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Figure 1: A typical game scene using standard light mapping (left) and irradiance normal mapping using theH-basis without (middle) and
with (right) textured albedo.

Abstract

Irradiance normal mapping is a method to combine two popular
techniques, light mapping and normal mapping, and is used in
games such as Half-Life 2 or Halo 3. This combination allows us-
ing low-resolution light caching on surfaces with only a few co-
efficients which are evaluated by normal maps to render spatial
high-frequency changes in the lighting. Though there are dedicated
bases for this purpose such as the Half-Life 2 basis, higher order
basis functions such as quadratic Spherical Harmonics are needed
for an accurate representation. However, a full spherical basis is not
needed since the irradiance is stored on the surface of a scene.

In order to represent the irradiance signals efficiently, we propose a
novel polynomial, hemispherically orthonormal basis function set
that is specifically designed to carry a directional irradiance signal
on the hemisphere and which makes optimal use of the number of
coefficients. To compare our results with previous work, we ana-
lyze the relations and attributes of previously proposed basis sys-
tems and show that 6 coefficients are sufficient to accurately repre-
sent an irradiance signal on the hemisphere. To create the necessary
irradiance signals, we use Spherical Harmonics as an intermediate
basis due to their fast filtering capabilities.

CR Categories: I.3.7 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism—; I.3.3 [COMPUTER
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1 Introduction

Light mapping and normal mapping are the most successful shad-
ing techniques used in commercial games and applications because

they require only few resources and result in a significant increase
in the quality of the rendered image. While light mapping stores
global, low-frequency illumination at sparsely sampled points in
the scene, normal maps provide local, high-frequency shading vari-
ation at a high resolution. The problem with combining the two
methods is that light maps store lighting information for only one
normal direction (the base surface normal) and therefore cannot be
evaluated using the normals stored in a normal map. To overcome
this problem, the irradiance (i.e., the incoming radiance integrated
over the hemisphere) for all possible normal map directions has to
be calculated and stored for each illumination sample point on the
surface.

Because the irradiance signal is low frequency in its directionality,
it can be well represented by lower order basis functions. As shown
by Ramamoorthi and Hanrahan [Ramamoorthi and Hanrahan 2001]
and Basri and Jacobs [Basri and Jacobs 2000], using Spherical Har-
monics up to the quadratic band (9 coefficients per color) is suffi-
cient to represent an irradiance signal over the whole sphere of nor-
mal directions (a so-called irradiance environment map) with only
a small average error of less than 3 percent for a typical irradiance
signal. This representation was adopted in games (e.g., [Chen and
Liu 2008]) to store spatially varying irradiance at surface samples
using Spherical Harmonics light maps. However, while Spherical
Harmonics work well, irradiance normal mapping on surfaces ac-
tually only requires a hemispherical signal – the information con-
tained in the inner hemisphere is never used.

In this paper, we therefore propose a new hemispherical basis called
H-basis, which is designed to represent irradiance signals over the
hemisphere of possible surface normals. The main advantage of
the H-basis is that it requires the same amount of coefficients than
Spherical Harmonics to represent irradiance signals on the hemi-
sphere and less error than other hemispherical bases, while keeping
the main advantages of Spherical Harmonics on a sphere: (1) It is
polynomial and therefore fast to evaluate. (2) Since it is closely re-
lated to Spherical Harmonics, a signal given in Spherical Harmon-
ics can be converted to the H-basis using a sparse matrix. (3) It is
orthonormal and therefore any general function can be easily pro-
jected into the basis without requiring a least-squares fit if it is used
for other purposes. (4) It is guaranteed that a linear interpolation
of the coefficients results in a linear interpolation of the evaluation
of the basis, which is especially important if the irradiance is stored
sparsely such as on a per vertex basis or very small coefficient maps.



2 Previous Work

Several basis systems have been proposed to represent hemispher-
ical functions in general as well as specifically for irradiance nor-
mal mapping. We are not considering spherical wavelets [Schröder
and Sweldens 1995] since only a very small number of coeffi-
cients are needed and an iterative fitting of millions of functions
is prohibitively expensive. Also, we will not discuss Spherical
Harmonics separately as they are covered extensively in the litera-
ture([Sloan et al. 2002],[Ramamoorthi and Hanrahan 2001],[Green
2003],[Sloan 2008]). A similar problem of calculating the irradi-
ance occurs when combining Spherical Harmonics PRT with nor-
mal mapping [Sloan 2006], though the radiance is not precomputed
but calculated with the precomputed transfer functions. Since only
a minimal number of coefficients are considered, numerical stabil-
ity and compression artifacts [Lam et al. 2006] are comparable to
standard light mapping.

Ultimately, the ratio of accuracy to number of used coefficients de-
fines the effectiveness of a basis function set, independent of the
irradiance functions represented.

2.1 Half-Life 2 Basis and Directional Occlusion

The Half-Life 2 Basis [McTaggert 2004] [Green 2007], is a function
set that is orthonormal over the upper unit hemisphere Ω+. It is
defined by three cosine lobes spanned by the vectors ~hi
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The explicit evaluation EHL2 is executed through the dot products
of the evaluation direction ~n and the basis directions weighted by
their coefficients:

EHL2(~x) =

3∑
i=1

√
3

2π
ci~n · ~hi (2)

with the basis coefficients ci and the normalization factor
√

3
2π

.
Though defined on the hemisphere, the three basis functions are,
due to the linearity of the basis, a rotated and hemispherically
normed version of linear Spherical Harmonics, which also consist
of three cosine lobes. Actually, due to linearity, any three mutually
orthogonal vectors define an equivalent basis, although the given
configuration causes the coefficients to be mostly positive, circum-
venting a range compression if the coefficients are saved in 8 bit
colors.

Expression 2 can be simplified by extracting ~x as a common fac-
tor, which simplifies the evaluation to a single dot product with the
(non-normalized) vector:

~o =

3∑
i=1

√
3

2π
ci ~hi. (3)

This formulation is also called Directional Occlusion. Unfortu-
nately, if a trichromatic signal is represented, each color requires
a separate Directional Occlusion vector ~o, and thus three dot prod-
ucts have to be calculated while the Half-Life 2 Basis needs to be
evaluated only once, giving no advantage in the trichromatic case
because 3 dot products have to be performed in both cases. How-
ever, the Directional Occlusion formulation shows that the Half-
Life 2 basis is fully equivalent to Directional Occlusion and both
bases can transport one general cosine lobe.

2.2 Hemispherical Harmonics and Makhotkin Basis

Hemispherical Harmonics (HSH) [Gautron et al. 2004] and the
Makhotkin basis [Makhotkin 1996] are hemispherically orthonor-
mal bases that are constructed by mapping the negative pole of the
sphere at (0, 0,−1) to the border of the hemisphere, contracting
the spherical orthonormal functions to hemispherical ones through
a shifting operation without destroying their orthogonality. This
shifting is generated by replacing the cos θ term in the definition
with 2 cos θ − 1.

In the case of Makhotkin, Jacobi polynomials are shifted, whereas
Hemispherical Harmonics consist of shifted Spherical Harmonics.
Due to this contraction, the basis functions become strongly non-
polynomial and therefore expensive to evaluate as they contain sev-
eral square roots and divisions. This is important since for irradi-
ance caching, the basis functions are evaluated directly in the pixel
shader. Also, due to the shifting, all basis functions are either 0
or constant at the border of the hemisphere, causing severe errors
localized at the border. This effect diminishes with higher bands,
but is dominant if only two or three bands are used since only one
constant color can be represented at the border of the hemisphere.
Due to their spherical origin, their band structure is the same as
Spherical Harmonics.

2.3 Zernike Basis

Zernike polynomials, an orthonormal polynomial set on the unit
circle, have been adapted to the hemisphere by Koenderink et al.
[Koenderink et al. 1996] to represent BRDFs. However, the adap-
tation introduces square roots and divisions into the basis functions,
which results in a high evaluation cost compared to purely polyno-
mial bases. Due to their two-dimensional origin, they also feature
a different band structure, having only two basis functions in the
first band and three in the second band, resulting in 3 coefficients
up to the first band and 6 coefficients up to the second band. This
makes this basis interesting for an irradiance signal representation
with only a few coefficients.

Compared to shifted hemispherical bases, the Zernike basis does
not suffer from severe errors at the border of the hemisphere be-
cause the basis functions vary at the border of the hemisphere.

3 Creating the Directional Irradiance

The irradiance of a surface point ~x with surface normal ~n is defined
as

E(~x, ~n) =

∫
Ω+

L(~x, ω)(~n · ~ω)d~ω. (4)

A representation of the signal E(~x, ~n) is stored at sparse sample
points ~x, for example at object vertices or at the texels of a low-
resolution texture map. The signal is defined for all normal vectors
~n in the upper hemisphere of the point ~x. In practice, the hemi-
sphere is defined in tangent space, i.e., around the interpolated sur-
face normal and (bi)tangent vector.

Similar to light mapping, we first need to calculate the radiance and
derive the irradiance in a precomputation step.Any method that cre-
ates a radiance estimate, such as shadow mapping, photon mapping
[Jensen 1996], or path tracing [Kajiya 1986] can be used. In the
figures shown in this paper, the radiance solution was calculated by
ray tracing an importance-sampled HDR environment map, which
allows testing all bases under high dynamic range conditions and
arbitrarily complex radiance signals.



Given the radiance L, creating E(~x, ~n) (equation 4) corresponds to
filtering L with a diffuse kernel. Doing this in Euclidean or spher-
ical coordinates is prohibitively expensive due to the high cost of
every single convolution and the high number of surface sample
points for which this has to be done (usually tens of millions in
current game levels).

Instead, we use Spherical Harmonics as an intermediate basis. Ra-
mamoorthi et al. [Ramamoorthi and Hanrahan 2001] and Basri
[Basri and Jacobs 2000] show how to efficiently carry out equation
4 in this basis. Furthermore, they show that an irradiance signal
represented in Spherical Harmonics requires only 3 bands (9 coef-
ficients) to achieve an average error below 3%.

We rotate each sampled radiance signal into tangent space and ex-
pand it into the Spherical Harmonics coefficients slm by integrating
against the Spherical Harmonics basis functions Y lm over the com-
plete sphere Ω:

slm =

∫
Ω

L(~ω)Y lm(~ω)d~ω (5)

Since this has to be done for a small number of coefficients only,
it is much faster than a direct convolution. At this stage, we can
also apply a number of different filtering methods such as described
in [Sloan 2008] to remove potential ringing artifacts. The Funk-
Hecke Theorem [Groemer 1996] states that the diffuse convolution
(equation 4) can be carried out directly in Spherical Harmonics by
simply scaling the coefficients. Following [Basri and Jacobs 2000],
we multiply the coefficients in each band l with the corresponding
factor al:

a0 = 1 a1 = 2
3

a2 =
1

4
a3 = 0

a4 = − 1

24
(6)

to arrive at the irradiance signal represented in Spherical Harmon-
ics:

ESH(~n) =
∑
l

∑
m

slmY
l
m(~n) (7)

Please note that because a3 = 0, the 3rd band never has to be calcu-
lated in the expansion. Since also the factor a4 as well as all higher
band factors is very small, the first three Spherical Harmonics bands
are sufficient to represent the irradiance signal with a high accuracy
for most practical purposes, and this is the reason why a Spherical
Harmonics representation is so efficient.

If storing 9 coefficients (i.e., 27 in the trichromatic case) at each
surface sample point is acceptable, we can calculate the irradiance
at any surface point by directly evaluating the Spherical Harmonics
basis functions using a normal looked up from the normal map and
using the interpolated coefficients to evaluate equation 7. However,
we are not making the most efficient use of the coefficients since
the functions are only evaluated on the hemisphere Ω+, and not the
full sphere. The created directional irradiance signals can be better
represented in a hemispherical basis. In the following section, we
propose a hemispherical basis that is polynomial and orthogonal,
and requires less coefficients to represent irradiance signals with a
comparable error to Spherical Harmonics.

4 H-Basis

Since a Spherical Harmonics representation of irradiance signals
is so successful, we want to stay as close to the Spherical Har-
monics basis functions as possible when designing our new basis,

yet use the coefficients more efficiently. Also, avoiding any non-
polynomial basis functions circumvents high evaluation costs, as
the basis functions have to be evaluated for each fragment.

The upper hemisphere Ω+ that carries the signalE(~x, ~n) is a closed
half-space of the full sphere, separated by the plane at z = 0. In
other words, with ~n given in spherical coordinates (θ, φ), the range
of the latitudinal parameter reduces from θ = 0..π to θ = 0..π/2,
while the longitudinal parameter range stays unmodified at φ =
0..2π.

Our goal is to choose a set of hemispherically orthogonal elements
of the polynomial Hilbert space [Sansone 1991] that can best rep-
resent a general hemispherical irradiance signal. First, we ob-
serve that since the longitudinal parameter range does not change,
all Spherical Harmonics basis functions that are symmetric to the
z = 0 plane are automatically orthogonal over the upper hemi-
sphere Ω+, and we can thus use them without modification. Con-
sidering the first three bands, these functions are Y 0

0 , Y
1
−1, Y

1
1 , Y

2
−2

and Y 2
2 (see Figure 2). Note that in the Euclidean representation of

Spherical Harmonics, these are all functions that do not explicitly
depend on the value of z.

For the latitudinal part, where the parameter range is halved, we
shift Y 1

0 to the hemisphere analogous to the HSH and Makhotkin-
basis, replacing cos θ with 2 cos θ − 1. Since HSH is created
through shifting the Spherical Harmonics to the hemisphere, this
is the same function as the HSH basis function with l = 1,m = 0.
Also, the Zernike basis contains the negative of this function in its
second band with l = 0, n = 2. Remarkably, without any ex-
plicit orthogonalization, all functions are still orthogonal over the
upper hemisphere Ω+, which was the initial goal. Normalization of
all functions to the hemisphere results in the following set of basis
functions for theH-basis:

H1 =
1√
2π

(8)

H2 = −
√

3

2π
sinφ sin θ = −

√
3

2π
y (9)

H3 =

√
3

2π
(2 cos θ − 1) =

√
3

2π
(2z − 1) (10)

H4 = −
√

3

2π
cosφ sin θ = −

√
3

2π
x (11)

H5 =
1

2

√
15

2π
sin 2φ sin2 θ =

√
15

2π
xy (12)

H6 =
1

2

√
15

2π
cos 2φ sin2 θ =

1

2

√
15

2π
(x2 − y2) (13)

Analogous to Spherical Harmonics, we can choose up to what poly-
nomial degree (with respect to the Euclidean representation) we
want to approximate the irradiance signal. Using only the first 4
coefficients corresponds to the constant and linear basis functions.
We call this reduced basisH4, and refer to the full basis, including
the two quadratic functions, with H6 (not to be confused with the
basis functions Hi). Note that this allows the option to choose the
number of evaluated functions at run-time, simply not evaluating
the two quadratic basis functions.

The complete H-basis is visualized in Figure 2. While most func-
tions look very similar to their SH counterparts, just restricted to
the upper hemisphere, it is interesting to take a closer look at H3,
which results from shifting Y 1

0 . Intuitively speaking, the shifting
operation increases the frequency content of this function, it has
one more “mode” than the original Y 1

0 restricted to the hemisphere
would have. It rather resembles Y 2

0 restricted to the hemisphere. So



Figure 2: Spherical Harmonics basis functions (left) compared to theH-basis functions (right).

basically, through the restriction to the hemisphere, fewer functions
can provide a more accurate fit to a given signal, which explains the
good accuracy shown later at a lower coefficient count. Compared
to a hemispherical projection of Spherical Harmonics as proposed
in [Sloan et al. 2003], Y 1

0 is also the basis function that can be best
fitted with other Spherical Harmonics basis functions and can be
omitted. Yet, a high number of basis functions that are not orthog-
onal to Y 1

0 is needed so this approach is only possible for signals
represented using more than 3 bands.

The linear basis functions can also be constructed by building the
proper duals [Sloan et al. 2003] of the Spherical Harmonics basis
functions on the hemisphere and therefore, hemispherically least-
square projected linear Spherical Harmonics have the same error as
the H4-basis if only the upper hemisphere is used. Yet, the H4-
basis is orthogonal which makes the projection into the H-basis
simpler.

4.1 Expansion into the H-Basis

In Section 3, we have shown how to calculate the SH representa-
tion of an irradiance signal. To transform such a signal into the
H-basis, we calculate the transformation matrix by projecting the
Spherical Harmonics up to l = 2 into the H-basis, resulting in the
transformation matrix Th
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By multiplying the Spherical Harmonics coefficient vector with Th,
theH-basis coefficient vector containing all hi is created. Because
we stayed very close to the basis functions of Spherical Harmonics,
the matrix is sparse and poses no considerable calculation overhead.
If the irradiance is available with SH coefficients up to l = 4 (with
all l = 3 coefficients 0), the l = 4 coefficients can also be projected
into the H-basis with a matrix given in Appendix A. In practice,
this only performs imperceptible corrections to the signal and is not
necessary in almost all cases.

4.2 Run-Time Evaluation

Up to now, we have created the directional irradiance on the sur-
faces in tangent space through a precomputation step. The neces-
sary coefficients are transported on a per vertex basis or using coef-
ficient texture maps. In the trichromatic case, this results in 4 or 6
additional colors per vertex or texture maps. If tangent space nor-
mal maps are used, the irradiance is calculated by explicitly evalu-
ating the basis functions in the direction of the looked up normal ~n,
weighted by the interpolated coefficients

EH(~n) =

n∑
i=1

hiH
i(~n) (15)

for every surface point. For the final color or emitted radiance,
EH can be multiplied by a material coefficient or a lookup from an
albedo texture.

4.3 Directional Irradiance Tangent Space

In almost all practical cases that use texture maps instead of per-
vertex caching, a second set of texture coordinates that creates an
unambiguous mapping of the surfaces is used to define the light
map or coefficient textures. Using the tangent space of the second
texture coordinate set, calculated from the UV directions of this set,
to represent the irradiance would result in the fact that the tangent
space normal maps reside in a different tangent space than the co-
efficient maps.

Fortunately, both texture coordinate sets share the same vertices and
normals as well as interpolation in the rendering pipeline. By sim-
ply using the tangent and bitangent of the normal map tangent space
in the irradiance texture coordinates during the precomputation of
the irradiance, a tangent space using the irradiance texture coordi-
nate set is defined that is exactly aligned in object space with the
normal map tangent space. This step is allowed because we only
need the local directions of the tangent space during the run-time
evaluation and not its position. The looked up normal can be used
directly to evaluate the weighted basis functions without any addi-
tional data or transformations.

Effectively, the irradiance texture coordinate set is only used to
define the surface points where the irradiance is calculated and
cached, while the normal map tangent space defines the tangent and
bitangent for both spaces, resulting in a correctly aligned irradiance
signal relative to the looked up normal.



Figure 3: Average of the integrated mean square error over 10,000
random irradiance functions grouped by number of coefficients.

5 Error Analysis and Results

Since any hemispherical basis such as described in Section 2 can
carry an approximation of a hemispherical irradiance signal, we can
directly compare the H-basis to any other hemispherical basis by
substituting it for the H-basis in the precomputation as well as in
the run-time evaluation to determine their accuracy. As an error
metric, we use the integrated mean square error

IMSE =

∫
Ω+

(

n∑
i=1

ciBi(~n)− E(~n))2d~n (16)

where E(~n) is the fully correct irradiance signal and ciBi the cor-
responding weighted basis function of each basis. The IMSE of all
bases with different numbers of coefficients averaged over 10,000
random irradiance signals is shown in Figure 3.

As can bee seen, the H-basis, both with 4 basis functions can
deliver the same error as least square projected linear Spherical
Harmonics while being an orthogonal basis. With 6 coefficients
the lowest error for the number of coefficients used, leveraging
the same advantages as Spherical Harmonics. Interestingly, the
Zernike-basis is also showing a low error and has a lower error with
3 coefficients than the Half-Life 2 basis, though 3 coefficients are
not enough for an acceptable representation as can be seen in Figure
4.

Although the average error of the Zernike basis is only slightly
higher than H6, it has a much higher evaluation cost due to its
non-polynomial basis functions. An evaluation of this basis with 6
basis functions contains two square roots and 4 divisions. Also, the
Zernike basis requires 6 functions while theH-basis already allows

Figure 5: Detail of a game scene without albedo texturing using
H4 (upper) and the more accurate H6 (lower) basis. The dif-
ferences are marginal, while the more accurate H6 basis shows
slightly more defined detail.

a good representation with 4 basis functions. The similar effective-
ness in representation of the Zernike basis and the H-basis can be
explained by the fact that the basis functions have a similar shape,
besides sharing two basis functions, namely the constant function
H1 and H3, which is also true for HSH. Comparing theH-basis to
bases with 9 coefficients, only quadratic Spherical Harmonics have
a lower error.

Figure 4 shows a direct comparison of all bases using two or three
bands under the same lighting conditions. The used lighting is an
HDR environment map with the sun at grazing angle, which poses a
worst case situation because the irradiance changes strongly in the
longitudinal as well as latitudinal parameter. For practical purposes,
though the error is still higher than quadratic Spherical Harmonics,
H6 delivers an accurate representation as can be seen in the absolute
difference images of both Spherical Harmonics and H6.

A typical game scene using H6 can bee seen in Figure 1, which
also shows the difference between traditional light mapping and ir-
radiance normal mapping. Figure 5 shows a close-up depicting the
difference between H4 and H6. As can be seen, the perceptual
difference between H4 and H6 is marginal and, due to the orthog-
onality of the basis, distributed over the hemisphere, which makes
H4 the most efficient choice. Using only two more coefficients
with the H6 basis, the result is slightly more pronounced since the
longitudinal accuracy is increased, and can deliver a numerical ac-
curacy comparable to quadratic Spherical Harmonics in case the
basis is used for other purposes than irradiance normal mapping or
if a higher accuracy is desired.



Figure 4: Comparison of all hemispherical bases with different number of bands representing the same irradiance signal. The lower right
images show the absolute difference of quadratic Spherical Harmonics and H6 to the ground truth.

6 Conclusion and Future Work

We have designed a new hemispherical basis, calledH-basis, which
is optimized for representing a directional irradiance signal on the
hemisphere for the purpose of irradiance normal mapping. It is
the best option for a low number of coefficients without sacrific-
ing the advantages of orthogonal polynomial basis systems, being
the fastest basis to evaluate and having the lowest error to coeffi-
cients ratio. Analogous to other bases, the number of coefficients
increases the accuracy, keeping the possibility to change the num-
ber of coefficients at run-time to create shader levels-of-detail or to
fit the number of coefficients to the given resources.

We showed that 4 coefficients are sufficient for a perceptually ac-
ceptable irradiance representation and 6 coefficients for a numer-
ically accurate representation. Besides directional irradiance sig-
nals, the H-basis is also a good choice to represent other low-
frequency signals on the hemisphere and any signal can be directly
projected into theH-basis due to its orthogonality. Specifically, the
H-basis can replace the Half-Life 2 basis in methods such as [Sloan
2006] and [Habel et al. 2007], delivering a far higher accuracy with
just one coefficient more.

The fact that no explicit orthogonalization has been used to derive
the basis functions hints at an undiscovered polynomial orthonor-
mal basis on the hemisphere that is the direct equivalent of Spheri-

cal Harmonics, sharing most of its attributes.
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Appendix A

Transformation matrix T 4
hx for l = 4 coefficients arranged in a

vector of the form s4
−4..s

4
4.

0 0 0 0 0 0 0 0 0

0 0 0 −
√

15
16
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√
3
2

0 0 0 0
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√
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0 0 0
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