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Abstract— In volume visualization interfaces, rendering-
related parameters are often manually editable through 
various controls and interface elements. Most of the time 
however, these offer little or no beforehand information on 
the resulting effects that would occur for certain parameter 
values or across the whole value domain. This makes 
parameter adjustment a trial and error process. We have 
developed techniques to anticipate these changes and display 
them on customized versions of popular interface elements, 
such as sliders or transfer function editors. Through the use of 
visualization means such as graphs, color mapping, and 
various other indicators, the influence of potential parameter 
changes on the volume rendering output can be assessed 
before any actual changes are made. This makes it easier for 
the potential user to work with such interfaces, while 
receiving feedback on parameter behavior and stability. 

I. INTRODUCTION 
olume visualization is a segment of computer graphics 
which deals with the exploration, classification and 

on-screen representation of information from three-
dimensional, or often multi-dimensional datasets. Such 
datasets are typically acquired from scanning devices such 
as Computed Tomography (CT), Magnetic Resonance 
Imaging (MRI) or Rotational X-ray imaging. Volume 
visualization techniques are widely used in medical and 
industrial imaging, where a 3D representation of the 
available data is often more accessible, suggestive and 
visually appealing than traditional 2D grayscale slices, and 
may yield information otherwise hard to spot. Volume data 
is intuitively composed of atomic elements known as voxels 
(short for volume pixel), which are the equivalent in 3D 
space of the traditional pixels from 2D images. For the 
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purposes of computer processing, voxel-based data is at 
first discretely sampled, then the samples are traversed and 
assigned optical properties, after which they are 
composited and projected into a 2D screen-space to 
produce an image. The previously mentioned steps are a 
loose outline of a generic volume rendering approach.  
 A typical volume rendering application consists of one 
or several viewports to display the images resulting from 
rendering the dataset. Multiple controls are used to 
manipulate the data processing. The complexity of these 
controls ranges from a simple slider to elaborate transfer 
function editing interfaces. While there exist numerous 
efforts to automate or semi-automate the visualization of 
this type of data [1], [2], [3], many volume rendering 
applications mostly leave it to the user to adjust the various 
parameters which control the on-screen outcome. 
Therefore, in many cases, an image which shows relevant 
information from a volume dataset is the result of 
parameter tweaking by means of sliders, interactive graphs, 
various widgets, and generally speaking, a variety of 
interface elements.  
 There is, however, a downside to allowing an extensive 
degree of manual control. Unless the user is very familiar 
with the particular dataset under analysis, the adjustment of 
parameters to obtain the desired results may prove to be a 
tedious and time-consuming trial-and-error task. 
Furthermore, while most volume rendering applications 
allow extensive control over the data, few if any relay 
feedback to the user as to how a hypothetical change in a 
parameter value might influence the resulting images. We 
attempt to reverse this situation through the development of 
interface elements which provide the user with a-priori 
knowledge into how a change in the interface control 
would reflect on the on-screen image. This would also aid 
in the assessment of parameter behavior and stability across 
its value-domain.  
 The paper is structured into several sections. After the 
introduction, we briefly outline volume rendering in 
general, and describe the rendering approach used in the 
paper. Section three deals with the metric used for 
comparing images resulting from sampled parameter 
values, and how this metric relates to the human vision 
system. In the following section, we present a couple of 
custom interface elements which allow control over their 
associated parameters, while at the same time automatically 
displaying information on parameter behavior and stability. 
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We also present an on-screen approach for the dynamic 
visualization of parameter changes. We conclude by briefly 
emphasizing the significant aspects of the paper and by 
providing information on future work.  

II. VOLUME RENDERING APPROACH 
 

 While a description of volume rendering techniques does 
not fall within the scope of this paper, we find it necessary 
to at least outline the basic methodology and point out the 
elements which are relevant to the contents of other 
sections.  
 The images found throughout the paper are produced 
using direct volume rendering (DVR). Unlike older 
techniques which employed "proxy geometry" [4] and 
triangle based surfaces to indirectly outline elements of 
interest from within the volume, DVR operates on the 
actual volume data, without the need to use additional 
geometric primitives. The dataset is typically uploaded into 
video memory as a 3D texture [5] and sampled discretely. 
A transfer function maps optical properties to the samples, 
which are then composited to form the desired image in 
screen-space. A popular algorithm which encompasses 
these steps is ray casting [4], which has the advantage of 
exploiting the hardware acceleration capabilities and the 
parallel architecture of modern graphics processing units 
(GPUs) [6], [7].  Fig. 1 shows an example of an image 
rendered via GPU ray casting. The corresponding transfer 
function is shown below the image.  
 The transfer function depicted in Fig. 1 maps opacity 
values to voxels according to their densities [8]. Regions of 
lower density, located toward the left of the graph in Fig. 1, 
have a very low opacity, which is reflected in the 
transparent appearance of the skin in the image rendered 
above the graph. Similarly, higher density regions such as 
bone are assigned a much higher opacity and are fully 
visible. Many volume rendering applications allow manual 
control over the shape of the transfer function. The control 
points in Fig. 1, marked with circles, are movable with the 
mouse and the in-between step-wise components of the 
function may be linear, cubic or may otherwise have any 
desired shape. The resulting image changes in real time to 
reflect the changes in the transfer function. The problem, as 
previously mentioned, is that such an interface offers little 
additional information on parameter effect. In other words, 
the users cannot know what the rendered image will look 
like if the transfer function is given a certain shape until 
they actually modify the transfer function. In Section 4, we 
present our method to address this issue. 
 

 
 
Fig. 1.  Volume rendering of a medical dataset and the corresponding 
opacity transfer function   

III.  METRICS FOR IMAGE COMPARISON 
 
 Our approach to solving the problem of the lack of 
information in interface controls is mostly an image-
oriented one. Given a particular parameter, we sample it 
across its value-domain and render an image for each 
sample. By comparing the resulting images we get an idea 
of how the parameter behaves across its domain, and how 
different values affect the on-screen outcome. This makes it 
possible to tailor popular interface controls to also show 
this parameter behavior, in addition to allowing control 
over its values. Image comparison is therefore an important 
piece of the puzzle and the choice in comparison metrics 
may significantly affect the outcome. 
 The metrics often involve a pixel-by-pixel comparison of 
the images, using some type of formula to assess the 
differences between color or intensity values, followed by 
an accumulation of these differences in a scalar. Therefore, 
for each pair of sampled parameter values, we end up with 
a scalar which shows the difference between using one 
sampled value versus using the other one. The domain of 
the parameter would then be characterized by an array of 
such scalars.  
 Among the most straightforward and computationally 
efficient metrics is the absolute mean difference, which 
essentially involves computing the mean of all pixel 
differences in the RGB color space, across the two 
compared images. Wilson et al. [9] provide an introduction 
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into some of the more common metrics, such as the root 
mean square (RMS), the signal to noise ratio, as well as 
their own ∆g metric, based on the Sobolev norm and the 
Hausdorff metric. Chan et al. [10] have developed an image 
comparison method based on the Canny edge detection 
algorithm. However, such metrics are mathematically 
defined around pixel differences. They do not take into 
account aspects pertaining to subjective human perception, 
though they may incidentally correlate with the human 
vision system. Furthermore, it is difficult to assess the 
robustness and efficiency of such metrics, since it is the 
user who has to relate the information obtained from 
applying the metrics to actual on-screen changes.  
 A more straightforward approach to defining a suitable 
metric is to design bottom-up. We design a metric around 
the human vision model, considering aspects of the human 
perception of color and intensity. Efforts in this direction 
have been made and are well documented in literature [11], 
[12], [13]. Such metrics could be described as perception-
based image comparison metrics. They take into account 
factors such as hue angle, color distance, pixel placement 
or an estimated viewer distance, among others. As is often 
the case, there is also a trade-off between the complexity of 
the metric and the processing speed. Perception-based  
metrics are typically computationally intensive. As the 
complexity of the metric increases, performance becomes a 
significant problem, and the processing of complex metrics 
at high resolutions and for hundreds of parameter values 
may take hours even on a relatively powerful machine.    
 Considering the above, we have developed a metric 
which takes into account some of the previously mentioned 
perceptual aspects, while attempting to provide an efficient 
means of image comparison. The metric is processed in the 
following steps: 
 
- the general area of the volume in screen space is isolated 
from the rest of the image, since the background presents 
no relevant information   
 
- the behavior of the human eye, which only looks at a few 
details at a time as opposed to the image as a whole, is 
approximated by analyzing a finite number of random  
rectangular sub-regions within the image. These regions are 
then weighed according to their size and color uniformity. 
This is based on an approach proposed by Matkovic [14].  
 
- a noise removal filter is applied, since changes in noise 
have little impact on the perceived change in the image. In 
other words, noise, even when it changes significantly, is 
still perceived as noise.  
 
- for the purpose of assessing pixel differences, we change 
to the CIE-Lab color space [15], which is perceptually 
closer to the human interpretation of color than the RGB 
model.  
 

- the accumulated difference for corresponding rectangular 
regions between each pair of images is calculated using the 
color distance ∆E*

ab [15]. 
 
- finally, the amount of variation between each pair of 
images is computed as the weighted mean of the values 
from the rectangular regions.   
 
 The accuracy and relevance of the metric are difficult to 
assess, since they are, to a significant degree, subjective 
matters. Performance-wise, migrating some of the 
previously mentioned steps to the GPU has shown 
improvement, though still insufficient for use in real time. 
However, the trade-off between complexity and speed has 
so far proven satisfactory on commercial hardware.  

IV. CUSTOM INTERFACE CONTROLS 
  
 For demonstrative purposes, we consider two basic 
parameters involved in volume rendering: the step size 
used when sampling the volume during ray casting and a 
basic transfer function control which adjusts the threshold 
of an isosurface and its opacity. 
 The information regarding the behavior of these 
parameters across their domain is incorporated into 
common interface elements by means of information 
visualization techniques.  

 
Fig. 2.  Rendered dataset with traditional and custom sliders which control 
the step size. The custom slider also depicts information on parameter 
behavior 
 
 Slider widgets are frequently used for the adjustment of 
one-dimensional parameters such as the step size. 
However, a basic slider does not provide any a-priori 
information regarding the changes that would happen upon 
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changing the position of the pointer (Fig. 2a). Unless the 
user is very familiar with the volume under consideration, 
moving the slider to get the desired result is a matter of trial 
and error.  The slider in Fig. 2b shows the magnitude of 
change which occurs in the rendered image when the 
pointer is moved to a neighboring location.  
 The slider may be further customized as needed, as seen 
in Fig. 3. Often it might be necessary to more closely 
inspect a region of the slider where significant changes 
occur. For this purpose, the specific region can be selected 
(Fig. 3a) and non-linearly scaled to fill a larger portion of 
the slider (Fig. 3b). It can take up the entire available 
length. The borders of the regions keep their initial values, 
but there is more space along the length of the slider thus 
allowing more precision in selecting a desired position for 
the pointer. This process of fine tuning is useful for 
portions of the slider where there is an abrupt variation in 
the amount of parameter effect. 
 

 
Fig. 3.  The selection (a) and non-linear scaling (b) of a slider region for 
fine tuning purposes 
 
 The technique may be fully automated by partitioning 
the slider into small regions and assigning each region a 
portion of the slider of a length proportional to the variation 
taking place within the region. We thus end up with a 
perceptually uniform slider, where the perceived changes in 
the rendered image are proportional to the distance by 
which the pointer was moved along the slider.  
 Performance-wise, we took 300 samples from the 
domain of the parameter, to generate values for the graph 

of the slider. We rendered and compared the images 
obtained for each pair of sampled parameter values. The 
computations for processing the custom slider and 
rendering the volume in Fig. 2 took approximately 16.2 
seconds on our test machine, an Intel Core I7 with 6 GB of 
RAM and a GeForce GTX 280 GPU.  

 

 
Fig. 4.  Custom isosurface control where the magnitude of change is color-
coded. (a) and (b) show two positions of the pointer at opposite ends of a 
region of transition which signifies a variation in parameter stability 
  
 The concept of parameter behavior displayed on a 
custom version of a frequently used interface element also 
extends to transfer function controls. For this purpose, we 
consider a simplified version of the editable graph depicted 
in Fig. 1. The simplified graph allows the adjustment of an 
isosurface threshold when the pointer is moved 
horizontally, and the adjustment of the opacity of the 
isosurface, when the pointer is moved vertically. As 
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previously, the parameters are sampled and the 
corresponding images are rendered and compared.  
 

 
 

Fig. 5.  Changes illustrated on the rendering of the volume for two 
positions on the step size slider 
 

Fig. 4a and 4b show an isosurface control where the 
influence of parameter changes is color coded through a 
red-blue color range. Red areas correspond to positions of 
the pointer which cause significant changes in the rendered 
image (shown above the control), whereas blue areas 
denote regions where the change in parameter values has 
little effect on the outcome. The purple transition area in-
between the red and blue is a region of varying stability, 
whereby the parameters gain stability as the pointer is 
moved from the red region toward the blue one.  

We took 50 samples on the horizontal axis and 20 on the 
vertical axis, for a total of 1000, to generate values for 

color coding. Our test machine took around 49 seconds to 
process the isosurface control from Fig. 4. 
  Changes occurring when manipulating an interface 
control can be shown on the rendered volume itself, as 
depicted in Fig. 5. The changes are shown using a red 
coloration of varying intensity. When the pointer is in the 
low variation region on the slider, little changes are visible. 
If the pointer is moved to an area showing greater 
variations, this is reflected in the more frequent intensely 
red regions on the volume. 
 However, this approach has the downside of being 
intrusive and inflicting possibly unwanted changes in the 
final resulting image. The direct color encoding of image 
variation may obstruct desired information when 
superimposed on the volume rendering. One way to avoid 
this is to use a viewing lens, i.e. to restrict the display of 
changes to a bordered circular region which the user can 
freely move using the mouse, as illustrated in Fig. 6. 
 

 
Fig. 6.  The viewing lens restricts the display of changes to a mouse-
controlled circular region 

V.   CONCLUSIONS 
  
 Interface elements customized to offer information on 
parameter behavior are meant to make parameter 
adjustment more efficient and straightforward. The 
approaches described thus far do not provide an exhaustive 
analysis of the parameters involved in volume rendering. 
They do offer a-priori information on the variations which 
would manifest upon certain changes in the discussed 
parameters, which may aid in making volume exploration 
and related interface elements easier to interact with. 
 There is naturally a lot of room for improvement and 
extension in this area, mostly in the direction of expanding 
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the mentioned techniques to more complex contexts, while 
at the same time working on new information visualization 
methods for the purposes of parameter analysis. Future 
development in this direction includes the extension of the 
concept of customized interface elements to single and 
multidimensional transfer function controls, while focusing 
on other potentially more relevant parameters and 
improving the metrics used for image comparison.  
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