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Abstract
We present a systematic study of opportunities for the interactive visual analysis of multi-dimensional scientific
data that is based on the integration of statistical aggregations along selected independent data dimensions in a
framework of coordinated multiple views (with linking and brushing). Traditional and robust estimates of the four
statistical moments (mean, variance, skewness, and kurtosis) as well as measures of outlyingness are integrated in
an iterative visual analysis process. Brushing particular statistics, the analyst can investigate data characteristics
such as trends and outliers. We present a categorization of beneficial combinations of attributes in 2D scatterplots:
(a) kth vs. (k+ 1)th statistical moment of a traditional or robust estimate, (b) traditional vs. robust version of the
same moment, (c) two different robust estimates of the same moment. We propose selected view transformations
to iteratively construct this multitude of informative views as well as to enhance the depiction of the statistical
properties in scatterplots and quantile plots. In the framework, we interrelate the original distributional data and
the aggregated statistics, which allows the analyst to work with both data representations simultaneously. We
demonstrate our approach in the context of two visual analysis scenarios of multi-run climate simulations.

1. Introduction

The increasing complexity of modern scientific data (from
measurements and computational simulations) presents us
with new challenges for data analysis. Traditional ap-
proaches are often based on the a posteriori discussion of
expressive statistical properties of the data. Interactive visual
analysis, as addressed in this paper, allows the iterative ex-
ploration and analysis of data in a guided human–computer
dialog. Simple but effective visualization techniques are
used in combination with proven interaction schemes such
as linking and brushing. This enables a powerful informa-
tion drill-down process [Shn96]. Visual analysis uses proven
concepts such as coordinated multiple views, interactive fea-
ture specification via brushing, focus+context visualization,
and on-demand data derivation [Hau06].

In many cases, multi-dimensional scientific data can be
denoted as fd(p) where data values fd (e.g., temperature,
pressure values) are measured or simulated with respect to
an m-dimensional data domain p. The domain (i.e., the inde-
pendent data dimensions) can be 2D or 3D space, time, but
also independent input parameters to a simulation model.
In climate research or engineering, for instance, so-called
multi-run simulations have recently become an important

approach to assess simulation models [HBSB02,MGKH09].
The input parameters of the simulation are varied and a sim-
ulation output is computed for each variation of the parame-
ters (or at least many of them). This leads to a collection of
values that exists at every space/time location [LPK05] (one
value for every run). Multi-run data is analyzed to assess the
variability of the simulation model and to better understand
how sensitive the model reacts to a variation of its input pa-
rameters (sensitivity analysis). Identifying those parameters
that have the most influence can help to validate the model
and also guide future research efforts [Ham04].

The analysis of high-dimensional data is generally quite
challenging, especially if the number of independent dimen-
sion is larger than two/three. Reducing the data dimension-
ality is a natural attempt in such a situation, e.g., by com-
puting statistics along selected independent data dimensions.
Such an example is to consider averages over time instead of
all the individual data values. In this paper, we demonstrate
that it is useful to integrate statistical properties in an inter-
active visual analysis process. Such an integration opens up
the possibility of new informative views on the data as well
as opportunities for advanced visual data analysis.

When analyzing data distributions, trends and outliers
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are often of special interest. The four statistical moments
are suitable for describing data trends (with respect to cen-
trality and variance) as well as the shape of the distribu-
tion (skewness and kurtosis) [MMY06]. These data char-
acteristics can be estimated traditionally or in a robust
way [KW04, FMW08]. Additionally, measures of outlying-
ness help to identify extreme observations that substantially
deviate from the rest [MMY06]. These interesting opportu-
nities to analyze data distributions, however, also generate a
“management challenge” for the analyst: what perspective is
best for a particular analysis task?

In this paper, the integration of traditional and robust sta-
tistical moments in the visual analysis is discussed in a struc-
tured form. We propose a set of generic view transformations
that allow the iterative construction of a multitude of infor-
mative views, based on these statistics. The transformations
lead to a classification scheme for possible attribute/axis
configurations in 2D scatterplots. In the analysis framework,
we relate the original data—the individual data items from
which the statistics are computed—and the derived statis-
tics to each other. Thus, the analyst can work with both data
representations simultaneously. Data trends and outliers can
be investigated by brushing statistical properties in multiple
views, by iteratively altering the depicted view attributes,
and by deriving new data attributes on demand.

2. Related Work

Visualization and statistics facilitate the understanding of
relevant characteristics of complex data sets and there is
a long history of related work [Tuf83]. Interestingly, the
slightly younger history of visualization research relates
back to early works that were inspired by considerations
from statistics [Tuk77, CCKT83, CM88, Cle93]. Even sys-
tems for the visual data exploration can be traced back to
these [War94, SCB98, TU08]. So there is a long history of
relations between statistics and visualization.

The area of coordinated multiple views has been steadily
developing over the past fifteen years (see Roberts [Rob07]
for an overview). WEAVE [GRW∗00] and SimVis [DGH03]
are just two examples for according visual analysis frame-
works for scientific data. Multiple linked views are used
next to each other to concurrently show, explore, and ana-
lyze multi-variate data. This includes 3D views of volumet-
ric data (grids, also over time), but also attribute views such
as 2D scatterplots, histograms, function graph views, or par-
allel coordinates. Interesting subsets of the data are inter-
actively selected (brushed) directly on the screen, the rela-
tions are investigated in other linked views (compare also to
the XmdvTool [War94]). Logical combinations of brushes
in multiple linked views enable the specification of complex
features [DGH03,Wea09]. The selection information is used
to visually discriminate the specified features from the rest
of the data in a focus+context visualization style [Hau05].

The treatment of multi-run data is rather new to the

visualization community [LPK05]. Information visualiza-
tion techniques (e.g., parallel coordinates, scatterplot mat-
ices) are used in combination with statistics, to improve the
understanding of the model output from multi-run simula-
tions [CvN00]. Nocke et al. [Noc07, NFB07] propose a co-
ordinated multiple views system to analyze a large number
of tested model parameters and simulation runs. Statistical
aggregations of the multi-run data are visualized, e.g., using
linked scatterplots, graphical tables, or parallel coordinates.
In recent work, Matković et al. [MGKH09] visualize multi-
run data as families of data surfaces (with respect to pairs
of independent dimensions) in combination with projections
and aggregation of the data surfaces.

Kao et al. [KLDP02] visualize data distributions over
2D multi-run data, where the distributions can apparently be
represented by statistical parameters. For other cases, they
propose a shape descriptor approach [KDP01] constructing
a 3D volume with the probability density function (PDF) of
the data as voxel values. Mathematical and procedural opera-
tors [LPK05] are proposed to transform multi-run data into a
form where existing visualization techniques are applicable
(e.g., pseudocoloring, streamlines, or isosurfaces). This ap-
proach is very promising due to its flexibility. However, it is
not integrated in a visual analysis framework that would en-
able to interactively specify and investigate features within
the transformed data attributes.

Recently, Patel et al. [PHBG09] visualize moments that
describe the distribution of values in a growing neighbor-
hood around a voxel. The resulting curves enable the speci-
fication of a transfer function with improved discriminative
properties in volume rendering. Others [MNS06, ODH∗07]
exemplify that the integration of selected data analysis
mechanisms (such as principal component analysis, PCA)
can support the visual analysis of scientific data.

Finally, the interesting work by Weaver [Wea09, Wea10]
demonstrates the value of a structured discussion of selected
aspects of visual analysis approaches. Different opportuni-
ties for visual data analysis are analyzed, providing an or-
dered guide to a multitude of opportunities. With our paper,
we provide such a guide to the rich space of opportunities of
moments-based interactive visual analysis of scientific data.

3. Statistical Background

Statistical moments describe important characteristics of
data distributions. The first two moments refer to the cen-
tral tendency (mean µ) and the variability or dispersion
(variance σ2). The third and fourth standardized moment
characterize the asymmetry (skewness) and the peakedness
(kurtosis) of a distribution, respectively. For a distribution
of samples {x1, . . . ,xn}, the first moment can be estimated
by the arithmetic mean x = 1

n ∑n
i=1 xi, and the second mo-

ment by the empirical variance s2 = 1
n ∑n

i=1(xi − x)2. Skew-
ness can be estimated as 1

n ∑n
i=1(xi − x)3/s3, and kurtosis
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as 1
n ∑n

i=1(xi − x)4/s4 −3. The subtraction of the constant 3
results in a kurtosis value of zero in case of normally dis-
tributed data. Although these classical estimators are very
useful in practice, they have to be applied with care. For data
sets including outliers the results can be misleading because
outliers can have an arbitrarily large influence on these es-
timators. In the following, we recapitulate more robust esti-
mators for the moments as well as measures of outlyingness
that are integrated in our approach.

Robust estimates of statistical moments: The median is
a robust estimate of the center of a distribution. It is a spe-
cial case of a sample quantile [HF96], which is a value q(p)
such that at least np of the observations are ≤ q(p) and
at least n(1− p) observations are ≥ q(p) where p ∈ [0,1].
This gives the three quartiles that are, for example, used
in box plots [Tuk77]: the lower or first quartile q1 = q( 1

4 ),
the median or second quartile q2 = q( 1

2 ) = med(x1, . . . ,xn),
and the upper or third quartile q3 = q( 3

4 ). Robust estimates
for the standard deviation are the interquartile range IQR =
0.741 · (q3 −q1) and the median absolute deviation

MAD(x1, . . . ,xn) = 1.483 ·med1≤i≤n( |xi −q2| ) (1)
from the distribution’s median q2. Using the constants 0.741
and 1.483, respectively, allows for a consistent estimation of
the standard deviation σ of a normal distribution.

Two robust descriptors of the shape of the distribution are
the octile-based skewness skewoct—this is a special case of a
quantile-based skewness coefficient [Hin75]—and an octile-
based kurtosis measure kurtoct [Moo88]:

e7 + e1 −2e4
e7 − e1

and
(e7 − e5)+(e3 − e1)

e6 − e2
−1.23 (2)

where ei = q( i
8 ) is the ith octile. Alternative robust measures

for skewness (k = 3) and kurtosis (k = 4) can be obtained
by replacing the classical estimates of mean and standard
deviation by the robust versions median/MAD [FMW08]:

1
n

n

∑
i=1

(xi −med(x1, . . . ,xn))
k

MAD(x1, . . . ,xn)k − ck. (3)

As for the classical estimates, the kth moments (skewMAD
and kurtMAD for k = 3,4) are made comparable to the normal
distribution, and thus c3 = 0 and c4 = 3 [FMW08]. While the
octile-based skewness and kurtosis coefficient (see Eq. 2)
aim to minimize the influence of outliers on the measure,
the median/MAD-based moments (skewMAD, kurtMAD in
Eq. 3) still include such outliers. Therefore, kurtMAD can
also be used to identify distributions that contain outliers.
If the samples are approximately normally distributed, the
median/MAD-based measures yield values close to zero.

Measures of outlyingness: Outliers and their identification
are of special interest in many practical applications. Uni-
variate measures of outlyingness often consider the distance
of the samples xi to the data center, normalized by the stan-
dard deviation. Both center and standard deviation can be
estimated in a classical or a robust way. This leads to the

classical and the median/MAD-based z-score [MMY06]:

z =
xi − x

s
and zMAD =

xi −med(x1, . . . ,xn)

MAD(x1, . . . ,xn)
. (4)

For normally distributed samples, both the classical and the
robust z-scores yield values in the interval [−2,2] for about
95% of the data points. Accordingly, approximately 5% of
the samples are identified as potential outliers. For distribu-
tions including outliers, only the robust version lead to a re-
liable tool for outlier identification [RFG05].

4. A Moment-based Scheme for Visual Analysis

Descriptive statistics characterize the main features of a dis-
tribution of values. The integration of such statistical prop-
erties into a visual analysis provides interesting opportuni-
ties [TC06]. However, there is a multitude of alternatives
when mapping, for instance, two statistical properties (such
as moments) to a scatterplot. Which of the four moments
should be plotted against each other? Should a traditional or
robust estimate be used? Should some kind of data transfor-
mation (such as normalization or scaling) be applied?

In this section, we present a classification scheme for pos-
sible combinations of moment-based statistical properties in
views. This scheme is constructed by a set of view trans-
formations that are applied consecutively to the attributes
mapped to scatterplots. We show how a large set of infor-
mative views—including known statistical plots such as the
Q–Q (quantile–quantile) plot [WG68] or the spread vs. level
plot [Tuk77]—can be constructed iteratively by such view
transformations. For illustrative purposes, we start with an
example analysis of multi-run climate data. In Sec 4.2, four
types of view transformations are described. The resulting
view classification scheme is presented in Sec. 4.3.

4.1. Illustrative Example of Multi-run Climate Data

Climate research is concerned with the analysis of the cli-
mate system, its variability, and long-term behavior [WH06].
To allow better predictions of future events, it is important
to understand the past. The CLIMBER-2 coupled atmos-
phere–ocean–biosphere model simulates a palaeoclimatic
cold event [BGM04]. The anomaly was caused by a melt-
water outburst from Lake Agassiz, an immense glacial lake
located in the center of North America. About 8,200 years
ago, the lake drained due to climate warming and melting of
the Laurentide Ice Sheet. The CLIMBER-2 model simulates
a cooling of about 3.6 K over the North Atlantic induced by
a meltwater outflow into the Hudson strait [BGM04].

We analyze a multi-run simulation of the ocean part of
the CLIMBER-2 model. With such an analysis, an impor-
tant goal for climate modelers is to better understand the
variability of a model with respect to certain model parame-
ters (sensitivity analysis [Ham04]). Multiple simulation runs
are computed with varied initial parameters. In our case, two
diffusivity parameters of the ocean model are altered, one
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horizontal (diff h) and one vertical (diff v), with ten variations
each. The simulation leads to a data set with a total of 100
(10×10) runs. For every run, the data is given for 500 years
on 2D sections (latitude × depth) through the Atlantic, In-
dian, and Pacific ocean.

Basic Setup for the Visual Analysis: Since the number of
independent dimensions in the multi-run ocean data set is al-
ready challenging (5 dimensions, i.e., 3×2D sections, time,
and two run parameters with 10 × 10 runs), a traditional
visual analysis is difficult. Reducing the dimensionality can
help, for instance, by computing statistical aggregates along
independent data dimensions such as time or a spatial axis.
For the ocean data, we compute statistics with respect to the
run-dimensions. The aggregated properties are reintegrated
in our framework through an attribute derivation mechanism.
The result is stored in a separate data part with fewer inde-
pendent dimensions (i.e., 3×2D sections over time).

In practice, often only the aggregated data is further ana-
lyzed using statistical tools and static visualizations [Cra05,
Hel08]. However, we integrate both the multi-run and ag-
gregated data part in an interactive visual analysis process
where they are related to each other. A one-to-many relation
[NCIS02] is established between an aggregated cell ac j and
the distribution of multi-run values x j = {x1, j, . . . ,x100, j}
given for the same space/time. Both data parts can exchange
selection information, i.e., brushing an aggregated cell ac j
selects also the related distribution x j in the multi-run data.
Fig. 1 shows such distributions (highlighted in color) that
were selected in the aggregated data part (not shown here).

A so-called quantile plot is shown in Fig. 1a for the multi-
run data. The sample quantiles q j(p) of each distribution
of temperature values x j are plotted on the y-axis with re-
spect to a parameter p ∈ [0,1]. Traditionally, only a small
number of distributions are depicted in such a plot. Us-
ing a focus+context style, however, we are able to look at
all distributions in the multi-run data. For each location in
space/time, the multi-run values of the corresponding distri-
bution are represented as a sequence of points monotonically
extending from the left to the right. Brushing statistical prop-
erties in the aggregated data facilitate the identification of in-
teresting distributions in the quantile plot. Distributions with
a substantially negative kurtosis measure are highlighted in
green, and distributions with a high standard deviation are
shown in red. Two brushes were used for selection in the
aggregated data part. To make the individual distributions
in Fig. 1a comparable to each other, we can apply selected
transformations on the view.

4.2. Generic View Transformations

View transformations can be seen as an extension to classi-
cal data transformations. They facilitate the interaction with
views during visual analysis and help the analyst to main-
tain a mental model of the utilized views and their de-

median mean 

MAD std.-dev. IQR

skewMAD skewness skewoct

kurtMAD kurtosis kurtoct

median 1
st moment 

2
nd moment 

3
rd moment 

4
th moment 

n 

D

Trob
m

Trob
m

std.
Tord

Table 1: Traditional and robust estimates of moments: the
table is constructed starting from the mean, applying order
increasing and robustifying view transformations.

picted attributes. Starting from a generic view v, its appear-
ance is consecutively altered by applying a view transforma-
tion T , i.e., v′ = T ◦v. Consequently, a large set of informa-
tive views can be constructed. The progressive refinement
of views using transformations complies with the iterative
nature of a visual analysis (compare to the visual analyt-
ics mantra [KMSZ06]). The transformed version of a view
can either be used additionally, or it can replace the original
view. We propose four types of view transformations to con-
struct our classification of moment-based views (presented
in Sec. 4.3). The two main types allow us to switch between
the four moments, and their robust and traditional estimates:

• an order transformation Tord(tord,m) is used to incre-
ment or decrement the kth statistical moment m shown in
a view (dependent on the type tord : k → (k±1));

• a “robustifying” transformation Trob(trob,b) chooses a
traditional or robust estimate of a moment m, depending
on the type trob; we provide two robust alternatives per
moment, estimates based on quartiles/octiles and others
based on the median/MAD.

Order and robustifying view transformations represent the
most important construction elements for our view classifi-
cation scheme. They are used to create the entries in table 1.
For practical situations, we provide “shortcuts” to all twelve
measures in addition to the respective transformations.

We propose two additional types of view transformations
for the analysis, which are closer related to classical data
transformations (e.g., normalization, z-standardization):

• a relating transformation Trel(trel,a,b) that sets a view
axis a in relation to a data attribute b; dependent on the
type trel, for example, the difference (⊖) or ratio (÷) of
the attributes a and b is computed;

• a scale transformation Tsc(tsc,a) changes the scale/unit
of an view axis a; Example types tsc utilized in our scheme
are given in table 2 and discussed in the following.

Scale and relating view transformations both facilitate the
comparison of view attributes to each other. Also character-
istics in the data/views can be enhanced such as deviations
from the norm. In the following, we discuss scale and relat-
ing view transformation on several example views.

We continue with our illustrative example of multi-run cli-
mate data. Since the individual distributions in Fig. 1a stem
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Figure 1: Different quantile plots show distributions of
multi-run data: a shows the original temperature values.
The distances to the distribution’s median are shown in b.
This view is normalized by the MAD in d to identify outliers.
The individual distributions in a are normalized to [0,1] in c.
Views in b, c, d result from view transformations T of view a.

from different spatial positions (e.g., from hot and also cold
regions) the corresponding temperature ranges are quite dif-
ferent. One option to better relate the distributions to each
other is a relating transformation Trel(⊖,ay,med(ay)) ap-
plied to the y-axis ay of the quantile plot. Accordingly, the
median is subtracted from the values xi, j of each distribu-
tion x j , i.e., x̃i, j = xi, j −med(x1, j, . . . ,x100, j). By using the
median instead of the mean, also an implicit robustifying
transformation is applied. The resulting plot in Fig. 1b shows
the quantiles q̃ j(p) of the differences to the median x̃i, j. It
is advantageous that vertical distances in the view still rep-
resent temperature differences, however, it is not obvious
whether deviations from the median also represent outliers.

To address this issue, another relating transformation
Trel(÷,ay,MAD(x j)) is applied to the view in Fig. 1b. The
temperature differences x̃i, j are thus divided by the corre-
sponding MAD. The resulting plot in Fig 1d depicts the
quantiles of the median/MAD-based z-score that represents
a robust measure of outlyingness (this view can also be ob-
tained by Tsc(normz,ay) applied to Fig. 1a, see Tab. 2). The
plot in Fig. 1d is suitable for investigating outliers located
above or below ±2 (in contrast to Fig. 1b). Several of the
left-skewed distributions highlighted in green, for instance,
contain strongly deviating outliers according to the robust z-
score measure. On the other hand, selected distributions with
high standard deviation (red) apparently belong to distribu-
tions with two different modes (local maxima). This can also

Type tsc Description
norm[0,1] Normalizing the samples xi, j of a distribution x j to [0,1],

i.e.,
xi, j−xmin, j

xmax, j−xmin, j
(with corresponding min-/max-values).

normz Computing the z-score for each distribution (see Eq. 4).
normN Normalization of the samples xi, j with respect to a stan-

dard normal distribution N by computing Φ(xi, j) where
Φ denotes the cumulative distribution function of N .

log Computing the logarithm of the samples, i.e., logxi, j .

Table 2: Different types of scale transformations Tsc.

be seen in a histogram where the values of each distribution
are normalized to the unit interval by a scale transformation.

Another option facilitating the comparison of distribu-
tions in Fig. 1a is a scale transformation Tsc(norm[0,1],ay)
applied to the y-axis ay. The multi-run values of each distri-
bution are thus normalized to the unit interval (see Tab. 2),
the resulting quantile plot is shown in Fig. 1c. No presump-
tions about the individual distributions are required when
constructing this plot (in contrast to a Q–Q plot described be-
low). The typical pattern of a standard normal distribution is
indicated as a dashed curve. Interesting distributions that, for
instance, deviate from this curve can be observed. Moreover,
relations between the quantiles of a distribution can be seen
(e.g., comparing the three quartiles with p = 0.25,0.5,0.75).
Contrary to Fig. 1a and b, it becomes clearer that the sam-
ples emphasized in green belong to left-skewed distributions
where the mass of the distributions is concentrated on the
top of Fig 1c. Vertical distances, however, can no longer be
interpreted as temperature differences since a relative scale
is depicted on the y-axis (compared with Fig 1b).

Q–Q (quantile–quantile) plots: A Q–Q plot [WG68] is
commonly used in statistics to compare a distribution of data
samples to a theoretical distribution such as a normal distri-
bution. The quantiles of both distributions are, thereby, plot-
ted against each other. We can generate a Q–Q plot by ap-
plying a scale transformation Tsc(normN ,ax) on the view in
Fig. 1c. The attribute mapped to the x-axis ax is then nor-
malized with respect to a standard normal distribution N .
The resulting view is shown in Fig. 2a where the quantiles
of the normalized multi-run data q̂ j(p) are plotted against
the quantiles Φ−1(p) of the standard normal distribution
(x-axis). Multi-run values that are normally distributed are
(approximately) located along the indicated line. This would
be a 45◦ diagonal in the case of a standard normal distribu-
tion and a quadratic plot. Deviations from the line can have
different reasons. The distribution may contain outliers that
would be located in the upper or lower area of the plot, or the
samples may be distributed with a different skewness and/or
kurtosis such as a heavy-tailed distribution.

One is often interested in the deviations from the refer-
ence distribution (i.e., the diagonal in the Q–Q plot). A de-
trended Q–Q plot (see Fig. 2b) can be used for this purpose.
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Figure 2: A Q–Q (quantile-quantile) plot in a compares the
sample distribution to a standard normal distribution. Ap-
plying a view transformation, deviations from the indicated
line are investigated in a detrended Q–Q plot in b.

The standard Q–Q plot in Fig. 2a has been vertically sheared
by subtracting the attribute mapped on the x-axis from the
y-axis—both data attributes, thereby, need to be normalized
to approximately the same data range. The detrended Q–Q
plot in Fig. 2b is constructed accordingly by two view trans-
formations of Fig. 2a, i.e., Trel(⊖,ay,ax)◦Tsc(norm[0,1],ax).
Data samples stemming from the same as the reference dis-
tribution are located approximately on the x-axis (y = 0).
Deviations from a normal distribution are represented more
explicitly in Fig. 2b and can be investigated, for instance, by
brushing (the original Q–Q plot is then used as a reference).

The presented view transformations represent the basic
construction elements for our view classification. In future
work, we will investigate the inclusion of further view trans-
formations such as relating transformations depicting the
principal components of two view attributes or scale trans-
formations performing a contrast enhancement on an axis
(e.g., windowing).

4.3. A Classification Scheme for Moment-based Views

The four types of view transformations previously discussed
are the building elements for our classification of moment-
based views. The order transformation Tord is the most im-
portant one, constructing views of type kth vs. (k+1)th mo-
ment (see Sec. 4.3.1). The view transformation Trob is the
next most important one, changing a traditional to a ro-
bust measure. Corresponding views of type kth vs. kth mo-
ment (traditional and/or robust measures) are discussed in
Sec. 4.3.2. The views in each category can be further re-
fined, for instance, applying some kind of normalization to
the attributes (scale transformation Tsc). In cases where one
is interested in deviations from the norm (e.g., the diagonal
in a view), a view transformation Trel can relate both view
attributes (e.g., by subtraction or division).

4.3.1. Views depicting the kth vs. (k+1)th moment

This category of views is beneficial for investigating rela-
tions between moments. An initial setup of views is cre-

st
an

da
rd

 d
ev

ia
tio

n
q(

p)
 o

f z
M

AD

st
an

da
rd

 d
ev

ia
tio

n
ku

rt
os

is

0.0

1.1

0.0

1.1

-2.0

25.0

mean

0.0 1.0p -5.5 5.5skewness

-5.5 5.5skewness

on

ssa.

c.

b.

d.

-5.0

5.0

2.0

-2.0

on

Trob

Trob

q1 q2 q3

-2.0 27.0

f z
M

AD

5.0

2.0

q(p) of normalized 
temp. distributions

Figure 3: Basic view setup showing combinations of all four
moments in a, b, d (aggregated data part). The quantile plot
in c is utilized to identify possible outliers. Interesting distri-
butions are brushed and highlighted in color.

ated that shows combinations of all four moments simultane-
ously. This allows the investigation of the basic characteris-
tics of data distributions. We start from a scatterplot showing
mean vs. standard deviation in the aggregated data part (see
Fig. 3a). The view is altered by applying consecutive trans-
formations of moment order Tord , leading to Fig. 3b and 3d
(indicated with arrows). The views are arranged such that
each of them have an axis in common. For practical reasons,
such a view setup can be provided as a default configuration.
In the multi-run data part (see Fig 3c), moreover, a quan-
tile plot shows the median/MAD-based z-score as a robust
measure of outlyingness (for alternative plots see Sec. 4.2).

Skewness and kurtosis form a pattern in Fig 3d, known as
a Fleishman system [Fle78]. Positive kurtosis values corre-
spond to leptokurtic distributions with a more peaked shape
and also fatter tails than a normal distribution. In other
words, values are more concentrated near the data center,
and a higher probability for extreme values exists (thus the
kurtosis is also useful to identify distributions with outliers).
Platykurtic distributions (kurtosis < 0), in contrast, have a
lower wider peak around the center and thinner tails (i.e., a
lower probability of extreme values compared with a nor-
mal distribution). Skewness gives additionally an indication
whether the data center is shifted within the distribution.

While brushing particular attributes in a view, the rela-
tions between moments and distributions can be investigated
in the other views. Using two brushes, for instance, an inter-
esting combination of mean and standard deviation is first
selected in Fig. 3a and then refined in Fig. 3b. The corre-
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Figure 4: Traditional vs. octile-based measures for skewness
and kurtosis: High skewness values are brushed in a and ap-
parently result from outliers since the corresponding robust
measures in b (green) yield values closer to zero.

sponding distributions with negative and positive skewness
are highlighted in green and red, respectively. In the left part
of Fig 3c, certain outliers with negative skewness (green) can
be seen that strongly deviate from the rest (see also the inset
showing a quantile plot of normalized temperature distribu-
tions, compare to Fig. 1c). During the analysis, a 3D view is
used in addition that encodes selected statistical properties
in color and gives spatial reference of the selected features
using a focus+context style (not shown here).

Robustifying transformations: Since the traditional mo-
ments can be influenced by outliers, we use robust alter-
natives for certain plots. In Fig. 4a, the classical skew-
ness and kurtosis measures are opposed to each other. The
view transformation Trob(roboct,{ax,ay}) leads to the octile-
based measures in Fig. 4b. High skewness/kurtosis values
are brushed in Fig. 4a, the corresponding robust measures
yield smaller values (emphasized in green) in relation to oth-
ers. The selected values in Fig. 4a, therefore, apparently re-
sult from outliers in the distributions. High octile-based kur-
tosis values are, moreover, selected in Fig. 4b (colored red).

Scale transformations: To make the measures in Fig. 4
more comparable to a normal distribution, a scale transfor-
mation can be applied. Skewness measures are, therefore,
multiplied with a factor

√
6/n and kurtosis measures with a

factor
√

24/n [Cra05] (n = 100, i.e., the number of samples
per distribution). For normally distributed values, both the
classical and the robust measures then yield values in [−2,2]
for about 95% of the samples.

A spread vs. level plot [Tuk77] can be obtained by ap-
plying Tsc(log,{ax,ay}) ◦ Trob(roboct,{ax,ay}) to the axes
in Fig. 3a. The logarithm of the median (x-axis) is then plot-
ted against the logarithm of the IQR (y-axis). Such a plot is
commonly used in statistics to estimate an appropriate trans-
formation for a variance stabilization (e.g., when comparing
groups with different variances). The necessary parameters
for the transformation can be estimated using the plot (see
Tukey [Tuk77] for further details).
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Figure 5: Comparing traditional vs. median/MAD-based vs.
octile-based skewness. Some of the green highlighted points
with positive skewoct selected in b even have a negative value
for the traditional skewness in b.

4.3.2. Views depicting the kth vs. kth moment estimated
in a robust and/or traditional way

Views of this category result from robustifying transfor-
mations of a kth vs. kth moment plot and are useful to
assess the influence of outliers on different moment esti-
mates. Examples are mean vs. median, standard deviation vs.
IQR (or MAD), skewness vs. octile-based (or median/MAD-
based) skewness, etc. Also robust measures can be compared
against each other, for instance, IQR vs. MAD, or octile-
based vs. median/MAD-based skewness. For a normal dis-
tribution, the points in such plots are expected to be located
along the diagonal. Therefore, we are especially interested in
deviations from the diagonal. A relating transformation that,
for instance, subtracts the x-axis from the y-axis can be ben-
eficial here (compare to the detrended Q–Q plot, Sec. 4.2).

Comparing estimates of the same moment: Fig. 5 op-
poses the traditional skewness to two robust estimates
(i.e., skewoct based on octiles and skewMAD based on the
median/MAD). Samples approximately located along the
diagonal are normally distributed. High absolute values
for skewoct are brushed in Fig. 5b. Some points with a pos-
itive skewoct value (green) even have a negative value for
the classical estimate in Fig. 5a. For such distributions with
outliers, the traditional measures can be very misleading.

Relating transformations: As discussed above, the devi-
ation from the norm is often especially interesting (e.g., the
diagonal in some of our plots). Fig. 6a results from a relating
transformation of a standard deviation (x-axis) vs. IQR plot
where the difference (IQR− standard deviation) is mapped
to the y-axis. Several interesting points are located along
the diagonals. To enhance the “contrast” of the attribute on
the y-axis, another relating transformation Trel(÷,ay,ax) is
performed where the y-axis is divided by the x-axis. In the
resulting view (see inset) we can brush the diagonals of
Fig. 6a. The according points are located close to ±1 in the
inset and are highlighted in red and green, respectively. The
related distributions in Fig. 6b form an interesting pattern of
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Figure 6: a shows the result of a relating transformation
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the diagonals are selected in a transformed view (inset) and
correspond to distributions with a peaked shape in b.

peakedness, which can be further investigated looking at the
corresponding kurtosis values, for instance.

5. Demonstration Case

We exemplify our approach in another visual analysis of
multi-run climate data. The investigated data stems from
the atmosphere-part of the same CLIMBER-2 model where
a cooling over the North Atlantic is simulated [BGM04].
A global sensitivity analysis (GSA) based on the Morris
method [Mor91] is performed in the simulation. The model
parameter space with seven parameters is sampled iteratively
to determine the most influential parameters on the model
state. The resulting multi-run data represents a 3D atmo-
sphere over 500 years given for 240 runs. As a first step, the
four standard moments are computed for the distributions
over multiple runs. In Fig. 7a, the resulting mean tempera-
ture, standard deviation, and skewness are encoded in color
and give a first overview (timestep 80 is shown, which can
be changed interactively). Higher standard deviations can be
seen in southern latitudes together with positive skewness
values. To analyze the data distributions in more detail, a
view setup is created (similar to Fig. 3) that shows all four
standard moments (aggregated data) and a quantile plot.

Relations between different moments and distributions
are explored via brushing. In the scatterplot in Fig. 7b, distri-
butions with positive skewness and negative kurtosis are se-
lected. Since there is no clear boundary separating focus and
context, a smooth brush [DH02] is utilized, which results in a
trapezoidal degree-of-interest function (DOI ∈ [0,1]) around
the main region of interest. The corresponding distributions
are emphasized in green in the other views according to the
DOI information. In Fig. 7c, a quantile plot depicts normal-
ized temperature values resulting from Tsc(norm[0,1],ay).
The majority of the selected distributions are bimodal, i.e.,
they have two modes (local maxima as shown in the his-
togram). For these cells, the runs represent two different cli-
mate states of the model. In a scatterplot showing mean vs.
standard deviation, the highlighted points form certain clus-
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Figure 7: The 3D atmosphere is shown in a, encoding mean,
standard deviation, and skewness at timestep 80. Interesting
data characteristics are brushed in b and refined in the inset,
the corresponding distributions are investigated in a quan-
tile plot in c. A robustified version of b is shown in d.

ters. One of them is brushed for further investigation (see in-
set), the corresponding distributions are highlighted in red.
The main characteristics of the two selections can be com-
pared with each other, for instance, in the quantile plot or the
skewness vs. kurtosis plot (see Fig. 7b). In the spatial con-
text, these distributions are located in the south in the early
timesteps of the simulation.

As a next step, we analyze the influence of outliers on
the utilized classical moments. A robustifying transforma-
tion Trob is applied to several of our views. Fig. 7d plots
median/MAD-based skewness vs. kurtosis values. Due to
outliers, some of the highlighted points (red, green) with
positive robust kurtosis values are negative when estimated
traditionally (see Fig. 7b). Moreover, certain skewMAD vs.
MAD combinations can be seen in the inset that are inversely
proportional (red, green). This correlation is not expected
and is apparently a characteristic of the investigated data.

A transformed quantile plot showing the robust z-score in
Fig. 8a that allows the selection of outliers above +2 (red)
and below −2 (green). Positive outliers (red) correspond to a
repetitive pattern in the mean vs. standard deviation plot (see
Fig 8b showing timesteps 300–500), and stem mainly from
different height levels in the atmosphere. To study the rela-
tion to the input parameters of the simulation, a histogram
(inset) highlights the number of outliers with respect to the
run number. A repetitive pattern corresponds to the nega-
tive outliers (green) that apparently results from the Mor-
ris method [Mor91] of sampling the input parameter space.
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The runs with the corresponding input parameters result in
values that deviate from the rest, which is relatively stable
over the investigated timespan. This can be seen in the func-
tion graphs view (Fig. 8c) showing bi-annual temperature
differences for each simulation cell. The temperature drop
at timestep 100 results from the induced meltwater impulse,
moreover, positive outliers (red) in the early timesteps of the
simulation can be seen.

6. Conclusions and Future Work

Statistics are well known for describing important charac-
teristics of data distributions. High-dimensional data can
be reduced by considering statistics computed along se-
lected independent data dimensions (instead of the individ-
ual values). We have demonstrated that it is rewarding to in-
tegrate such a dimension reduction mechanism in the inter-
active visual analysis of multi-dimensional scientific data.
Estimates of the four statistical moments in their traditional
or robust form (based on quartiles/octiles or median/MAD),
in their original or transformed (scaled) data unit (e.g., nor-
malization to [0,1], z-standardization), can be combined in
a multitude of informative views on the data. We have pre-
sented a structured discussion of this rich space of possible
moment-based views that can be constructed by consecu-
tive view transformations (Tord , Trob, Tsc, Trel). Beneficial
configurations of such views have been discussed, including
views that oppose the kth and (k + 1)th statistical moment,
views showing a traditional and robust estimate or two ro-
bust estimates of the same moment, and views that make
relations between data attributes visible by an explicit repre-
sentation (e.g., division, subtraction).

We experienced a substantial increase of opportunities

in the interactive visual analysis as compared to tradi-
tional approaches. The tight integration of a computational
and interactive analysis methodology is well aligned with
Keim’s requirements for prototypic visual analytics solu-
tions [KMSZ06]. We consider the fact that we came across
a number of known views from statistics literature (e.g.,
spread vs. level plot, standard and detrended Q–Q plot), a
confirmation that our views scheme is appropriate and use-
ful. Parts of our view classification can even be regarded
more general than discussed here, for example, the differ-
ence between looking at values in the original data unit, and
relative values to better assess deviations from the trend. We
also consider describing our classification scheme by means
of generic view transformations useful as it tightly matches
the iterative nature of a visual analysis: Views are developed
step-by-step along with a mental model that is necessary to
understand the views and the depicted data properties. An
according user interface solution could be developed, where
a hierarchical context menu can be used to change between
views by applying view transformations.

Interesting opportunities for future work include the ex-
tension of the conceptual framework presented here (e.g.,
including other robust estimates and measures of outlying-
ness). While we have focused on the use of scatterplots in
this paper, we aim at also including other views in our classi-
fication. In parallel coordinates, for example, one can bring
up all four moments next to each other in their traditional
and/or robust form. Moreover, we aim at including further
view transformations, for instance, a relating transformation
that shows the deviation from a linear/non-linear regression
measure between the attributes. Other view transformations
could enhance the “contrast” of the depicted attributes, for
instance, by applying a windowing or clustering algorithm
that also preserves the continuous nature of scientific data.
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