

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

A Layered Particle-Based Fluid
Model for Real-Time Rendering of

Water

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computergraphik/Digitale Bildverarbeitung

eingereicht von

Florian Bagar
Matrikelnummer 0500041

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Daniel Scherzer

Wien, 28.09.2010

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Erklärung zur Verfassung der Arbeit

Florian Bagar
Schönbrunnerstraße 29/A38
1050 Wien

”Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich
die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass
ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen
-, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach
entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.”

Ort, Datum:
Unterschrift:

Abstract

We present a physically based real-time water simulation and rendering
method that brings volumetric foam to the real-time domain, significantly
increasing the realism of dynamic fluids. We do this by combining a particle-
based fluid model that is capable of accounting for the formation of foam
with a layered rendering approach that is able to account for the volumetric
properties of water and foam. Foam formation is simulated through Weber
number thresholding. For rendering, we approximate the resulting water and
foam volumes by storing their respective boundary surfaces in depth maps.
This allows us to calculate the attenuation of light rays that pass through
these volumes very efficiently. We also introduce an adaptive curvature flow
filter that produces consistent fluid surfaces from particles independent of
the viewing distance.

Kurzfassung

Wir präsentieren ein physikalisch basiertes Echtzeit-Wassersimulations- und
Renderingverfahren, welches volumetrischen Schaum in den Echtzeitbere-
ich einführt und den Realismus von dynamischen Flüssigkeiten maßgeblich
verbessert. Dazu kombinieren wir ein partikelbasiertes Flüssigkeitsmodell,
welches das Entstehen von Schaum berücksichtigt. Der Ansatz dieses Modells
ist auf drei Schichten aufgebaut und bezieht die volumetrischen Eigenschaften
von Wasser und Schaum ein. Die Bildung von Schaum basiert auf der so-
genannten

”
Weber-Nummer“, wobei die Schaumbildung ab einem gewissen

Schwellwert einsetzt. Die Wasser- und Schaumoberfläche wird durch Tiefen-
bilder repräsentiert auf deren Grundlage die jeweilige Dicke der Schichten
berechnet wird, was wiederum eine effiziente Berechnung der optischen Eigen-
schaften des Wassers zulässt. Des Weiteren führen wir das sogenannte Adap-
tive Curvature Flow Filtering ein. Es ermöglicht uns eine Wasseroberfläche
zu generieren, die, unabhängig vom Betrachtungsabstand, immer gleich viel
Detail aufweist.

Contents

1. Introduction . 8
1.1 Scope of the work . 8
1.2 Motivation . 9
1.3 Main Contributions . 10
1.4 Thesis Structure . 11

2. Previous Work . 13
2.1 Fluid Simulation . 13
2.2 Fluid Rendering . 14
2.3 Smoothed Particle Hydrodynamics 15
2.4 Offline Methods . 17

2.4.1 Two-Way Coupled SPH and Particle Level Set Fluid
Simulation . 17

2.4.2 Simulation of Two-Phase Flow with Sub-Scale Droplet
and Bubble Effects . 19

2.4.3 Realistic Animation of Fluid with Splash and Foam . . 19
2.4.4 Bubbling and Frothing Liquids 21

2.5 Real-Time Methods . 22
2.5.1 Real-Time Simulations of Bubbles and Foam within a

Shallow Water Framework 22
2.5.2 Screen Space Meshes 23
2.5.3 Screen Space Fluid Rendering with Curvature Flow . . 25

2.6 APIs . 30
2.6.1 OpenGL . 30
2.6.2 Shader Authoring Language 30

3. Method . 32
3.1 Adaptive Curvature Flow . 34
3.2 Real-Time Foam . 35

3.2.1 Foam Formation . 36
3.2.2 Layer Creation . 36
3.2.3 Layer Compositing . 40

Contents 6

4. Implementation . 41
4.1 Textures and Render Targets 43
4.2 Simulation Update . 45
4.3 View Frustum Culling . 46
4.4 Main Scene Rendering . 48
4.5 Point Sprites . 49
4.6 Depth Passes . 50

4.6.1 Water Depth . 50
4.6.2 Foam Depth . 51

4.7 Adaptive Curvature Flow Filtering 52
4.8 Layer Thicknesses . 56

4.8.1 Water Layer . 57
4.8.2 Foam Layer . 58

4.9 Water Rendering including Foam 61
4.9.1 Helper Functions . 62
4.9.2 Back to Front Compositing 62
4.9.3 Compositing Shader 64
4.9.4 Shadowing . 66
4.9.5 Spray Particles . 66

5. Results . 68
5.1 Scenes . 68
5.2 Performance . 73
5.3 Limitations . 75

6. Summary and future work . 77
6.1 Conclusion . 77
6.2 Future Work . 79

A. Shader Code . 80
A.1 General . 80
A.2 Depth Passes . 85
A.3 Adaptive Curvature Flow . 88
A.4 Layer Thicknesses . 91
A.5 Compositing . 93

List of Figures . 99

List of Tables . 101

List of Listings . 102

Contents 7

Bibliography . 104

Acknowledgements . 109

Chapter 1

Introduction

Over the last decade, simulation and rendering of complex natural phenom-
ena such as fire, smoke, cloud or fluid has been an active and one of the most
important research areas in computer graphics. Among these phenomena,
water may be the most fascinating and challenging problem. Fluids such
as water are an essential substance in our daily life and have attracted the
attention of many researchers. Although the visual quality has improved,
the lack of realism still offers a lot of room for improvement.

1.1 Scope of the work

Under the assumption that a fluid is at rest, it can be represented as a flat
surfaces. For instance, this representation has been used to realistically ren-
der ocean scenes in computer games. This is a reasonable assumption in
the field of games, but not sufficient for computer generated films or motion
pictures (and even in modern computer games one would prefer a more ad-
vanced method). Because as the realism of a scene increases, also the fluid
has to be simulated and rendered in a more realistic way. The problem is
that a fluid can move in a very complex way and even topologically changes
can occur if the fluid is separated because of turbulent motion. Furthermore,
the visual appearance of a fluid like water is based on complex optical effects,
caused by reflection and refraction. As well as caused by caustics, which are
complex patterns of light that can be seen on surfaces in presence of water
(for instance, those formed on the floor of a swimming pool).

Real water also has additional features such as foam, bubbles and spray,
appearing through advection, created by interaction with wind or formed by
a water jet mixing gas with liquid. In general as proposed by Joseph [18],
foam is a two-phase medium of gas and liquid with a particular structure
consiting of gas pockets trapped in a network of thin liquid films and plateau
borders. Taking these features, including the optical effects, in consideration
extremely enhances the realism of scenes including water. But as one can

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Replacement Text
a

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Inserted Text
s

wimmer
Inserted Text
to

Chapter 1. Introduction 9

imagine, due to the complexity of fluid physics the computational cost is
very high. This is especially true for offline rendering, although it achieves
realistically and detailed results.

For offline rendering the focus is very high-quality and thus it is not
interactively. For instance, objects or the view point cannot be moved by the
viewer within the scene because the rendering time for a single image (referred
to as frame) is too long. Also interaction with a fluid included in the scene
is not possible because of this circumstance. Contrary to offline rendering,
performance has the highest priority concerning real-time rendering. Thus
a real-time application is able to synthesize the frames fast enough to keep
the viewer immersed in the scene and also interaction with fluids is possible.
For example, the viewer can throw objects into the fluid which float on
the fluid or sink. An application is classified as real-time if it renderes at
least 15 frames per second (fps) [1], which permits the viewer to distinguish
individual frames. In this context the increasing performance of today’s
GPUs is an important factor because it enables real-time methods to achieve
improved visual quality, simulate complex physics on the GPU, and even
adapt approaches from offline rendering methods. For instance, the fluid
simulation used in this thesis is carried out on the GPU resulting in a high
performance gain compared to a CPU fluid simulation.

Simulation of fluids like water can be classified into Eulerian and La-
grangian approaches. The former build on a fixed grid in space, and are an
obvious choice for GPU-based calculation, since calculations on the cells of
a grid are easily parallelizable. However, these approaches are not intuitive
for flows because they limit the simulation to the space where the grid is de-
fined. Lagrangian-approaches, like Smoothed Particle Hydrodynamics (SPH),
simulate a fluid by moving discrete volume elements, and are therefore not
restricted concerning the simulation space. Furthermore, particle-based fluid
simulations are also suited for simulating topologically changes of water sur-
faces.

The remaining part of this chapter provides a motivation, introduces a
real-time fluid simulation and rendering system developed for this thesis, and
shows the main contributions and the structure of this thesis.

1.2 Motivation

Dynamic fluids are a desirable element of many real-time applications. So
far, the mathematical complexity of realistically simulating and rendering the
behavior and interaction of fluids with the environment has hindered their

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Inserted Text

wimmer
Cross-Out

wimmer
Replacement Text
The focus of

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Inserted Text
ity

wimmer
Inserted Text
,

wimmer
Inserted Text
in real-time rendering,

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
needs to be

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Replacement Text
allow interaction

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
then

wimmer
Cross-Out

wimmer
Sticky Note
das ist aber eigentlich eher interactive. Real-time ist normal mehr.

wimmer
Cross-Out

wimmer
Replacement Text
prevents

wimmer
Cross-Out

wimmer
Replacement Text
from

wimmer
Inserted Text
ing

wimmer
Inserted Text
,

Chapter 1. Introduction 10

widespread use. One promising approach would be to render the results of
SPH simulations using splatting, but the locally high curvature of spherical
splatting primitives results in an unrealistic jelly-like appearance.

Only recently, van der Laan et al. [37] proposed curvature-based screen
space filtering for rendering the result of SPH simulations. The approach al-
leviates sudden changes in curvature between the particles and creates a con-
tinuous and smooth surface. While this method is a significant step towards
realistic fluid rendering in real time, there is room for improvement. First,
the screen-space curvature flow formulation is highly dependent on viewer
distance. While fluids farther away from the viewer are overly smoothed,
fluids near the viewer almost completely retain the undesirable spherical par-
ticle structure. Second, there exists as yet no realistic real-time method to
create foam, which is an important visual element in most situations where
real-time fluids are used (see Figure 1.1).

The main algorithm discussed in this thesis was also published in a paper
[3] at the “21st Eurographics Symposium on Rendering”.

Fig. 1.1: A scene rendered with simple noise-based foam [37] (left) and with our
new method (right);

1.3 Main Contributions

This thesis presents a real-time fluid simulation and rendering system that
overcomes these drawbacks:

Chapter 1. Introduction 11

• We introduce an adaptive curvature flow filtering algorithm for smoothed
particle hydrodynamics rendering which accounts for perspective due
to is independence from the viewpoint and avoids over- or under-
smoothing as present in previous methods. The construction of the
water surface and the filtering is not based on polygonization, and thus
does not suffer from the associated tessellation artifacts.

• We introduce a fast physically based foam rendering approach using We-
ber number thresholding and a volumetric layer-based rendering system
(see Figure 3.3). Foam can appear as top-most layer or between two
water layers, as it is the case when a turbulent stream, like a waterfall,
immerges into resting water with high impact. We calculate the thick-
ness of each layer and perform volumetric back to front compositing
along the viewing rays. Thus, objects of the background scene become
less visible depending on the amount of water and foam that is in front
of them.

• Our method is almost as fast as previous approaches and has compa-
rable performance with the benefit of improved image quality.

• Our method is highly configurable from an artistic point of view, and
thus can produce a multiplicity of visual appearances which match the
background scene and create the desired atmosphere.

• In addition, the algorithm is simple to implement and integrate into
existing rendering engines. Furthermore, all rendering steps are calcu-
lated using shaders and intermediate render targets on the GPU.

1.4 Thesis Structure

The thesis is structured into different chapters as follows:

• Chapter 2 gives an overview about previous work. First, the chapter
describes the smoothed particle hydrodynamics formalism. Then, re-
cent offline methods are described and finally an overview of real-time
approaches is given.

• Chapter 3 explains our method which is separated into our adaptive
curvature flow filtering, and real-time foam rendering.

Chapter 1. Introduction 12

• Chapter 4 deals with the implementation of our method. The chapter
describes the used application programming interfaces, gives an top-
level overview of the involved classes, and presents a detailed descrip-
tion of the rendering algorithm.

• Chapter 5 shows results that are achieved using our simulation and
rendering method and provides a detailed performance comparison.
The Chapter also discusses limitations of our method.

• Chapter 6 summarizes the thesis’ contents by drawing a conclusion and
discussing possible future enhancements.

wimmer
Cross-Out

wimmer
Replacement Text
is

wimmer
Cross-Out

wimmer
Replacement Text
c

wimmer
Cross-Out

wimmer
Cross-Out

Chapter 2

Previous Work

Several offline and real-time methods exist to simulate and render dynamic
fluid flows. This chapter is a collection of some of these approaches which
are related to our work. As stated in chapter 1 the simulation of fluids can
categorized into two types, the Eulerian- and the Lagrangian- approach.

2.1 Fluid Simulation

In general, the dynamic behavior of incompressible fluids is described by the
so-called Navier Stokes equations [14]. Methods based on the Eulerian ap-
proach subdivide the simulation space into a regular grid. This grid is used
to simulate the fluid dynamics, and the Navier Stokes Equations are solved
by discretizing the equations, using this grid. Each cell of this grid contains
certain quantities such as velocity, pressure or density needed for the simula-
tion and in every simulation step these values are updated depending on the
flow. The Navier Stokes equations are also suitable for simulating phenom-
ena such as clouds, foam or smoke. One problem that arises by using a fixed
grid, is that small scale phenomena like foam, bubbles or spray can hardly
be tracked because too coarse grid resolutions are used. One could try to
refine the grid that is being used, but the drawbacks are increased perfor-
mance and memory requirements and for this reason only limited applicable
for real-time methods. Thus, many methods based on the Eulerian approach
decouple small scale effects from the main fluid simulation and offers them
to simulate effects such as foam or bubbles on a much smaller scale than
the underlying grid. This is especially the case for offline methods. Another
drawback is that the fluid is restricted to stay with the grid and thus cannot
flow everywhere within a scene. Common methods to solve the Navier Stokes
equations for the Eulerian case are finite element techniques [34].

In the Lagrangian formulation of a fluid, particles are used to completely
define the fluid and to solve the Navier Stokes equations. Compared to the
Eulerian approach where the fluid is tracked at fixed position in space, in the

wimmer
Cross-Out

wimmer
Replacement Text
C

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Inserted Text
,

wimmer
Inserted Text
this has

wimmer
Cross-Out

wimmer
Replacement Text
ility

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Cross-Out

wimmer
Sticky Note
emph

wimmer
Sticky Note
emph

wimmer
Inserted Text
,

wimmer
Inserted Text
s

Chapter 2. Previous Work 14

case of the Lagrangian approach the particles move with the fluid and thus
track the fluid. Particle-based fluid simulations such as SPH which is used by
the algorithm presented in this thesis (see section 2.3) have several advantages
compared to grid-based methods. For instance, the fluid is not restricted to
a fixed volume in space and even topologically changes of the fluid surface
are handled because of their particle-based nature. Furthermore, collision
detection with the surrounding environment and also with dynamic objects
can easily be determined because each particle carries position and velocity
information, which are sufficient to calculate any collision. However, the
major drawback of particle-based methods is the high particle amount that
is required to simulate realistically behaving fluids. Moreover, the particles
should be small in size to ensure that small scale effects can be treated in an
appropriate way and thus the particle count has to be increased to achieve
realistically results. Furthermore, it is a difficult to extract a surface for
rendering.

2.2 Fluid Rendering

To achieve realistically looking renderings including optical effects such as re-
flection and refraction the fluid surface has to be reconstructed. A common
method for surface extraction is the marching cubes [19] algorithm which is
applicable to both grid-based and particle-based methods. The algorithm
extracts a polygonal mesh that approximates the iso-surface from a three-
dimensional grid. The drawback with respect to particle-based methods is
that the simulation space has to be subdivided into a grid. Thus, the com-
putational cost of the reconstruction becomes quite high. Another common
approach to reconstruct the fluid surface are level set methods [31] which
reconstruct the surface on a grid whose resolution and computation are com-
pletely independent of the fluid simulation. This reconstruction method is
suitable for particle-based fluids, but has inherent problems with creating
sharp boundaries when the fluid is in contact with solid objects.

Today’s GPUs support point primitives used for rendering instead of poly-
gons, which enables an application to perform hardware accelerated surface
splatting [4]. In contrast to polygonal meshes, point primitives are more
flexible and do not have to care about topological changes. Hence, point
primitives are acutely applicable for real-time rendering when the underly-
ing simulation is particle-based. Due to the spherical nature of splatting
primitives, they suffer from jelly-like artefacts on the surface and produce
unrealistic appearance as mentioned in Section 1.2. To overcome this draw-
back, the surface has to be filtered after the splatting has been carried out

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Replacement Text
S

wimmer
Cross-Out

wimmer
Sticky Note
das ist ein grober systematischer englisch-fehler: Wörter auf "ly" sind adverben, das heißt sie stehen nicht vor einem Hauptwort (das wären adjektive)!!!

wimmer
Inserted Text
be

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Inserted Text
.

wimmer
Cross-Out

wimmer
Inserted Text
T

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
i

wimmer
Sticky Note
artefact wäre british english

Chapter 2. Previous Work 15

(see Section 2.5.3). The major advantage of using point primitives for ren-
dering is that the method is not based on polygonization, and thus does not
show grid discretization artifacts in coherent frames as present in grid-based
methods.

The actual rendering of fluids can be separated into methods for offline
rendering and such suited for real-time rendering. The former basically ren-
der the results from grid- or particle-based simulations via ray tracing meth-
ods such as Monte Carlo path tracing [31] or Photon Mapping [17] because
they are well suited for volumetric phenomena such as water, foam and bub-
bles. Due to this characteristic they are able to produce realistic images
including physically correct reflections, refractions and caustics. Even effects
like light scattering can be achieved. Real-time methods such as the one
presented in this thesis are based on scanline rendering and try to perform
most of their calculations on the GPU. Furthermore, they have a limited time
buffer wherein the simulation- and rendering- calculations have to fit into.
Because of this limitation most of the optical effects are approximated for
real-time rendering. For instance, a common method to achieve reflections
on a fluid surface like water is to use static environment mapping. Especially
advanced fluid effects such as foam and spray are hardly achievable in a phys-
ically correct manner for real-time rendering at the time of writing. Even so,
non-physical but realistic approximations can be used to render these effects
in real-time as shown in this thesis.

Particle-based fluid simulations are an active research topic, but the real-
time rendering of the simulation results is an ongoing challenge. In the
remaining part of this chapter we will briefly describe the Smoothed Particle
Hydrodynamics formalism, then we will give an overview of related offline
particle-based fluid rendering methods and afterwards we will describe re-
lated real-time particle-base methods. Finally, we will give a brief overview
of relevant APIs used by our implementation.

2.3 Smoothed Particle Hydrodynamics

SPH is a formalism for simulating highly deformable bodies like fluids with a
particle system. It was introduced by Monaghan [23] and is used by physicists
for cosmological fluid simulations. Desbrun et al. [9] has later extended the
SPH approach to be used for computer graphics. The particles of the SPH
simulation, which can be viewed either as matter or sample points scattered
in a soft substance, represent small volume elements of inelastic material that
move over time. SPH does not need a grid to calculate the spatial derivatives,

wimmer
Cross-Out

wimmer
Replacement Text
those

wimmer
Cross-Out

wimmer
Replacement Text
ese

wimmer
Inserted Text
,

wimmer
Inserted Text
.

wimmer
Cross-Out

wimmer
Replacement Text

Chapter 2. Previous Work 16

instead they are found by analytical differentiation of interpolation formulas.
SPH is an interpolation method which allows any function to be expressed
in terms of its values at a set of disordered particles. The interpolation is
based on the theory of integral interpolants using kernels that approximate
the Dirac delta function [10]. Using the identity

A(~r) =

∫

A(~r ′)δ(~r − ~r ′)d~r ′, (2.1)

in which δ is the Dirac delta function and ~r is the position one is interested
in, the integral interpolant AI of any function A(r) is defined by

AI(~r) ≈
∫

A(~r ′)W (~r − ~r ′, h)d~r ′, (2.2)

where the integration is over the entire space, and the Dirac delta function
δ is approximated by an interpolating kernel W to be able to construct a
differentiable interpolant. h is a parameter that defines the size of the kernel
support and is refered to as the smoothing length. The interpolating kernel
W has the following properties

∫

W (~r − ~r ′, h)d~r ′ = 1, (2.3)

and
lim
h→0

W (~r − ~r ′, h) = δ(~r − ~r ′), (2.4)

where equation 2.3 states that W is normalised and the limit is to be in-
terpreted as the limit of the corresponding integral interpolants as proposed
by [23]. For the discrete case the integral is approximated by a summation,
which gives the summation interpolant

AS(~r) =
N
∑

b=1

mb

Ab

ρb
W (~r − ~rb, h), (2.5)

where N is the particle count and mb is the mass, ~rb is the position and ρb is
the density of a single particle b. The value of any quantity A at position ~rb is
denoted by Ab. Kernel functions commonly used are based on the Gaussian
function,

W (~r − ~r ′, h) =
1

h
√
π
e−

(~r−~r ′)2

h2 , (2.6)

and on cubic splines, which are computationally more efficient.
To calculate quantities such as acceleration or viscosity, one needs a dif-

ferentiable interpolant. As mentioned by Monaghan [23], the essential point

Chapter 2. Previous Work 17

is that a differentiable interpolant of a function can be constructed from its
values at the particles (interpolation points) by using a kernel which is dif-
ferentiable. This means that the derivatives can be exactly calculated if the
kernel W is differentiable and there is no need to use finite differences or a
grid to approximate the derivatives. For instance, if one wants ∇A,

∇A(~r) =
N
∑

b=1

mb

Ab

ρb
∇W (~r − ~rb, h) (2.7)

can be used (for further details and examples see [23] and [9]).
In summary, a smoothing length h is used, over which the properties

of the particles are smoothed by a kernel function W . By summing the
relevant properties of all the particles, which lie within the range of this
kernel, the physical quantities (such as velocity, density, or viscosity) can
be approximated. Furthermore, a SPH simulation can include physical field
values like pressure or temperature. For Computer Graphics, Desbrun et al.
[9], modified the expression of pressure to animate materials with constant
density at rest and they use a slightly different kernel, which mimics the
Gaussian function and has finite radius of influence. In contrast to a Gaussian
kernel, their kernel prevents clustering between particles which ensures a
constant density.

2.4 Offline Methods

Offline methods include effects like foam, bubbles and spray. They try to
simulate all these effects physically correctly and treat them in different ways.
For instance, Mihalef et al. [22] propose different models for droplets and
bubbles in their framework. In contrast, our method and other real-time
approaches do not differentiate between these effects. Another important
aspect of offline methods is the number of particles they can handle. For
example, Losasso et al. [20] use up to 645 million particles to simulate
scenes like the one illustrated in Figure 2.1. In contrast, real time simulation
methods only treat several thousand particles (see Section 2.5). In this thesis
we adapt some of their elements for our real-time method.

2.4.1 Two-Way Coupled SPH and Particle Level Set

Fluid Simulation

Losasso et al. [20] propose a two-way coupled simulation framework. They
mix the Eulerian and Lagrangian approaches to generate realistic fluids in-
cluding spray and foam. Where the Eulerian particle level set method is used

Chapter 2. Previous Work 18

to efficiently model dense liquid volumes. The particle level set method is
based on the level set method which is used to model and animate implicit
functions that dynamically change over time. With an implicit formulation
the method is able to simulate topological changes of the fluid’s shape (such
as splitting up into two fluid volumes).

Fig. 2.1: Ocean scene simulated with two-way coupling between the SPH and the
particle level set method [20].

The main drawback of the level set method is that because of the coarse
grids (e.g. 100 × 100 × 100) that are used the method is prone to volume
loss because of numerical errors. Thus the particle level set method extends
the level set method by introducing particles which are used to correct any
volume loss. Beside the particle level set method, a Lagrangian SPH method
is used to simulate diffuse regions such as spray and foam. Furthermore they
extend the SPH simulation to take the surrounding air into account, which
is used to simulate diffuse phenomena such as mixtures of spray and air.

Losasso et al. [20] state that their method introduces unwanted noise,
due to the fact that particles have wildly varying velocities and that their
particle density computation is unreliable near the air/liquid interface, where

Chapter 2. Previous Work 19

SPH particles do not have neighbors on all sides. They experimented with
several strategies to reduce noise in these areas, but achieved only limited
success. Figure 2.1 shows an ocean scene simulated with this approach, where
a 560× 120× 320 grid is used. The simulation time lies between 30 seconds
and 3 minutes per frame and the rendering is done with Pixar’s RenderMan
with a deep-water texture applied to the surface.

2.4.2 Simulation of Two-Phase Flow with Sub-Scale

Droplet and Bubble Effects

Mihalef et al. [22] adapt the Two-Way Coupled SPH and Particle Level Set
Fluid Simulation method and replace the Lagrangian SPH approach with
a simple particle system to include droplets and bubbles. In contrast to
Losasso et al.’s [20] method, their method uses a much simpler framework
without SPH involved, which avoids the ”graininess” usually associated with
SPH methods. The sub-scale droplets and sub-scale bubbles generation is
separated into two models. The former are evolved in a Newtonian manner,
using a density-extension drag force field. Bubbles are evolved using a model
based on Stokes’ Law. Because their method makes use of subscale dynamic
models and Lagrangian dynamics, it achieves an enhanced accuracy. They in-
troduce the so-called Weber number to the computer graphics domain, which
is used to control the generation of droplets and bubbles. Furthermore, they
propose a switching parameter which is called gamma parameter, which is a
combination of the absolute value of the mean curvature and an abstraction
of the Weber number which is proportional to the Weber number. They ab-
stract the Weber number because the density and surface tension coefficients
are fixed for their simulation. The switching from the large-scale level set
method simulator to the small-scale particle-based simulator is achieved by
thresholding the gamma parameter.

In this thesis we adapt the Weber number thresholding approach for
creating foam in real time, but in contrast we do not use an abstracted version
of the Weber number. Instead we use the whole Weber number formula
as described in Section 3.2.1. Figure 2.2 shows different time steps of a
simulation where a diver jumps into a pool. For this simulation a 72×72×144
grid is used and the computation time is 7 minutes for a single frame.

2.4.3 Realistic Animation of Fluid with Splash and Foam

Takahashi et al. [35] use the Cubic Interpolated Propagation (CIP) method
[40] as the base fluid solver and a particle system is used to model splashes

Chapter 2. Previous Work 20

Fig. 2.2: Diver performing a jump into a pool [22].

and foam. By using a uniform grid cell and the CIP method, the full Navier-
Stokes equation is solved. Furthermore the particle system obtains informa-
tion on the simulation space from the base fluid solver, which means that
the velocity of the water and the velocity of the air is used by the particle
system.

The generation and transition of foam is controlled using state change
rules, which work in a similar way as our separation of the particles into
water- and foam-particles as described in Section 3.2. Particles are created
when the curvature of the water surface of the base fluid simulation exceeds
a given threshold th. Their state is either SPLASH if they are above the
water surface or FOAM if they are on the water surface. Their initial velocity
is obtained from the velocity field of the base fluid simulation and their
position is updated according to the velocity field. SPLASH particles are
influenced by gravity and FOAM particles are not. Instead, FOAM particles
are restricted to floating on the surface of the fluid.

Although the approach is an offline method, Takahashi et al. [35] propose
a polygonal-based rendering approach because of the acceleration gained by
modern graphics hardware. They propose to first render the geometry of the
environment, then the the polygonal-based fluid surface, including caustics,
refraction and reflection, and finally the particles representing the foam. The
particles are sorted front-to-back with respect to the light source and rendered
using a technique originally developed for rendering of clouds [12]. This
enables their method to render shadows of foam. Results of this method can
be seen in Figure 2.3. In this scene a 75×60×50 grid is used and a maximum

Chapter 2. Previous Work 21

Fig. 2.3: A piece of lumber falling into water [35].

of around 270k particles are generated in one frame. The simulation of one
frame takes 170 seconds and the rendering additionally takes 100 seconds.

2.4.4 Bubbling and Frothing Liquids

Cleary et al. [8] extend SPH by considering the dissolved gas within the
fluid. This dissolving of gas is common for carbonated liquids like beer and
champagne. The bubbles are represented as discrete spherical bodies and are
coupled to the SPH simulation. Each particle of the SPH simulation contains
a certain amount of dissolved gas, which is transferred from the SPH fluid
model to the discrete bubble model. During the simulation bubbles rise in
the fluid and grow by gathering more dissolved gas from the SPH simulation.
Furthermore, collision of bubbles with each other and with other solids and
boundaries is taken into account.

Fig. 2.4: Ale and Stout pouring into a beer mug [8].

Similar to our work they use a layered representation where the differ-
ent parts of the fluid volume are separately rendered and composed into the
final image. The method divides the rendering into a liquid pass, which

Chapter 2. Previous Work 22

renders only the results from the underlying SPH simulation, and a bubble
pass, which renders the bubbles that have been generated during the cou-
pled discrete bubble-SPH based simulation. The final image is achieved by
composing the background scene, the liquid and the bubbles. The rendering
is performed via Maya using the Mentalray renderer and the compositing
is achieved using After Effects. Note that the compositing of the different
parts is done by hand which allowed more control over specific elements of the
simulation while compositing. Figure 2.4 shows image sequences of different
sorts of beer pouring into a mug.

2.5 Real-Time Methods

Current real-time approaches are usually limited in the number of particles
they can handle, and do not include realistic foam. The amount of particles
that can be simulated in real time at the time of writing is around 64k.
The first method that is described in this section performs simulation and
rendering. In contrast, the methods proposed by Müller et al.’s [24] and van
der Laan et al. [37] assume that a SPH particle simulation has already been
carried out.

2.5.1 Real-Time Simulations of Bubbles and Foam within

a Shallow Water Framework

Thürey et al. [36] present a shallow water framework which is coupled to
a particle-based bubble simulation. Furthermore, the bubble simulation in-
teracts with a SPH simulation to handle foam floating on the fluid surface.
The shallow water simulation is a reduction of the Navier-Stokes equations
to a simplified two-dimensional height field representation and represents the
main volume of the liquid. Bubbles beneath the fluid surface are simulated
as particles and are coupled to the shallow water simulation. This enables
the method to simulate breaking waves induced by bubbles reaching the fluid
surface. Foam is simulated with an SPH simulation, whereas each SPH par-
ticle represents exactly one foam bubble. Foam bubbles are generated from
bubbles reaching the fluid surface from beneath and the emergence is con-
trolled by a user-defined probability. Simulating individual foam particles is
an expensive task, in contrast our method uses the SPH particles to simulate
a volume of foam and the emergence is achieved in a physical manner.

Figure 2.5 shows an example scene simulated and rendered with the shal-
low water framework, whereas a 50 × 80 grid is used for the shallow water
simulation. The maximum count used for bubbles and particles is around

Chapter 2. Previous Work 23

Fig. 2.5: Bubbles and foam within a Shallow Water Framework including interac-
tion of an obstacle with the foam and the bubbles [36].

960 and the lowest frame rate is 34.3 FPS.

2.5.2 Screen Space Meshes

One way to render the water surface from the results of a SPH simulation
are Müller et al.’s [24] screen space meshes, created using a marching squares
technique on a depth map. Compared to the full 3D marching cubes [19]
algorithm the method has several advantages, like view-dependent level of
detail and the possibility to apply filtering in screen space. Another impor-
tant aspect is that the method only generates a surface where it is visible.

The algorithm starts by computing a depth map in screen space. In ad-
dition, depth values are computed where silhouettes cut the depth map grid.
These inner and outer silhouettes are indicated by large z-differences of ad-
jacent depth values and are used during the screen space mesh construction.
Figure 2.6 illustrates the concept of the depth map including the generation
of silhouette nodes.

After the depth map has been computed, the next step is to generate the
vertices and triangles of the screen space mesh. Each valid depth value in the
depth map and each outer silhouette edge generates exactly one vertex. For
an inner silhouette edge two vertices are generated, as illustrated in the left
and middle part of Figure 2.7. Triangles are generated by looking at each grid
cell, whereas each edge of the cell is either a silhouette edge or a regular edge.
Depending on the constellation, this leads to one of 16 cases as illustrated
in the right part of Figure 2.7. From the triangles shown, only those are
generated for which all three vertices exist, which results in a triangle mesh
with correct connectivity and vertices in screen space.

Because the base geometry of the method consists of spheres, the results
after the triangulation look bumpy. Müller et al. propose a separable bi-
nomial filter that smoothens the surface. Special care has to be taken near
silhouettes, because the applied filtering should not change the shape of the

Chapter 2. Previous Work 24

Fig. 2.6: Left: Side view of depth map. Between adjacent nodes at most one
additional node (white dot) is stored to indicate the silhouette (the middle white
dot represents an inner silhouette and the two other white dots outer silhouettes).
Middle: Top view of the grid. Right: Side view. The cut (white point) furthest
from the end with the smaller depth value is taken [24].

Fig. 2.7: Left: Side view of the grid. Middle: The vertices generated for this
configuration, whereas vertices with different depth values are generated for the
silhouette node (white point). Right: All the cases for the generation of a 2D
triangle mesh from cut edges [24].

silhouettes, which is achieved by only considering depth values within a zmax

range (see Figure 2.6).
For rendering, the resulting screen space mesh is transformed back to 3D

world space and per vertex normals are computed. Finally the triangles and
normals are sent to the standard graphics pipeline and are rendered including
reflections, refraction, and specular highlights. Figure 2.8 shows a car wash
scene consisting of 16k SPH particles running at 20 FPS.

Although the algorithm provides view-dependent level of detail and filter-
ing in screen space, rendering foam with this approach is prohibitive, because
of the large amount of geometry that needs to be generated.

Chapter 2. Previous Work 25

Fig. 2.8: Final rendering of the screen space mesh (including a rotated view of the
mesh to show its dependence on the viewing direction) [24].

2.5.3 Screen Space Fluid Rendering with Curvature Flow

van der Laan et al. [37] present an approach for rendering particle-based
fluids directly using splatting instead of performing a polygonisation and
thus avoid the associated tessellation artifacts that come with grid-based
approaches. They use screen space curvature flow filtering to conceal the
sphere geometry of the particles and to prevent the fluid from looking jelly-
like. All the processing, rendering and shading steps are done directly on the
graphics hardware and the method achieves real-time performance.

First of all the front-most surface of the fluid from the viewpoint of the
camera is determined. This representation is obtained by rendering all par-
ticles as spheres into a depth map as illustrated in Figure 2.9. This step
is similar to the visibility splatting pass described by [4], but in the case
of screen space fluid rendering with curvature flow the depth values of the
point-sprites are replaced by the geometry of a sphere. The hardware depth
test ensures that only the nearest pixels to the viewpoint are stored in the
depth maps. Splatting normal vectors and material properties, as it is done
by [4] in the attribute pass, is not practicable at this point, because the depth
values of the depth map are manipulated in the following smoothing pass.

Rendering particles as point-sprites with sphere geometry results in a
blobby appearance. To prevent the water from looking artificial, filtering
of the surface is performed in screen-space. An obvious approach is to use
a Gaussian blur, but this introduces artefacts like blurring over silhouette
edges and plateaus of equal depth when using large kernels. A more suitable
method is the so-called curvature flow introduced by [21], which is extended
by van der Laan et al. [37] for their method. The smoothing is an iterative
method where in each iteration the z-values in the water depth map are
moved proportional to the mean curvature,

∂z

∂t
= H, (2.8)

Chapter 2. Previous Work 26

Fig. 2.9: Left: drawing particles as spheres; middle: front view in view-space;
right: after perspective projection [37].

where t is a smoothing time step and H is the mean curvature. For a
surface in 3D space the mean curvature is defined as follows:

2H = ∇ · n̂ (2.9)

where n̂ is the unit normal of the surface. The normal is calculated by
taking the cross product between the derivatives of the view space position
P in x and y direction (for details see [37]), resulting in a representation of
the unit normal:

n̂(x, y) =
n(x, y)

|n(x, y)| =
(−Cy

∂z
∂x
,−Cx

∂z
∂y
, Cyz)

T

√
D

(2.10)

where

D = C2
y

(

∂z

∂x

)2

+ C2
x

(

∂z

∂y

)2

+ C2
xC

2
yz

2 (2.11)

Finite differencing is used to calculate the spatial derivatives, and Cx and
Cy are the viewpoint parameters in x and y direction respectively. They are
computed from the field of view and the size of the viewport Vx and Vy as
shown in Equation 2.12 and 2.13.

Cx =
2

tan
(

FOV
2

)

∗ Vx

(2.12)

Cy =
2

tan
(

FOV
2

)

∗ Vy

(2.13)

The unit normal n̂ from Equation 2.10 is substituted into Equation 2.9,
which enables the derivation of H, leading to,

2H =
∂n̂x

∂x
+

∂n̂y

∂y
=

CyEx + CxEy

D
2
3

(2.14)

Chapter 2. Previous Work 27

in which

Ex =
1

2

∂z

∂x

∂D

∂x
− ∂2z

∂x2
D (2.15)

Ey =
1

2

∂z

∂y

∂D

∂y
− ∂2z

∂y2
D (2.16)

In one iteration, an Euler integration of Equation 2.8, including the mean
curvature H, is used to modify the z values of the water depth map, whereas
the number of iterations is chosen depending on the smoothness that is de-
sired. However, using a fixed iteration count results in different filtering
strength depending on the view distance (see Section 3.1). Discontinuities of
the water depth map are handled by simply forcing the spatial derivatives
to zero, which prevents smoothing over silhouettes in screen space. Further-
more, all smoothing is computed at half instead of full resolution, which is a
good tradeoff between quality and performance.

Water is a volumetric phenomenon, so the thickness of the water in front
of the opaque scene has to be taken into account. The thickness is used to
correctly compute visual attributes like color attenuation, transparency and
refraction. To accomplish this, the particles are regarded as spheres of fluid
with a fixed size in world space and are rendered similarly as the particles
for computing the depth values in the visibility pass described above, but
instead of writing the view-space depth value, the thickness of a particle at
it’s projected position is written,

T (x, y) =
n

∑

i=0

d(
x− xi

σi

,
y − yi

σi

) (2.17)

where d is the depth kernel function, xi and yi are the projected position
components of the particle, x and y are the screen coordinates and σi is the
projected size. The summation as illustrated in Equation 2.17 is achieved by
using additive blending, and the particles are rendered with enabled depth
test and disabled depth write to ensure correct visibility with respect to the
scene geometry behind the fluid.

For real-time applications, the amount of particles that can be simulated
with a SPH simulation is limited. Therefore the particles are relatively large
in proportion to the complete volume of the fluid. One expects that water
has fine micro structures on its surface which move along when the fluid
flows. van der Laan et al. [37] additionally propose an approach based on
Perlin noise [28] that generates noise that is advected by the fluid and is of
a higher frequency and a smaller scale than the underlying SPH simulation.
They assign one octave of noise to each projected particle to establish a
certain pattern of noise moving along with each particle (see Figure 2.10).

Chapter 2. Previous Work 28

Fig. 2.10: Screen space curvature flow without (left) and with (right) surface noise
[37].

Using a Gaussian noise kernel which is multiplied by an exponential fall-off
and additive blending results in a Perlin noise texture which can be used for
rendering. The exponential fall-off is based on the depth below the surface
and ensures that particles contribute less as the submerge into the fluid.

Finally, all intermediate results, like the smoothed surface depth, the
thickness and the surface noise, are composed into a final image. This is done
in a simple screen-space rendering pass by rendering a full-screen quad. To
shade the surface of the fluid, the view-space normals ~n are calculated using
the finite differences of the surface depth as shown in Equation 2.10. van
der Laan et al. [37] propose to choose the smallest absolute finite difference
(when a discontinuity is detected, by comparing the difference in depth to a
threshold) instead of simply using the finite differences in one direction, which
would result in artifacts along the silhouettes. Furthermore, the Perlin noise
texture is used to perturb the normals to add wave-like micro structures by
adding the partial derivatives of the noise texture to the calculated normals.
In addition to this, van der Laan et al. [37] propose a noise-based surface
foam effect by adding a grayish color depending on the magnitude of the noise
(see Figure 1.1). The computed thickness enables the method to attenuate
the background color, in the sense that the thicker the fluid is, the less of the
background scene is shown through,

a = lerp(cfluid, S(x+ β ~nx, y + β ~ny, e
−T (x,y)) (2.18)

where cfluid is the color of the fluid medium, S(x, y) is the scene without
the fluid rendered into a background texture and β = T (x, y)γ is used to
perturb the texture coordinates of the sampled background scene texture,
whereas γ is a user parameter describing the refractive properties of the

Chapter 2. Previous Work 29

fluid. The optical properties of the fluid are based on the Fresnel equation
and a Phong specular highlight,

Cout = a(1− F (~n · ~v)) + bF (~n · ~v) + ks(~n · ~h)α (2.19)

where a is the fluid color (containing the refracted background scene
color) from Equation 2.18, b is the reflected scene color (sampled from an
environment map), ks and α are constants for the specular highlight and F
is the Fresnel function controlling the composition of the reflection and the
refraction component. ~n is the screen space surface normal, ~h is the half-angle
vector between the camera and the light and ~v is the camera vector.

Fig. 2.11: Different time steps showing the visual results that can be achieved with
the method presented by van der Laan et al. [37].

Fig. 2.12: Left: side view onto the waterfall scene showing the curvature flow
filtered fluid surface; right: closeup view [37].

Figure 2.11 shows an image sequence of the screen space fluid rendering
method flooding a corridor scene. The SPH simulation for this scene consists

Chapter 2. Previous Work 30

of 60k particles and an iteration count of 40 is used. The computation time is
around 19.6 ms without noise and foam (filtering is done at half resolution).
Including noise and surface-based foam, the computation time is around
40 ms, where the simulation time is not included in these results. Figure
2.12 shows the corridor scene from different view points. The curvature flow
filtering smoothes the surface and prevents the fluid from looking “jelly-like”.
However, the curvature flow filtering is dependent on the view distance (as
one can see in Figure 2.12), and the proposed simple noise-based surface
foam effect does not have a volumetric appearance (see Figure 1.1).

2.6 APIs

This section gives a brief overview of APIs realated to and used in our im-
plementation. An Application Programming Interface (API) is a software
interface which enables a developer to access the underlying hardware and
represents a standard for accessing and programming the hardware.

2.6.1 OpenGL

The graphics API used in the implementation is OpenGL (Open Graphics
Library) [26], which is a cross-platform API for writing applications that
produce 2D and 3D computer graphics and enables a developer to program
the graphics hardware.

2.6.2 Shader Authoring Language

In the field of computer graphics, a shader is a program executed on the
graphics processing unit (GPU). Shaders supersede the fixed-function pipeline,
are used to calculate rendering effects and are classified as follows:

• Vertex Shaders: Are executed exactly once for each vertex that is given
to the GPU. The primary operation a vertex shader performs is to
transform the world space coordinates to screen space.

• Geometry Shaders: Are used to procedurally generate new graph-
ics primitives from those primitives that are processed by the vertex
shader. These new graphics primitives can be points, lines or triangles.

• Fragment Shaders: Are used to calculate the output color of pixels
delivered from the rasterizer. Common effects that are calculated with
fragment shaders are Per Pixel Lighting, Bump Mapping, and more.

Chapter 2. Previous Work 31

For OpenGL, the standardized high-level shading language is the OpenGL
Shading Language (GLSL) [27]. It was development by the OpenGL ARB
as a replacement for the low-level OpenGL Assembly Language. GLSL was
originally introduced as an extension to OpenGL 1.4 and since the intro-
duction of OpenGL 2.0 it is part of the core. Microsoft developed the High
Level Shading Language (HLSL) [16] for use with the DirectX API [11]. Fur-
thermore, HLSL is used to develop shaders on Xbox and Xbox360. The
third kind of shading language is the Cg Shading Language [5] developed by
NVIDIA [25]. This shading language is not bound to a specific graphics API
and can be used with OpenGL and DirectX. Cg shader code is portable to a
wide range of platforms and the Cg compiler optimizes code automatically.
Because of these benefits our implementation uses the Cg Shading Language.

Chapter 3

Method

Our method builds on the screen-space fluid rendering approach with cur-
vature flow [37]. Similar to this method, we start from an SPH simulation
calculated using a hardware physics engine (PhysX [29]), which provides a
non-sorted 3D point cloud as input. Apart from the particle’s position x

we will also use the density ρ and velocity v for foam thresholding and the
lifetime for varying the Perlin noise on a foam particle.

The original algorithm calculates the water depth by splatting the parti-
cles, then smoothes the depth buffer using curvature flow filtering, then calcu-
lates water thickness by accumulating particle depths in a separate thickness
buffer, and finally composites the results. Our algorithm extends this by
adapting the curvature flow filter for the viewer distance, and by adding a
foam layer that can lie between two water layers.

Our algorithm then performs the following steps once per frame after the
scene has been rendered into a texture (see Figure 3.1):

1. Calculate water and foam depth (Section 3.2.2)

2. Smooth the water depth using the new adaptive curvature flow algo-
rithm (Section 3.1)

3. Calculate water and foam thickness (Section 3.2.2)

4. Composite water and foam layers using intermediate results (Section 3.2.3)

In this chapter we will describe our advanced particle based water and
foam rendering approach. First of all we will introduce the adaptive curvature
flow method which extends the curvature flow filtering introduced by van der
Laan et al. [37], then we will describes our real-time foam approach. Our
foam approach is separated into the foam formation, which is carried out in a
physically based manner, the layer creation and finally the layer composition,
which ensures that all the intermediate results are composed into the final
image.

Chapter 3. Method 33

F
ig
.
3.
1:

O
ve
rv
ie
w

of
th
e
b
u
ff
er
s
u
se
d
in

ou
r
m
et
h
o
d
:
T
w
f
:
th
ic
k
n
es
s
of

th
e
w
at
er

in
fr
on

t
of

th
e
fo
a
m
;
T
w
b
:
th
ic
k
n
es
s
o
f
th
e

w
at
er

b
eh

in
d
th
e
fo
am

;
T
f
:
fo
am

th
ic
k
n
es
s;

T
f
f
:
th
ic
k
n
es
s
of

th
e
fr
on

t
fo
am

la
ye
r;

Chapter 3. Method 34

3.1 Adaptive Curvature Flow

The first step in rendering a fluid using particles is to create the fluid’s
frontmost surface. This is done by splatting the particles into the depth
buffer using point sprites, with the depth values replaced by the geometry
of a sphere. In order to avoid a “jelly-like” or “blobby” appearance due to
the spherical particles, it is important to smooth the depth surface. Our
adaptive curvature flow filtering is based on van der Laan et al.’s [37] screen
space curvature flow filtering as described in Section 2.5.3.

However, close inspection of the screen-space curvature formulation re-
veals that the reference coordinate system for calculating the curvature is the
window coordinate system. This means that, given equal iteration sizes, a
particle that appears larger on screen (because it is closer due to perspective)
will have a significantly larger radius in this coordinate system and therefore
significantly lower curvature than a particle that is farther away. The re-
sulting artifact is that smoothing will have a lower effect on closer particles,
which therefore retain the unwanted spherical appearance, whereas parti-
cles far from the viewer will be overly smoothed, so that the fluid surface
loses its defining characteristics such as highlights. This can be observed in
Figure 3.2, left.

Fig. 3.2: In [37] (left), distant water is over-smoothed (top) and near water is
under-smoothed (bottom). Our new method (right) maintains the same amount
of smoothing regardless of the distance.

One possible solution would be to remap the curvatures into a common
reference coordinate system, for example by dividing Hs by z for each eval-

Chapter 3. Method 35

uation of Hs. However, our experiments have shown that this makes the
integration very unstable, because the screen-space evaluation for larger par-
ticles is very noisy due to depth quantization. On the other hand, depth
correction would make the resulting curvatures large in magnitude, leading
to oscillation.

Therefore, we approach the problem from a different direction and inter-
pret each integration step as a filtering step with a 3x3 kernel. Obviously,
repeated filtering leads to an increased screen-space kernel radius rs of the
hypothetical overall filter – in fact, the number of iterations corresponds ex-
actly to rs. The main idea is now to vary the number of iterations depending
on the view space distance z in order to obtain a roughly equal overall filter
kernel size rw in world space, making sure that a similar world-space neigh-
borhood is taken into account when calculating the curvature flow. So rs can
be calculated from a desired world-space kernel radius rw through

rs =
rw

z

FV

2
(3.1)

where F is the focal length, V is the viewport width in pixels, and z

is the eye-space z-distance. So in iteration i, an Euler iteration step is only
applied to a pixel if rs < i. For optimization, the user can specify a maximum
iteration count. Furthermore, an occlusion query is issued for each iteration
to check whether any depth value was actually modified. If that is not the
case, all pixels are already converged and no further iteration is necessary.

Smoothing is only applied to the frontmost water surface. Beside this
water depth map, a second depth map (see Figure 3.1) is computed as de-
scribed in the next Section, but smoothing for this depth map is not necessary
because it is only used as a helper depth map during the layer creation.

3.2 Real-Time Foam

In this section we describe how to incorporate foam into real-time fluid ren-
dering. We define water foam as a substance that is formed by trapping air
bubbles in the liquid. Foam is usually observed as spray or bubbles above
the surface of a turbulent water stream. However, we have also observed
that a significant visual effect is caused by foam that occurs behind a water
surface, usually due to a turbulent water stream that immerges into resting
water with high impact (see Figure 3.4).

In order to capture these two main effects in a real-time setting, we sepa-
rate foam particles from water particles and arrange the resulting foam and
water particles in separate layers and render them using volumetric back-to-
front compositing. Although our layered representation does not account for

Chapter 3. Method 36

discontinuity in the fluid volume which occurs if there are several layers of
water and foam, the two most common cases mentioned above are covered
by this model.

3.2.1 Foam Formation

First, we classify particles as water or foam. Following [22], we base the
classification on the Weber number [33], which is a dimensionless physical
quantity that describes the relative influence of the inertia of a fluid to its
surface tension. The Weber number is defined as the ratio of the kinetic
energy to the surface energy:

We =
ρv2l

σ
, (3.2)

where ρ is the density, v is the relative velocity between the liquid and the
surrounding gas, l is the characteristic length, and σ is the surface tension.
For larger We, the kinetic energy of the water is greater than the surface
energy, causing water to intermix with the surrounding air, which results in
foam formation. Thus, we separate particles into water and foam particles by
thresholding the Weber number. In practice, we use a linear transition area
where the particle is counted both as water and foam particle to ensure a
smooth emergence and disappearance of foam. The new foam particle starts
out as a point and expands, while the corresponding water particle shrinks.

Similar to [22], we assume that the surface tension and the characteristic
length are fixed for the SPH simulation. We also assume that the characteris-
tic length l is the particle diameter, which is a simplification for our real-time
purposes, and that the surrounding air is not moving, and therefore the rela-
tive velocity v is the velocity of the particles. The velocity v and the density
ρ are obtained from the physics simulation package.

3.2.2 Layer Creation

Now that particles have been classified as either particle or foam, we partition
the fluid into layers, as shown in Figure 3.3.

By using two water layers, one in front and one behind the foam layer,
we can simulate foam inside water, as happens at the end of a waterfall (see
for instance Figure 5.2, or Figure 3.4). We first determine the front water
surface and the front foam surface by splatting water and foam particles
into separate depth buffers (the splatting step was described in Section 3.1).
Curvature flow is only applied to the front water surface.

Chapter 3. Method 37

F
ig
.
3.
3:

A
cr
os
s-
se
ct
io
n

of
ou

r
la
y
er
ed

w
at
er

m
o
d
el
:
T
h
e
vo
lu
m
et
ri
c
ap

p
ea
ra
n
ce

of
th
e
re
su
lt

is
a
ch
ie
ve
d

b
y
n
o
t
o
n
ly

ac
co
u
n
ti
n
g
fo
r
th
e
w
at
er

th
ic
k
n
es
s
T
w
b
at

ea
ch

p
ix
el

as
p
re
v
io
u
s
ap

p
ro
ac
h
es

[3
7]
,
b
u
t
al
so

fo
r
th
e
fo
a
m

th
ic
k
n
es
s
T
f
a
n
d
th
e

th
ic
k
n
es
s
of

w
at
er

in
fr
on

t
of

th
e
fo
am

T
w
f
.
W
e
al
so

p
ar
ti
ti
on

fo
am

in
to

tw
o
d
iff
er
en
tl
y
co
lo
re
d
la
ye
rs

(T
f
f
)
to

ac
h
ie
v
e
m
o
re

in
te
re
st
in
g
fo
am

.

Chapter 3. Method 38

Since water and foam are volumetric phenomena, the amount of water re-
spectively foam between two layer surfaces needs to be determined in order
to allow correct compositing and attenuation. Similar to [37], the thick-
ness of a layer is determined by additively splatting every particle belonging
to the volume into a buffer. In contrast to the depth surface calculation,
the splat kernel gives the thickness of the particle at each particle sampling
point. Accumulating particle thicknesses is a reasonable approximation be-
cause particles from the physics simulation can be assumed to be largely
non-overlapping.

T (x, y) =
n

∑

i=0

t(
x− xi

σi

,
y − yi

σi

) (3.3)

where t is the particle thickness function, xi, yi are the projected position
of the particle, x and y are screen coordinates and σi is the projected size.
The particle thickness function is given by

t = 2Nz l e−2r (3.4)

where Nz is the z component of the view space normal, l is the particle
diameter and r is the radius, calculated form the texture coordinates, on the
point sprite.

In comparison to [37], we not only calculate the water thickness, but the
thickness of:

• the foam surface Tf , by considering only foam particles. For the foam
particles, the splat kernel is also multiplied by a 3D Perlin noise value,
which is varied with the lifetime of the particle, to add sub particle
detail.

• the front water surface Twf , by considering only water particles that
are in front of the foam layer (by comparing the particle depth with
the depth of the front foam surface).

• the back water surface Twb, by considering the other water particles.

• the front-most layer of the foam surface Tff , to allow partitioning foam
into two different-colored layers.

Chapter 3. Method 39

F
ig
.
3.
4:

U
se
r
d
efi

n
ed

co
lo
rs

(c
f
lu
id
,
c
f
f
,
c
f
b
)
an

d
re
su
lt
in
g
co
lo
rs

fr
om

th
e
co
m
p
os
it
in
g
st
ep

s
(C

ba
c
k
g
r
o
u
n
d
,
C
w
b
,
C
f
,
C
w
f
).

Chapter 3. Method 40

3.2.3 Layer Compositing

Finally, to account for the attenuation caused by the previously calculated
layers, the actual pixel color is calculated by volumetric compositing. Fig-
ure 3.1 gives an overview of the buffers that are used for the compositing.

Compositing along a viewing ray back to front, we have (see Figure 3.3):

Cwb = lerp(cfluid, Cbackground, e
−Twb) (3.5)

Cf = lerp(cfoam, Cwb, e
−Tf) (3.6)

Cwf = lerp(cfluid, Cf , e
−Twf) (3.7)

where cfoam and cfluid are the colors of the medium. Figure 3.4 shows the
individual steps and colors used in the compositing.

In addition to attenuation, we also calculate reflection with a Fresnel
term, and a highlight at the front water surface, as well as refraction, similar
to [37]. For reflection and highlight, care needs to be taken because the
front water surface might be behind the foam. So if Twf = 0, we have
Cwb = illuminate(Cwb), otherwise Cwf = illuminate(Cwf), where

illuminate(x) = x(1− F (nv)) + rF (nv) + ks(nh)
α, (3.8)

i.e., the standard Fresnel (F) reflection calculation (r is a lookup into
an environment map) and a Phong term. We also carry out refraction for
the whole water surface, so Cbackground is sampled from the scene background
texture perturbed along the normal vector, scaled using Twb+Twf (see Section
2.5.3).

Finally, we have found that foam can be made to look more realistic by
blending two different user defined colors, cff and cfb. The thickness Tff is
calculated along with the foam thicknesses Tf by accumulating just the foam
particles within a user defined constant range δfoam. So cfoam is actually
calculated as

cfoam = lerp(cfb, cff , e
−Tff). (3.9)

By considering only foam particles which are close behind the foam sur-
face, we obtain a foam pattern that has a controllable thickness, achieving
the benefit that the pattern moves along with the particles and exhibits fine
micro-structures in its visual appearance.

Chapter 4

Implementation

This chapter describes the implementation of our layered particle-based fluid
model for real-time rendering of water, including all technical implementa-
tion details. All provided source/shader code listings are taken from our
implementation, which has been developed for this thesis, and are included
in the Appendix A.

The primary logic concerning the water simulation and rendering is sep-
arated into two classes:

• Fluid Class

• ScreenSpaceCurvature Class

The fluid methods and data structures provided by the physics engine are
encapsulated in the Fluid class. Additionally, the physics engine provides a
mechanism to fragment the simulation data into packets. Each packet holds
particles from the simulation and their location in space is represented by
an axis-aligned bounding box (AABB), which can be used for view-frustum
culling (see Section 4.3). The class which represents the implementation of
the algorithm presented in this thesis is called ScreenSpaceCurvature. The
basic program flow from the applications point of view is as follows:

• Update foam simulation (parallel to the physics sim. update; see Sec-
tion 4.2)

• Update ScreenSpaceCurvature

• Render background/main scene into texture (see Section 4.4)

• Render intermediate results (see Section 4.6 and 4.8)

• Compositing (see Section 4.9)

wimmer
Inserted Text
,

wimmer
Inserted Text
'

wimmer
Cross-Out

wimmer
Replacement Text
ulation

Chapter 4. Implementation 42

• Render full-screen quad of rendering results (post-processing can be
applied in this step)

Similar to the fluid class this class is used to encapsulate the Weber num-
ber based simulation update, and the different shaders involved. An overview
about the program flow of the involved shaders is shown in Figure 4.1. Addi-
tionally, the class manages rendering parameters such as particle size, water
base color, falloff color, and more, which control the visual appearance of
the water. Furthermore, the view frustum, represented by six planes which
are calculated from the current view-projection matrix, is stored and also
parameters like field of view, window size or the light position are passed to
the class by appropriate member functions.

Fig. 4.1: Program flow of involved shaders.

wimmer
Inserted Text
, the ScreenSpaceCurvateure

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Inserted Text
Fl

wimmer
Cross-Out

wimmer
Inserted Text
-

wimmer
Sticky Note
moment, das versteh ich nicht. in Screenspacecurvature passiert doch mehr als Weber number based simulation update? Hast du da eine Klasse unterschlagen?

wimmer
Cross-Out

wimmer
Replacement Text
of

wimmer
Inserted Text
,

wimmer
Sticky Note
ist das jetzt das Ablaufdiagramm einer bestimmten Klasse? Welcher?

Chapter 4. Implementation 43

4.1 Textures and Render Targets

As described in Section 3 and illustrated in Figure 3.1, all intermediate results
are stored in textures. By default, the texture filtering modes for minification
and magnification are set to GL NEAREST to prevent unwanted filtering
during the composition pass. The same applies to the texture repeat modes,
in which GL CLAMP TO EDGE is used to prevent black borders around
the texture.

Texture Internal Format Format

sceneTexture GL RGBA8 GL RGBA
depthTexture GL LUMINANCE32F ARB GL LUMINANCE
foamDepthTexture GL LUMINANCE32F ARB GL LUMINANCE
thicknessTexture GL RGB16F ARB GL LUMINANCE
foamThicknessTexture GL RGB16F ARB GL LUMINANCE
noiseTexture GL LUMINANCE16F ARB GL LUMINANCE
resultTexture GL RGBA8 GL RGBA

Tab. 4.1: Internal format and formate of textures used for intermediate results.

Table 4.1 illustrates the textures used for storing the intermediate results
of the algorithm. In the case of the thicknessTexture and the foamThickness-
Texture, GL RGB16F ARB is used as an internal format, although only two
color channels of the three available are used. This is because there is no in-
ternal format with two color channels which is usable for the algorithms pur-
poses. Furthermore, the texture target isGL TEXTURE RECTANGLE ARB
for all intermediate textures and the texture dimension is equivalent to the
viewport size.

For the adaptive curvature flow filtering approach additional textures
are needed to perform the downsampling (see Section 4.7). The number of
required downsampling textures depends on the resolution the filtering is
carried out. For instance, if the filtering is done at half resolution, one addi-
tional texture is required. In the case of performing the filtering at quarter
resolution two additional textures are needed to perform the downsampling.
The actual filtering needs one more additional texture, which has an resolu-
tion equivalent to the one at which the filtering is done. This texture and
the lowest resolution texture from the downsampling textures are used to
perform multipass ping-pong rendering.

The last category of textures required by the algorithm of this thesis
are helper textures, used for pattern generation and improving rendering
performance. Table 4.2 shows the textures including the parameters used

wimmer
Sticky Note
machts nicht eher Sinn dieses kleine Detail weiter hinten zu erwähnen?

wimmer
Inserted Text
'

wimmer
Inserted Text
,

wimmer
Inserted Text
at which

wimmer
Inserted Text
,

wimmer
Cross-Out

Chapter 4. Implementation 44

for creation. The foamPerlinNoise texture is an important quantity for the
foam rendering approach. As described in Section 3.2.2 it is multiplied by
the splat kernel. The texture is based on Perlin noise introduced by Ken
Perlin [28] and the dimension is 64x64 as illustrated in Figure 4.2.

Texture Target Internal Format Format

foamPerlinNoise TEX 3D GL RGB8 GL UNSIGNED BYTE
squareRootRamp TEX 1D GL LUMINANCE GL FLOAT

Tab. 4.2: Target, internal format and formate of used helper textures.

Fig. 4.2: FoamPerlinNoise texture.

The squareRootRamp is used during rendering to calculate the square root
of an given value in the range of [0, 1] by performing a texture lookup. This
gives an important performance speedup, especially if the square root calcu-
lation is frequently done in the fragment shader, because a texture lookup
is much faster in that case. Although the accuracy of this method is not as
accurate as the accuracy of the sqrt(x) function provided by the Cg Standard
Library [5], the accuracy is sufficiently precise for rendering tasks and does
not introduce any visible artefacts.

As indicated in Table 4.2 the squareRootRamp is a one-dimensional tex-
ture, it has a width of 128 pixels and during initialization of the application
it is filled with the square root values between 0 and 1. Figure 4.3 gives an
illustration of an squareRootRamp with a width of 16 pixels (to illustrate
the discrete steps). As one can see, the resulting diagram shows a polyline,

wimmer
Inserted Text
,

Chapter 4. Implementation 45

which is achieved by linear interpolate pixel values if the texture lookup falls
between two pixels.

Fig. 4.3: Square root texture used during rendering; Top: Debug rendering of the
squareRootRamp texture; Bottom: Diagram illustrating the progress of the square
root function.

To redirect the rendering output into rendering destination buffers the
GL ARB framebuffer object (FBO) extension [15] is used. This feature en-
ables the algorithm to directly render in each pass into one of the intermediate
textures.

4.2 Simulation Update

The first thing that has to be carried out at the beginning of each frame is
to update the simulation. This includes to simulate one step of the physics
simulation as well as to update the Weber number-based foam simulation.
The simulation data is a non-sorted 3D point cloud and each of the particles
has the following properties: position, density, velocity, lifetime, and a unique
number identifying the particle.

In each simulation step of the physics simulation, the properties of the
particles are updated by performing an SPH simulation. Because we build

wimmer
Inserted Text
,

Chapter 4. Implementation 46

on an existing physics engine which supports SPH fluid simulation, the foam
simulation is separated from the physics simulation (but could also be part
of the physics simulation if the source code is available or a custom SPH
implementation is used). As described in Section 3.2.1 the foam simulation
is responsible for classifying the particles as either water particles or foam
particles. The foam simulation uses its own data structure:

• FOAM : value used for fading and scaling of foam particles

• LIFETIME : lifetime that a particle has, depending on its current phase

• TIMER: timer used for accumulating the current lifetime

• PHASE : current phase of the particle

The foam phase describes in which state a particle currently is. At the
beginning a particle is counted as a water particle and its state is FP NONE.
If the Weber number of the particle exceeds the user defined threshold its
state changes to FP WATER TO FOAM. During this phase the foam value
of the particle increases from 0 to 1. After the foam value has increased to
1 the particle enters the FP FOAM phase and stays in this state as long as
the Weber number is above the threshold. If the Weber number falls below
the threshold the FP FOAM TO WATER phase is entered and the particles
foam value is decreased until it reaches 0, whereas a user defined lifetime is
used during this phase. Listing A.1 and A.2 show the main loop of the foam
simulation update.

Because of performance reasons the foam simulation is done in parallel
to the physics simulation which consists of the general rigid body simulation
and the fluid simulation. The drawback of this parallelism is that the foam
simulation lags one frame behind because both simulation steps work on
the same data basis and the SPH simulation buffer is locked during the
simulation step. However, close inspection of the difference between the
iterative approach and the parallel one reveal that the resulting error can be
neglected. The concept of the parallelism is shown in Listing A.3.

4.3 View Frustum Culling

After the simulation has been updated the data in the simulation buffers
is ready for rendering. An important performance optimization is to use
view frustum culling [7]. For that purpose the physics engine provides a
functionality which enables one to query for spatial data that is connected
to the fluid simulation. This spatial data is presented by packets, whereas

wimmer
Inserted Text
,

wimmer
Inserted Text
'

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

Chapter 4. Implementation 47

one packet is described by the NxFluidPacket structure as shown in Listing
A.4. This meta data enables the algorithm to avoid to send particles down
the rendering pipeline because they are outside the camera’s frustum and
therefore are being outside of the unit cube in clipping space. Because the
axis-aligned bounding boxes (AABBs) instead of the particle positions are
tested against the view frustum the number of performed frustum tests is
quite small. Figure 4.4 shows a rendering of the waterfall scene including the
debug rendering of the AABBs.

Fig. 4.4: Renderings showing the AABBs provided by the physics engine. Both
figures use the same camera viewpoint for the culling. The red AABBs are culled.

The view frustum is represented by six planes including the far and near
clip planes (defined by the standard plane equation Ax+By +Cz +D = 0,
whereas ~n = (A B C) is the normal vector to the plane). As shown in Listing
A.5 the algorithm iterates over all packets and tests each packet’s AABB
against the view frustum. If the packet’s AABB is fully or partly inside the
view frustum the start index and the particle count of the packet is stored
for later rendering. All packets that are fully outside the view frustum are
discarded and are ignored by all rendering passes of the algorithm.

After the simulation data has been updated and the view frustum culling
has been carried out, the resulting data is copied to a vertex buffer object
[38] (VBO). One major advantage of a VBO is that one can specify the usage
of the VBO and the VBO memory manager will choose automatically the
best memory place for the buffer. This enables the algorithm to store the

wimmer
Cross-Out

wimmer
Inserted Text
ing

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
,

Chapter 4. Implementation 48

SPH particle data including the results of the foam simulation directly in
high-performance memory on the GPU for rendering. Attributes such as
density, velocity, lifetime and foam are handled as texture coordinates.

4.4 Main Scene Rendering

The first rendering task which is performed by the algorithm is to render the
main scene without the water into a texture as illustrated in Figure 4.5. List-
ing A.6 shows the concept of the main scene rendering, whereas everything
that is rendered between a call to BeginRenderScene and EndRenderScene
is stored in the scene texture. Also the depth values of the main scene are
stored to ensure proper visibility.

Fig. 4.5: Background scene rendered at beginning of the rendering process.

By using this concept the algorithm of this thesis can be seen as a post-
processing method. A post-processing pipeline [30] applies post-processing
effects to an already rendered scene and has become a standard in modern
rendering engines. Because of this analogy that both work in the same way
by rendering the main scene into a texture and performing additional com-
putations on this data afterwards, our algorithm can be well integrated into
a post-processing pipeline.

wimmer
Cross-Out

Chapter 4. Implementation 49

4.5 Point Sprites

The primary primitives used by the rendering passes as described later in
this chapter are point sprites. Point sprites are an useful functionality if
thousands of particles have to be rendered. Because our method can be
classified as a splatting method, point sprites are an essential choice and
thus are used by our implementation. Furthermore, point sprites give a
significant performance improvement because only one vertex has to be send
down the rendering pipeline for each particle of the SPH simulation instead
of four vertices as it would be the case with ordinary billboard rendering.

The point sprite rendering functionality is encapsulated by the Render-
Particles member function of the ScreenSpaceCurvature class as shown in
Listing A.7. An important implementation detail which has to be addressed
is that GL VERTEX PROGRAM POINT SIZE ARB has to be enabled to
be able to calculate the point sprite size in the vertex shader. As described
in Section 4.3 we also use view frustum culling to reduce the particle amount
that is processed by the algorithm. vboStartIndices and vboIndexCount are
arrays holding the start indices and the index count of the packets that have
passed the view frustum culling test, visiblePacketCount holds the overall
packet count.

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
t

Chapter 4. Implementation 50

4.6 Depth Passes

The second rendering task that is done by our algorithm is to extract the
frontmost water- and foam- surface. For this purpose the particles are splat-
teted into two depth textures, one for the frontmost water surface (see Sec-
tion 4.6.1) and one for the frontmost foam surface (see Section 4.6.2). As
illustrated in Figure 4.6 the depth passes are carried out after the background
scene has rendered into a texture.

Fig. 4.6: Water and foam surface extraction.

4.6.1 Water Depth

As described above the algorithm needs to calculate the frontmost water
surface. At the beginning of this pass the depth texture is cleared to−10000.0
which indicates that the water surface is infinitely far away. Furthermore,
blending is disabled and the hardware depth test is enabled which ensures
that the closest value at each pixel is retained. The particles are rendered
by calling the RenderParticles function.

The main task of the vertex shader used in this pass (see Listing A.8) is to
transform each particle and calculate the window-space point size. Addition-
ally all particles with a density below a user defined threshold are culled (see
Section 4.9.5) and particles with a density slightly above this threshold are
scaled. All other particles use the same world space particle size. Although
the point size calculation is only an approximation it does not produce any
noticeable artefacts.

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Inserted Text
,

Chapter 4. Implementation 51

Fig. 4.7: Water depth pass results including close-up view of the water depth and
color-coded curvature.

The fragment shader (see Listing A.9) used in this pass calculates the
eye-space normal vector for every pixel of the point sprite and discards all
pixels that are outside the inscribed circle. Then the depth values of the
screen aligned point sprite are moved towards the viewer to exactly present
the geometry of a sphere. Finally the fragment shader outputs the linear
eye-space (view-space) depth and the clip space position which is needed for
the hardware depth test.

Figure 4.7 illustrates the water depth texture after the water depth pass
has been carried out. Note that the particles are rendered as spheres which
form the frontmost water surface. However, the water surface has high cur-
vature which can be observed in the close-up view.

4.6.2 Foam Depth

Beside the water depth our algorithm also calculates the depth of the front-
most foam surface. This is important to be able to separate the water and
foam particles into layers as described in Section 3.2.2. In contrast to the
water depth, this pass also uses the geometry shader to orient the foam

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Inserted Text
,

wimmer
Inserted Text
,

Chapter 4. Implementation 52

particles toward their velocity direction. This is done by calculating four
vertices which lie on a plane parallel to the view plane and aligning them
toward the velocity direction (see Listing A.10). Flickering artefacts because
of low velocity are prevent by thresholding the norm of the velocity and the
orientation. In this case the fallback is to render a simple screen-aligned
quad. Finally the geometry shader calculates the view/eye space positions,
transforms them to post-perspective space and emits four new vertices. The
alignment is useful because it results in a kind of motion blur for the final
foam rendering which is a reasonable assumption for foam rendering.

Fig. 4.8: Foam depth pass results.

In comparison to the water depth pass results the primitives are no longer
squared as can be observed in Figure 4.8.

4.7 Adaptive Curvature Flow Filtering

This section describes how to perform our adaptive curvature flow filtering
which is based on the screen space curvature flow filtering proposed by van
der Laan et al. [37]. As described in Section 3.1 the purpose of our adap-
tive curvature flow filtering is to hide the particle based nature of the SPH

wimmer
Cross-Out

wimmer
Replacement Text
i

wimmer
Cross-Out

wimmer
Replacement Text
due

wimmer
Cross-Out

wimmer
Replacement Text
to

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Replacement Text
-

Chapter 4. Implementation 53

simulation data by smoothen out sudden changes in curvature between the
particles. The adaptive curvature flow filtering is performed after the depth
passes have been finished as shown in Figure 4.9 because the input for the
filtering are the depth values stored in the water depth texture. Note that
the filtering is only applied to the water depth because the foam depth is
only used during the layer creation process and not directly for rendering,
and thus filtering is not necessary.

Fig. 4.9: Adaptive curvature flow filtering applied to the water depth.

The screen space curvature flow filtering is an iterative process and each
iteration step corresponds to an Euler integration. As illustrated in Fig-
ure 4.10 using a fixed iteration count smoothens the surface and prevents the
fluid from looking blobby or “jelly-like”, but introduces over-smoothing for
far view distances and under-smoothing for near view distances respectively.
In contrast our adaptive curvature flow filtering maintains the same amount
of smoothing regardless of the view distance (see Figure 3.2).

The rendering of the adaptive curvature flow filtering is separated into
two passes.

• Depth texture scale down

• Depth texture smoothing

The scale down is done because of efficiency reasons. Performing the
smoothing on a lower resolution (half or quarter resolution) results in a huge
performance gain. The scaled down depth texture is calculated based on the

wimmer
Cross-Out

wimmer
Replacement Text
ing

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

Chapter 4. Implementation 54

Fig. 4.10: Comparison of the screen space curvature flow filtering using different
fixed iteration counts as proposed by van der Laan et al. [37].

full resolution water depth texture by rendering a full-screen quad with a
viewport half as large as the full screen resolution.

The next step is to calculated the actual adaptive curvature flow filter-
ing. The filtering is performed until no further change happens or an upper
bound of 256 iterations has been reached as illustrated in Listing A.11. The
required iteration count is determined by using the occlusion query func-
tionality provided by the OpenGL API. An occlusion query is started by a
call to the glBeginQueryARB function, whereas the query is only done for
every fifth iteration in our current implementation because of performance
reasons. After this the required shader parameters like the current itera-
tion count (which is needed by the fragment shader to determine if further
filtering is required for a single pixel) are applied and a fullscreen quad is
rendered. The occlusion query is stooped by a call to the glEndQueryARB
function afterwards.

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
due to

wimmer
Cross-Out

wimmer
Replacement Text
p

Chapter 4. Implementation 55

Because the filtering fragment shader uses the discard instruction of the
Cg Shading Language [5] and our upper bound calculation is based on occlu-
sion queries the ping-pong rendering is not carried out in a traditional way.
After the actual filtering of the water depth texture, the filtering result is
only copied to the other render target instead of directly filtering again. In
this way it is ensured that the filtering result is correct and not overwritten
by mistake.

Fig. 4.11: Adaptive curvature flow filtered water depth including a close-up view
of the depth values, color-coded curvature, and iteration count.

The fragment shader used to perform the adaptive curvature flow filtering
calculates the necessary iteration count and smooths out sudden changes in
curvature. The fragment shader is shown in Listing A.12 and Listing A.13.
The first part of the fragment shader look-ups the water depth from the
water depth texture and calculates the necessary iteration count depending
on the eye-space depth as described in Section 3.1 and illustrated in Equa-
tion 3.1. Because all parameters of Equation 3.1 except the eye-space depth
are constant during runtime their result can be pre-calculated (stored in the
shader parameter named depthFilterParam). The minus in front of the depth
value (coo) is required because in OpenGL [26] eye-space depth values are

wimmer
Inserted Text
,

wimmer
Inserted Text
s

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Inserted Text
,

Chapter 4. Implementation 56

negative in front of the camera. Based on the calculated iteration count and
the current iteration count (passed as a shader parameter) a decision is made
if further filtering is necessary or the fragment has to be discarded because
it has already converged. Additionally, eye-space depth values are discarded
that do not belong to the water surface (which is indicated by a depth value
less than −9999.0f)

The second part of the fragment shader calculates the curvature flow
filtering. First, the neighborhood depth values are looked-up and the deriva-
tives are calculated by central differencing. Additionally, the directional
derivatives are calculated and tested against an user defined depth falloff
to prevent filtering across the silhouettes of the water surface. These bound-
ary conditions are enforced where large changes in depth occur between one
fragment and the next. At these boundaries the derivatives are forced to
be zero to prevent any smoothing from taking place as proposed by van der
Laan et al. [37]. Finally, the fragment shader calculates the mean curvature
as described in Section 2.5.3 and modifies the eye-space depth values of the
water depth texture. Because this process corresponds to an Euler integra-
tion the mean curvature is weighted by an user defined parameter named
epsilon to prevent the filtering from oscillating.

Figure 4.11 shows the result of the adaptive curvature flow filtering. As
one can observe, the curvature of the water surface (see color-coded curvature
on the right side) is much lower in comparison to the unfiltered water depth
as illustrated in Figure 4.7. Also the close-up view shows less edges and has
a smoother appearance. The subfigure shows the iteration count for this
example viewpoint, whereas a red color indicates a higher iteration count
and a yellow color a lower iteration count.

4.8 Layer Thicknesses

So far the algorithm has acquired the main scene color and extracted the
water and foam surface from the SPH data. Furthermore, the water depth
has been filtered to hide the particle-based nature of the SPH particles. The
next step is to separate the particles into layers. As described in Section 3.2.2
our algorithm separates the particles into three layers, two water layers and
one foam layer in between. As shown in Figure 4.12, the input data for this
pass is the previously extracted foam surface and the SPH particles. Based on
this input data the algorithm does the separation and calculates the thickness
for each of these layers by splatting the particles and accumulating the result
into the thickness textures. This thickness-based rendering approach gives
the viewer important information about the water deep.

wimmer
Inserted Text
,

wimmer
Inserted Text
.

wimmer
Cross-Out

wimmer
Replacement Text

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Replacement Text
pth

Chapter 4. Implementation 57

Fig. 4.12: Layer creation based on extracted foam surface.

4.8.1 Water Layer

The water thickness pass is responsible for creating the two water layers
which we call front water layer and back water layer (see Figure 3.3). From
the rendering point of view this pass is similar to the water depth pass (see
Section 4.6.1) because this pass also renders the entire set of particles. The
difference is that this pass uses additive blending to accumulate the contri-
bution of each single particle that belongs to one of the water layers into the
thickness texture and also the depth write functionality is disabled. Another
important difference is that the depth buffer of the main scene is used at
this point for the hardware depth test. This ensures that the thickness of
the layers is forced to zero in regions where the water is occluded by the
geometry of the main scene.

The water thickness vertex shader is based on the water depth vertex
shader (see Listing A.8). Beside the transformation and point-sprite size
calculations the vertex shader also performs the layer separation as shown
in Listing A.14. For this purpose the shader gets the foam parameter as an
input (see Section 4.2) and outputs the layer to which the particle belongs
to. The actual decision to which layer the particle belongs to is calculated by
using the step function provided by the Cg Shading Language [5]. Whereas
the step functions returns 0 if the foam depth is greater than the particles
eye space depth and 1 if less or equal.

The fragment shader calculates the particle thickness function as illus-
trated in Figure 3.4. Instead of calculating the eye space position of the

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Cross-Out

wimmer
Replacement Text
T

wimmer
Inserted Text
'

Chapter 4. Implementation 58

Fig. 4.13: Splat kernel used for the water thickness; left: single particle; right:
close-up of the back water layer thickness.

fragment on a sphere and use it as an output, the fragment shader outputs
two thickness values. As shown in Listing A.15, the thickness for each layer is
calculated based on an exponential falloff and the layer separation flag foam.
In so doing, each water particle contributes to the correct water layer.

Figure 4.13 illustrates the exponential based splat kernel calculated by
the water thickness fragment shader A.15. On the left side the splat kernel
for a single particle is shown and on the right side a close-up view. Note
that by using an exponential based splat kernel the accumulated thickness
does not show any edges or discontinuities as one can observe in the close-up
view.

Figure 4.14 illustrates the results of the water thickness pass. On the left
side the thickness of the back water layer is shown and on the right side the
thickness of the front water layer respectively. Note that the water thickness
is zero for regions that are occluded by the geometry of the main scene. This
can be observed at the bottom of both figures where the water is occluded
by the pool geometry.

4.8.2 Foam Layer

In this pass the thickness of the foam layer is calculated (see Section 3.2.2).
Along with the foam thickness also the thickness in a constant range behind
the foam surface is calculated to be able to render a more realistic foam color
by blending two different user defined colors (see Section 3.2.3). Equivalent
to the water thickness pass (4.8.1) additive blending, to accumulate the foam
particles, and the hardware depth test, to ensure proper occlusion by the ge-
ometry of the main scene, are enabled and also the depth write functionality
is disabled. The main differences between the water thickness pass and the
foam thickness pass are that the geometry shader is used to orient the foam

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
in order

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Inserted Text
(

wimmer
Inserted Text
)

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Inserted Text
(

wimmer
Inserted Text
)

wimmer
Cross-Out

wimmer
Inserted Text
,

Chapter 4. Implementation 59

Fig. 4.14: Water thickness pass results; left: back water layer thickness; right:
front water layer thickness.

particles toward their velocity direction (as it is done in the foam depth pass
4.6.2) and the splat kernel is multiplied by 3D Perlin noise.

Similar as for the water thickness vertex shader some additional calcula-
tions are carried out by the foam thickness vertex shades. The vertex shader
also looks-up the foam depth to separate the foam particles which are within
a constant range behind the foam surface. This distance is passed to the
shader as a parameter and defined by the user. As mentioned above the
geometry shader is used to orient the foam particles toward their velocity
direction equivalent as it is done in the foam depth pass (see Section 4.6.2).
For this purpose the foam depth geometry shader as shown in Listing A.10
is used because this shader does all the calculations that are required.

The foam thickness calculation done by the fragment shader, is similar to
the calculation done for the water thickness. Additionally, the exponential
falloff is multiplied with 3D Perlin noise. A different noise pattern for each
particle is achieved by using the lifetime of a particle for the texture look-up.
The output of the foam thickness fragment shader are two thickness values
weighted by Perlin noise. Listing A.16 shows the additional calculations done
by the foam thickness fragment shader.

Figure 4.15 illustrates the splat kernel calculated by the foam thickness
fragment shader A.16. On the left side the noise-weighted splat kernel for a
single particle is shown. Note that this pattern is only a snapshot because the
pattern changes over time for each particle. The right side shows a close-up
view including sub-particle detail.

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
r

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Replacement Text
similar to the way

wimmer
Inserted Text
,

wimmer
Cross-Out

Chapter 4. Implementation 60

Fig. 4.15: Splat kernel used for the foam thickness; left: single particle; right:
close-up of the foam layer thickness.

Fig. 4.16: Foam thickness pass results; left: foam layer thickness; right: foam
thickness in a constant range behind the foam depth.

Figure 4.16 illustrates the results of the foam thickness pass. On the left
side the thickness of the foam layer is shown and on the right side the thick-
ness of the frontmost foam layer respectively. In comparison the frontmost
layer thickness is at most as thick as the depth threshold fdt, hence it is easy
to normalize the frontmost layer thickness for blending by dividing it by the
depth threshold fdt (see Section 4.9). In contrast, the foam layer thickness
does not have an upper bound.

wimmer
Inserted Text
,

wimmer
Inserted Text
,

Chapter 4. Implementation 61

4.9 Water Rendering including Foam

In the final rendering pass all intermediate results such as the background
scene color, the filtered water depth and the layer thicknesses are used to
compose the actual pixel color of the water including foam (see Figure 4.17).
As described in Section 3.2.3 the actual pixel color is calculated by volumet-
ric compositing along a viewing ray from back to front. The compositing
pass also includes real-time refraction of the background scene behind the
water, static reflections of the environment (looked-up from an static cubic
environment map) and specular highlights based on the water surface normal
and the light position.

Fig. 4.17: Compositing based on the previously calculated intermediate results.

For the compositing pass a full-screen quad is sent down the rendering
pipeline similar as done for the adaptive curvature flow filtering as described
in Section 4.7. The calculations done in this pass are structured into different
parts as follows:

• Description of helper functions used for calculating eye-space positions
and interpolated normals.

• Description of the shade function (see Listing A.19 and A.20) which
calculates the volumetric compositing as described in Section 3.2.3.

• Description of the compositing fragment shader (see Listing A.21) called
by the main programme.

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Replacement Text

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
is

wimmer
Cross-Out

Chapter 4. Implementation 62

• Description on how to incorporate shadow mapping [39] into our com-
positing pass.

• Description of spray particle rendering.

4.9.1 Helper Functions

Listing A.17 shows helper functions to calculate an eye-space position. The
uvToEye function takes texture coordinates in the range [0, 1] and an eye-
space depth value to calculate the eye-space position. The getEyeSpacePos
function only takes a set of texture coordinates which are used to look-up
the eye-space depth value from the water depth texture.

The ipnormal2 function as shown in Listing A.18 calculates the partial
derivatives of a normal vector based on a set of texture coordinates, a di-
rectional parameter d1, and the fractional part of the texture coordinates.
For this purpose, the function look-ups three eye-space depth values from the
water depth texture (eg.: left, center, middle pixel if d1 is float2(1.0f, 0.0f))
and calculates as set of interpolated eye-space depth values. The output are
the interpolated partial derivatives of the water surface at the given position,
which are calculated by an approximation of the central difference because
of performance reasons.

4.9.2 Back to Front Compositing

Our method composes the different layers back to front along the viewing
rays. An overview about the intermediate calculations is illustrated in Fig-
ure 3.4. Note that the shader variables holding the intermediate calculation
results correspond to the labels used in this figure. Listing A.19 and A.20
show the core calculations performed in the final rendering pass. The in-
put parameters required to calculate the actual pixel color are the partial
derivatives dxx and dyy, the eye-space position of the fragment, the tex-
ture coordinates of the fragment, and a shadow term which holds information
about shadowing. A detailed description on how to calculate the shadowing
is given later in this Section.

First of all, the partial derivatives in x- and y-direction respectively are
used to calculate the normal vector of the water surface. Then the eye-space
position and the light position (also in eye-space and passed as a shader
parameter) are used to calculate the light direction. Based on the light
direction and the view vector the specular highlight amount is calculated.
Note that the shadow amount is multiplied by the specular highlight amount
to suppress specular highlights in regions which are shadowed. Furthermore,

wimmer
Cross-Out

wimmer
Replacement Text
s

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Cross-Out

wimmer
Replacement Text
given

wimmer
Cross-Out

wimmer
Replacement Text
s

wimmer
Inserted Text
m

Chapter 4. Implementation 63

the specular highlight amount is forced to zero for fragments that do not
have a valid eye-space depth value. This is required to avoid artefacts along
the boundary of the water surface.

The next step in calculating the actual pixel color is to calculate reflec-
tions of the environment. In our current implementation, static reflections
based on a cubic environment mapping and a Fresnel term which depends on
the viewing angle onto the water surface are used. The reflection vector is
simply calculated with the reflect function (provided by the Cg Toolkit [5])
based on the viewing direction and the surface normal. Note that the result-
ing reflection vector has to be transformed to world-space because this is the
native space for environment maps. The Fresnel term is approximated as de-
scribed in Chapter 7 of The Cg Tutorial [6] (which is also a good overview for
environment mapping techniques and effects such as chromatic dispersion).

As described in Section 3.2.3 the compositing accounts for the attenuation
caused by the calculated layers (see Section 4.8.1 and 4.8.2). Hence, the
next step is to look-up the water thickness (representing the back water layer
and the front water layer) and the foam thickness (representing the foam
layer and the frontmost foam layer). Note that not all textures have the
same dimension because the depth textures are scaled down during filtering
(see Section 4.7). Thus, the texture coordinates have to be scaled to ensure
proper texture look-ups. Based on the back water thickness and the front
water thickness a refraction factor is calculated, and also the color of the
background scene is retrieved from the scene texture which has been filled
during the main scene rendering pass as described in Section 4.4. The effect
of a warped background that can be seen through the water is achieved at
this point by perturbing the texture coordinates by the surface normal vector
before the look-up (see Equation 2.18).

The next step is to calculate the color of the back water layer and the
front water layer which are based on a user given water color. Thus the
algorithm can produce a variety of water colors from an artistic point of
view. Beside the water layer colors, the frontmost foam surface thickness
is used to calculate the foam color as shown in Equation 3.9. Note that
the frontmost foam surface thickness is normalize by the depth threshold as
mentioned in Section 4.8.2. Additionally, the foam color is shadowed based
on an ambient color and the shadow term.

Finally, the actual pixel color is calculated by blending the intermediate
color values together (as shown in Equation 3.7) by using the attenuation
weights, which are based on the layer thickness values. At this point also the
the reflection color and the specular highlight are added.

wimmer
Cross-Out

wimmer
Replacement Text
i

wimmer
Cross-Out

wimmer
Replacement Text

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

wimmer
Replacement Text
-provided

wimmer
Inserted Text
d

Chapter 4. Implementation 64

4.9.3 Compositing Shader

The next part of this Section describes how the compositing fragment shader
uses the shade function as described above, to calculate the entire water
surface including foam. The primary task of the fragment shader is to sepa-
rate the fluid surface into a border-region and an inner-region. This enables
the fragment shader to avoid edge artefacts because of depth discontinuities.
Next to edges colors are blended, and in the middle of the water the surface
normals are interpolated for a smooth surface. The compositing fragment
shader is illustrated in Listing A.21.

As mentioned above the fragment shader separates the fluid surface into
a border-region and an inner-region. The separation is based on the second
derivative for three points and the derivatives are compared against a user-
defined threshold.

Fig. 4.18: Border- and inner-regions separated by the compositing fragment shader.

Figure 4.18 shows an example of a separation calculated by the composit-
ing fragment shader. For the red colored regions the actual pixel color is
calculated by interpolating the pixel colors of the 2×2 neighborhood around
an fragment and interpolating them afterwards. Each color of the neighbor-
hood is calculated based on the partial derivatives in x and y direction and

wimmer
Cross-Out

wimmer
Inserted Text
,

wimmer
Inserted Text
,

wimmer
Cross-Out

Chapter 4. Implementation 65

the back to front compositing described above. The process of interpolating
samples is shown in Listing A.23 and A.24.

The yellow colored regions as illustrated in Figure 4.18 represent the inner
parts of the fluid surface. The difference to border-regions is that for those
regions the surface normals are interpolated instead of colors. The normals
are represented by their partial derivatives in the horizontal direction and
the vertical direction respectively. These partial derivatives are interpolated
based on the fragment’s location and used to calculate the actual pixel color
for the fluid surface.

Fig. 4.19: Compositing pass results stored in the result texture.

Finally, the compositing fragment shader outputs the actual pixel color
which includes specular highlights, reflection based on the Fresnel Effect,
refraction of the background scene, a water surface which attenuates the
background scene based on the thickness, and volumetric foam. Figure 4.19
illustrates the results of the compositing pass. Note the volumetric appear-
ance achieved by doing back-to-front compositing.

Chapter 4. Implementation 66

4.9.4 Shadowing

As mentioned at the beginning of this section, our current implementation
also handles shadows which are cast by the environment onto the water and
foam. The first part of the shadow calculation accumulates the water depth
values of the 3×3 neighborhood and calculates an average water depth value.
Because there could be the case that the fluid has regions with no water at
all (in case if both water thickness values are zero and especially near borders
because the foam particles are orient towards their velocity direction) it has
to be checked if the average water depth value is valid. In case of an invalid
average water depth value the routine is repeated, but instead the water
depth values the foam depth values are used for the accumulation. This
results in an approximation of the fluid surface depth regardless of the layer
setup which is used to calculate the shadowing (see Listing A.22).

Note that we do not go into detail onto the actual shadow calculation
at this point because the fragment shader is structured in a way that any
shadow algorithm based on shadow mapping [39] is suitable and it would
exceed the scope of this thesis. Our current implementation uses convolution
shadow maps proposed by Annen et al. [2].

4.9.5 Spray Particles

Spray particles which are indicated by a low density value normally do not
form part of any surface. As mentioned by van der Laan et al. [37] it is
desirable to exclude those particles from rendering by putting a threshold on
the density obtained from the simulation. This is done in our implementation
as described in Section 4.6.1 (and Listing A.8). Note that the culling of low
density particles is carried out in all passes which render the SPH simulation
data. The rendering of the spray particles is done immediately after the
compositing pass. Thereto the result texture from the previous pass stays
bound and the spray particles are combined with the compositing results by
additive blending. The vertex shader used in this pass is very similar to those
used for particle rendering in this Chapter expect that all particles with a
density above the user-defined threshold (instead of below) are culled. The
geometry shader is also very similar to the one used during the foam depth
pass (see Listing A.10) for example. In which the spray particles are orient
toward their velocity direction and a user-defined spray color is forwarded
to the fragment shader. The fragment shader simply outputs a user-defined
spray color multiplied by an exponential-based falloff.

wimmer
Inserted Text
,

wimmer
Inserted Text
ed

wimmer
Inserted Text
,

wimmer
Inserted Text
of

wimmer
Cross-Out

wimmer
Replacement Text
of

wimmer
Inserted Text
,

wimmer
Inserted Text
-

wimmer
Cross-Out

wimmer
Replacement Text
For this,

wimmer
Cross-Out

wimmer
Replacement Text
c

wimmer
Inserted Text
There,

wimmer
Cross-Out

wimmer
Inserted Text
ed

wimmer
Cross-Out

Chapter 4. Implementation 67

Fig. 4.20: Spray particles added after the compositing pass.

Figure 4.20 illustrates the results of the spray pass. Note that the spray
particles are blended additively with the compositing results and therefore
are much more visible on darker background colors.

Chapter 5

Results

This chapter presents results that can be achieved with our new method.
First, our test setup is described, then an overview about our three scenes is
given, and finally the chapter presents a detailed performance comparison.

We have used an Intel Q9450 CPU with a GeForce GTX 280 graphics
card. The SPH simulation was done with NVIDIA PhysX. Particle counts
range from 20k to 64k, depending on the scene. All images were taken
at 1280 × 720 resolution. The curvature flow filtering step was done at half
resolution. We use off-screen buffers to store our various intermediate results:
32 bit float for the water depth, 16 bit float for the foam depth, and 16 bit
each for Twb, Twf , Tf and Tff . This results in a total of 112 bit per pixel.

5.1 Scenes

We have tested our approach in three different scenes. The Corridor scene
has many obstacles and therefore creates a turbulent water flow with a lot of
foam and spray. The particle count used to flood this scene is around 64k and
the particles are evenly distributed in the scene. Figure 5.1 illustrates the
Corridor scene. The required iteration count for the viewpoint used for this
Figure is between 27 and 52, which means that regions close to the viewpoint
(as it is the case at the bottom of Figure 5.1) are filtered with 27 iterations
by our adaptive curvature flow filtering and those farther away with up to
52 iterations.

The Waterfall scene is less turbulent, but due to its simplicity, artifacts
are easily detected by visual inspection. Here, rendering of foam is essential
for realistic results. In contrast to the Corridor scene, the particles are not
evenly distributed in this scene, which means that most of the 64k particles
used in this scene are located in the basin at the end of the ramp construc-
tion (see Figure 5.2). Another important geometric part of this scene is the
pillar that holds the center ramp and splits the water flow into two streams.
Due to the high compression that occurs at that position, the Weber number

Chapter 5. Results 69

Fig. 5.1: Corridor scene (27–52 iterations).

Fig. 5.2: Waterfall scene (15–20 iterations).

thresholding can be well observed. Figure 5.3 shows a comparison of the Wa-
terfall scene using different values for the Weber number threshold ranging
from 110 to 50 (see label contained in each image of Figure 5.3). Note that
the lower the Weber number threshold, the easier foam is formed, which can
be observed especially after the pillar.

Chapter 5. Results 70

Fig. 5.3: Impact of Weber number thresholding.

Figure 5.4 shows a close-up view of the Waterfall scene. Here, one can
observe that the water surface and the foam around the pillar are shadowed.
Note that in case of the water surface, the specular highlights are suppressed
and the foam itself is rendered with an ambient term.

Fig. 5.4: Waterfall scene including shadowing (20–44 iterations).

Chapter 5. Results 71

The Bamboo scene consists of a bamboo construction and has dynamic el-
ements that interact with the water as illustrated in Figure 5.5. The bamboo
is slowly filled with water, till the water weighs it down and is emptied again.
Although such a scene does not produce any foam in reality, it shows that
our method can be used in scenes where the water interacts with dynamic
elements. Figure 5.6 shows a close-up of the bamboo construction. Note the
smooth transition between water and foam which can be observed when the
construction is emptied again.

Fig. 5.5: Bamboo scene (22–40 iterations).

Fig. 5.6: Bamboo scene showing water to foam transition (32–44 iterations).

Chapter 5. Results 72

Fig. 5.7: Corridor scene without/with foam (26–50 iterations).

Figure 1.1 shows the benefit of our physically guided foam generation
over simple noise-based foam [37]. Figure 5.7 demonstrates that foam is
an important visual element when rendering fluids. Figure 5.8 compares a
photograph of a real waterfall with our method. As one can also observe in
the photograph, the foam is visible below the surface when a turbulent water
stream immerges into resting water.

Fig. 5.8: Comparison between a photograph of a real waterfall (left) and our new
method (right). The rectangle marks an area where foam occurs below the water
surface.

Chapter 5. Results 73

5.2 Performance

Table 5.1 compares the computational cost of [37] with our method (SPH
simulation time not included). The indicated running times are an average for
a default camera movement. Our method has comparable performance with
the benefit of improved image quality especially at near or far viewpoints.
Even foam does not significantly increase running time for our method.

Scene [37] without foam with foam

Waterfall 14 ms 14 ms 16 ms
Corridor 11 ms 12 ms 15 ms
Bamboo 12 ms 13 ms 17 ms

Tab. 5.1: Performance comparison between [37] (without foam) and our method
with and without foam.

It takes on average 23.12% of the computation time to render the water
and foam depth, 24.4% for the thickness passes, 27.43% for the adaptive
curvature flow filtering and 25.05% for the composition (including update
of data structures). This measurement represents the mean breakdown of
6, 000 frames using different viewpoints in the waterfall scene. Figure 5.9
presents the computational cost of [37] and our method using the example
of a camera zoom movement in the Waterfall scene. The slope on the right
side of the curve is because of increased pixel overdraw which arises during
rendering of close viewpoints.

Fig. 5.9: Performance comparison of a camera zoom movement in the Waterfall
scene.

Chapter 5. Results 74

Figure 5.10 presents the computational cost using a standard camera
movement through the Waterfall scene. Note that our method without foam
is faster for most of the viewpoints, only if the viewpoint is close to the basin
our method has increased rendering times (see right spike in Figure 5.10).

Fig. 5.10: Performance comparison of a camera movement in the Waterfall scene.

Fig. 5.11: Performance comparison of a camera movement in the Corridor scene.

Chapter 5. Results 75

Figure 5.11 presents the computational cost using a standard camera
movement through the Corridor scene. Because the viewpoints of the used
camera movement are close to the water surface in general and the particles
are evenly distributed across the scene our method is slower.

Finally, Figure 5.12 presents the computational cost of the Bamboo scene.
Note that the measurement for this scene includes the computation times of
the physics simulation to account for the dynamic behavior and its influence.

Fig. 5.12: Performance comparison of a camera movement in the Bamboo scene,
this time including physics simulation time.

5.3 Limitations

As described in Section 3.2.2, our layer model separates the fluid volume
into three layers (two water layers and one foam layer in between). This is
a reasonable approximation for most situations that appear as shown above.
However, there are situations which are not covered by our layer model as
shown in Figure 5.13. Here, multiple overlapping water layers are separated
by air and there is no foam layer at all. Because of this combination the
entire water thickness is covered by the front water layer, which results in an
inaccurate thickness calculation. To solve this artefact, it would be necessary
to calculate a filtered water surface for every water layer that occurs, which
is in fact too expensive for real-time rendering at the moment. Another
possible solution would be to separate the fluid volume with an approach

Chapter 5. Results 76

Fig. 5.13: Overlapping water layers separated by air. The rectangle marks an area
where the thickness calculation is inaccurate.

based on voxelization as proposed by Eisemann et al. [13] for example. Their
approach performs a voxelization along the viewing rays based on framebuffer
blending. One problem of voxelization is that not all particles might be
captured because of their relatively small size with respect to the scene size
and the floating point precision not sufficient for this scale. However, using
a foam layer as mentioned above helps to hide those thickness artefacts as
one can observe in Figure 5.7 for example.

Chapter 6

Summary and future work

In this last chapter, a summary of the thesis is given, and ideas for future
work are explored.

6.1 Conclusion

In this thesis, we presented a new physically based real-time method for
rendering particle-based fluids that brings volumetric foam to the real-time
domain. Foam is an important visual element in most situations where real-
time fluids are used and there exists as yet no realistic real-time method for
volumetric foam. Our algorithm is based on a previously implemented screen
space fluid rendering approach which renders the surface of particle-based
fluids and smoothes the surface to prevent the fluid from looking jelly-like.

The first contribution is an adaptive curvature flow smoothing method for
SPH rendering which accounts for perspective. Instead of using a fixed itera-
tion count which introduces view dependent artefacts, our adaptive method
varies the number of iterations depending on the view distance. Thus over- or
under-smoothing as present in previous methods is avoided, and a consistent
fluid surface is produced which is independent of the viewing distance.

Our second contribution is a fast physically guided foam rendering al-
gorithm and a layer-based volumetric compositing algorithm. The former
classifies particles as water or foam based on Weber number thresholding,
which takes the density and velocity calculated by the physics engine into
account. Our layer-based model is capable of treating cases such as foam
only, water behind foam, and water in front of and behind foam. By par-
titioning the fluid into a foam layer an two water layers, one in front and
one behind the foam, we can simulate foam inside water, as happens at the
end of a waterfall. For each layer the amount of water respectively foam is
determined by additively splatting every particle belonging to the volume.
These thickness values are used by the volumetric compositing algorithm
to calculate correct compositing and attenuation along a viewing ray back

wimmer
Inserted Text
-

wimmer
Cross-Out

wimmer
Replacement Text
-

wimmer
Cross-Out

wimmer
Replacement Text
i

wimmer
Inserted Text
d

Chapter 6. Summary and future work 78

to front. Furthermore, the actual pixel color also includes reflection of the
environment and specular highlights.

Our approach provides more realistic fluid rendering at comparable cost
to previous methods with the benefit of improved image quality especially
at near or far viewpoints. Even foam does not significantly increase running
time for our method. Our method is simple to implement and because of the
analogy that the algorithm can be seen as a post-processing method it can
be well integrated into existing rendering engines.

Fig. 6.1: Real-time rendering of caustics from reflective and refractive objects
([32]).

Chapter 6. Summary and future work 79

6.2 Future Work

In future work, we plan to account for situations that require more than 3
layers. This could be achieved by extending our layer approach to consider for
multiple water and foam layers. The challenge with this approach is to avoid
the cost that arises if multiple water surfaces have to be filtered with our
Adaptive Curvature Flow filtering. Another solution to this problem could
be an approach based on voxelization along the viewing rays as mentioned
in Section 5.3.

In addition, we would like to investigate the achievable improvement of
using caustics, which are an important visual element of realistic fluids. Re-
cent publications like Shah et al. [32] have shown that caustics can be cal-
culated efficiently in real time and with great visual quality as illustrated
in Figure 6.1. Their approach avoids performing expensive geometric tests,
such as ray-object intersections, and requires no pre-computation, which is
important when dealing with fluids because the simulation is highly dynamic.

Attention has to be paid to the case if multiple water layers are overlap-
ping as mentioned above. Also for caustics this has to be considered because
each layer reflects and refracts the incident light depending on its surface
normal vector.

Appendix A

Shader Code

A.1 General

unsigned int fluidBufferNum = fluid->GetFluidBufferNum();

Fluid::FluidParticle* fluidBuffer = fluid->GetFluidBuffer();

const float threshold = renderDescription.foamThreshold;

const float lifetime = renderDescription.foamLifetime;

unsigned int i;

for (i=0; i<fluidBufferNum; i++)

{

const Fluid::FluidParticle& particle = fluidBuffer[i];

float weberNumber = particle.velocity.Length() *
particle.velocity.Length() *
particle.density;

MetaData* metaData = &fluidMetaData[particle.id];

switch (fluidMetaData[particle.id].phase)

{

case FP_NONE: // do nothing as long as weber number is low

if (weberNumber >= threshold)

{

metaData.foam = 0.0f;

metaData.lifetime = Math::RandomFloat(0.25f, 0.5f);

metaData.timer = metaData.lifetime;

metaData.phase = FP_WATER_TO_FOAM;

}

break;

...

Listing A.1: Main loop of the foam simulation update.

Appendix A. Shader Code 81

...

case FP_WATER_TO_FOAM: // fade-in foam

metaData.timer -= deltaTime;

if (metaData.timer <= 0.0f)

{

metaData.foam = 1.0f;

metaData.lifetime = metaData.timer = 0.0f;

metaData.phase = FP_FOAM;

}

else

metaData.foam = 1.0f-metaData.timer/metaData.lifetime;

break;

case FP_FOAM: // as long as weber number is high keep foam

if (weberNumber < threshold)

{

metaData.foam = 1.0f;

metaData.lifetime = Math::Clamp(lifetime*Math::

RandomFloat(0.5f, 1.5f), 0.0f, Math::MAX_FLOAT);

metaData.timer = metaData.lifetime;

metaData.phase = FP_FOAM_TO_WATER;

}

break;

case FP_FOAM_TO_WATER: // fade back to water phase

metaData.timer -= deltaTime;

if (metaData.timer <= 0.0f)

{

metaData.foam = 0.0f;

metaData.lifetime = 0.0f;

metaData.timer = 0.0f;

metaData.phase = FP_NONE;

}

else

metaData.foam = metaData.timer/metaData.lifetime;

break;

}

}

Listing A.2: Main loop of the foam simulation update. (cont.)

Appendix A. Shader Code 82

...

// run collision and dynamics for delta time since the last

// frame on the gpu (hardware)

// note that this function is non-blocking, thus the

// application can perform calculations in parallel

physicsScene->simulate(deltaTime);

// update meta data on the cpu (software)

screenSpaceCurvature->UpdateMetaData(deltaTime);

// wait for physics (fetchResults is blocking)

NxU32 error;

physicsScene->flushStream();

physicsScene->fetchResults(NX_RIGID_BODY_FINISHED, true, &

error);

...

Listing A.3: Parallelism concept.

struct NxFluidPacket

{

// AABB of all particles which are inside the same packet.

NxBounds3 aabb;

// index of first particle for a given packet.

NxU32 firstParticleIndex;

// number of particles inside the packet.

NxU32 numParticles;

// the packet’s Identifier.

NxU32 packetID;

};

Listing A.4: Data structure to represent a bounding box and its associated particle
data of a fluid packet [29].

Appendix A. Shader Code 83

unsigned int numPackets = fluid->GetFluidNumPackets();

const NxFluidPacket* packets = fluid->GetFluidPackets();

unsigned int vpc = 0; // visible packet count

unsigned int i;

for (i=0; i<numPackets; i++)

{

// test intersection with view frustum

if (FrustumAABBIntersect(frustumPlanes,

Vector3(packets[i].aabb.min),

Vector3(packets[i].aabb.max)))

{

vboStartIndices[vpc] = packets[i].firstParticleIndex;

vboIndexCount[vpc] = packets[i].numParticles;

vpc++;

}

}

Listing A.5: Frustum culling functionality.

Appendix A. Shader Code 84

...

// setup render target

screenSpaceCurvature->BeginRenderScene();

{

// clear results of previous frame

glClearColor (0.0, 0.0, 0.0, 1.0);

glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

...

// render scene (eg. static level geometry)

RenderManager::Instance()->Render();

...

}

// finalize rendering

screenSpaceCurvature->EndRenderScene();

...

Listing A.6: Main scene rendering concept

void ScreenSpaceCurvature::RenderParticles(void)

{

// Enable point sprite rendering

glEnable(GL_POINT_SPRITE_ARB);

// Enable point sprite size manipulation by the

// vertex shader

glEnable(GL_VERTEX_PROGRAM_POINT_SIZE_ARB);

// Render point sprites...

glMultiDrawArrays(GL_POINTS, vboStartIndices, vboIndexCount,

visiblePacketCount);

glDisable(GL_POINT_SPRITE_ARB);

glDisable(GL_VERTEX_PROGRAM_POINT_SIZE_ARB);

}

Listing A.7: Point sprite rendering function

Appendix A. Shader Code 85

A.2 Depth Passes

void FluidParticleVP(float4 position : POSITION,

float2 texCoord : TEXCOORD0,

float density : TEXCOORD1,

out float4 outPos : POSITION,

out float outPointSize : PSIZE,

out float2 outTexCoord : TEXCOORD0,

out float4 eyeSpace : TEXCOORD1)

{

outPos = mul(glstate.matrix.mvp, position);

outTexCoord = texCoord;

const float pointShrink = 0.5f;

float scaledPointRadius = particleSize * (pointShrink +

smoothstep(densityThreshold, densityThreshold*2.0f,

density)*(1.0-pointShrink));

// calculate window-space point size

float4 eyeSpacePosition = mul(glstate.matrix.modelview[0],

position);

float dist = length(eyeSpacePosition.xyz);

outPointSize = scaledPointRadius * (particleScale / dist);

eyeSpace = float4(eyeSpacePosition.xyz, scaledPointRadius);

// cull particles with density below threshold

if (density < densityThreshold)

outPos.w = -1.0;

}

Listing A.8: Water depth vertex shader

Appendix A. Shader Code 86

FragShaderOutput FluidDepthFP(float2 texCoord : TEXCOORD0,

float4 eyeSpace : TEXCOORD1)

{

FragShaderOutput OUT;

// calculate eye-space normal from texture coordinates

float3 normal;

normal.xy = texCoord.xy*float2(2.0f, -2.0f) +

float2(-1.0f, 1.0f);

float r2 = dot(normal.xy, normal.xy);

// kill pixels outside circle

if (r2 > 1.0f)

discard;

// look-up the square root for the given radius

normal.z = tex1D(sqrtMap, 1.0f-r2).x;

// position of this pixel on sphere in eye space

float4 eyeSpacePos = float4(eyeSpace.xyz +

normal*eyeSpace.w, 1.0f);

float4 clipSpacePos = mul(glstate.matrix.projection,

eyeSpacePos);

// output eye-space depth

OUT.color = float4(eyeSpacePos.z, 0.0f, 0.0f, 0.0f);

OUT.depth = (clipSpacePos.z / clipSpacePos.w)*0.5f+0.5f;

return OUT;

}

Listing A.9: Water depth fragment shader

Appendix A. Shader Code 87

POINT TRIANGLE_OUT void FluidFoamDepthGP(

AttribArray<float4> position : POSITION,

AttribArray<float4> color : COLOR0,

AttribArray<float4> prevPosition : TEXCOORD0,

AttribArray<float> pointSize : TEXCOORD1,

AttribArray<float> density : TEXCOORD2)

{

if (density[0] > densityThreshold)

{

float3 pos = position[0].xyz;

float3 prevPos = prevPosition[0].xyz;

float3 motion = pos - prevPos;

float3 direction = normalize(motion);

float len = length(motion);

float3 viewVector = normalize(-pos);

float facing = dot(viewVector, direction);

float3 x = direction*pointSize[0]*2.0f;

float3 y = normalize(cross(direction, viewVector))*
pointSize[0];

const float motionThreshold = 0.5f;

if ((len < motionThreshold) || (facing > 0.95f) ||

(facing < -0.95f))

{

prevPos = pos;

x = float3(pointSize[0], 0.0, 0.0);

y = float3(0.0, -pointSize[0], 0.0);

}

float4 eyeSpace0 = float4(pos + x + y, 1.0f);

... // the same for eyeSpace1, eyeSpace2, and eyeSpace3

float4 p0 = mul(glstate.matrix.projection, eyeSpace0);

... // the same for p1, p2, and p3

emitVertex(p0, color[0], float4(0, 0, 0, 0), eyeSpace0);

emitVertex(p1, color[0], float4(0, 1, 0, 0), eyeSpace1);

emitVertex(p2, color[0], float4(1, 0, 0, 0), eyeSpace2);

emitVertex(p3, color[0], float4(1, 1, 0, 0), eyeSpace3);

}

}

Listing A.10: Foam depth geometry shader which outputs four vertices that are
aligned toward the velocity direction

Appendix A. Shader Code 88

A.3 Adaptive Curvature Flow

bool breakLoop = false; bool doQuery = false;

const unsigned int queryInterval = 5;

for (int i=0; i<256 && !breakLoop; i++)

{

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, frameBuffer);

glFramebufferTexture2DEXT(...);

doQuery = (i%queryInterval == (queryInterval-1));

if (doQuery) // start occ. query

glBeginQueryARB(GL_SAMPLES_PASSED_ARB, occQuery);

... // setup shader stuff (eg.: current iteration count)

RenderQuad(scaleDownWidth, scaleDownHeight);

if (doQuery)

glEndQueryARB(GL_SAMPLES_PASSED_ARB);

srcTex = 1 - srcTex;

glFramebufferTexture2DEXT(...);

... // copy filtering result (’discard’ and occ. query)

if (doQuery)

{

unsigned int done = 0;

while (!done) // wait for occ. query result

glGetQueryObjectuivARB(occQuery,

GL_QUERY_RESULT_AVAILABLE_ARB, &done);

GLuint fragmentCount; // get occ. query result

glGetQueryObjectuivARB(occQuery , GL_QUERY_RESULT_ARB, &

fragmentCount);

breakLoop = (fragmentCount == 0);

doQuery = false;

}

srcTex = 1 - srcTex;

}

Listing A.11: Iteration loop performing the adaptive curvature flow filtering using
the occlusion query functionality

Appendix A. Shader Code 89

FragShaderOutput FluidSmoothingFP(float2 tc : TEXCOORD0)

{

FragShaderOutput OUT;

// lookup depth value

float coo = texRECT(depthMap, IN.tc.xy).x;

// calculate necessary iteration count

float it = (depthFilterParam / -coo) + 1.0f;

// check if depth is valid and further filtering is

// necessary

if ((coo < -9999.0f) || (currentIteration > it))

{

discard;

}

else

{

...

// calculate curvature flow filtering

// (see Listing A.13)

...

}

return OUT;

}

Listing A.12: Adaptive curvature flow filtering fragment shader (showing the view
depended iteration count calculation)

Appendix A. Shader Code 90

...

// samples

float com = texRECT(depthMap, IN.tc.xy+float2(0.0f,-1.0f)).x;

float cmo = texRECT(depthMap, IN.tc.xy+float2(-1.0f, 0.0f)).x;

float cpo = texRECT(depthMap, IN.tc.xy+float2(1.0f, 0.0f)).x;

float cop = texRECT(depthMap, IN.tc.xy+float2(0.0f, 1.0f)).x;

// derivatives

float dx = (0.5f*(cpo - cmo));

float dy = (0.5f*(cop - com));

float dxx = (cmo - 2.0f*coo + cpo);

float dyy = (com - 2.0f*coo + cop);

float dxy = 0.0f;

// directional derivatives

float dx1 = coo - cmo; float dx2 = cpo - coo;

float dy1 = coo - com; float dy2 = cop - coo;

if (abs(dx1) > depthFalloff || abs(dx2) > depthFalloff)

{

dx = 0.0f; dxx = 0.0f;

}

if (abs(dy1) > depthFalloff || abs(dy2) > depthFalloff)

{

dy = 0.0f; dyy = 0.0f;

}

float depth = min(coo, thresholdMin);

float a = camera.x; float b = camera.y; float c = camera.z;

// calculate curvature

float bl = a*a*dx*dx + b*b*dy*dy + c*c*depth*depth;

float H = a*dxx*bl - a*dx*(a*a*dx*dxx + b*b*dy*dxy + c*c*
depth*dx) +b*dyy*bl - b*dy*(a*a*dx*dxy + b*b*dy*dyy + c*c*
depth*dy);

H /= pow(bl, 3.0f/2.0f);

// evolve under curvature

OUT.color = float4(coo + epsilon * H, 0.0f, 0.0f, 0.0f);

...

Listing A.13: adaptive curvature flow filtering fragment shader (showing the
curvature flow filtering)

Appendix A. Shader Code 91

A.4 Layer Thicknesses

...

// cull particles with density below threshold and particles

// that belong to the foam layer

if ((density < densityThreshold) || (foam > 0.0f))

outPos.w = -1.0;

// calculate texture coordinates

float3 postPerspPos = outPos.xyz / outPos.w;

float2 uv = (postPerspPos.xy*0.5f + 0.5f)*scaledDownSize;

// lookup foam depth and separate into layers

float depth = texRECT(foamDepthMap, uv).x;

outFoam = step(depth, eyeSpacePosition.z);

...

Listing A.14: Water thickness vertex shader (showing only additional calculations
to the water depth vertex shader A.8)

FragShaderOutput FluidThicknessFP(float2 texCoord : TEXCOORD0,

float foam : TEXCOORD2)

{

FragShaderOutput OUT;

// calculate eye-space normal (see Listing A.9)

...

// calculate thickness with exponential falloff

float t = normal.z*particleSize*2.0f*exp(-r2*2.0f);

// output back- and front water layer thickness

OUT.color = float4(t*(1.0f-foam), t*foam, 0.0f, 0.0f);

return OUT;

}

Listing A.15: Water thickness fragment shader (showing only different calculations
to the water depth fragment shader A.9

Appendix A. Shader Code 92

FragShaderOutput FluidThicknessFP(float4 color : COLOR0,

float2 texCoord : TEXCOORD0,

float foam : TEXCOORD2)

{

FragShaderOutput OUT;

// calculate eye-space normal (see Listing A.9)

...

// calculate thickness with exponential falloff

float t = normal.z*particleSize*2.0f*exp(-r2*2.0f);

// lookup 2D slice from perlin noise tex based on lifetime

float n = tex3D(perlinMap, float3(texCoord.xy, color.x)).x;

// output foam thickness and frontmost foam thickness

OUT.color = float4(t*n, thickness*n*color.y, 0.0f, 0.0f);

return OUT;

}

Listing A.16: Foam thickness fragment shader (showing only different calculations
to the water depth fragment shader A.9

Appendix A. Shader Code 93

A.5 Compositing

// convert [0,1] uv coords and eye-space Z

// to eye-space position

float3 uvToEye(float2 uv, float eyeZ)

{

uv = uv * invViewport;

uv = uv * float2(-2.0f, -2.0f) - float2(-1.0f, -1.0f);

return float3(uv * invFocalLength * eyeZ, eyeZ);

}

// convert [0,1] uv coords to eye-space- position

float3 getEyeSpacePos(float2 texCoord)

{

float eyeZ = texRECT(depthMap, texCoord).x;

return uvToEye(texCoord, eyeZ);

}

Listing A.17: Eye-space position calculations

float4 ipnormal2(float2 tc, float2 d1, float f1)

{

float ep1m = texRECT(depthMap, tc - d1).x;

float ep1c = texRECT(depthMap, tc).x;

float ep1p = texRECT(depthMap, tc + d1).x;

float2 dv1 = ipdepth(ep1m, ep1c, ep1p, f1);

return float4(uvToEyeD(d1, ep1c + dv1.x, ep1c), dv1.y);

}

// interpolate depth values

float2 ipdepth(float ep1m, float ep1c, float ep1p, float f1)

{

float2 d1 = float2(ep1c - ep1m, (ep1c + ep1m)*0.5f);

float2 d2 = float2(ep1p - ep1c, (ep1p + ep1c)*0.5f);

return lerp(d1, d2, f1);

}

// approx. to uvToEye(uv + uvdiff, eyeZ2) - uvToEye(uv, eyeZ)

float3 uvToEyeD(float2 uvdiff, float eyeZ2, float eyeZ)

{

return float3(invCamera*uvdiff*eyeZ, eyeZ2 - eyeZ);

}

Listing A.18: Calculate interpolated partial derivatives for normal based on texture
coordinates

Appendix A. Shader Code 94

// shade a pixel based on partial derivatives and eye position

float4 shade(float3 _ddx, float3 _ddy, float3 eyeSpacePos,

float2 texCoord, float shadowTerm)

{

float3 normal;

normal = cross(_ddx.xyz, _ddy.xyz);

normal = normalize(normal);

float3 lightDir = normalize(lightPosEyeSpace.xyz -

eyeSpacePos);

float3 v = normalize(-eyeSpacePos);

float3 h = normalize(lightDir + v);

float specular = pow(max(0.0, dot(normal, h)),

fluidShininess)*shadowTerm;

// disable specular for pixels not part of the water surface

specular *= step(-9999.0f, eyeSpacePos.z);

float fresnelTerm = fresnelBias + fresnelScale*pow(1.0 +

dot(v, normal), fresnelPower);

// cubemap reflection

float3 r = reflect(-v, normal);

r = mul((float3x3)invView, r);

float4 reflectColor = texCUBE(cubeMap, r);

// lookup water thickness from the water thickness tex

float4 thickness = texRECT(thicknessMap,

texCoord.xy*lowResFactor);

// lookup foam thickness from the foam thickness tex

float4 thicknessFoam = texRECT(foamThicknessMap,

texCoord.xy*lowResFactor);

// refraction factor

float refraction = (thickness.x+thickness.y)*
thicknessRefraction;

// scene color

float4 c_scene= texRECT(sceneMap, (texCoord.xy*lowResFactor)

+ (normal.xy * refraction));

...

Listing A.19: Compositing calculation based on partial derivatives and eye position

Appendix A. Shader Code 95

...

// water back and water front fluid color

float4 c_fluid_wb = baseColor * exp(-thickness.x*
falloffScale*colorFalloff);

float4 c_fluid_wf = baseColor * exp(-thickness.y*
falloffScale*colorFalloff);

// foam color based on user-defined colors and blended

// based on thickness in a constant range behind the

// foam surface

float3 c_foam = lerp(foamBackColor, foamFrontColor, pow(

thicknessFoam.y*fdt, foamPowScale)).xyz;

// apply shadow term to foam color

float3 Ka = float3(0.6f, 0.6f, 0.6f);

c_foam = Ka*c_foam*(1.0f-shadowTerm) + c_foam*shadowTerm;

// attenuation factors

float att_wb = saturate(c_wb.w);

float att_foam = saturate(exp(-thicknessFoam.x*
foamFalloffScale));

float att_wf = saturate(c_wf.w);

// composition

float3 c_wb = lerp(c_fluid_wb.xyz, sceneColor.xyz, att_wb);

float3 c_f = lerp(c_foam.xyz, c_wb.xyz, att_foam);

float3 c_wf = lerp(c_fluid_wf.xyz, c_f.xyz, att_wf);

// calculate factor to suppress specular highlights if

// foam is the frontmost visual element

float spw = saturate(1.0f-att_wf + att_foam)*(1.0f-att_wf);

// combine with fresnel and specular highlight

float4 surfaceColor = float4(c_wf.xyz + (reflectColor.xyz*
fresnelTerm + float4(fluidSpecularColor.xyz, 1.0f).xyz*
specular)*spw, 1.0f);

return c_surface;

}

Listing A.20: Compositing calculation based on partial derivatives and eye position
(cont.)

Appendix A. Shader Code 96

FragShaderOutput FluidCompFP(float4 position : POSITION,

float2 texCoord : TEXCOORD0)

{

FragShaderOutput OUT;

// center tex coords and fractional part of fragment

float2 tc = floor(texCoord.xy) + 0.5f;

float2 fr = frac(texCoord.xy);

float4 fluidColor;

// texture coordinate offsets for 3x3 neighborhood

float2 texOff[9];

texOff[0] = float2(0, 0); texOff[1] = float2(-1, 0);

texOff[2] = float2(1, 0); texOff[3] = float2(0,-1);

texOff[4] = float2(0, 1); texOff[5] = float2(1, 1);

texOff[6] = float2(1,-1); texOff[7] = float2(-1, 1);

texOff[8] = float2(-1,-1);

// lookup depth values in 3x3 neighborhood

float depth[9];

for (int i=0; i<9; ++i)

depth[i] = texRECT(depthMap, tc + texOff[i]).x;

// calculate shadow term (see Listing A.22)

float shadowTerm = 0.0f;

...

// seperate fluid surface into border- and inner region

if(abs(depth[1] - 2.0f*depth[0] + depth[2]) > depthThresh ||

abs(depth[3] - 2.0f*depth[0] + depth[4]) > depthThresh ||

abs(depth[7] - 2.0f*depth[4] + depth[5]) > depthThresh ||

abs(depth[6] - 2.0f*depth[2] + depth[5]) > depthThresh)

{

// interpolate samples (see Listing A.23)

...

}

else

{

// interpolate normals (see Listing A.25)

...

}

OUT.color = float4(fluidColor.xyz, 1.0f);

return OUT;

}

Listing A.21: Fragment shader calculating the actual pixel color

Appendix A. Shader Code 97

float accDepthValue = 0.0f;

float accDepthNorm = 0.0f;

// average depth values 3x3 neighborhood

for (int i=0; i<9; ++i)

{

float stepValue = step(-9999.0f, depthValues[i]);

accDepthValue += depthValues[i]*stepValue;

accDepthNorm += stepValue;

}

accDepthValue /= accDepthNorm;

// if accDepthValue is invalid use foam depth instead

if (!step(-9999.0f, accDepthValue))

{

accDepthValue = 0.0f;

accDepthNorm = 0.0f;

for (int i=0; i<9; ++i)

{

float foamDepth = texRECT(foamDepthMap, tc + texOff[i]).x;

float stepValue = step(-9999.0f, foamDepth);

accDepthValue += foamDepth*stepValue;

accDepthNorm += stepValue;

}

accDepthValue /= accDepthNorm;

}

float shadowTerm = Shadow(uvToEye(texCoord, accDepthValue));

Listing A.22: Shadow term calculation

// calculate color for samples in 2x2 neighborhood

float4 s1 = sample(tc, texCoord, shadowTerm);

float4 s2 = sample(tc + texOff[2], texCoord, shadowTerm);

float4 s3 = sample(tc + texOff[4], texCoord, shadowTerm);

float4 s4 = sample(tc + texOff[5], texCoord, shadowTerm);

// interpolate samples based on fractional part of tex coords

fluidColor = lerp(lerp(s1, s2, fr.x),lerp(s3, s4, fr.x),fr.y);

Listing A.23: Sample interpolation for border regions

Appendix A. Shader Code 98

float4 sample(float2 tc, float2 texCoord, float st)

{

float3 eye = getEyeSpacePos(tc);

// calculate partial derivatives in x-direction

float3 ddx = getEyeSpacePos(tc + float2(1.0f, 0.0f)) - eye;

float3 ddx2= eye - getEyeSpacePos(tc + float2(-1.0f, 0.0f));

if(abs(ddx2.z) < abs(ddx.z)) ddx = ddx2;

// calculate partial derivatives in y-direction (see above)

...

// return sample color

return shade(ddx, ddy, eyeSpacePos, texCoord, st);

}

Listing A.24: Calculate fluid color for given texture coordinates

// calculate partial derivatives

float4 ddx = ipnormal2(tc, float2(1.0f, 0.0f), fr.x);

float4 ddx2 = ipnormal2(tc + float2(0.0f, 1.0f),

float2(1.0f, 0.0f), fr.x);

float4 ddy = ipnormal2(tc, float2(0.0f, 1.0f), fr.y);

float4 ddy2 = ipnormal2(tc + float2(1.0f, 0.0f),

float2(0.0f, 1.0f), fr.y);

// interpolate partial derivatives based on fractional part

ddx = lerp(ddx, ddx2, fr.y);

ddy = lerp(ddy, ddy2, fr.x);

// calculate eye-space position and actual color

float3 eyePos = uvToEye(texCoord, (ddx.w + ddy.w)*0.5f);

fluidColor = shade(ddx.xyz, ddy.xyz, eyePos, texCoord,

shadowTerm);

Listing A.25: Normal interpolation for inner regions

List of Figures

1.1 A scene rendered with simple noise-based foam [37] (left) and
with our new method (right); 10

2.1 Ocean scene simulated with two-way coupling between the
SPH and the particle level set method [20]. 18

2.2 Diver performing a jump into a pool [22]. 20
2.3 A piece of lumber falling into water [35]. 21
2.4 Ale and Stout pouring into a beer mug [8]. 21
2.5 Bubbles and foam within a Shallow Water Framework includ-

ing interaction of an obstacle with the foam and the bubbles
[36]. 23

2.6 Left: Side view of depth map. Between adjacent nodes at
most one additional node (white dot) is stored to indicate the
silhouette (the middle white dot represents an inner silhouette
and the two other white dots outer silhouettes). Middle: Top
view of the grid. Right: Side view. The cut (white point)
furthest from the end with the smaller depth value is taken [24]. 24

2.7 Left: Side view of the grid. Middle: The vertices generated for
this configuration, whereas vertices with different depth values
are generated for the silhouette node (white point). Right: All
the cases for the generation of a 2D triangle mesh from cut
edges [24]. 24

2.8 Final rendering of the screen space mesh (including a rotated
view of the mesh to show its dependence on the viewing di-
rection) [24]. 25

2.9 Left: drawing particles as spheres; middle: front view in view-
space; right: after perspective projection [37]. 26

2.10 Screen space curvature flow without (left) and with (right)
surface noise [37]. 28

2.11 Different time steps showing the visual results that can be
achieved with the method presented by van der Laan et al. [37]. 29

2.12 Left: side view onto the waterfall scene showing the curvature
flow filtered fluid surface; right: closeup view [37]. 29

List of Figures 100

3.1 Overview of the buffers used in our method: Twf : thickness
of the water in front of the foam; Twb: thickness of the water
behind the foam; Tf : foam thickness; Tff : thickness of the
front foam layer; . 33

3.2 In [37] (left), distant water is over-smoothed (top) and near
water is under-smoothed (bottom). Our new method (right)
maintains the same amount of smoothing regardless of the
distance. 34

3.3 A cross-section of our layered water model: The volumetric
appearance of the result is achieved by not only accounting for
the water thickness Twb at each pixel as previous approaches
[37], but also for the foam thickness Tf and the thickness of
water in front of the foam Twf . We also partition foam into
two differently colored layers (Tff) to achieve more interesting
foam. 37

3.4 User defined colors (cfluid, cff , cfb) and resulting colors from
the compositing steps (Cbackground, Cwb, Cf , Cwf). 39

4.1 Program flow of involved shaders. 42
4.2 FoamPerlinNoise texture. 44
4.3 Square root texture used during rendering; Top: Debug ren-

dering of the squareRootRamp texture; Bottom: Diagram il-
lustrating the progress of the square root function. 45

4.4 Renderings showing the AABBs provided by the physics en-
gine. Both figures use the same camera viewpoint for the
culling. The red AABBs are culled. 47

4.5 Background scene rendered at beginning of the rendering pro-
cess. 48

4.6 Water and foam surface extraction. 50
4.7 Water depth pass results including close-up view of the water

depth and color-coded curvature. 51
4.8 Foam depth pass results. 52
4.9 Adaptive curvature flow filtering applied to the water depth. . 53
4.10 Comparison of the screen space curvature flow filtering using

different fixed iteration counts as proposed by van der Laan
et al. [37]. 54

4.11 Adaptive curvature flow filtered water depth including a close-
up view of the depth values, color-coded curvature, and itera-
tion count. 55

4.12 Layer creation based on extracted foam surface. 57

List of Figures 101

4.13 Splat kernel used for the water thickness; left: single particle;
right: close-up of the back water layer thickness. 58

4.14 Water thickness pass results; left: back water layer thickness;
right: front water layer thickness. 59

4.15 Splat kernel used for the foam thickness; left: single particle;
right: close-up of the foam layer thickness. 60

4.16 Foam thickness pass results; left: foam layer thickness; right:
foam thickness in a constant range behind the foam depth. . . 60

4.17 Compositing based on the previously calculated intermediate
results. 61

4.18 Border- and inner-regions separated by the compositing frag-
ment shader. 64

4.19 Compositing pass results stored in the result texture. 65
4.20 Spray particles added after the compositing pass. 67

5.1 Corridor scene (27–52 iterations). 69
5.2 Waterfall scene (15–20 iterations). 69
5.3 Impact of Weber number thresholding. 70
5.4 Waterfall scene including shadowing (20–44 iterations). 70
5.5 Bamboo scene (22–40 iterations). 71
5.6 Bamboo scene showing water to foam transition (32–44 itera-

tions). 71
5.7 Corridor scene without/with foam (26–50 iterations). 72
5.8 Comparison between a photograph of a real waterfall (left)

and our new method (right). The rectangle marks an area
where foam occurs below the water surface. 72

5.9 Performance comparison of a camera zoom movement in the
Waterfall scene. 73

5.10 Performance comparison of a camera movement in the Water-
fall scene. 74

5.11 Performance comparison of a camera movement in the Corri-
dor scene. 74

5.12 Performance comparison of a camera movement in the Bam-
boo scene, this time including physics simulation time. 75

5.13 Overlapping water layers separated by air. The rectangle
marks an area where the thickness calculation is inaccurate. . 76

6.1 Real-time rendering of caustics from reflective and refractive
objects ([32]). 78

List of Tables

4.1 Internal format and formate of textures used for intermediate
results. 43

4.2 Target, internal format and formate of used helper textures. . 44

5.1 Performance comparison between [37] (without foam) and our
method with and without foam. 73

List of Listings

A.1 Main loop of the foam simulation update. 80
A.2 Main loop of the foam simulation update. (cont.) 81
A.3 Parallelism concept. 82
A.4 Data structure to represent a bounding box and its associated

particle data of a fluid packet [29]. 82
A.5 Frustum culling functionality. 83
A.6 Main scene rendering concept 84
A.7 Point sprite rendering function 84
A.8 Water depth vertex shader . 85
A.9 Water depth fragment shader 86
A.10 Foam depth geometry shader which outputs four vertices that

are aligned toward the velocity direction 87
A.11 Iteration loop performing the adaptive curvature flow filtering

using the occlusion query functionality 88
A.12 Adaptive curvature flow filtering fragment shader (showing the

view depended iteration count calculation) 89
A.13 adaptive curvature flow filtering fragment shader (showing the

curvature flow filtering) . 90
A.14 Water thickness vertex shader (showing only additional calcu-

lations to the water depth vertex shader A.8) 91
A.15 Water thickness fragment shader (showing only different cal-

culations to the water depth fragment shader A.9 91
A.16 Foam thickness fragment shader (showing only different cal-

culations to the water depth fragment shader A.9 92
A.17 Eye-space position calculations 93
A.18 Calculate interpolated partial derivatives for normal based on

texture coordinates . 93
A.19 Compositing calculation based on partial derivatives and eye

position . 94
A.20 Compositing calculation based on partial derivatives and eye

position (cont.) . 95
A.21 Fragment shader calculating the actual pixel color 96

List of Listings 104

A.22 Shadow term calculation . 97
A.23 Sample interpolation for border regions 97
A.24 Calculate fluid color for given texture coordinates 98
A.25 Normal interpolation for inner regions 98

Bibliography

[1] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering 2nd Edi-
tion. A. K. Peters, Ltd., Natick, MA, USA, 2002.

[2] Thomas Annen, Tom Mertens, Philippe Bekaert, Hans-Peter Seidel, and
Jan Kautz. Convolution shadow maps. In Rendering Techniques 2007:
Eurographics Symposium on Rendering, pages 51–60, Grenoble, France,
2007. Eurographics.

[3] Florian Bagar, Daniel Scherzer, and Michael Wimmer. A layered
particle-based fluid model for real-time rendering of water. In Computer
Graphics Forum (Proceedings EGSR 2010), volume 29, June 2010.

[4] Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif Kobbelt.
High-quality surface splatting on today’s gpus. In Symposium on Point-
Based Graphics 2005, pages 17–24, June 2005.

[5] Cg Toolkit. http://developer.nvidia.com/object/cg_toolkit.html.

[6] The Cg Tutorial: Environment Mapping Techniques. http://http.

developer.nvidia.com/CgTutorial/cg_tutorial_chapter07.html.

[7] James H. Clark. Hierarchical geometric models for visible surface algo-
rithms. Commun. ACM, 19(10):547–554, 1976.

[8] Paul W. Cleary, Soon Hyoung Pyo, Mahesh Prakash, and Bon Ki Koo.
Bubbling and frothing liquids. ACM Trans. Graph., 26(3):97, 2007.

[9] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles: a new
paradigm for animating highly deformable bodies. In Proceedings of
the Eurographics workshop on Computer animation and simulation ’96,
pages 61–76, New York, NY, USA, 1996. Springer-Verlag New York, Inc.

[10] P. Dirac. Principles of quantum mechanics. Oxford at the Clarendon
Press, 1958.

[11] Microsoft DirectX. http://msdn.microsoft.com/directX.

Bibliography 106

[12] Yoshinori Dobashi, Kazufumi Kaneda, Hideo Yamashita, Tsuyoshi
Okita, and Tomoyuki Nishita. A simple, efficient method for realistic
animation of clouds. In SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages 19–
28, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co.

[13] Elmar Eisemann and Xavier Décoret. Single-pass gpu solid voxelization
for real-time applications. In GI ’08: Proceedings of graphics interface
2008, pages 73–80, Toronto, Ont., Canada, Canada, 2008. Canadian
Information Processing Society.

[14] Kenny Erleben, Jon Sporring, Knud Henriksen, and Henrik Dohlmann.
Physics Based Animation. Charles River Media, 2005.

[15] Framebuffer Object. http://www.opengl.org/registry/specs/ARB/

framebuffer_object.txt.

[16] High Level Shading Language. http://msdn.microsoft.com/en-us/

library/bb509561%28v=VS.85%29.aspx.

[17] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping.
AK Peters, Ltd, 2001.

[18] Daniel D. Joseph. Questions in fluid mechanics: Understanding foams
and foaming. Journal of Fluids Engineering, 119:497–498, 1997.

[19] William E. Lorensen and Harvey E. Cline. Marching cubes: A high reso-
lution 3d surface construction algorithm. SIGGRAPH Comput. Graph.,
21(4):163–169, 1987.

[20] Frank Losasso, Jerry Talton, Nipun Kwatra, and Ronald Fedkiw. Two-
way coupled sph and particle level set fluid simulation. IEEE Transac-
tions on Visualization and Computer Graphics, 14(4):797–804, 2008.

[21] Ravi Malladi and James A. Sethian. Level set methods for curvature
flow, image enhancement, and shape recovery in medical images. pages
329–ff., 1997.

[22] Viorel Mihalef, Dimitris N. Metaxas, and Mark Sussman. Simulation
of two-phase flow with sub-scale droplet and bubble effects. Comput.
Graph. Forum, 28(2):229–238, 2009.

[23] J. J. Monaghan. Smoothed particle hydrodynamics. araa, 30:543–574,
1992.

Bibliography 107

[24] Matthias Müller, Simon Schirm, and Stephan Duthaler. Screen space
meshes. In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Euro-
graphics symposium on Computer animation, pages 9–15, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association.

[25] NVIDIA Corporation. http://www.nvidia.com/page/home.html.

[26] OpenGL. http://www.opengl.org/.

[27] The OpenGL Shading Language. http://www.opengl.org/registry/

doc/GLSLangSpec.4.00.7.pdf.

[28] Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph.,
19(3):287–296, 1985.

[29] NVIDIA PhysX. http://developer.nvidia.com/object/physx.html.

[30] Creating A Post-Processing Framework. http://www.gamasutra.com/

view/feature/1812/creating_a_postprocessing_.php?page=1.

[31] Simon Premoze, Tolga Tasdizen, James Bigler, Aaron Lefohn, and
Ross T. Whitaker. Particle-based simulation of fluids, 2003.

[32] Musawir A. Shah, Jaakko Konttinen, and Sumanta Pattanaik. Caustics
mapping: An image-space technique for real-time caustics. IEEE Trans-
actions on Visualization and Computer Graphics, 13:272–280, 2007.

[33] William A Sirignano. Fluid dynamics and transport of droplets and
sprays, 1999. Incluye referencias bibliográficas (p. 287-307) e ı́ndice (p.
309-311).

[34] Jos Stam. Stable fluids. In SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and interactive techniques, pages
121–128, New York, NY, USA, 1999. ACM Press/Addison-Wesley Pub-
lishing Co.

[35] Tsunemi Takahashi, Hiroko Fujii, Atsushi Kunimatsu, Kazuhiro Hi-
wada, Takahiro Saito, Ken Tanaka, and Heihachi Ueki. Realistic anima-
tion of fluid with splash and foam. Comput. Graph. Forum, 22(3):391–
400, 2003.

[36] N. Thürey, F. Sadlo, S. Schirm, M. Müller-Fischer, and M. Gross. Real-
time simulations of bubbles and foam within a shallow water framework.
In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurograph-
ics symposium on Computer animation, pages 191–198, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association.

Bibliography 108

[37] Wladimir J. van der Laan, Simon Green, and Miguel Sainz. Screen space
fluid rendering with curvature flow. In I3D ’09: Proceedings of the 2009
symposium on Interactive 3D graphics and games, pages 91–98, New
York, NY, USA, 2009. ACM.

[38] Vertex Buffer Object. http://www.opengl.org/registry/specs/ARB/

vertex_buffer_object.txt.

[39] Lance Williams. Casting curved shadows on curved surfaces. SIG-
GRAPH Comput. Graph., 12(3):270–274, 1978.

[40] T. Yabe. Universal solver cip for solid, liquid and gas. Computational
Fluid Dynamics Review 1997 Ed. By M. M. Hafez and K. Oshima, 1997.

Acknowledgements

”All we have to decide is what to do with the time that is
given to us.”

– Gandalf the Grey, ”The Lord of the Rings: The Fellowship of the Ring”

First, I want to thank Daniel Scherzer for making this diploma thesis possi-
ble and helping me to publish our new approach at the ”21st Eurographics
Symposium on Rendering” which took place from June 28th 2010 – June
30th 2010 in Saarbrücken.

Secondly, thanks to Michael Wimmer for giving me great support during the
paper submission and helping to improve the quality of our paper.

Thanks to all my co-workers at Spriong for giving me the possibility to learn
so much from them during the last four years. Extra acknowledgment to
Raimund Schumacher for his great feedback which helped to enhance the
quality of my work and to Johannes Graf which helped me with his artistic
skills.

Last but not least, I would like to thank all my friends and my family for all
their great support over the past years.

