
Virtual Texturing

13.11.2009
Albert Julian MAYER (e0126505/066932)

Praktikum aus Computergraphik und digitaler Bildverarbeitung (186.168)

The Problem:
To generate high-quality output realtime-rendering applications or games commonly need more
texture data than can be simultaneously held in graphics- or even in main-memory.

Other Solutions:
• Repeating/Blending: A common approach in video games is to have a repeating base texture that is
blended with other detail textures to simulate the variety of a single high-resolution texture. Although
this approach reduces the texture storage requirements it commonly is still higher than the available
graphics memory. Also this approach may be visually unsatisfying, requires skilled artist labour and is
inapplicable to many applications.

• Texture streaming: The entire texture data may not fit into graphics-memory, but the data needed at
any point in time commonly does. Texture streaming dynamically loads and unloads textures to keep
only those that are currently necessary in VRAM. Streaming may either happen asynchronously all
the time or when changing the virtual viewpoint between predefined areas, stalling the application
until the (un)loading is complete. The main problem here is that textures are streamed at a coarse
granularity, requiring the whole texture to be available even if only a small portion and/or a low
resolution version would be necessary. Furthermore for efficient rendering it is currently preferred to
combine the textures of multiple objects to save texture switches (=> ”texture atlas”), but this further
intensifies the granularity problem.

Virtual Texturing:
“A virtual texture is a mip-mapped texture used as cache to allow a much higher resolution texture to
be emulated for real-time rendering, while only partly residing in texture memory.”
[Martin Mittring “Advanced Virtual Texture Topics”]
Virtual texturing solves the texture memory problem by loading only those parts of the mip-chains of
the textures that are needed for rendering each frame. Unlike traditional manual texture streaming this
happens transparently to the client application, there is no need to give hints about which textures may
be viewable from which parts of the virtual world. Since virtual texturing operates on parts of the
mip-chain the total graphics memory consumption is significantly lowered, being roughly
proportional to the number of rendered pixels. Performance is also improved since streaming only the
necessary parts instead of whole textures (or whole mip-levels) reduces bandwidth requirements.
Furthermore since all of the objects can now share the same enormous virtual texture (atlas) the
texture switch problem is also eliminated.

Virtual Graphics Memory:
The graphics memory currently is not virtualized like main memory. Ideally, akin to virtual memory a
texture could be stored only partly in graphics memory. If parts of a texture were requested that aren’t
available a page-fault could happen, asking the application to asynchronously provide the missing
data while continuing with a lower-resolution version of the data as fallback.

The Implementation:
Since graphics hardware currently does not feature this kind of texture memory virtualization the
facility is emulated using pixel shaders. My implementation (similar and inspired by "Sparse Virtual
Textures" [Sean Barrett http://www.silverspaceship.com/src/svt/]) can be roughly divided into three parts:

• Tile Determination: Prior to rendering each frame it must be determined which parts (tiles from now
on) of the mip-chain of the virtual texture are needed. Currently this happens with a pre-pass with a
special pixel shader that calculates coordinates and mip level of the needed tile. The information is
streamed to the CPU and processed there. Other tile determination methods include rendering to UV-
space or analytic determination.

• Tile Management & Page-table Management: The tiles of the virtual texture that are needed are
streamed to a “physical” texture. The physical texture thus contains equally sized tiles of different
parts of different mip-levels of the virtual texture. There is only either one mip-map level in the
physical texture, or two levels if tri-linear filtering is used. Furthermore a page-table texture is created
whose width and height are equal to the width/height of the virtual texture in tiles. The page-table
texture stores the positions of the tile in the physical texture and must be updated whenever a tile is
mapped or unmapped.

• Virtual Texturing Shader: Since the virtual texture doesn’t exist in graphics memory the virtual
texturing shader samples the page-table texture instead. The result of the lookup is the address of the
tile in the physical texture. Now all that is left to do is bit of math for the within-tile coordinates and
sampling the physical texture.

Drawbacks: Apart from a lower graphics memory consumption virtual texturing does not provide any
benefits for applications where the data already fits into the graphics memory and because of the
incurred overhead (especially in the pixel shader) it is not suited to those applications. Also since the
physical texture is composed of uncorrelated texture parts, borders must be used to avoid artifacts
when using texture filtering or compression. These borders results in wasted texture memory.
Precision issues and graphics driver problems represent another challenge.

Delivered Files:
VirtualTexturing/ The base directory

Dependencies/ Contains dependencies like boost::threads for threading
Documentation/ Contains the documentation for the LibVT

LibVT_Documentation.html Doxygen documentation including usage guide
ProjectLog.pdf The practical course project diary.
VirtualTexturing.pdf This very document.

LibVT/ Contains source code for the virtual texturing library
LibVT_Config.h Adapt the library by changing #defines here
LibVT.h Public header for apps using LibVT
LibVT.cpp Contains most of the implementation of LibVT
readback.[frag/vert] Contains the shader-code for the tile determination
renderVT.[frag/vert] Contains the virtual texturing shader code

Sources/ The source-code for the Demo with uses LibVT
Resources/ Miscellaneous needed resource files for the Demo
Win32/ Support files like DLLs for (cross)compiling for Win32

