that
the New York scene exhibited very distinct properties from the terrain scene. The con-
clusion to draw here is that any future research on virtual texturing should always be
done on scenes with a virtual texture that consists of a texture atlas, and not on simple
terrain scenes with a single linearly mapped texture. Ideas, like loading ancestor tiles as
proposed in [CESL10], that provide benefits on terrain scenes might not help with more
complex scenes at all, and terrain scenes could be handled with clipmapping alone.

Fig. 6.1: Virtual texturing provides independence from graphics memory constraints.

Going back to the aim and question of this thesis, based on the results and data pro-
vided in this thesis we assert that virtual texturing definitely is a feasible technique for
real-time rendering scenes with out-of-core texture data sets. We conclude this thesis by
referring to Figure 6.1, which suggests that virtual texturing finally brings independence
from graphics memory constraints.
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