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Abstract

The main cause of death in the western world is cardiovascular disease. To
perform effective diagnosis of this kind of disease, modern medical imaging
modalities offer great possibilities. In cardiology the advent of computed
tomography (CT) and magnetic resonance (MR) scanners with high tem-
poral resolution have made imaging of the beating heart possible. Large
amounts of data are aquired in everyday clinical practice. Intelligent soft-
ware is required to optimally analyze the data and perform reliable and
effective diagnosis.

This thesis focusses on model-based approaches for automatic segmen-
tation and extraction of clinically relevant properties from medical images
in cardiology. Typical properties which are of interest are the volume of
blood that is ejected per cardiac cycle (stroke volume, SV) or the mass of
the heart muscle (myocardial mass).

Compared to other segmentation and image processing algorithms, the
investigated model-based approaches have the advantage that they exploit
prior knowledge. This increases robustness. Throughout this thesis mod-
els are discussed which consist of two important parts: shape and texture.
Shape is modeled in order to restrict the geometric properties of the investi-
gated anatomical structures. Texture on the other hand is used to describe
gray values and plays an important role in matching the model to new un-
seen images.

Automatic initialization of model-based segmentation is important for
many applications. For cardiac MR images this thesis proposes a sequence
of image processing steps which calculate an initial placement of a model.

A special two-component model for segmentation of functional cardiac
MR studies is presented. This model combines individual 2D Active Ap-
pearance Models with a 3D statistical shape model.

An approach to effective texture modeling is introduced. An information
theoretic objective function is proposed for optimized probabilistic texture
representation.

Finally a model-based coronary artery centerline extraction algorithm
is presented. The results of this method were validated at a workshop at
the international MICCAI conference. In a direct comparison the method
outperformed four other automatic centerline extraction algorithms.
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Kurzfassung

Eine der häufigsten Todesursachen in der westlichen Welt sind kardiovasku-
läre Krankheiten. Für die Diagnose dieser Krankheiten eröffnen moderne
bildgebende Verfahren beeindruckende Möglichkeiten. Speziell in der Kar-
diologie hat die Entwicklung von Computertomographie (CT) und Mag-
netresonanztomographie (MRT) Scannern mit hoher zeitlicher Auflösung die
Aufnahme des schlagenden Herzens ermöglicht. Um die großen Datenmen-
gen, die in der täglichen klinischen Routine akquiriert werden, zu analysieren
und eine optimale Diagnose zu erstellen, wird intelligente Software benötigt.

Diese Arbeit befasst sich mit modellbasierten Methoden für die automa-
tische Extraktion von klinisch relevanten Eigenschaften von medizinischen
Bildern in der kardialen Bildgebung. Typische Eigenschaften sind etwa das
Schlagvolumen des Herzens (engl. stroke volume, SV) oder die Masse des
Herzmuskels.

Im Vergleich zu anderen Algorithmen für die Segmentierung und Bild-
verarbeitung haben die untersuchten modellbasierten Ansätze den Vorteil,
dass vorhandenes Wissen in den Segmentierungsprozess eingebunden wird
und damit die Robustheit erhöht wird. In dieser Arbeit werden Mod-
elle betrachtet, welche aus zwei essentiellen Teilen bestehen: Form und
Textur. Form wird modelliert, um die geometrischen Eigenschaften der
analysierten anatomischen Strukturen einzuschränken. Textur wird ver-
wendet um Grauwerte zu modellieren und spielt eine wichtige Rolle bei der
Anpassung des Formmodells an ein neues Bild.

Automatische Initialisierung von modellbasierter Segmentierung ist für
viele Anwendungen interessant. Für kardiale MR Bilder wird in dieser Ar-
beit eine Folge von Bildverarbeitungsschritten vorgeschlagen, um eine ini-
tiale Plazierung des Modells zu berechnen.

Ein spezielles Modell für die Segmentierung von funktionalen kardialen
MR Studien, welches aus zwei Komponenten besteht, wird erläutert. Dieses
Modell kombiniert einzelne 2D Active Appearance Models mit einem statis-
tischen 3D Formmodell.

Ein Ansatz zur effektiven Texturmodellierung wird vorgestellt. Eine
informationstheoretische Zielfunktion wird für optimierte probabilistische
Texturrepräsentation vorgeschlagen.

Modellbasierte Extraktion von Koronararterien wird am Ende der Arbeit
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diskutiert. Die Resultate dieser Methode wurden auf einem Workshop auf
der internationalen MICCAI Konferenz validiert. In einem direkten Ver-
gleich schnitt diese Methode besser ab, als vier andere Ansätze.
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Chapter 1. Introduction

Figure 1.1: Main causes of death and main causes of death through car-
diovascular diseases in 2007 in Austria.

1.1 Cardiac imaging

The most common cause of death in the western world is cardiovascular
disease. Figure 1.1 illustrates the main causes of death in general and causes
of death through cardiovascular disease in 2007 in Austria [57]. About 44%
of deaths are caused by cardiovascular diseases. Among these, ischaemic
heart disease (IHD) represents with 46% the largest fraction. Statistics like
this show that efficient monitoring of cardiac disease is important for a very
large number of patients.

In order to keep track of function and morphology of a patient’s heart,
various imaging techniques such as Magnetic Resonance Imaging (MRI) or
Computed Tomography (CT) are nowadays available. The application of
many of these imaging techniques for cardiology has matured in the last few
years to a high degree. These techniques are now able to deliver high quality
3D images of the beating heart. There exists a broad spectrum of procedures
in radiology to perform a morphological and functional analysis of the heart.
To support the clinician in his/her workflow, modern imaging software for
fast and realiable analysis of the captured image data is required.

1.1.1 Anatomy and Physiology of the Heart

The human heart consists of four chambers: Left atrium (LA), left ven-
tricle (LV), right atrium (RA), and righ ventricle (RV). A schematic illus-
tration of cardiac anatomy and comparison with a CT image are shown
in figure 1.2. By performing periodic contractions, the heart pumps blood
through the body. The right atrium receives deoxygenated blood. From
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1.1. Cardiac imaging

(a) (b)

Figure 1.2: Schematic illustration of cardiac anatomy (a) and four-
chamber view of the heart in cardiac computed tomography (b).

the right atrium the blood flows into the right ventricle, which pumps it
through the pulmonary artery into the lung arteries. After the blood has
been enriched with oxygen within the lungs, it enters the left atrium through
the lung veins. From the left atrium it proceeds to the left ventricle which
pumps it through the aorta into the rest of the body.

Since the left ventricle has to pump blood into all parts of the body (ex-
cept the lungs) it experiences a high resistance and has to generate consider-
able pressure. As a consequence, the wall of the heart muscle (myocardium)
surrounding the left ventricle is significantly thicker than myocardium sur-
rounding other heart chambers. It is also the left ventricle which plays a
very important role in the analysis of cardiac function.

Ischaemic heart disease represents an important group of cardiac dis-
eases This is clearly reflected by figure 1.1. Ischaemic heart disease is an
under-supply of the myocardium with oxygen. The cause for this under-
supply usually is narrowing (stenosis) of the coronary arteries that supply
the muscle. If a permanent under-supply is given, sooner or later, cells in
the affected tissue die (necrosis). This causes a myocardial infarction. Sub-
sequently the contraction ability and the efficiency of the heart decreases.

Coronary arteries supply the myocardium with fresh oxygenated blood.
To avoid ischaemic heart disease, monitoring of coronary arteries is impor-
tant. The left coronary artery (LCA) and the right coronary artery (RCA)
normally originate from the aorta. A few centimeters distal, the LCA nor-
mally splits into two larger branches: Left anterior descending (LAD) and
left circumflex (LCx) arteries. A number of anatomical variations have been
observed for coronary arteries [73, 25]. For example, the number of coronary
origins (ostia) may be different: LCA and RCA may originate from a single
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Chapter 1. Introduction

Figure 1.3: Papillary muscles in MR short axis views.

Figure 1.4: Papillary muscles in contrast-enhanced CT short axis views.

ostium. The other extreme is an increased number of coronary branches
originating from the aorta. Three and even four different origins have been
observed. In general, coronary anomalies are related to: coronary artery os-
tium, course of the artery, termination of the artery, and size of the artery.
A model-based method for automatic coronary artery tracking is presented
later in this thesis in chapter 6.

At the transitions from atria to ventricles and from ventricles to pul-
monary artery and aorta, the flow of blood is controlled by cardiac valves
(figure 1.2). Flow from the left ventricle into the aorta is governed by the
aortic valve and flow from the right ventricle into the pulmonary artery is
governed by the pulmonary valve. The tricuspid valve governs blood flow
from right atrium to right ventricle. The mitral valve governs blood flow
from the left atrium to the left ventricle. Because the mitral valve consists
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1.1. Cardiac imaging

Figure 1.5: Electrocardiogram with preceding P-wave, QRS-complex, and
T-wave.

of only two cusps, it is also called bicuspid valve.
The tips of the cusps of both, mitral and tricuspid valve, are attached by

tendons (chordae tendineae) to the papillary muscles. The papillary muscles
are irregularly shaped muscles inside the ventricles. The plane in which
mitral and tricuspid valve lie defines the base of the heart (basis cordis).
The apex of the heart (apex cordis) is located at the tip of the ventricles.

Besides the papillary muscles, the inner surface of the ventricular my-
ocardial wall exhibits other irregular muscular structures: the trabeculae
carnae. Short axis views of MR and CT data clearly show papillary muscles
and trabeculae (figures 1.3 and 1.4).

A problematic aspect arises from these trabeculae and the papillary mus-
cles: A clinical definition of the interior surface of the myocardium is in
many cases very hard to establish. This makes it difficult to reduce interob-
server variability and to perform standardized segmentation of the anatomi-
cal structures. As a consequence, the irregular structures impose a challenge
on the design, comparison, and evaluation of methods and algorithms for
computer assisted image analysis.

An important source of complexity in cardiac imaging is the periodic
contraction of the heart. The complex contraction mechanism is triggered
by electrical impulses. These impulses originate from the sinoatrial node (SA
node) which is located on the wall of the RA. From there the impulse spreads
over the heart and makes firstly the atria and then the ventricles contract.
Using electrodes placed upon the body surface, the electrical impulses of the
heart are measured as electrocardiogram (ECG). The waveforms generated
by an ECG enable triggering of modern imaging modalities. By identifying
characteristic sections in the waveform (e.g. the R-wave, figure 1.5), the
imaging process is synchronized with the patient’s heart beat.

The complete heart cycle can be divided into two main phases: systole
and diastole. In systole the heart ejects blood by contraction and in diastole

5



Chapter 1. Introduction

(a) (b)

Figure 1.6: A plot of the blood volume of the left ventricle over time (a);
bull’s eye view displaying regional blood volumes in different regions of the
left ventricle (b).

the heart relaxes. At the time steps of end-systole and end-diastole the ven-
tricles of the heart are in contracted and relaxed state. For clinical analysis,
end-systole and end-diastole are of major interest. In clinical routine mostly
only these two time steps are investigated in more detail.

1.1.2 Analysis of Cardiac Function

An important issue in modern medical imaging is standardized evaluation of
the investigated anatomy. Standard measures are important for clinicians to
compare diagnoses, make better predictions, and effectively track morpho-
logical changes over time. Efforts are currently being undertaken to develop
robust automatic image processing algorithms. This is not only done to sup-
port radiologists by reducing time-consuming manual image pre-processing.
The long term goal is to open the door for better standards in medical im-
age analysis which allow a more precise analysis and better comparability
of diagnoses.

Important parameters of the heart and its function help the physician
to effectively analyze a patient’s heart and give a precise diagnosis. Typical
parameters which are calculated in order to assess cardiac function are:

• End-systolic volume (ESV): The volume of blood contained in the left
ventricle or right ventricle in end-systole.

• End-diastolic volume (EDV): The volume of blood contained in left
ventricle or right ventricle in end-diastole.

• Stroke volume (SV): The volume of blood pumped within a single
cardiac cycle (difference of end-diastolic and end-systolic volumes).

6



1.1. Cardiac imaging

• Ejection fraction (EF): The fraction of stroke volume relative to end-
diastolic volume. For a healthy heart the Ejection fraction is greater
than 55%.

• Left ventricular regional stroke volumes: The stroke volumes of indi-
vidual regions within the left ventricle.

• Left ventricular regional ejection fractions: The ejection fraction of
individual regions within the left ventricle.

• Myocardial mass: The mass of the myocardium.

• Myocardial wall thickness: The thickness of the myocardium in end-
diastole and end-systole. Also the progress of thickness over the com-
plete heart cycle is of interest to the cardiologist.

• Stenosis grading of coronary arteries: In order to assess how well coro-
nary arteries supply the heart with oxygen, a grading of stenoses (nar-
rowings) of these arteries is performed.

• Calcium scoring: Calcium scoring is an attempt to quantify the sever-
ity of coronary artery disease. Severity of calcifications are mapped to
a calcium score.

The above measures are usually displayed to the clinician as simple num-
bers or charts (e.g. varying left ventricular volume over the cardiac cycle as
shown in figure 1.6(a)). For regional measures concerning the left ventricle
(such as myocardial wall thickness) a bull’s eye [9] can be used. The bull’s
eye maps the surface of the left ventricle to a plane. Color coding gives the
clinician a comprehensive overview of regional measures over the complete
surface of the left ventricle. An example of a bull’s eye plot is shown in
figure 1.6(b).

1.1.3 Cardiac Magnetic Resonance Imaging

The principle of Magnetic Resonance (MR) Imaging in cardiology (cardiac
MR, CMR) is the same as for other organs: A strong magnetic field aligns
the spins of atomic cores within the scanned body. These spins are excited
by a radio frequency (RF) pulse. When the spins re-align with the magnetic
field (relaxation), they send out a signal. Relaxation times T1 and T2 are
measured and transformed into images. The intensities of these images are
influenced by proton density, flow and motion, changes in susceptibility,
molecular diffusion, magnetization transfer, etc. [27].

Two important sources of motion impose major difficulties in the cardiac
MR imaging process: Contraction of the heart and respiratory motion. A
conventional MR sequence would result in unreadable images caused by
the strong motion artifacts. In order to account for cardiac contraction,
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Chapter 1. Introduction

synchronization with an ECG is required. Several critical aspects have to
be considered here: The ECG surface electrodes measure not only electrical
currents from the heart but also currents which are induced by the magnetic
field on the blood flow. As a result an increase in amplitude of the ST
segment may cause false results in certain R-wave detection algorithms.
Older ECG systems were influenced by RF pulses and the switching of the
gradient fields due to the use of carbon leads. This problem has been largely
banned due to increased use of fiber optics instead of carbon leads [27].

Basically two different strategies exist for synchronization of the imag-
ing process with the beating heart: Prospective triggering and retrospective
gating. In prospective triggering a preceding R-wave is used to trigger the
image acquisition in the following R-R interval or cardiac cycle. In retrospec-
tive gating the data is acquired continuously over time and later matched
to the simultaneously recorded ECG. Synchronization with ECG makes it
possible to reconstruct the final images not only from a single phase in a sin-
gle cardiac cycle. Images may as well be reconstructed from corresponding
phases in different cycles [27].

Images from different spatial positions (different slices) are captured one
after the other. This may cause slice misregistration in resulting images and
reconstructed volume data. Due to patient motion such as free breathing
or unequal depth of breath-holds, cardiac shifts of up to 1cm can occur.
Such motion artifacts result in over- or underestimation of cardiac volumes
during analysis [27]. With new parallel imaging techniques where multiple
slices are captured at once, these problems can be reduced to some degree.

1.1.4 Cardiac Computed Tomography

Modern multidetector-row computed tomography (MDCT) with up to 64
detector rows has opened new perspectives for computed tomography (CT)
imaging in cardiology. MDCT with ECG gating enables the acquisition of
dynamic 3D image data from multiple time steps. This is a prerequisite for
calculation of cardiac functional parameters such as left ventricular ejection
fraction (EF) or Stroke Volume (SV). A critical aspect of CT for functional
imaging, however, is the increased radiation exposure of the patient com-
pared to other imaging modalities like MR and ultrasound.

An important application of CT in cardiology is the analysis of coronary
artery disease (CAD). In computed tomography angiography (CTA), 3D
images of coronary arteries are generated. CTA increasingly replaces con-
ventional coronary angiography (CCA). Conventional angiography requires
the use of a catheter for contrast agent injection. This catether is pushed
through the aorta close to the origins of the coronary arteries. This means
a certain risk for the patient. Contrast agent injection in CTA, by contrast,
does not require a catheter and is thus considered a non-invasive technique.
Although CCA is the gold standard for coronary lumen evaluation, this pro-
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cedure offers little information on coronary artery arteriosclerosis. Although
CTA is still emerging it will be a major cardiovascular imaging option in
the future [11].

As in MR, the contraction of the heart imposes several difficulties on
the CT imaging process. A synchronization with ECG helps to acquire rea-
sonable image information. The speed of image acquisition of a CT scanner
is limited by its gantry rotation time. For volumetric image reconstruction
half a gantry rotation has to be performed. Current CT scanners perform
half a rotation in between 165ms and 210ms [25].

Optimally cardiac motion should be minimal during the time interval
of the acquisition process. Assuming an optimal heart rate of 50 to 60
beats per minute, data for a 3D (single time step) volume reconstruction
can be acquired in a single cardiac cycle. Given a sufficiently slow heart
beat, the phase in the cardiac cycle where minimal motion occurs is in mid-
diastole. With prospective triggering the peak in radiation is applied during
the selected cardiac phase. Thus by using prospective ECG triggering, a
satisfactory image quality with reduced motion artifacts can be achieved by
keeping the radiation dose at a low level.

Prospective triggering may not be accurate enough when irregular con-
traction of the patient’s heart occurs. If this is the case, or if the heart is
to be imaged in multiple phases of the cardiac cycle, another strategy has
to be applied. With retrospective gating in CT, the image acquisition pro-
cess is continued over a longer time period. Images from the respective time
steps are used for reconstruction of time-varying volume data. The recorded
ECG signal is used for the correct temporal context. The disadvantage of
this method is that the patient is exposed to a higher radiation dose.

In order to increase the temporal resolution of a cardiac CT scan, image
information from different cycles can be combined to perform multicycle
reconstruction. However, this technique requires that the cardiac structures
reside at the same location in corresponding cardiac phases.

Two promising technologies are expected to speed up the acquisition
process even more: First, dual source CT scanners comprise two x-ray tubes
instead of a single one. Second, an increased amount of 256 detector rows
in future CT scanners will also decrease acquisition time. Issues which are
currently related to ECG triggering and multicycle reconstruction will thus
be less problematic. Temporal resolution will increase. This is especially
interesting for analysis of cardiac morphology and function. The increased
temporal resolution is expected to make even cardiac CT perfusion studies
possible in the future [25].
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1.2 Medical Image Understanding

Quick understanding and accurate description of features in complex medical
image data are key issues in radiology. Great efforts are currently put into
the development of methods that automatically extract clinically important
properties from medical image data. In general the related tasks are very
complex, even for the human observer. Several critical issues have to be
considered:

• Large amount of data (1 GB and larger).

• Complex structure of the data (time-dependent, 3D).

• Image artifacts (motion artifacts, noise, etc.).

• High demands on accuracy and patient safety.

• Medical domain knowledge required.

Algorithms which automatically extract important high-level informa-
tion from images are known to be very difficult to implement. One reason
for this is that the fuzzy and complex requirements for such algorithms are
hard to define. For example, a ground truth on which several experts agree
is often difficult to establish.

An important issue is medical expertise: the correct interpretation of
medical images requires experience and learning. Even a human observer
needs to build up the necessary experience over years. This indicates that
learning techniques are essential to be integrated if ever automatic medical
image understanding will be realized. This thesis focusses on different as-
pects on how to integrate prior knowledge in order to establish intelligent
image processing algorithms in the domain of medical imaging.

As a long term goal, robust automatic medical image analysis will open
the door for calculation of clinically relevant properties within huge data
bases of medical images. By replacing the tedious task of manual segmen-
tation, labelling, or annotation, statistical evaluations and semantics-based
browsing in huge medical image databases will be possible. It has to be
underlined that the technological prerequisites for such a large-scale and
largely automatic statistical analysis of medical data will not exist before
the problem of automatic medical image segmentation has been solved.

In the following paragraphs some aspects of model-based image analysis
are discussed. The discussion will focus on very general image models. The
two key concepts of an image are considered to be shape and texture.

1.2.1 Model-based Image Understanding

Geometry and texture are fundamental concepts in computer graphics. While
geometry is used to describe object shapes, texture is mapped to surfaces in
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(a) (b)

Figure 1.7: The principle of Bayesian reasoning: The simplest configura-
tion of Bayesian variables where a random variable Y depends on another
variable X (a). The equivalent relationship for models of shape and appear-
ance (b).

order to enrich detailedness. Both shape and texture are also the main in-
gredients to model-based image segmentation. In literature the term models
of shape and appearance has largely been established for statistical models
which represent shape and texture [13, 59, 67].

The goal of model-based segmentation is to find out the shape of an
object which is shown in a 2D image or 3D volume. This is done with
the help of a model of the object of interest. The great advantage of model-
based segmentation over other segmentation methods is that domain-specific
knowledge about shape and texture is exploited. The input for a model-
based segmentation algorithm usually consists of:

1. A model of the shape variations/deformability. The shape model re-
stricts the outcome of the segmentation by object-dependent shape
constraints.

2. A model of the texture which predicts or constrains the texture that
is expected to be observed.

3. The image actually showing the object of interest.

The expected output of a model-based segmentation algorithm is purely the
shape of the object of interest. It is important to note that although shape
is to be calculated, the observed image contains shape only indirectly. The
only information that is observed directly is an image (texture). This is a
typical case of ”inverse reasoning” that starts with an observation. From
this observation the internal (hidden) configuration of the model is derived.

In probability theory the relation between model and observation is rep-
resented by conditional probabilities. The method of reasoning to derive
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posterior probabilities of hidden model states from a related observation and
prior probabilities is known as Bayesian reasoning. Figure 1.7(a) illustrates
a simple Bayesian relation: The probability distribution of random variable
Y depends on random variable X (conditional probability). Y is called the
observed variable and X is called the hidden variable. With Bayesian rea-
soning one can calculate the probability distribution of the hidden variable
given the observed variable and the corresponding conditional probabilities.

In figure 1.7 the example with two random variables is juxtaposed with
model-based segmentation (figure 1.7(b)). For the latter an image (or vol-
ume) is observed and the most likely model configuration that produced the
image is calculated.

The general strategy of most model-based segmentation algorithms is to
vary the model’s shape and appearance in order to make the model optimally
fit to the given image. If probabilistic models are used, Bayesian reasoning
or Bayesian model inference plays an important role in model matching. In
chapter 5 such a probabilistic approach based on entropy optimization is
introduced.

1.2.2 Shape Modeling

The term shape is frequently used in everyday language. When humans
speak about an object’s shape, they refer to spatial properties of the object.
However, it is difficult to establish a formal mathematical definition which
covers all aspects of the concept ”shape”.

Already Renaissance artists like Leonardo DaVinci and Albrecht Dürer
were facing the problems of correct proportion when constructing portray-
als of humans. Manuscripts of the time suggest that in order to draw a
perfect image of a person or object, the artist has to fully understand the
person’s or object’s proportions. In order to obtain the desired geometrical
relations, Renaissance artists intensively studied proportions of the human
body. Leonardo DaVinci even carried out dissections of over 30 human
corpses and many animals (figure 1.8(a)) in order to gain more insight into
anatomy. For DaVinci in many aspects ”understanding” meant ”drawing”.
In his conception the artist first has to study nature and absorbe the pro-
portions and colors of objects in order to later reproduce them as a painting.
This philosophy seamlessly fits the model-based segmentation approach.

A very interesting turnaround in the opinion about human proportions is
observed in the work of Albrecht Dürer. In the early works the artist tried to
find the perfect proportions of the human body. He was convinced that there
exists something like a recipe for the design of the perfect human body. After
years of searching, Dürer largely switched away from this concept of a single
perfect recipe of proportions. He started to try out different construction
methods for different types of human bodies, e.g. the elongate, the medium,
and the short female types (figure 1.8(b)). One could say that Dürer turned
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(a) (b)

Figure 1.8: The heart of an ox drawn by Leonardo DaVinci (a). Differ-
ent types of construction methods for the female human body by Albrecht
Dürer (b).

from the idea of a single perfect template to the idea of more complex models
which better account for shape variation.

In computer graphics the most conventional approach to define shapes of
objects is to use surface meshes that consist of simple geometrical building
blocks like triangles or quads. In many applications it is not enough to de-
fine static shapes, but it is necessary to also model changes or deformations
of shapes. In computer graphics, for example, modeling the deformation
of tissue, hair, or clothes is important to generate realistic animations. To
achieve this goal, more or less accurate physical models are usually ap-
plied [72, 2, 47].

Physical modeling is not the only approach to describe shape deforma-
tion. Variation of shape can also be modeled in terms of statistical variation.
For example: Although human faces have common features (two eyes, nose,
mouth), significant statistical variations in the spatial compositions may be
observed for different individuals.

In medicine the shape of anatomical structures is of great interest for
analysis and diagnosis. In cardiology the myocardial wall thickness, blood
volumes, or diameters of coronary arteries are examples of clinically rele-
vant properties which are derived from shape. The statistical properties of
these structures are not only of interest for analyzing anatomical anomalies.
Investigation of the occurring shape variations also helps to build up prior
knowledge about structures. This knowledge can be re-used for intelligent
application-specific image segmentation. The use of prior knowledge is espe-
cially important for medical image segmentation tasks, where even human
observers have to be well-trained to perform correct segmentation.
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A formal theory of shape variations is widely known as Kendall shape
spaces. It was originally introduced by David Kendall in 1977 in a work
entitled ”The diffusion of shape” [30]. In this work, corresponding shapes
are represented by a fixed number of particles (points). The spatial config-
uration of the points is considered modulo scaling, rotation and translation.
Using the words of David Kendall, shape is what is left when the differences
which can be attributed to translations, rotations, and dilatations have been
quotiented out. [31]

Shape spaces are an active research topic and are interesting for different
applications. In a recent work, for example, geodesics based on shape space
metrics are explored. These geodesics represent paths in the shape space
which correspond to well-behaving smooth deformations [32]. Deformations
of the considered shapes are described as interpolation (and extrapolation)
between different shapes in the shape space.

Throughout this thesis we identify the problem of finding a segmentation
as finding a shape configuration which optimally fits some given image. This
problem can be formulated with the help of shape spaces: For a given image
the optimal point (shape) in the shape space is to be found which best fits
the image.

In order to describe shape variability, many different approaches have
been proposed. For Active Shape Models [15], a Principal Component Anal-
ysis (PCA) is applied to a number of training shapes. This is done in order to
perform dimensionality reduction of the space in which the training shapes
live. A Gaussian distribution of the according shapes is assumed. Different
shapes are generated by linear combinations of a limited set of principal
components. However, a problem arises if too complex linear combinations
are performed in shape space: Self-intersections are likely to occur if shapes
are reconstructed which are too far away (in shape space) from the original
training shapes. Figure 1.9 illustrates this problem for a 3D shape model of
the heart.

One approach to avoid self-intersections is to use diffeomorphic warps.
Accordingly, diffeomorphic shape models [12] can be formulated. Although
diffeomorphic warps also have the advantage of making deformations smooth,
model-building is more complicated. Instead of linear interpolation of prin-
cipal components, diffeomorphic warps have to be found which warp the
training shapes to each other [12].

Another general restriction in PCA-based shape representation is that
usually a large number of training examples is needed in order to capture
the full shape variations with sufficient detail. Especially shape variations in
pathological anatomical structures are critical. With N training shapes the
resulting maximum number of principal components is N − 1. The number
of principal components is the dimensionality of the linear shape space. For
structures with complex variations the limitation to N−1 parameters is not
acceptable.
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(a) (b)

(c) (d)

Figure 1.9: Linear interpolation of shapes in diastole (a) and systole (c).
The mean shape (b) (arithmetic mean) of (a) and (c). When the linear
interpolation is exaggerated, self-intersections occur (d).
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Because PCA is based on the covariations of all landmarks it tends to
represent mainly global shape variations. For the resulting segmentation this
means that the rough overall shape is often found but locally the contours
do not match well. The model is powerful in describing global covariances.
However it is not capable of handling fine local variations which are largely
independent from the global shape [16].

One approach to better account for local shape variations is to apply
Independent Component Analysis (ICA) [68]. ICA aims at detecting sta-
tistically independent variations. For statistical analysis of a set of shapes,
ICA tends to detect mainly local variations [68]. This indicates that in a
local set of landmarks the mutual dependence of spatial variability is higher
than for more distant landmarks. Although ICA seems to be better suited to
model local shape variations it lacks the ability to handle global variations.

A more general way to model statistical variation of shapes at different
levels of detail is to apply the statistical analysis on different resolutions
and for different regions of a shape. In a work on hierarchical Active Shape
Models (ASMs) [16], two approaches to subdivision of an ASM for multires-
olution modeling are proposed: A simple approach is to manually split the
contour into multiple segments. On the lowest level of resolution PCA is
then applied to each of the centers of gravity of the individual segments.
At the next finer level PCA is applied for each segment separately. The
subdivision and statistical analysis can be continued recursively. In order to
avoid discontinuities between the individual segments, local variations are
calculated for overlapping segments and are blended continuously.

Multiresolution statistical shape modelling can be realized more ele-
gantly by using wavelet decomposition [16, 45, 46]. This allows consistent
analysis of low resolution (global) variations and high resolution (local) vari-
ations. The problem of multiple resolutions is thus elegantly solved and the
statistical analysis of variations can be applied by directly using the wavelet
coefficients as input to PCA.

In a work on hierarchical modelling of deformable shapes [22] a non-
statistical approach is proposed. Hierarchically subdivided shape segments
and their relative positions are represented by a so called shape tree. Ran-
dom variations of the shape tree at different nodes which represent different
levels of detail preserve the overall recognizability of the shape. In the same
work a shape matching algorithm is proposed. It compares a template shape
tree with curve segments that were extracted from an image.

1.2.3 Texture Modeling

An effective model of the gray values observed in medical images is crucial
for robust model-based segmentation. In this thesis the main task of the
texture model is considered to provide a basis for comparing some shape
configuration (shape model instance) with an unknown image.
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In order to match a model to an unknown image it is necessary to define
a cost function which reflects the matching accurracy. A model match-
ing algorithm can then be understood as an optimization algorithm which
minimizes this cost. This is done with respect to the shape parameters of
the model. Active Contours or snakes [29] are an early example of such
an approach. The cost function originally proposed for Active Contours
accumulates two terms: an inner and an outer energy. The inner energy
represents the deformability of the shape and the outer energy moves the
shape towards image features. In the early Active Contour approach both
energy functionals are chosen in an ad-hoc fashion. For example, as im-
age features which attract the contour, brightness or image gradients are
used. Especially when textured images are investigated or images which
show complex structures, the Active Contour is easily misled by gradients
which do not represent the desired contours.

Alternative energy functionals have been proposed later. A popular ex-
ample is the Mumford-Shah energy functional [44]. It is based on two as-
sumptions:

1. An image varies smoothly and/or slowly over a region which represents
an object.

2. An image varies discontinuously and/or rapidly across the boundaries
between different objects.

A variation of the Mumford-Shah energy functional is used in a work which
exploits it for evolution of level sets [10]. Although the assumptions on
which this model is based are in many cases more adequate than attraction
by simple gradients, it may still have problems with objects that exhibit
strongly varying textures.

In order to gain more robust and more specialized texture models it
is useful not to define texture properties a priori but to derive them from
examples. By avoiding to make assumptions on the properties of texture it
seems to be more robust and more elegant to ”learn” such properties from
examples for specific applications.

With the help of probabilistic and statistical methods, promising results
have been achieved in many texture-related applications. If probability dis-
tributions can be derived from training textures, predictions of new unknown
textures or images can be made. One very interesting application of texture
modeling is texture synthesis. The goal of example-based texture synthesis
is to derive a large image with stochasically varying local detail. At the same
time the global visual appearance of the example texture shall be preserved.
A very popular approach to this problem assumes that the probability of
a pixel’s color is defined by the pixel colors in a patch around it [21]. A
probability distribution for different pixel colors with respect to different
neighborhoods is estimated from the example texture. By drawing samples
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(a) (b)

Figure 1.10: A small patch of an example texture (a) and a larger patch
generated out of the example (b) (images from [21]).

from the estimated probability distributions, incrementally a new texture
is grown which looks visually similar to the example texture (figure 1.10).
The outlined method is a nice example on how the estimation of probability
distributions serves as a tool for predicting probabilities of pixel colors in
newly synthisized textures.

A question that arises in probabilistic texture modeling is, which depen-
dencies are assumed and how to derive reasonable estimations for probability
distributions. In the above example a pixel is assumed to be dependent on
other pixels within the patch. Further it is assumed to be independent from
all other pixels outside the patch. The patch size influences the results sig-
nificantly. It is also necessary to define a tolerance for similarity of patches
in order to derive a reasonable probability distribution. A whole set of pa-
rameters has to be chosen and constraints have to be introduced in order to
realize a probabilistic texture model.

1.3 Thesis Overview

The scope of this thesis is on model-based segmentation in medical imaging
with a special focus on applications in cardiology. Methods are proposed and
validated which implement general ideas of shape and appearance models
in different ways.

A general problem in model-based segmentation is a reasonable initial-
ization of the model. A very application-specific approach for this task
tailored to functional MR images is proposed in chapter 2.

To increase robustness in model-based segmentation of cardiac magnetic
resonance short axis images, a two-component model is proposed (chapters 3
and 4). The first component consists of multiple 2D Active Appearance
Models for characteristic short axis slices. The second component models
the spatial relation between the 2D models. While the first component
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increases flexibility, the second component assures robustness.
The considerable random variation in medical images due to different

scanners, fuzzy anatomical structures (e.g. trabeculae), and varying noise
levels is a critical source of error for many segmentation algorithms. Consid-
ering statistical analysis of a training set helps to cope with such variations.
In order to increase robustness, an information theoretic approach to proba-
bilistic texture modeling is proposed. Chapter 5 shows how the optimization
of information entropy increases the model’s generality while keeping the loss
of specificity minimal.

Empirical validation of algorithms for medical image analysis is very
important. Currently the scientific community is attempting to introduce
standards for validation similar to those which are already in use for phar-
maceutic products. In chapter 6 an automatic approach to centerline ex-
traction of coronary arteries is presented. The method is based on principles
of model-based segmentation. Results were validated within a workshop at
the MICCAI conference. The method performed best in a direct comparison
with four other automatic centerline extraction algorithms.
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Chapter 2

Automatic Detection of the
Heart in MRI

This chapter is based on the following publication:

Sebastian Zambal, Andreas Schöllhuber, Katja Bühler, and Jǐŕı Hlad̊uvka.
Fast and robust localization of the heart in cardiac MRI series. International
Conference on Computer Vision Theory and Applications (VISAPP), pages
341–346, 2008.
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2.1 Introduction

Segmentation of cardiac structures from magnetic resonance images (MRI)
has been of great interest in the medical imaging community [56, 62, 39, 69].
The great advantage of model-based segmentation is that it incorporates
prior knowledge about the segmented structures.

Active Appearance Models (AAMs) [14] are deformable models which
describe possible configurations of shape and gray values by statistical anal-
ysis of a training dataset. Several authors have proposed the use of AAMs
and their numerous extensions to the problem of segmentation of cardiac
structures. Methods proposed so far comprise 3D AAMs [42], temporal
AAMs [39], and 3D+time AAMs [62].

A concrete instance of an AAM is defined by parameters comprising:
position, scaling, orientation, shape and texture parameters. Matching the
model to unseen data is equivalent to finding a configuration of parameters
that optimally fit the model to the unseen data. The common proceeding is
to place the model onto unknown image data. Then deformations are iter-
atively applied until a difference measure such as root mean square (RMS)
texture difference reaches a minimum. A problem often ignored in litera-
ture is robust and fast automatic initialization of the model, i.e. finding
reasonable initial position, orientation and scaling. A brute-force method
iteratively tries out each and every configuration. However this is very time-
consuming since the number of possible initializations is huge. In previous
work it has been suggested to perform AAM Search in parallel with multiple
different initialization parameters [58]. However, this approach is quite time
consuming, especially when dealing with 3D AAMs. To utilize AAM-based
segmentation for cardiac cine MR in daily clinical practice, a more efficient
method for initialization is required.

Recently a method based on sparse Markov Random Fields (MRFs)
[20] has been proposed for fast initialization of model-based segmentation.
However this method relies on feature extraction which is not proven to
deliver adequate results on cardiac cine MR data. Furthermore the run
times reported for solving the considered MRF are in the order of a few
seconds while the method we present in this chapter delivers the result after
about one second.

This chapter presents a method that automatically determines the ini-
tial position parameters for an AAM for segmentation of the human heart
in MRI short axis data. In earlier work Sörgel and Vaerman [56] have intro-
duced a method for automatic heart localization for initialization of Active
Contours. The presented work extends this approach. Instead of initial-
izing Active Contours, the goal of the method proposed in this chapter is
to initialize an Active Appearance Model. A set of well-established image
processing algorithms is used including morphological operators [54] and
Hough-transformation for circles [17]. In contrast to previous work where
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Fuzzy Hough-transformation [49] was applied to detect the left ventricle [48]
we propose to perform Hough-transformation directly on gray values as will
be outlined later in this chapter.

Figure 2.1: The pipeline: ROI extraction (a), LV localization (b), LV-RV
orientation (c), model-based candidate selection (d).

This chapter is organized as follows: In section 2.2 an overview of the
investigated MRI data is given. The fully automatic method for localization
of the heart is described in detail in section 2.3. Validation and results are
presented in section 2.4 and the chapter concludes with section 2.5.

2.2 Data

The 4D data considered in this chapter consists of cine MRI short axis stud-
ies of 42 different patients. The data was captured using two MR scanners
from different vendors each operating at a magnetic field strength of 1.5
Tesla. Each short-axis study consists of 7 to 13 slices with pixel resolutions
ranging from 1.17mm to 1.68mm. The spacing between slices ranges from
7.2mm to 12.0mm. Time-resolution lies in the range of 11 to 27 time steps
per patient study.

2.3 Method

Our method takes into account the complete four-dimensional (3D + time)
input data and computes the initial parameters for the model: position,
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orientation and scale-factor. The pipeline is made up of four steps (see
figure 2.1):

• Extraction of the region of interest (ROI)

• Localization of the left ventricle

• Calculation of LV-RV orientation

• Model-based candidate selection

In each step elementary digital image processing algorithms are used. This
makes the method transparent, comprehensible, and easy to implement. In
the following the individual steps of the algorithm are explained in detail.

2.3.1 Extraction of the Region of Interest

In order to limit more complex calculations to a restricted ROI, the first step
is a detection of the image area which contains the heart. Over the period
of the cardiac cycle, position and size of the heart vary due to contraction of
the myocardium. As a result the strongest variations of gray values appear
in the region inside the heart. The localization is based on these variations
of gray values over time similarly as proposed by Sörgel and Vaerman [56].

For every slice a variance image is calculated. The gray values of a
variance image correspond to the variance of the according pixel over the
complete cardiac cycle. High gray values indicate strong variance and thus
the according pixels belong to the heart region with high probability. Figure
2.2 shows examples of such variance images for different slices of a single
dataset.

It has to be considered, especially for MRI data, that high variance of a
pixel’s gray value might possibly come from noise or imaging artifacts. To
reduce the disturbing influence of noise, the following image processing steps
are carried out for the individual variance images. A threshold is selected
such that the according number of pixels above the threshold approximately
cover the area of the heart (roughly 10000mm2).

To eliminate single pixels and small pixel areas a morphological cleaning
is applied to each variance image. The morphological structuring element
that is used is a 5× 5 mask centered over the considered pixel. If less than
11 pixels in this mask are set the pixel is unset. If more than 15 pixels are
set the center pixel is set. Otherwise the old pixel value is kept.

This improves the results significantly but in some cases there still remain
misleading pixels set. To increase robustness all masks from all slices are
considered jointly. A new mask is generated by summation of the individual
variance images. This gives a result as depicted in figure 2.3(a). Outliers
where misleading variances appear in individual slices only are removed with
the following operation: All pixels which are set in less than 25% of all slices
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Figure 2.2: Variance images for individual slices of a single dataset.

are deleted. Figure 2.3(b) shows an example of the outcome of this step.
To further reduce artifacts only the largest connected region in the mask
is considered (figure 2.3(c)). A bounding box around it defines the ROI
as shown in figure 2.3(d). Since information from different time steps and
different slices is combined it is argued that the resulting mask robustly
identifies the region of the heart.
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(a) (b)

(c) (d)

Figure 2.3: Towards the ROI: Sum of variations (a), thresholded (b),
largest region extracted (c), and resulting bounding box (d).

2.3.2 Localization of the Left Ventricle

While the first step in the algorithm takes the full 4D data into account
the rest of the algorithm is performed on the central slice of end-diastole
only. The end-diastole is typically known since the individual time steps are
delivered as volumes sorted by time, starting with the end-diastolic volume.
Since the captured volume typically covers the left ventricle from apex to
base, the center slice of a volume is taken for further refined localization of
the heart.

The myocardium of the left ventricle has approximately the shape of a
circle. This fact motivates the use of a Hough-transformation for circles [17].
To reduce the computational burden the Hough-transformation is restricted
to the ROI calculated in the previous step.

Typically the first step in Hough-transformation is edge detection. In the
experiments carried out on cardiac MRI data it turned out that standard
edge detection algorithms like Canny Edge Detection [6] give very poor
results for many data sets. On the one hand this is due to properties of
MRI data. On the other hand fuzzy anatomical structures such as papillary
muscles and trabeculae make it very difficult to calculate meaningful image

26



2.3. Method

gradients that clearly represent transitions between objects. Furthermore in
experiments it was observed that gray value distributions for MRI images
fluctuate significantly in inter and even intra patient studies. This makes
it very hard to select generic parameters for an elaborate edge detection
algorithm.

More elaborate approaches like Fuzzy Hough-transformation [49] try to
circumvent the problem of structures deviating from perfect circles. Anyway
the problem of strongly misleading edges in the region of papillary muscles
remains.

In order to overcome the problems of edge detection, the Hough-transfor-
mation is adopted to take original gray-values rather than edge information
as input. The assumption is made that gray values of the myocardium are
significantly darker than those of the blood inside the ventricles. Thus, for
transforming the image into Hough-space low gray values in the image are
assumed to belong to the myocardium with high probability. Using this ap-
proach the detected circle does not lie on the boundaries of the myocardium
but somewhere in between. As a result the circle is detected robustly even if
the shape of the left ventricle deviates from the perfect circle. Compared to
the Fuzzy Hough-transformation the computational complexity is even re-
duced (no gradient calculation is required). Note that the even darker gray
values in the lung region were excluded since they lie outside the previously
calculated ROI.

The Hough-space considered is a three-dimensional space of parameters.
Its axes are x, y (position of the circle’s center) and r (radius of the circle). x
and y are constrained by the bounding box defining the ROI. r is restricted
to an interval of 25mm to 40mm – a typical range of radii for left ventricles.

Although Hough-transformation as we have described it works quite ro-
bustly there is still a small chance that the highest evidence for a circle is
not correctly describing the left ventricle. Our experiments showed that the
correct contour of the left ventricle always corresponds to one of the first two
largest peaks in Hough-space. Thus the first two most prominent candidates
for position and scaling of the left ventricle are considered at the last stage
of the algorithm.

2.3.3 Heart Orientation

From previous steps two possible candidates for the left ventricle are ex-
tracted. Each of these candidates is described by position and size of the
two Hough circles. What remains is to determine the orientation of the
heart, i.e. where the right ventricle is located relative to the left ventricle.

The ROI computed in section 2.3.1 is thresholded such that the 20%
brightest pixels remain. As experiments showed, the two largest connected
regions robustly correspond to the blood inside left ventricle and right ven-
tricle. The centroids of these regions already indicate the spatial relation
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between the ventricles. It is however not known which region corresponds
to the left ventricle and which to the right one. To resolve this ambiguity
the region with its centroid closer to the center of a Hough candidate is
identified as the left ventricle. This way a unique orientation is assigned to
both Hough-candidates.

2.3.4 Model-based Candidate Selection

The preceding steps reduced the initialization search space from millions
(possibly every pixel with multiple different orientations) to two candidates:
two Hough circles for the myocardium of the left ventricle together with
estimates of LV-RV orientation. Each of the two candidates defines position,
scaling, and orientation for a possible initialization of the model.

To select the optimal candidate the root mean squared (RMS) texture
errors between model and both initialization candidates are calculated. The
candidate which produces the smaller error is identified as the final result.

2.4 Validation and Results

The method has been evaluated for a total of 42 MRI studies. Automatic
initializations have been compared to manual ones: Five users interactively
initialized the model. To assess the quality of the automatic method three
figures of merit have been evaluated: average point-to-surface distance, tex-
ture error, and time performance.

The average point-to-surface (PTS) distance is calculated for the manu-
ally and automatically placed mean model shape relative to the accurately
done manual ground truth segmentation. This was only possible for a sub-
set of 31 datasets where ground truth segmentation was available. Fig-
ure 2.4 (top) summarizes PTS measures achieved by users and the automatic
method. It is observed that automatic initializations come close to the man-
ual ones. Please note that the average discrepancy of 6mm only refers to
rigid initialization of the mean model. In this chapter only initialization is
investigated – no subsequent deformations of the model are applied in an
attempt to achieve final segmentations.

In order to evaluate initializations for which no ground truth was given,
the texture difference between mean model and image data was determined.
Figure 2.4 (middle) shows the quality of matches for all (unsegmented) 42
datasets after manual/automatic initializations with respect to texture dif-
ference. It is again concluded that the automatic method generates initial-
izations qualitatively comparable to those of the users. The final results –
the initializations – for all validation datasets are visualized in figure 2.5 for
the central slices of end-diastole.

While similar in quality, figure 2.4 (bottom) proves another advantage
of the automatization over user interaction – the speed-up. The average
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(a)

(b)

(c)

Figure 2.4: User study at a glance: Averaged point-to-surface distances
for 41 datasets (a), RMS texture errors for all validation datasets (b), and
time performance for all validation datasets (c).

initialization time of 1 second has been achieved by a Java implementation.

2.5 Conclusion

This chapter has introduced an automatic and robust method for localiza-
tion of the left ventricle and right ventricle in 4D cardiac MRI data. The
method has been designed with the help of few elementary image processing
operators. The Hough-transformation for circles was adapted to operate on
original image gray values instead of gradient magnitudes. This makes the
detection of the left ventricle highly robust. The overall quality of initial-
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Figure 2.5: The result: Initialization of the AAM’s mean at the central
slices.

ization has been assessed by a user study. Time performance of the method
indicates a high potential for daily clinical use.
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Chapter 3

Two-component Statistical
Model of the Heart
Ventricles

This chapter is based on the following publication:

Sebastian Zambal, Jǐŕı Hlad̊uvka, and Katja Bühler. Improving Segmenta-
tion of the Left Ventricle using a Two-Component Statistical Model. Medi-
cal Image Computing and Computer Assisted Intervention (MICCAI), pages
151–158, 2006.
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3.1 Introduction

Correct segmentation of the left ventricle in cardiac MR short-axis images is
very important for further diagnosis of the heart’s function. Manual segmen-
tation is very time-consuming and therefore efforts are made to automate
this process to the largest possible extent.

Although variants of Active Appearance Models (AAMs) [14] have been
applied to this problem [74, 62, 43, 42], a robust and completely automatic
segmentation still poses a challenge.

Several problems appear in the context of shape- and appearance-based
modeling of the left ventricle:

• The appearance of papillary muscles and trabeculae varies irregularly
from patient to patient. Especially in slices close to the heart’s apex
these fuzzy anatomical structures are hard to model statistically. The
necessary requirement for building an AAM – that the underlying
training data has a Gaussian distribution – is not satisfied in the api-
cal/apex region.

• Often, only a part of the left ventricle is captured. Training data
consisting of poorly corresponding volumes decreases the quality of
the resulting model.

• Respiratory-induced motion introduces shifts of neighboring slices and
so leads to irregular local variances in the data.

• Principal Component Analysis (PCA) involved in the build leads to
a model where variances apply to the complete model. This makes it
hard to handle local variations, e.g. different brightness of individual
slices.

In this chapter we propose a new and robust approach to segmentation
of the left ventricle. By linking a set of 2D AAMs with a 3D shape model
we perform model matching at a global and local context iteratively. With
this approach we handle the above list of problems.

This chapter is structured as follows. In section 3.2 we review related
work on statistical models of shape and appearance in context of left ven-
tricle segmentation. In section 3.3 we introduce a two-component model of
the left ventricle. In section 3.4 we outline how the two-component model
is matched to unseen data. Results are presented in section 3.5 and a con-
clusion is drawn in section 3.6.

3.2 Statistical Modeling of the Left Ventricle

Our approach benefits from the combination of both Active Shape Models
(ASMs) [15] and Active Appearance Models (AAMs) [14]. ASMs are statis-
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tical models of shape that can be used for identification and segmentation
of known objects in unknown images. AAMs are a direct extension of ASMs
and incorporate not only information about shape but also model the un-
derlying texture. Variations of both methods have successfully been applied
to segmentation in medical imaging [43, 4, 65].

Statistical models of shape and appearance are created from a finite
number of training datasets. In other words, the model is only able to
represent and thus segment new datasets that are similar to the ones in
the training set. Increasing the size of the training set is a rather limited
way to improve the generalization ability of the model. By adding local
deformability the generalization ability can be increased explicitly. The
statistical model is used to find a rough initial segmentation which is refined
by restricted local deformations [65].

Several authors have discussed local and global deformability of a model.
Independent Component Analysis (ICA) [68, 63] leads to modes of variation
which have a rather local effect compared to the global modes of variation
derived from the conventionally used PCA. To deal with local variations of a
model it can explicitly be split into sub-models. The split is achieved either
with the help of human expertise or by means of optimization based on the
Minimal Description Length (MDL) [38].

A great problem that arises in segmentation of short-axis MRI images
of the left ventricle is respiratory-induced motion. Such artifacts appear
as slight displacements of spatially neighboring slices. Handling of these
displacements is crucial to achieve both a correct model and correct seg-
mentations. A recently proposed approach [61, 60] first detects the left
ventricle in one or multiple slices. In a second step image alignment is used
to compensate the shifts of neighboring slices. Finally a 3D AAM search is
performed to achieve the final segmentation.

3.3 A Two-component Model of the Left Ventricle

Inspired by the idea of modeling global and local features separately [38, 65]
we propose to combine a set of local 2D AAMs with a global 3D shape model.
The purpose of the 2D AAMs is to precisely match the well articulate slices
of the heart’s base. The purpose of the 3D shape model is twofold: to
propagate the position and size of the basal slices to apical ones and to keep
the global shape characteristics plausible. In the following we describe the
two components of our model.

3.3.1 Component 1: A Set of 2D Active Appearance Models

In a first step we consider the given training data, i.e. texture and annota-
tion, slice-wise. From base to apex we identify the following four classes of
slices:
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(a) (b) (c) (d)

Figure 3.1: Typical examples of basal (a), mid (b) (the arrows indicate
papillary muscles), apical (c), and apex slices (d) (top) and the first two
principal components of texture after PCA (bottom).

Basal slices (figure 3.1(a)) reside close to the base of the heart and do not
contain papillary muscles.

Mid slices (figure 3.1(b)) clearly show papillary muscles (arrows).

Apical slices (figure 3.1(c)) contain trabeculae and papillary muscles,
which are represented by irregular texture.

Apex slices (figure 3.1(d)) show the very apex of the heart and contain
highly irregular texture.

We performed PCA on the shape-normalized texture vectors of all slices
in the training set. Scatter-plots of the first two principal components are
shown in figure 3.1 for the according classes of slices. We observe that basal
and mid slices show a relatively compact Gaussian distribution and are thus
well suited for linear statistical modeling using PCA. This is not the case
for apical and apex slices, whose texture is much more irregular.

With a manual classification of slices we build a set of four individual
2D AAMs. This proceeding has the advantage that even incomplete MRI
datasets can be included in the training set and used for building the first
component of the model.

3.3.2 Component 2: A Global Shape Model

The intention of the global model is to represent the ventricle’s shape in an
overall simplified way. Its task is to assure a valid relative placement and
scaling of the four 2D AAMs.

The core of the global model is a centerline connecting the 2D AAMs
in 3D. For the landmark points of each slice of the annotated training set a
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Figure 3.2: The original and smoothed centerlines projected to XZ (a) and
YZ (b) plane. (c) The assignment of sub-models to sections of the global
shape model.

(a) (b) (c)

Figure 3.3: The first (a), second (b), and third (c) modes of variation of
the global shape model. The plots show the mean shape together with the
largest possible deformations.

centroid is calculated. The assembly of these centroids forms the centerline.
Figures 3.2(a) and 3.2(b) show such a centerline for one of the annotated
datasets. It can be seen that respiratory-induced shifts of neighboring slices
appear in the data. We use a Gaussian filter to smooth the centerlines and
to reduce respiratory motion artifacts in the training set.

Additionally to the centroids we incorporate the radii of slices into the
global model. For each slice a radius as the mean distance of shape points to
the centroid is calculated. This results in three variables that approximately
describe the ventricle’s shape on one slice: x/y-coordinates and radius.

To build a statistical shape model, an equal number of corresponding
landmarks has to be placed in every training example. We interpolate cen-
troid positions and radii to get a total of 20 evenly-spaced slices. With the
three features per slice this results in a total of 60 features included in the
global shape model.

Before PCA can be applied, the individual training examples have to
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be aligned. Since we model not only the positions of centroids but also the
radii we can not directly apply 3D Procrustes analysis. We rather align the
center lines with respect to x/y-coordinates. The radii are thus not affected
by the alignment. Figure 3.3 illustrates the first three modes of variation of
the global shape model.

3.3.3 Combining Local Models and Global Model

In order to benefit from both components the local models have to be linked
to the global model. As some datasets are delivered without apex or basal
slices, we compensate this missing information by attaching two 2D AAMs
to each slice. For example, the top most slice is assigned the basal model
and the mid model. The better matching model is kept while the other one
is ignored. Figure 3.2(c) shows the assignment of 2D AAM sub-models to
the global shape model.

3.4 Matching the Two-component Model

In the previous section we have outlined the idea of splitting a statistical
model of the left ventricle into four parts and described how these parts
are coupled over a global model. In this section we explain how the model
iteratively is matched to unseen data.

3.4.1 Matching the Local Sub-models

We switch between two alternating steps. First a local matching of 2D
AAMs is carried out for individual slices by standard AAM search [14]. In
theory it should be possible to match all 2D AAMs in this way to get a valid
global segmentation. While a valid match is obtained in basal and mid areas
the 2D AAM search very often fails in the apical and apex slices. This is
where the global model comes into play.

3.4.2 Updating the Global Model

Using the global component we propagate information from the better fitting
slices to badly matching slices: The root mean square (RMS) texture error
is calculated for all slices and the best 80% are used to update the global
shape model. The shape update is done analogously to ASM search [15].
The only difference is that the model is not directly attracted by image
features. Instead it is driven by the local 2D AAMs.

3.4.3 Iterative Global and Local Matching

After the global model has been updated the local AAMs are aligned to
it. The search proceeds iteratively switching between 2D AAM search and
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update of the global model. In this way divergence due to bad initialization
in critical slices is avoided and the overall segmentation gets improved. The
loop of 2D and 3D updates is repeated until convergence.

The resulting segmentation still suffers from the lack of local variability.
Further improvements are achieved performing additional 2D AAM search
steps with position updates restricted by a constant maximum displacement.

Finally respiratory-induced shifts are compensated. The slices are shifted
such that the centroids of the 2D AAMs align to the global model’s centroid
coordinates. Compared to the work of Stegmann [61] our motion compensa-
tion thus benefits from prior knowledge that is encoded in the global shape
model.

3.5 Results

We evaluated the described method with a set of 32 different short-axis stud-
ies. The quality of segmentation achieved with the two-component model
was compared to that of 3D AAMs. Leave-one-out tests for all of the 32
datasets were performed. The average point-to-surface error (PSE) with
respect to expert annotation was used to validate the segmentation qual-
ity. Figure 3.4 illustrates the measurements. Although the two-component
model led to slightly worse results in 14 cases out of 32, the overall PSE got
improved from an average of 2.20mm (3D AAM) to 1.96mm (two-component
model). Even though the average improvement by 0.24mm does not sound
impressive, we emphasize that compared to the standard 3D AAM the two-
component model performs better by 11%.

Figure 3.4: Point-to-surface error measured in leave-one-out tests for all
training datasets.
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(a) (b)

Figure 3.5: Results of matching dataset 10 with 3D AAM (a) and two-
component model (b).

In figure 3.5 we provide a visual comparison for the largest improve-
ment in terms of the average PSE which could be achieved for dataset 10.
It shows the result obtained with a standard 3D AAM (figure 3.5(a)) and
the improved segmentation achieved with the two-component model (fig-
ure 3.5(b)).

Figure 3.6 demonstrates the motion compensation performed with the
two-component model. A section of dataset number 10 is depicted in figure
3.6(a). Figure 3.6(b) shows the dataset after matching and aligning the
slices to the centerline of the global shape model.

Between 10 and 20 iterations are necessary for the two-component model
matching algorithm to converge. The whole segmentation process typically
takes a few seconds on standard PC hardware.

3.6 Conclusion and Discussion

We have introduced a new approach to 3D segmentation of the left ventricle
from short-axis MR images by interconnecting a set of 2D AAMs with a
simple 3D shape model. The two-component model is more robust than a
3D AAM since local irregularities such as respiratory-induced motion and
different intensities of gray values in individual slices can be handled.
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(a) (b)

Figure 3.6: Motion compensation of dataset 10 carried out by the two-
component model. A cross section through the original volume (a) and the
automatically corrected volume (b) are shown.

Incomplete training datasets that do not contain the entire left ventricle
from base to apex pose a severe problem for 3D AAMs. If such datasets
are present in the training set the correspondence between them is ill-posed.
The outcoming model allows for shrinking within its modes of variation. The
topmost or the bottommost slices thus often remain unsegmented. This
disadvantage is avoided with the two-component model which allows the
use of incomplete datasets as training examples. Since slices are assigned to
individual 2D AAM sub-models even a single annotated 2D short-axis slice
can be added to the training set. As the two-component model attempts
to match two neighboring 2D AAMs to each slice, segmentation of datasets
that do not cover the entire left ventricle is still possible.

We are convinced that the idea of combining different types of models
over a global shape model is promising for other medical segmentation prob-
lems. Especially if local anatomical abnormalities (e.g., a tumor) appear,
models consisting of multiple components will likely lead to more precise
results.
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Extended Two-component
Statistical Model

This chapter is based on the following publication:

Sebastian Zambal, Jǐŕı Hlad̊uvka, and Katja Bühler. A fully automatic sys-
tem for segmentation and analysis of the left and right ventricles of the
heart using a bi-temporal two-component model. Computer Assisted Radi-
ology and Surgery (CARS), pages 93–94, 2007.
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4.1 Introduction

Magnetic Resonance (MR) Tomography is a very important imaging tech-
nique for assessing the function of a patient’s heart. An MR study of a
single patient typically includes several hundred images. For medical diag-
nosis it is necessary to enrich the captured data by segmenting the images.
Since manual segmentation of large amounts of images is a very tedious
task many research efforts are put into the development of algorithms for
automatic segmentation of cardiac structures. Many of the implemented
approaches use some kind of atlas or template exploiting prior knowledge
about the structures of interest.

Several authors have proposed methods based on the popular Active Ap-
pearance Model (AAM) [14] including extensions to 3D [42], 2D + time [55],
or 3D + time [62]. In this chapter the previous two-component model [76]
which is also based on AAMs is extended and its integration into a software
tool for heart function analysis is reported. The software system presented
here provides automatic segmentation and subsequent display of important
data such as wall-thickening and ejection fraction. Based on the geome-
try derived in the segmentation stage a precise medical diagnosis may be
performed.

4.2 Data

MR studies frequently include multiple time-triggered series of short axis
images. Each series consists of about 20 images taken at intervals of typically
50ms over the full heart cycle. Multiple series (typically between 7 and 13)
are captured to get a stack of series. The gap between slices is about 7mm.

With a time resolution of about 20 samples and a stack size of about
10 slices, this results in a total of 200 images for a single patient. Relevant
features such as thickening of the myocardium, myocardial mass and the
volume of ejected blood are of great interest. Such information is not directly
available from the raw MR images. In fact it is possible to calculate and
display interesting features only when the according segmentation of the
myocardium is provided. Manual segmentation of 200 images is very time-
consuming and tiring. In order to speed up and improve diagnosis fully
automatic segmentation is thus highly desirable.

4.3 Methods

The following paragraphs describe the individual steps of the workflow pro-
vided by the presented software tool. The complete workflow was integrated
into a commercial software package for medical image analysis.
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4.3.1 Motion Compensation

Series of individual slices are captured one after the other. If the patient
moves during the capturing process the slice stacks show significant shifts of
neighboring slices. To compensate for these artefacts our software provides
automatic motion compensation. The key idea is to perform a comparison of
short axis images with long axis images. Long axis images are approximately
perpendicular to short axis images. Grey values along the intersection lines
of long and short axis images are considered. Based on some similarity
measure an optimal compensating shift can be calculated. Previously Nor-
malized Mutual Information (NMI) was proposed as similarity measure for
alignment of long- and short axis volumes [36]. We implemented root mean
squared texture difference, mutual information, and overlap of gradients as
similarity measures. Tests showed that motion compensation based on gra-
dients was most reliable. The relatively bad results we achieved using NMI
might be due to the fact that our data came with only one or two long-axis
views per patient. We suppose that NMI is not robust on such sparse data.

4.3.2 Automatic Model Placement

For the actual segmentation process a good initial placement of the model is
needed. To achieve a correct localization we extended an existing approach[56].
First the variances of individual pixels are analyzed over time. The result-
ing variance images are integrated, thresholded, and cleaned. A bounding
box over the resulting region with largest variances is determined. Inside
this bounding box the two largest connected regions are determined. They
correspond to the inner regions of left and right ventricles. The line connect-
ing the centroids of these two regions indicates the orientation of the heart.
Using a circular Hough transform we determine the position of the left ven-
tricle (which has an approximately circular shape). For some datasets the
left ventricle might not exhibit the strongest evidence for a circle in Hough
space. However, the correct candidate is always among the first few. To
choose the optimal candidate we calculate cross-correlation with an Active
Appearance Model in the central slice of the dataset.

4.3.3 Model-based Segmentation

Several authors have proposed different methods for splitting shape models
into parts. These approaches have been shown to be very fruitful [16, 76, 38].
In this chapter we extend the recently introduced two-component model [76].
This model was originally designed for the left ventricle only. It consists of
two components: a set of 2D Active Appearance Models and a global shape
model connecting the 2D AAMs. In this chapter we propose two important
extensions of the two-component model:
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Figure 4.1: The first mode of shape variation for a 2D AAM of a mid
slice.

• The right ventricle is added. For the set of 2D models this means that
additional landmark points outlining the right ventricle’s border are
added. Figure 4.1 shows the first mode of shape variation for a 2D
AAM describing a mid slice.

• Segmented datasets from end-systole are included in the training set
as well as datasets from end-diastole. The resulting model very well
shows the heart’s contraction as individual modes of variation and is
able to interpolate time steps between end-systole and end-diastole.

While the second extension is relatively straight forward, adding the
right ventricle makes some structural changes of the global shape model
necessary. In the original version the global component consisted of three
variables for each slice: Position of the centroid in x and y and the average
radius. Now we add a fourth variable to the global model describing the
relative position of the right ventricle.

In an intermediate step the centroid of the right ventricle’s contour is
calculated. An angle between the centroids of left and right ventricle can now
be calculated. This angle is the fourth variable which we add to the global
model. Figure 4.2 illustrates the first mode of variation (the first principal
component) of the global shape model. The dark black points represent
the centroid positions of the left ventricle. Since the landmark points are
placed more densely on the border between left and right ventricles the
centroids are not located exactly in the left ventricle’s center. The black
lines point from the left ventricle’s centroid towards the right ventricle’s
centroid. The lengths of these lines indicate the scaling for the according
2D AAM. The first mode of variation of the global shape model clearly
reflects the contraction of the heart.

Model matching proceeds very much in the same way as for the original
two-component model: iteratively the 2D AAMs and the global shape model
are updated. Starting at the end-diastole the model is matched to each
time step. At any step the result from the previous step is copied. Under

44



4.4. Results

Figure 4.2: Modes of Variation of the global shape model (center: mean,
left and right: positive and negative standard deviation of the first mode of
variation). For better comprehensibility the according mean shapes of the
2D AAMs are shown in light gray.

the assumption that the heart does not contract or relax too abruptly this
ensures that the model converges quickly at each time step.

4.3.4 Manual Inspection and Correction

After the automatic segmentation has been done our software offers the
possibility to inspect the segmentation and correct it, if necessary. The
contours of the heart are displayed on the individual slices. The user can
correct boundaries using snakes, splines or circle-shaped interpolation.

4.3.5 Analysis and Diagnosis

The final step in the workflow is to derive important medical information
from the extracted boundaries of the myocardium and perform a diagnosis.
Our software provides a 3D rendering of the contours which can be displayed
as an animation over time. Furthermore a bull’s-eye illustrating the dynam-
ics of myocardial wall-thickness and statistics such as the volume of blood
contained in the left ventricle are displayed.

4.4 Results

The software has been tested with CMR studies of 45 different patients
from scanners of two different vendors. Although our model was built from
training datasets of only two time steps it could well generalize to all time
steps.

4.5 Conclusions

Robust automatic segmentation is very important for effective analysis of
MR data in cardiology. We have discussed a new approach to segmenta-
tion of the left and right ventricles of the heart. The core of our method
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is an extended bi-temporal two-component model including both ventricles.
Our software system supports the complete workflow of analysis of cardiac
MR data. Since the complete segmentation process is automated the physi-
cian does not have to waste much time with tedious segmentation and may
concentrate on diagnosis.
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Entropy-Optimized Texture
Models

This chapter is based on the following publication:

Sebastian Zambal, Katja Bühler, and Jǐŕı Hlad̊uvka. Entropy-Optimized
Texture Models. Medical Image Computing and Computer Assisted Inter-
vention (MICCAI), pages 213–221, 2008.
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5.1 Introduction

Statistical shape models exploit prior knowledge of shape to perform robust
segmentation. Active Shape Models (ASMs) [15] are based on Principal
Component Analysis (PCA) of a set of corresponding training shapes. In the
matching process, the model iteratively deforms attracted by image features
(e.g. edges).

Additionally to shape, Active Appearance Models (AAMs) [14] incor-
porate texture variations (represented again by PCA). In the following we
motivate our new approach to texture representation for statistical models
by summarizing some critical aspects of texture modeling in AAMs.

Low contrast and fuzzy structures. Model matching is understood
as finding the model instance which exhibits the minimal difference to the
unseen image. Hence it is very important to employ an effective difference
measure which consistently reflects how well a given model instance matches
the image. In the context of AAMs, typically measures based on texture
differences are used. The assumption is made that large texture differences
correspond to a large misalignment of the model. However, low contrast
(e.g., lung and myocardium in cardiac MRI) and fuzzy/irregular structures
(e.g., spongy bone, trabeculae) make it difficult to objectively compare tex-
ture differences which are measured in different image regions. It may thus
happen, that regions of low contrast are over-ruled by regions showing fuzzy
structures.

PCA-based texture modelling. For many datasets we observed that
a large number of PCA texture parameters are required to sufficiently well
cover variations in a training set. For the data investigated in this chapter
we observed that the sorted eigenvalues of shape decrease much faster than
those of texture. This suggests that PCA is not the optimal choice for
texture modeling.

Texture normalization. To improve the quality of AAMs, a texture
normalization step is usually applied before statistical analysis. The goal is
to keep irrelevant texture variations (e.g., global variations in brightness or
gamma) out of the model. In the scope of AAMs different methods have
been proposed (e.g., different types of non-linear texture normalization [35]).
However, in general it is hard to predict which type of texture normalization
leads to good results for which kind of data.

Mutual Information. A very popular matching criterion for medical
image registration is mutual information (MI) [70]. The great advantage of
this measure is that it makes it even possible to register images which were
acquired using different imaging methods. Mutual information is based on
entropy terms and in its original form limited to registration of a pair of im-
ages. Thus, although it would be reasonable to integrate mutual information
into the AAM framework this cannot be done straightforwardly.

Bayesian Framework. Bayesian reasoning makes use of posterior
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Figure 5.1: The entropy texture model: normalized corresponding pixels
are modeled by probability distributions.

probabilities to quantify how well a given model explains unknown data.
Based on Bayes’ law prior probability is combined with the likelihood of
an observation to derive the posterior probability of the model. Bayesian
reasoning has a sound mathematical background and is well-established for
pattern recognition tasks. Thus it seems worth to incorporate it into the
framework of statistical models of shape and appearance.

To tackle the above issues we borrow ideas about entropy from groupwise
registration and formulate a novel probabilistic texture model. In section 5.2
we derive an optimization function for texture normalization which has simi-
larities with a recently proposed function for shape correspondence optimiza-
tion [8]. In section 5.3 we match the model to unseen images using Bayesian
inference. We demonstrate the robustness of our entropy-optimized texture
model (ETM) on four different 2D training sets: vertebra, brain ventricles,
mid cardiac, and basal cardiac slices (section 5.4). Based on this valida-
tion we conclude in section 5.5 that the proposed ETM outperforms AAMs
and even copes with texture variations due to different imaging modalities
(different MRI scanners, T1/T2/FLAIR, CT/MRI).

5.2 Entropy Texture Model: Construction

Similar to AAM, the input for the model we propose is a set of m training
images Ti, annotated with a fixed number of landmark points in correspon-
dence, consistently triangulated, resampled by n texels and quantized to ri
gray levels.

While identical in shape description by mean and principal components,
our model differs from AAMs in the representation of texture. Each of the n
model texels tj captures the statistical variations observed at corresponding
training pixels.

In order to keep unspecific intensity variations out of the model we pro-
pose to normalize the training images using generic intensity mappings. The
task is to optimize m intensity maps fi that quantize the training images
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from ri to s gray levels.

fi : Zri → Zs, s� ri i = 1 . . .m (5.1)

In the following we design the cost function to assess mappings fi. Each
model’s texel tj observes m occurrences of the s possible mapped gray values
at corresponding training texels. Such a set of observations can be inter-
preted as probability density function (PDF) and we denote it pj . pj(g′k)
is the probability that at corresponding texel tj a mapped gray value g′k is
observed.

The predictability of mapped gray values expressed by PDFs varies
across model texels. Figure 5.1 illustrates the situation for two texels. While
PDF p2 exhibits a single high peak, p10 is rather equally distributed. This
suggests that predictions of gray values for texel t2 will be more reliable
than for texel t10.

Inspired by Balci et al. [1] we propose to favor reliability (similar to p2)
and to penalize uncertainty (similar to p10) by minimizing the entropy of the
corresponding PDFs: H(pj) = −

∑s
k=1 pj(g′k) log2(pj(g′k)). Considering all

n model texels yields a cost function that measures the quality of mappings
fi:

Hmodel =
1
n

n∑
j=1

H(pj) → min (5.2)

Hmodel yields a minimum when the mappings degenerate such that all
mapped training pixels show the same gray value. In this case the model
exhibits maximal specificity.

However, this specificity has to be put into relation to the training im-
ages which contain no information once degenerated. This motivates for
a compensation term which drives the mapped training textures fi(Ti) to-
wards maximum information content. We measure the information content
by image entropy H(fi(Ti)) and aim at its maximization across the entire
normalized training set:

Htex =
1
m

m∑
i=1

H(fi(Ti)) → max (5.3)

Htex reaches a maximum when the texture transformations fi maximize
the information content of the textures Ti. This is equivalent to histogram
equalization.

We combine the entropy terms of model (eq. (5.2)) and training textures
(eq. (5.3)). The goal is maximization in terms of texture mappings fi:

{f∗1 , . . . , f∗m} = argmax
{f1,...,fm}

(Htex −Hmodel) (5.4)
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T1 T2 T3

(a) original

f1(T1) f2(T2) f3(T3)

(b) optimized

Figure 5.2: An example training set (two different MRI scanners and a
CT) before (a) and after (b) entropy-optimization (using three target gray
levels: s = 3).

There is no need for an ad-hoc weighing of the two entropy terms since
they are commensurate, i.e., measured in bits per texel and bits per pixel
respectively. An objective function similar to eq. (5.4) has recently been
proposed for shape correspondence optimization [8]. In this work similarly
two energy terms are used: one for individual shapes and one for a shape
ensemble. This makes our entropy-optimization of texture a direct analogy
to the Minimal Description Length (MDL) of shape with the difference that
we do not stick to the Gaussian distribution as description language for
texture.

We used Simulated Annealing to optimize mappings fi subject to the
cost function of eq. (5.4). Represented by lookup tables, the texture map-
pings fi are initialized to linearly remap the training images to s levels.
During optimization the lookup tables are updated in each iteration. After
optimization the mapped training textures represent structures with mini-
mal uncertainty at maximum information content (figure 5.2(b)).

Figure 5.3 shows entropies of the optimized distributions of four models
we use for validation in section 5.4. While bright texels exhibit strong varia-
tions (high entropy), dark texels represent high predictability (low entropy).
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(a) heart LV+RV (b) heart LV (c) vertebra (d) brain ventricles

Figure 5.3: Entropy (brightness) of model PDFs after optimization.

5.3 Entropy Texture Model: Matching

In contrast to AAMs, only shape parameters S = {position, scaling, rota-
tion, and statistical shape deformation} are optimized. The cost function de-
scribing model matching accuracy is based on model PDFs and sub-texture
U = (u1, . . . , un) of the unseen image currently overlapped by the model.

Mapping of the Unseen Image’s Texture

As our model texels capture PDFs of s normalized gray values, we first need
to normalize U accordingly: we seek for a function fu : Zru → Zs that maps
the texture to s gray levels.

We want to find a suitable intensity mapping for each of the ru gray
values. For a fixed gray value û ∈ {1, . . . , ru} all model texels observing it
vote according to their PDFs: out of the s possibilities the target gray value
leading to the maximal likelihood is assigned. Formally:

fu(û) = argmax
g′

k

∏
uj=û

pj(g′k) k = 1 . . . s (5.5)

Cost Function

To assess how well the shape instance S fits to the unseen image, we compare
model PDFs p(.) to the normalized texels U ′ = fu(U) = {fu(uj)}nj=1. To
convey this, we consider maximizing the posterior probability P (S|U ′) of the
shape instance S, with the observed normalized texture U ′ given. According
to Bayes’ law [5] the posterior is proportional to the product of a likelihood
and a prior (left side of eq. (5.6)).

The likelihood P (U ′|S) of the observed normalized texture U ′, with the
shape instance S given, is (under the naive Bayesian assumption) the prod-
uct of probabilities of the normalized texels. This is only true under a naive
Bayesian assumption: A pixel’s gray value in an image depends only on the
parameters of the model but not on other pixels’ gray values. Although in
general the Bayesian assumption does not hold, recent literature suggests
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(a) (b) (c) (d) (e)

Figure 5.4: Matching of a model comprising five target values (s = 5):
original image with initialized contour (a), maximum likelihood estimate for
fu for initial contour (b), after 4 iterations (c), and after 8 iterations (d).
Final match over the original unseen (e).

that in the case of a large number of random variables (in our case pixels),
naive Bayesian reasoning is astonishingly reliable [78].

The prior probability P (S) of shape instance S is calculated feeding its
parameters into the multivariate Gauss distribution that corresponds to the
PCA shape space (please refer to [5] for details).

Putting both terms together yields the cost function which is maximized
subject to shape parameters S:

P (S|U ′) ∝ P (U ′|S)P (S) =

 n∏
j=1

pj(fu(uj))

 P (S) (5.6)

Strategy and Implementation Issues

In contrast to AAM there are no texture parameters to optimize. The search
space is only spanned by shape parameters and typically has not more than
10 to 15 dimensions. This makes exhaustive search strategies similar to [18]
affordable and we employ such a scheme in this work. Figure 5.4 illustrates
how a model with five gray levels evolves during matching. Shape and
maximum likelihood texture mapping converge consistently. Algorithm 1
summarizes how model matching is implemented: shape update, estima-
tion of texture transformation, and likelihood calculation of the model are
iterated.

Any pj(.) being zero degenerates the equations (5.5) and (5.6). In order
to avoid this we assign a small compensation probability of 1/(2m) and
renormalize the distribution pj .

To avoid numerical instability due to the large number of multiplica-
tions in equations (5.5) and (5.6) we maximize sums of logarithms of the
probabilities instead.
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Algorithm 1 Model matching
input: unseen image
output: model instance, i.e., segmentation
repeat

change {position, rotation, scale, shape: [mode1, [mode2, . . .]] } .
shape update

re-estimate texture transformation . eq. (5.5)
evaluate the match . eq. (5.6)

until improvement falls below threshold

5.4 Validation and Results

In order to validate our approach we compared the segmentations achieved
by ETM (s = 5) to those achieved by standard AAM. For cross validation
we split the training sets into reasonable subsets (e.g., images from same pa-
tient or same scanner). Every image was matched as an unseen by a model
built from complementary subsets. Model matching was performed by ini-
tializing each of the models close to the correct contours (hence no automatic
initialization of the model was done). Matching accuracy was measured in
terms of average point-to-contour distances. To include enough information
about object boundary regions into the models, additional landmark points
outside the objects were defined. In the following we describe the datasets
and the results in detail.

Heart LV+RV, basal region:

contains short axis slices from the base of the heart showing few or no pap-
illary muscles. The training set comprises data from four different sources:
CT and three different MR protocols. Annotations define the contours of
inner and outer boundaries of the left ventricle (LV) and the inner contour
of the right ventricle (RV). ETM performed better in 23 out of 38 cases,
reducing the average point-to-contour distance from 4.36 to 3.36 mm.

Heart LV, mid region:

includes 42 short axis MR images from the mid region of the heart exhibiting
large texture variations due to papillary muscles. Images stem from two
different MR scanners.The average pixel size is 1.39mm. Annotations define
the contours of the inner and outer boundaries of the left ventricle (LV).
ETM performed better in 38 out of 42 cases, reducing the average point-to-
contour distance from 4.02 to 2.38 mm.
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Brain ventricle:

comprises 17 transversal MR slices of 15 different patients. One patient is
represented by a T1 image and a FLAIR image. Another patient is rep-
resented by a T2 image and a FLAIR image. The remaining patients are
represented each by a T1 image. The average pixel size is 0.85mm. Anno-
tations define the contours of brain ventricles. ETM performed better in
16 out of 17 cases, reducing the average point-to-contour distance from 3.53
to 1.67 mm.

Vertebra:

consists of 13 CT slices from 4 different patients showing transversal sections
of lumbar vertebrae. The average pixel size is 0.32mm. Annotations define
the outer contour of the vertebra and the contour of the spinal canal. ETM
performed better in 9 out of 13 cases, reducing the average point-to-contour
distance from 2.67 to 2.06 mm.

On average our ETMs clearly outperformed AAMs. Results are summa-
rized graphically in figure 5.5.

5.5 Conclusions

We proposed a novel texture model for medical image segmentation. Its tex-
ture is described by probability distributions of individual texels. Moreover,
these probabilities are optimized by information entropy terms. This allows
to effectively cope with unspecific intensity variations in the training set
caused e.g. by different modalities, scanner settings, and fuzzy anatomical
structures. The model is matched to unseens in accordance with Bayesian
reasoning.

There are two major messages we would like to conclude with. First,
ETM perform better than AAM, as it is shown in the validation. Sec-
ond, thanks to intensity normalizations that are an integral part of model
construction, some requirements on the training texture (e.g. Gaussian dis-
tribution) can be relaxed. We have demonstrated this with training sets
containing mixtures of CT/MR and MR T1/T2/FLAIR images.

There are several issues left for future work. To name a few, we intend
to address extension to 3D volume textures, automatic initialization, and
acceleration of matching in the near future.
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Figure 5.5: Average point-to-contour errors [mm] achieved by ETMs and AAMs. Example thumbnails show final segmenta-
tions.
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Chapter 6

Shape and Appearance
Models for Automatic
Coronary Artery Tracking

This chapter is based on the following publication:

Sebastian Zambal, Jǐŕı Hlad̊uvka, Armin Kanitsar, and Katja Bühler. Shape
and Appearance Models for Automatic Coronary Artery Tracking. Midas
Journal (presented at the MICCAI 2008 workshop ”3D Segmentation in the
Clinic: A Grand Challenge II”), 2008.
Online available at http://www.midasjournal.org/browse/publication/256,
March 2009.
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6.1 Introduction

Automatic detection of coronary arteries in Computed Tomography Angiog-
raphy (CTA) is a clinically very important but challenging task. Efforts are
currently being undertaken to automate coronary artery tracking in order to
improve the medical workflow and objectively quantify clinically important
properties of coronary arteries.

There is a large amount of literature about vessel extraction in 2D and
3D medical images [33]. Many of the approaches rely on features such as the
response of the Hessian matrix filter [51]. However, it is in general difficult to
derive the full connectivity of a vessel tree from this information. A method
is required which takes into account the spatial relationships of features.
For example, a shortest path algorithm with costs corresponding to feature
responses may be applied for extracting a vessel [28, 23].

A very promising direction in medical image analysis is the application of
(statistical) models which represent shape (geometry) and appearance (tex-
ture) of the investigated anatomical structures. Active Appearance Models
(AAMs) [14], for example, extract knowledge about shape and appearance
from a set of training examples by applying Principal Component Analysis
(PCA). Another approach uses Markov Random Fields (MRFs) in combi-
nation with symmetry features [20]. By matching a model of shape and
appearance to unknown image data, high-level knowledge about spatial and
gray value relationships of structures is exploited.

In this chapter we refer to a model of shape and appearance as a set of
spatial configurations of texture sample positions (shape model) and well
defined relationships between gray values at these sample positions (texture
model). When matching a model of shape and appearance to unknown im-
age data, two critical issues arise: First, a reasonable objective function has
to be used which sufficiently well reflects matching accuracy of the model.
Second, an effective optimization technique has to be applied which robustly
optimizes the objective function to achieve a match.

The method proposed here employs two distinct shape and appearance
models. First, an anatomical model of the complete heart is used (followed
by symmetry feature extraction) to roughly locate potential seed points
of coronary arteries (section 6.2). Second, vessel tracking is accomplished
by matching a cylinder-like model in combination with depth-first search
(section 6.3). For detailed information on the datasets used for validation
please refer to [41].

The proposed method was directly compared to four other automatic [3,
66, 34, 71], three semi-automatic [37, 19, 7], and five interactive [24, 64, 40,
79, 26] coronary artery tracking algorithms at the MICCAI 2008 workshop
”Segmentation in the Clinic: A Grand Challenge II”. In the following the
other fully automatic approaches are shortly outlined.

Very good results were obtained by Bauer and Bischof [3]. Their ap-
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proach is based on a robust vesselness filter using a normalized gradient
vector field (GVF). Normalization of gradients leads to a high independence
from the image contrast and thus increases robustness. The proposed vessel-
ness filter is applied to the complete volume. Centerlines of vessels are then
extracted all over the dataset using a hysteresis loop. Finally vessel segments
are connected and the largest connected component represents the extracted
coronary artery tree. Due to its bottom-up structure the method achieves
better results in overlap measures than the presented method. However,
accuracy measures are worse because the normalized gradient vector field
does not necessarily align the automatically computed centerlines with the
reference centerlines.

Tek et al. [66] implement a shortest path algorithm for small vessel seg-
ments. A cost function is used which calculates local vesselness based on a
2D cross section of the volume. By iteratively finding optimal local paths
the vessel tree is extracted.

The basic idea behind the work of Kitslaar et al. [34] is connected com-
ponent labeling. From the segmentation masks the centerlines are then
reconstructed. Fast-marching level sets are used to calculate initial cen-
terlines. These initial centerlines are further refined by calculating curved
multi planar reformatted images and detecting longitudinal lumen contours.
Although Kitslaar et al. reach a relatively high accuracy of centerlines, their
accuracy is still lower than the model-based approach.

Wang and Smedby [71] segment the coronary artery tree using fuzzy
connectedness. A distance map is then used to improve the centerline.

6.2 Detection of Potential Coronary Artery Ori-
gins

Two steps are carried out to automatically detect potential origins of coro-
nary arteries: First, a 3D model of the heart is matched to the volume
data. Second, local maxima of a symmetry feature volume are calculated
and identified as potential coronary artery origins.

6.2.1 3D Model of the Heart

A 3D model of the heart is built based on 2245 manually placed landmark
points defined on dataset 04. This dataset is chosen since it exhibits a
low noise level according to the noise estimation algorithm outlined in sec-
tion 6.3.3. Landmark points are defined on the left atrium, the left ventricle,
the origin of the aorta, the pericardium, and outside around the heart. Fig-
ure 6.1(a) shows the model as wireframe and figure 6.1(b) as transparent
rendering. Figure 6.1(c) shows the model matched to dataset 03.

A Delaunay tetrahedralization of the landmark points is performed to
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(a) (b)

(c)

Figure 6.1: The 3D heart model as wireframe (a) (small black squares
represent control points for diffeomorphic warps), as partially transparent
surface model (b) and matched to dataset 03 (c).
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obtain a volumetric tetrahedra mesh. A grid of texture samples (with a cell
size of 7mm edge length) is layed over the tetrahedra mesh. For each sample
position the barycentric coordinates within the surrounding tetrahedron are
stored. A deformation describing the displacements of landmark points can
easily be passed on (via the precalculated barycentric coordinates) to the
volumetric grid of texture samples.

To allow for smooth deformations of the landmark points during match-
ing we apply a combination of diffeomorphic warps similar to those used,
e.g., for diffeomorphic statistical shape models [12]. However, we do not
use a regular grid for control points, but manually distribute them sparsely
within the heart. Small black squares in figure 6.1(a) represent the 14 control
points. Spatial transformations (scaling and translation) at control points
are passed on to landmarks in the neighborhood. Deformation displace-
ments are weighted with a function k of the distance between landmark
and control point. As k we choose a scaled Gaussian function (σ = 30mm,
µ = 0). A scaling factor is used such that k(0) = 1.

The appearance part of the model assigns one out of three classes to
each texture sample. A class is assigned to each voxel by investigation of
the original gray values as observed in dataset 04. Histogram equaliza-
tion is performed for normalization first. A quantization of gray values to
three quantization levels each representing one class is performed. As ex-
pected, the three classes correspond approximately to the regions of lung,
myocardium and contrast enhanced blood.

Model matching accuracy (the objective function for matching) is eval-
uated by first sampling gray values according to the spatial configuration
of the model in the current iteration. Next, gray value classification is es-
timated via maximum likelihood of the observed gray values. Finally, the
observed classes are compared with the expected classes for each texture sam-
ple and a likelihood is calculated as in [75]. A probability of 0.1 is assigned
to misclassified samples and a probability of 0.9 is assigned to correctly clas-
sified samples. We use a shape particle filtering approach [18] for calculating
the optimal shape (with respect to the texture model) in the shape space
spanned by the parameters of rigid transformation and diffeomorphic warps.

6.2.2 Local Symmetry

Two of the 3D model’s landmark points, L and R, are located directly
on the left and right coronary arteries close to the aorta (figure 6.2(a)).
After model matching these two landmarks define the locations where the
origins of the two main coronary arteries are approximately located. Due to
anatomical variations, however, these points will probably not exactly reside
on the coronary arteries of the unknown dataset after model matching. This
is why we look for coronary origins within a region of radius rinit around
L and R. rinit is chosen 2.5 times the distance of two landmark points A1
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(a) (b)

Figure 6.2: (a) Four landmark points A1, A2, L, and R are used to
define regions that are searched for coronary artery origins. Local maxima
of symmetry features (potential origins) are shown as bright crosses. (b)
Calculation of symmetry feature contribution along scan lines.

and A2 inside the aorta as illustrated in figure 6.2(a).
At this stage of the algorithm we are interested in potential coronary

artery origins. The idea is to gain robustness by calculating multiple can-
didates and to later select the best ones after more detailed evaluation. In
fact we decide which of the potential origins are coronary arteries after few
tracking iterations using the tracking algorithm outlined in section 6.3. We
calculate a simple symmetry feature to identify locally promising coronary
artery candidates. A symmetry feature volume for regions around L and
R is initialized with value 0 for every voxel and 3D image gradients are
precalculated. A scan line of length 10mm (which is assumed the maximum
diameter of a coronary artery) along the direction of the gradient vector v1

is traversed. Figure 6.2(b) illustrates this for a voxel at position P1. At
every position along the scanline such as P2, a second gradient vector v2

is investigated. The squared length of v1 − v2 is calculated and added to
the voxel within the feature volume at position C (which lies in the middle
between P1 and P2). This procedure is carried out for every voxel. Finally,
the feature volume contains high values at voxels which locally exhibit high
symmetry. After the symmetry volume has been generated, local maxima
are identified as potential coronary artery origins.

Each potential coronary seed is tracked 3 iterations wide using the ves-
selness function v defined below. For these three iterations the average
vesselness is calculated and the origin with the best evaluation is used as
the first coronary artery to be further tracked. The vector a from A1 to
the first symmetry maximum is calculated. The next best candidate with a
vector b from A1 to this candidate and an angle of more than 50◦ between
a and b is selected as the second coronary artery. For these two finally
selected origins a tracking backward into the aorta is performed by using
the tracking method outlined below.
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6.3 Vessel Tracking

We accomplish vessel tracking by incremental matching of a shape and ap-
pearance model. In contrast to the 3D model for the heart it is difficult
to formulate a generic shape model for the vessel tree of coronary arteries.
Shape and topology vary substantially between patients. We incrementally
grow the vessel tree starting from the two origins of left and right coronary
arteries. In principle we proceed in a similar way as a recently proposed
method that uses Bayesian tracking [53]. However, our method differs in
how successive candidates are selected. Furthermore our method handles
branching and termination.

6.3.1 Estimating Vesselness

We track a vessel by iteratively matching a rigid model with simple sym-
metric shape. For a given position x, a vector d indicating the tangential
direction of the vessel, and a radius r, we define a function v(x,d, r) which
reflects the ”vesselness” of the given configuration for a given volume dataset.
Texture samples are created by using a shape pattern of two concentric cir-
cles which are translated and scaled along direction d. A pure translation
of two concentric (an interior and an exterior) circles leads to a perfectly
cylindrical pattern. However, if – as illustrated in figure 6.3 – the artery
exhibits strong bending at the investigated position, a straight cylindrical
model does not fit well. Along the central axis we scale the circles which
carry texture samples by using a scaling function s(x) where x is the distance
to the center of the pattern divided by the radius r.

In fact we use two patterns for two different levels of detail. In the first
step a pattern with larger margins but smaller scaling is used for evalu-
ating the approximate direction of the vessel. This pattern is depicted in
figure 6.4(a) (cross section) and 6.4(b) (3D). Quadratic scaling functions

s1,in(x) = 0.75− x2 ∗ 0.2 (6.1)

and

s1,ext(x) = 1.25 + x2 ∗ 0.2 (6.2)

of interior and exterior radii are applied along the axis. In the second
step the estimated position of the vessel is refined by using a second pat-
tern depicted in 6.4(c) (cross section) and 6.4(d) (3D). Circle-shaped scaling
functions

s2,in(x) = −0.05 + sin (arccos (x)) (6.3)

and
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Figure 6.3: Straight cylindrical pattern versus bent pattern for estimation
of vesselness.

s2,ext(x) = 2.05− sin (arccos (x)) (6.4)

of interior and exterior radii are applied along the axis. For both patterns
additional samples lying at the central axis along the direction of the vessel
are sampled and marked as interior samples. In figures 6.4(a), 6.4(b), 6.4(c),
and 6.4(d) the interior sample positions are colored gray and exterior samples
are colored black.

For a given shape configuration (x,d, r), the texture values of the sam-
pling pattern are accordingly extracted from the volume data using near-
est neighbor interpolation. These values are used to create two separate
histograms Hin and Hout for interior and exterior sample values respec-
tively. The basic assumption is made that in case of a perfect alignment
with a vessel, there must be a threshold that optimally separates both his-
tograms. This is illustrated in figure 6.5(a) where the dashed line represents
the threshold and on the left side perfectly separates samples from inside
and outside the vessel. On the right side the separation is not so obvious.
The number of values which are (as expected) greater than the threshold for
the interior histogram are divided by the total number of interior samples.
The resulting fraction fin is the fraction of gray values which have a value
as expected by the model. Similarly, for the exterior histogram the fraction
fext of values smaller than the threshold (as expected) is calculated. The
vesselness function v is finally defined as the mean of the above fractions:

v(x,d, r) =
fin + fext

2
(6.5)

where the threshold is chosen such that v is maximized.
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(a) (b)

(c) (d)

Figure 6.4: Cross section (a) and 3D view of sampling pattern 1 (b). Cross
section (c) and 3D view of sampling pattern 2 (d).

(a) (b)

Figure 6.5: The histograms generated from locally sampled texture (a).
Candidates evaluated for finding the successive segment (b). Dots with ar-
rows indicate positions and orientations of the segments. The bold arrow
represents the current segment.
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6.3.2 Tracking of Vessels

The proposed vessel tracking algorithm proceeds in a depth-first fashion by
adding new vessel segments to the vessel tree that has been extracted so
far. A vessel segment is defined again by a shape configuration (x,d, r) as
outlined in section 6.3.1. By convention d points from proximal to distal.
The idea is to compare possible candidates for the successive vessel segment
distal to the current one. Vessel tracking is continued with the segment that
exhibits the highest value of the vesselness function v.

Let sc = (xc,dc, rc) be the current vessel segment. A set of candidates
for successive segments is calculated in the following way. Direction vectors
dn,i with angles α between −90◦ to 90◦ relative to dc in steps of 18◦ are
considered. Radii for the new candidates range from 0.5rc to 1.5r0 in scaling
increments of 1.1. Positions for candidates are generated as

xn,i = pc + ∆(dc + dn,i)/2 (6.6)

where ∆ is the step size. We use a variable number of step sizes nsteps

depending on α. The values 6, 3, 2, 1 are assigned to nsteps for α < 5◦, 30◦,
60◦, 90◦ respectively. The distance to the successive candidates is calculated
as (nsteps ·rc)/2+0.5. This scheme for the generation of successive candidate
positions x and directions d is illustrated in figure 6.5(b).

From all generated candidates the one with the most significant (largest)
vesselness v(sn,i) is selected as the successive candidate. In order to refine
the candidate, a set of refined (altered position, scaling, radius) candidates
close to the selected one is generated by using sampling pattern 2. Again
the one with the most significant vesselness survives.

The second best candidate for which the direction vector differs more
than 30◦ to the direction vector of the best successive candidate is stored
as a possible branch. The vessel is tracked until the termination criterion
which is discussed in section 6.3.3 is fulfilled. Then all possible branches of
the terminated vessel are investigated. Each branch is tracked five segments
wide. The depth-first search is continued with the branch that exhibits the
largest average vesselness of the first five segments. The algorithm proceeds
until a maximum number of vessels (in the reported experiments we used
30) is found. An additional restriction is that sub-branching is stopped for
vessels where a branching depth of two is reached.

6.3.3 Termination Criterion

We estimate the level of noise in a CTA volume before starting vessel track-
ing. Later this estimate is used in a noise-adaptive criterion for vessel ter-
mination. The vessel termination criterion is not related with the vesselness
function v which is only used for selection of the optimal successive segment.
We apply a simple noise estimation scheme where we consider gray value dif-
ferences, δg, of neighboring voxel pairs. A neighboring voxel pair is defined
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Figure 6.6: The relative frequencies of local gray value differences in
datasets 03 (a) and 04 (b) respectively (vertical lines indicate mean absolute
differences δg). (c) The mean of estimated noise distributions for workshop
datasets 00 – 23. (d) Pairs of samples compared with mean voxel difference
for termination criterion.
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as a pair of voxels with a distance of three voxel diameters. 100,000 voxel
pairs are randomly chosen and absolute gray value differences are measured.
In order to keep out regions within the lung, only voxel pairs are considered
for which both gray values are greater than -500 Hounsfield units (HU). Fig-
ures 6.6(a) and 6.6(b) show the resulting relative frequencies of gray value
differences for datasets 03 and 04. The mean values of gray value differ-
ences δg,03 and δg,04 for datasets 03 and 04 are 63 and 45 Hounsfield units
respectively. The mean values for all datasets are shown in figure (c).

We consider a gray value difference, δg, less than or equal the mean, δg,
most likely to originate from noise. A gray value difference greater than δg

rather indicates a meaningful transition between background and object at
the corresponding voxel pair. During vessel tracking, pairs of gray values are
considered: each interior texture sample is compared to its radially exterior
neighbor sample (figure 6.6(d); sample pairs are connected by lines). If
more than half of the measured texture differences are less than the average
gray value difference, the vessel is considered not distinguishable from the
background. If two successive vessel segments fulfill this criterion the vessel
is terminated.

In fact we use some additional vessel termination criteria. If the vessel
intersects with itself (a segment overlaps with one of its preceding segments)
the vessel is terminated. Further, if the mean gray value of exterior samples
falls below a Hounsfield value of -500 (lung vessel), tracking is stopped.

6.3.4 Smooth Interpolation of Centerline Segments

The method presented above generates a discrete set of vessel center points.
In order to derive a continuous 3D curve which better approximates the
vessel’s centerline, an adequate interpolation technique has to be applied.

A Bezier curve is fit in order to interpolate the vessel’s centerline in be-
tween adjacent segment centers. An example is illustrated in figure 6.7. The
center positions P0 and P1 and unit length tangent vectors of the centerline
t0 and t1 are known from segment fitting. However, in order to fit a cubic
Bezier curve, two additional control points (or the exact lengths of tangent
vectors) are required. In this work the assumption is made that the following
distances are equal: P0P2,P2P3,P3P1. With this assumption the exact
positions of control points P2 and P3 upon tangents of the centerline are
calculated. By taking the additional control points into account, a Bezier
curve can be calculated for each segment.

Let v be the vector from P0 to P1. Let further be t0 the normalized
tangent vector at P0 and t1 the normalized tangent vector at P1. Then
there must be a unit vector u and a scaling factor s such that:

s · t0 + s · t1 + s · u = v. (6.7)

Equation (6.7) and the condition that u is a unit vector (|u| = 1) together
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Figure 6.7: Interpolation of an artery’s centerline between two adjacent
vessel segments. A cubic Bezier curve is calculated. Points P0 and P1 to-
gether with normalized tangential vectors t0 and t1 are known from segment
fitting. The two missing control points P2 and P3 are calculated using the
assumption that the distances P0P2, P2P3, and P3P1 have equal length.

define a system of four equations. The solution consists of the scaling factor
s and the three coordinates of the unit vector u. This solution ensures an
equal distance between P0P2, P2P3, and P3P1. For some configurations
the system of equations has no solution. However, solutions do exist for
all possible spatial configurations of coronary artery segments as they are
calculated by the algorithm described above.

6.4 Evaluation Framework

Evaluation of the presented algorithm was performed at the MICCAI 2008
workshop ”3D Segmentation in the Clinic: a Grand Challenge II”. For
this workshop an elaborate evaluation framework was introduced by the
workshop organizers. In this section this framework is outlined and the
selection of the correct reference vessels is described.

6.4.1 Evaluation Framework

A database of 32 CTA datasets was provided for testing coronary artery
centerline extraction algorithms. For each dataset the centerline and radii
were manually defined. This was done for the right coronary artery (RCA),
the left descending anterior coronary artery (LDA), the left circumflex coro-
nary artery (LCx), and one additional larger side branch of the coronary
artery tree. Thus, a total set of 32 (datasets) × 4 (vessels) = 128 reference
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coronary arteries were generated by the workshop organizers. The manual
annotation was performed by three different observers. From the three dif-
ferent annotations a reference standard (ground truth) was derived as well
as inter-observer variances.

The 32 CTA datasets (which are representative for clinical practice) were
split into three groups:

• Training datasets: Datasets 00 – 07 including the reference standard
were available for all participants before the workshop. These datasets
could be used for experimenting and tuning the algorithm.

• Testing-1 datasets: Datasets 08 – 23 without reference standards
were available for all participants before the workshop. Workshop par-
ticipants had to run their coronary centerline extraction algorithms on
these datasets. The results had to be submitted before the workshop.

• Testing-2 datasets: Datasets 24 – 31 were not available before the
workshop. These datasets were made available (without reference
standard) at the beginning of the workshop. Workshop participants
had a few hours time to run their algorithms directly at the workshop
and submit their results.

The evaluation of the different algorithms is based on six different mea-
sures. Three different overlap measures and three different accuracy mea-
sures:

• The first overlap measure, overlap (OV), measures the complete
overlap of a calculated centerline with the reference centerline. An
overlap is considered if the computed centerline is within the reference
radius of the reference centerline.

• The overlap until first error (OF) measures the overlap with the
reference until the first (most proximal) error (i.e., a non-overlap) oc-
curs.

• Coronary arteries with a diameter larger than 1.5mm are assumed to
be clinically relevant. The last overlap measure, the overlap with
the clinically relevant part of the vessel (OT) measures the
percentage of overlap with the part of the vessel where it reaches (from
distal to proximal) the first time a diameter of at least 1.5mm.

• The first accuracy measure is the average distance (AD). It is the
average distance between the calculated and the reference centerlines.

• The average distance inside a vessel (AI) measures the average
distance only in those parts where an overlap occurs.
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• The average distance to the clinically relevant part of a vessel
(AT) measures the average distance between centerlines within clini-
cally relevant parts of the vessel (with a diameter of at least 1.5mm).

Based on these measures a scoring system scores each method by taking
into account the inter-observer variations. The scoring is defined such that
a scoring of 100 corresponds to a perfect accordance with the reference. A
scoring of 50 indicates approximately a performance close to inter-observer
variability. A score of 0 means that the method completely failed. The
ranking of individual algorithms is based on the scoring system. For scoring
and ranking only the testing-1 and testing-2 datasets were used. No reference
standards are publicly available for these datasets. Ranking and scoring is
calculated for each measure and each vessel (of testing datasets 08 – 31).
Thus, a total of 24 (datasets) × 4 (vessels) × 6 (measures) = 576 ranks
and scores are calculated for each algorithm. The comparison of algorithms
is based on these ranks.

The algorithms that were compared in the workshop were classified into
three different categories:

1. Fully automatic methods (no user interaction).

2. Semi-automatic methods (limited user interaction).

3. Interactive methods (any user interaction).

For detailed information about the workshop environment including eval-
uation measures and scoring please refer to the workshop description [41]. A
detailed comparison of the different workshop methods and general conclu-
sions can be found in a recent publication [52]. Since 2008 the Rotterdam
Coronary Artery Algorithm Evaluation Framework [50] is publicly available.
This platform enables researchers to register a team, download the datasets
and compare their results with others.

6.4.2 Selection of Reference Vessels

For evaluation purposes the reference centerline has to be selected that cor-
responds to an automatically extracted centerline. Therefore the evaluation
framework provides for each reference vessel two individual points that both
lie on the reference centerline. Point A represents a point close to the distal
end of the vessel. Point B lies close to the aorta at a proximal location on
the centerline. Workshop participants could freely choose a method to select
the correct reference by using points A and B.

The results presented below were achieved by applying the following
procedure for selecting the correct reference vessel: For a given point A
the closest computed vessel with a distance of less than 5mm was selected.
If no vessel was closer than 5mm to point A, point B was used. If there
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Dataset 08 11 14 19 22 23 26 29 30
Vessel 1, 2 3 3 1 1 2 1, 2, 3, 4 2 1

Table 6.1: Reference vessel selection using the (proximal) point B.

was also no vessel closer than 5mm to point B the vessel was not detected.
For 13 out of the 96 reference vessels of datasets 08 – 31 point B was used
for selection. More precisely point B was used for the vessels listed in
table 6.1. All remaining vessels of testing datasets were identified using
point A. The selection of point B already indicates a relatively bad result.
Point A suggests a good result.

6.5 Results

As an example the result for a single dataset is illustrated in figure 6.8.
It shows the roughly registered model together with the extracted coronary
artery segments. Each segment is illustrated by a center point together with
a circle that indicates the calculated radius and orientation of the respective
segment.

Results for testing datasets 08 – 31 reach an average scoring of 38.0 for
accuracy measures and a scoring of 52.6 for overlap measures. Tables 6.2,
6.3, and 6.4 summarize the results for the testing datasets.

An illustration of the overlap measure (OV) for all vessels of the testing
datasets is shown in figure 6.9. Figure 6.10 shows the accuracy for overlap-
ping regions (AI measure). Detailed results per vessel are listed in appendix
A. The tables in appendix A also show for each vessel and measure the
ranking with respect to other workshop participants.

A comparison with other methods presented at the workshop is given
in table 6.5. The model-based approach presented in this work (Zambal
et al.) had the third best average ranking with respect to all methods. It
outperformed all other automatic and all semi-automatic methods.

The workshop framework provides a classification of datasets with re-
spect to image quality and severity of calcifications. Table 6.6 shows the
rankings of Zambal et al. for different subsets of testing datasets. Rank-
ings shown in the table are integer numbers that are derived from sorting
the methods by their average rankings. The conclusions that can be drawn
from this table are: Zambal et al. outperform other automatic methods if
the calcium score is low, or moderate, or all images with respect to calcium
score are considered. However, in the case of severe calcifications (all image
qualities) the method is ranked second among the automatic methods. In
case of severe calcifications and poor image quality the method produces
only the third best results among automatic methods. However, it has to
be stated that only one dataset had poor image quality and severe calcium
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Figure 6.8: Coronary artery tracking: The result for dataset 11 (matched
model and extracted coronary arteries).
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Figure 6.9: Results of coronary artery tracking on all 24 testing datasets.
The percentage of overlap (OV) is plotted for all four vessels of each dataset.

score. In table 6.6 relatively small subsets of the testing datasets are consid-
ered. The resulting questionable statistical reliability has to be taken into
account here.
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Figure 6.10: Results of coronary artery tracking on all 24 testing datasets.
The average distance to the reference segmentation inside the vessel (AI) is
plotted for all four vessels of each dataset.

75



C
hapter

6.
Shape

and
A

ppearance
M

odels
for

A
utom

atic
C

oronary
A

rtery
T

racking

Dataset OV % score rank OF % score rank OT % score rank Avg.
08 73.4 39.8 7.75 62.7 41.7 3.75 76.0 40.7 7.25 6.25
09 91.1 55.3 7.00 89.8 67.8 3.75 93.6 72.4 5.25 5.35
10 95.4 49.1 5.50 76.6 64.3 2.50 95.8 73.4 3.75 3.92
11 71.9 36.7 8.75 52.8 52.1 5.50 72.1 49.3 8.00 7.42
12 88.8 45.8 8.00 25.8 14.5 7.00 92.3 46.8 7.00 7.33
13 91.9 58.9 6.50 70.7 48.6 6.25 92.6 59.0 6.50 6.42
14 83.6 42.2 8.50 71.8 64.0 4.00 86.1 62.5 7.00 6.50
15 97.6 58.9 6.00 89.2 70.7 4.50 98.8 83.5 3.75 4.75
16 89.2 48.8 7.50 72.6 48.1 6.50 92.4 59.6 6.00 6.67
17 76.5 39.4 9.75 24.2 13.0 7.25 77.4 39.4 10.00 9.02
18 90.6 46.1 7.75 72.6 61.6 5.50 92.2 71.6 4.75 6.00
19 84.3 56.1 7.75 79.4 66.0 5.25 84.9 56.0 7.25 6.73
20 96.3 54.6 3.75 37.7 21.5 6.00 98.6 56.6 2.75 4.15
21 90.4 51.4 8.25 95.4 66.8 5.25 96.1 60.8 6.50 6.65
22 77.9 39.3 8.75 77.3 51.2 6.75 79.8 64.9 7.00 7.50
23 82.2 46.1 7.25 71.0 60.8 5.75 83.7 67.0 5.00 6.00
24 91.8 51.6 6.50 76.0 72.3 3.25 97.2 86.1 2.00 3.92
25 90.5 45.7 6.25 39.1 19.7 7.00 92.7 46.4 6.00 6.40
26 30.1 15.7 9.25 14.8 11.0 4.50 30.6 15.9 9.50 7.73
27 87.2 60.6 4.50 37.2 35.2 7.50 87.4 57.2 4.50 5.50
28 81.0 42.3 9.00 81.4 44.0 7.25 88.0 45.3 9.25 8.50
29 96.4 59.4 4.50 75.7 63.5 2.75 98.0 86.5 1.50 2.92
30 90.0 59.5 7.25 90.0 68.7 5.25 93.6 72.1 6.00 6.17
31 84.7 63.2 9.00 83.6 54.5 5.25 88.9 69.6 5.00 6.42

Avg. 84.7 48.6 7.29 65.3 49.2 5.34 87.0 60.1 5.90 6.18

Table 6.2:
Average overlap
per dataset

76



6.5.
R

esults
Dataset AD mm score rank AI mm score rank AT mm score rank Avg.

08 3.93 36.8 4.75 0.32 48.3 3.50 3.75 38.0 4.75 4.35
09 0.95 40.0 2.75 0.20 43.9 2.75 0.80 41.1 2.75 2.75
10 0.47 36.0 3.00 0.28 37.7 4.25 0.46 35.4 3.00 3.42
11 7.03 31.1 6.50 0.33 44.0 3.00 6.96 31.2 6.50 5.33
12 1.22 37.0 3.00 0.26 41.2 2.75 0.53 38.3 3.00 2.92
13 1.15 40.7 3.25 0.27 44.1 3.00 1.13 41.3 3.25 3.15
14 2.03 37.9 5.25 0.31 44.2 3.25 1.67 38.7 5.00 4.50
15 0.34 41.8 3.25 0.23 42.7 3.50 0.29 42.6 3.25 3.33
16 1.44 37.5 2.75 0.26 41.9 2.50 1.29 37.8 2.75 2.67
17 4.30 33.7 6.25 0.37 42.6 5.00 4.31 33.9 6.25 5.85
18 1.37 37.9 3.50 0.24 41.6 3.75 1.29 38.4 3.50 3.58
19 4.26 38.0 5.50 0.30 44.7 3.50 4.21 38.2 5.50 4.83
20 0.69 41.6 2.50 0.37 43.0 3.00 0.39 42.6 2.50 2.67
21 1.45 37.2 3.25 0.21 40.8 3.25 0.58 39.1 3.25 3.25
22 5.06 29.7 5.75 0.31 37.3 3.75 4.86 30.2 5.75 5.08
23 5.75 35.9 4.75 0.25 41.9 2.75 4.76 36.5 4.75 4.08
24 0.93 38.3 2.50 0.20 41.3 3.00 0.23 40.3 2.50 2.65
25 0.84 32.0 3.75 0.35 35.1 4.00 0.68 32.6 3.75 3.83
26 29.26 17.5 8.75 0.52 53.0 3.50 28.23 17.8 8.75 6.97
27 2.91 36.2 2.75 0.33 40.5 3.50 2.90 36.7 2.75 3.00
28 2.95 31.3 4.25 0.20 38.3 3.25 1.36 34.0 3.75 3.75
29 0.42 39.1 2.75 0.23 40.3 3.25 0.36 39.6 2.50 2.83
30 1.14 36.8 2.75 0.22 40.7 2.75 0.68 38.1 2.75 2.77
31 4.97 31.6 4.75 0.19 37.1 3.25 4.53 32.8 4.25 4.10

Avg. 3.54 35.6 4.09 0.28 41.9 3.33 3.18 36.5 4.03 3.82

Table 6.3:
Average accuracy
per dataset
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Measure % / mm score rank
min. max. avg. min. max. avg. min. max. avg.

AD 0.19 mm 37.88 mm 3.54 mm 9.9 48.8 35.6 1 13 4.09
AI 0.15 mm 0.66 mm 0.28 mm 30.2 65.7 41.9 1 11 3.33
AT 0.16 mm 33.91 mm 3.18 mm 9.9 48.8 36.5 1 13 4.03
OV 16.1% 100.0% 84.7% 8.3 100.0 48.6 1 13 7.29
OF 4.2% 100.0% 65.3% 2.1 100.0 49.2 1 13 5.34
OT 16.2% 100.0% 87.0% 8.3 100.0 60.1 1 13 5.90

Total 1 13 5.00

Table 6.4: Coronary artery tracking results: Summary
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Method Challenge Overlap Accuracy Avg.
1 2 3 rank rank rank

Friman et al. [24] × 2.07 1.42 1.75
Szymczak [64] × 4.21 2.35 3.28

Zambal et al. [77] × 6.17 3.82 4.99
Krissian et al. [37] × 4.31 7.94 6.13

Bauer and Bischof [3] × 5.39 7.29 6.34
Tek et al. [66] × 7.69 5.74 6.72

Metz et al. [40] × 5.30 8.17 6.73
Kitslaar et al. [34] × 8.56 5.75 7.15
Dikici et al. [19] × 6.95 9.11 8.03

Wang and Smedby [71] × 8.71 8.36 8.53
Zhang et al. [79] × 7.52 10.33 8.92
Hoyos et al. [26] × 9.05 8.91 8.98
Castro et al. [7] × 10.42 11.77 11.10

Table 6.5: Coronary artery tracking: Comparison of different methods.
The column ”Challenge” indicates the type of the method: (1) fully auto-
matic, (2) semi-automatic, and (3) interactive.

hhhhhhhhhhhhhhhhhImage quality
Calcium score

all low moderate severe

all 3 / 1 3 / 1 3 / 1 5 / 2
good 3 / 1 3 / 1 3 / 1 -

moderate 3 / 1 4 / 1 3 / 1 3 / 1
poor 4 / 1 6 / 1 2 / 1 7 / 3

Table 6.6: The above table illustrates the final rankings of Zambal et
al. when the evaluation is restricted to only subsets of all testing datasets.
Each subset is defined by a specific image quality and severity of calcification.
Each cell contains two values: The first value is the final ranking with respect
to all the 13 methods (including semi-automatic and interactive approaches).
The second value is the final ranking with respect to the 5 automatic methods.
A value of 3 means that the method lead to the third lowest average ranking.
None of the testing datasets had good image quality and severe calcifications.
This is why the respective cell in the table is empty.

6.6 Conclusion

We have outlined a method for automatic centerline extraction of the coro-
nary artery tree in CTA. The three most critical issues in vessel tracking
probably are vesselness estimation, termination criterion, and branching. In
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the presented approach we handle these issues by putting multiple texture
samples into relation for vesselness estimation. For this we avoid the use
of a sample mean of gray values because of its sensitivity to outliers. In-
stead we apply a method which evaluates the separability of histograms.
Noise estimation is performed to achieve an effective termination criterion.
Branching is handled by applying a depth-first search where new branches
are selected after few tracking iterations have been performed. Overlap
measures achieved with the model-based approach of Zambal et al. are par-
tially slightly worse than overlaps from other automatic methods. However,
the great advantage of the method is its high accuracy. Because of this
the method was ranked best among the automatic methods. It could even
outperform many of the interactive and semi-interactive methods.
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7.1 Summary

Computed tomography and Magnetic Resonance Imaging nowadays offer
great possibilities. Temporal and spatial resolutions are continuously im-
proving. For many applications in cardiology a satisfying image quality is
already achieved with present scanner technology. In daily clinical routine a
huge amount of image data is generated from which important relevant in-
formation has to be derived. Currently this leads to considerable overhead:
tedious manual postprocessing and annotation of medical images has to be
performed. The goal is to reduce this overhead. Automatic image segmen-
tation algorithms are developed to achieve this goal. Automatic methods
do not only support the clinician by reducing workload but also improve
standardization and quality control of medical image analysis.

Initialization of model-based cardiac MR segmentation was presented in
chapter 2. The initial placement is crucial for starting the algorithm that
fits the model accurately to the image. Results of the presented method are
comparable to manual initializations performed by five different users.

A two-component approach to shape modeling was introduced in chap-
ter 3. This model is especially designed for 3D MRI studies of the left ven-
tricle. Individual 2D models are combined in 3D by a centerline model. The
results are better than those of a standard 3D Active Appearance Model. An
extended two-component model was presented in chapter 4. The extended
model is bi-temporal and the right ventricle is additionally included.

In Chapter 5 an information theoretic approach to texture modeling was
presented. The idea behind entropy-optimization is to reduce the influence
of brightness and contrast variations in different images. An optimal texture
transformation is calculated which optimizes the information content of a
set of images with predefined correspondences. For different data (heart,
spine, brain ventricles) it is shown that the proposed model is more robust
than standard Active Appearance Models.

In chapter 6 a model-based technique for automatic coronary artery
tracking was introduced. Two different models at different scales are used.
A large-scale model of the complete heart is fitted to a volume in order to de-
termine regions of interest for coronary artery origins. A small-scale model
representing coronary artery segments is iteratively matched. To effectively
cope with low contrast, an adaptive thresholding is used to evaluate match-
ing accuracy of small-scale vessel segment models. In a comparison with
four other automatic coronary artery segmentation algorithms, the method
presented in chapter 6 achieves the best results.

7.2 Conclusions

Four major conclusions can be drawn from this thesis:

82



7.2. Conclusions

Conclusion 1: Use prior knowledge! Medical image segmentation
is the bottleneck for many interesting applications including visualization,
surgery planning, and extraction of relevant clinical properties. Medical
image segmentation is in many cases very hard to perform and requires even
in case of human operators a high level of experience. Automatic medical
image segmentation will only be really successful when incorporating prior
knowledge.

Conclusion 2: Use effective model representation! The use of
prior knowledge leads to the question how such prior knowledge can be op-
timally represented. Typically a model is used which optimally contains the
necessary information about the segmented organs. The question is how to
represent such a model in an optimal way. Occham’s theorem is an inter-
esting answer to this question. It states that if multiple theories describe
a phenomenon equally well, then the simplest of these theories should be
used. Although Occham’s theorem dates back to the Middle Ages, informa-
tion theory makes it possible to formulate it in a modern way. By describing
complexity by information entropy, the optimal model representation can be
identified. Using minimal entropy to find an optimal texture model was pro-
posed in chapter 5. In general the consideration of entropy is very promising
for the formulation of expressive models for effective automatic image seg-
mentation.

Conclusion 3: Use statistics and probability theory! The envi-
ronment of image segmentation algorithms usually contains multiple sources
of uncertainty: Weak definitions of the segmented objects, noise and image
artifacts, complex pathologies, etc. Such uncertainty is difficult to handle
and requires adequate methods. Statistics and probability theory are well-
established mathematical frameworks. It is worth to formulate segmenta-
tion problems within these frameworks and to build on these. Especially
Bayesian reasoning is a very promising technique from probability theory.
It is the basis for many popular probabilistic models such as Markov Chains
or Markov Random Fields.

Conclusion 4: Use adaptiveness! Every segmentation algorithm has
a set of parameters which influences the segmentation result. Often it is very
difficult to find suitable parameters to let the algorithm produce reasonable
results. The optimal way of designing a segmentation algorithm is to keep
the number of parameters low. Adaptiveness can help here. By making a
segmentation algorithm adaptive, this does not only reduce the number of
parameters, it also increases robustness. An example for adaptiveness is the
entropy-optimized texture model proposed in chapter 5. In standard Active
Appearance Models a texture normalization has to be performed in each
iteration of the model matching process. This requires the selection of a
specific normalization procedure. In the entropy-optimized texture model
the transformation of gray values is adaptively re-estimated in each step.
Since random transformations are possible, the model adaptively selects a
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texture transformation which fits the current model shape. In a similar
way the threshold for vessel segment matching in chapter 6 is determined
adaptively.

Conclusion 5: Perform comparative evaluations! New evalua-
tion and comparison standards, open evaluation frameworks, and reference
databases are needed to push forward the state of the art in medical image
analysis. Frameworks like the one used in chapter 6 allow a comparative
evaluation of different approaches and helps to increase robustness and effi-
ciency of existing algorithms.
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Appendix A: Details Challenge Results

OV OF OT
D V % score rank % score rank % score rank
8 0 88.4 44.7 5 81.8 41.9 1 98.6 49.3 3
8 1 71.7 36.5 8 58.9 29.5 4 71.7 35.9 8
8 2 50.3 34.3 11 35.8 50.3 6 50.3 33.8 11
8 3 83.3 43.8 7 74.3 45 3 83.3 43.7 7
9 0 98.9 84.4 4 100 100 1 100 100 1
9 1 91.3 46.2 7 83.9 44.5 6 91.3 45.8 7
9 2 82.3 43.6 12 79.6 42.6 6 82.9 43.9 12
9 3 91.8 47.1 5 95.7 84.1 2 100 100 1
10 0 98.5 49.8 6 100 100 1 100 100 1
10 1 92.1 46.1 6 20.2 10.1 7 92.1 46 6
10 2 90.9 50.5 6 86.3 47.3 1 91.1 47.7 6
10 3 99.9 50 3 100 100 1 100 100 1
11 0 99.3 49.7 6 100 100 1 100 100 1
11 1 82.2 43.2 7 12.9 50.4 3 82.2 43.2 7
11 2 90 45.7 10 86.5 45.5 9 90.2 45.7 11
11 3 16.1 8.3 13 11.7 12.7 8 16.2 8.3 13
12 0 98.3 49.3 8 20.9 10.5 4 99.1 49.6 2
12 1 90.6 47.8 7 7.6 5.2 6 90.6 46.4 7
12 2 75.7 40.6 11 64 36.7 8 89.1 46 10
12 3 90.6 45.6 6 10.8 5.4 7 90.5 45.3 8
13 0 94.2 47.1 10 19.8 9.9 11 95.3 47.6 10
13 1 98 49.4 5 93 47.1 3 99.6 49.9 5
13 2 75.5 39.1 10 70.2 37.6 9 75.5 38.5 10
13 3 100 100 1 100 100 1 100 100 1
14 0 92.3 46.7 7 35.5 30.3 6 99.5 77.6 3
14 1 98.5 49.3 3 100 100 1 100 100 1
14 2 91.8 46.5 12 100 100 1 91.8 45.9 12
14 3 51.6 26.5 12 51.6 25.8 6 53 26.5 12
15 0 96 48.1 5 100 100 1 100 100 1
15 1 96.2 49.6 9 93.7 47.7 9 96.2 48.7 9
15 2 98.7 88.1 4 63 35.1 8 99 85.4 4
15 3 99.5 49.8 7 100 100 1 100 100 1

Table A.1: Overlap measures for testing datasets 08 – 15
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OV OF OT
D V % score rank % score rank % score rank
16 0 85.4 43.2 12 87.8 44.9 5 95.4 47.7 8
16 1 99.1 61.6 3 98.2 90.9 4 100 100 1
16 2 75.5 41.4 12 66.8 37.6 12 75.5 41.4 12
16 3 96.8 48.8 3 37.8 18.9 5 98.8 49.4 3
17 0 69 35.5 10 52.5 29.4 6 69 35.5 10
17 1 78.8 41.3 9 19.1 9.8 5 78.8 40 9
17 2 90.5 46.1 11 4.2 2.1 12 91.7 46.6 10
17 3 67.5 34.6 9 21.2 10.6 6 70 35.7 11
18 0 82.1 41.5 12 81.5 41.6 9 82.1 41.5 13
18 1 97.7 49.1 6 100 100 1 100 100 1
18 2 86.8 44.9 4 9.1 4.9 11 86.8 44.8 4
18 3 96 48.9 9 100 100 1 100 100 1
19 0 96.1 48.3 9 99 97.4 6 98.5 49.5 7
19 1 55 28 13 43.4 22.2 8 55 27.7 13
19 2 100 100 1 100 100 1 100 100 1
19 3 85.9 48 8 75.2 44.4 6 85.9 46.8 8
20 0 91.2 45.8 7 99.9 50 3 99.7 49.8 3
20 1 97.5 48.9 4 10.8 5.4 5 97.5 48.8 4
20 2 98.9 49.7 1 11.3 5.7 11 99.8 77.9 1
20 3 97.5 74.1 3 28.8 24.9 5 97.5 49.9 3
21 0 92.6 47.7 8 88.5 48.9 7 100 100 1
21 1 91.2 46 10 94 68.8 9 96.6 48.6 9
21 2 79 39.8 11 100 100 1 89 44.9 12
21 3 98.8 71.9 4 99.2 49.6 4 98.8 49.7 4
22 0 83.3 41.7 13 79.9 40 10 83.9 41.9 13
22 1 34.6 17.6 13 33.8 16.9 13 35.3 17.7 13
22 2 95.5 48.4 6 100 100 1 100 100 1
22 3 98.4 49.4 3 95.6 47.9 2 100 100 1
23 0 98.2 49.1 4 100 100 1 100 100 1
23 1 98.6 49.3 6 100 100 1 100 100 1
23 2 32.9 16.8 13 35.9 18.3 12 35.8 18.1 13
23 3 98.9 69.3 4 48.1 24.8 8 98.9 49.8 4

Table A.2: Overlap measures for testing datasets 16 – 23
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OV OF OT
D V % score rank % score rank % score rank
24 0 93.5 47.9 8 100 100 1 100 100 1
24 1 87.6 45.2 5 7.8 3.9 7 88.9 44.5 5
24 2 98.9 67.8 2 97.9 96.4 2 100 100 1
24 3 87.1 45.5 11 98.3 89 2 100 100 1
25 0 94.8 47.6 6 6.8 3.8 12 97.7 49 8
25 1 94.4 47.9 2 36.7 18.3 2 95.8 48 2
25 2 84 42.7 8 81.6 40.8 7 84 42 8
25 3 88.9 44.6 9 31.2 15.7 7 93.1 46.6 6
26 0 25.9 14.1 10 14.8 17.7 4 27.8 15.2 11
26 1 31.7 16.6 7 4.9 3.6 5 31.8 16.6 7
26 2 25.2 12.9 9 15.8 8.2 7 25.2 12.8 9
26 3 37.6 19.1 11 23.5 14.4 4 37.6 19.1 11
27 0 90.4 45.3 6 6.2 3.1 13 89.9 44.9 8
27 1 62.3 35.1 7 18.8 25.8 7 62.3 35.1 7
27 2 97.1 73.7 2 23.9 12 9 97.4 48.9 2
27 3 99.1 88.4 3 100 100 1 100 100 1
28 0 91.4 45.7 12 85.1 42.6 12 91.4 45.7 13
28 1 87.9 45.9 6 78.3 46.1 2 90.5 46.9 6
28 2 74.2 41.5 8 73.2 42.9 7 81.4 44.2 8
28 3 70.4 36.2 10 88.9 44.6 8 88.7 44.4 10
29 0 94.7 47.6 6 91 45.7 3 100 100 1
29 1 91.9 46.1 3 12 8.4 6 91.9 46.1 3
29 2 99.3 49.9 4 100 100 1 100 100 1
29 3 99.9 94.1 4 100 100 1 100 100 1
30 0 72.8 36.7 13 66.8 33.4 12 80.5 40.3 13
30 1 97.7 87.7 3 100 100 1 100 100 1
30 2 93.2 48.1 9 95.2 48.3 7 93.9 48.3 9
30 3 96.5 65.5 4 97.9 93 1 100 100 1
31 0 84.3 42.3 13 94 47 6 100 100 1
31 1 56.2 28.5 12 41.7 21.4 8 56.2 28.5 12
31 2 99.1 92.7 5 100 100 1 100 100 1
31 3 99.3 89.1 6 98.5 49.7 6 99.3 49.8 6

Table A.3: Overlap measures for testing datasets 24 – 31
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AD AI AT
D V mm score rank mm score rank mm score rank
8 0 0.91 42.8 2 0.18 48.1 1 0.2 47.5 2
8 1 8.04 35.7 3 0.25 49.6 1 8.04 35.7 3
8 2 5.06 30.6 10 0.57 50.8 9 5.06 30.6 10
8 3 1.69 38.2 3 0.29 44.7 3 1.69 38.2 3
9 0 0.21 39.3 2 0.19 39.7 2 0.18 39.8 2
9 1 1.28 41.6 2 0.21 45.4 2 1.28 41.6 2
9 2 1.65 36.8 2 0.24 44.5 2 1.56 37.1 2
9 3 0.65 42.3 2 0.18 45.8 2 0.18 45.9 2
10 0 0.24 35.9 2 0.21 36.3 2 0.22 34 2
10 1 0.59 33.9 3 0.27 36.5 5 0.59 33.9 3
10 2 0.7 43.8 2 0.27 47.8 2 0.68 43.9 2
10 3 0.37 30.2 3 0.37 30.2 5 0.37 29.9 3
11 0 0.38 33.3 5 0.37 33.5 5 0.37 33.5 5
11 1 1.81 38.3 3 0.37 44.2 3 1.81 38.3 3
11 2 0.62 42.8 3 0.23 45.7 1 0.6 42.9 3
11 3 25.3 9.9 13 0.34 52.4 1 25.06 9.9 13
12 0 0.25 34.7 2 0.22 35.2 2 0.24 34.8 2
12 1 0.64 39.8 2 0.26 43 2 0.64 39.8 2
12 2 3.56 33.5 3 0.22 43.6 3 0.79 39.3 3
12 3 0.45 40 2 0.32 43 1 0.46 39.3 2
13 0 0.39 40.3 2 0.29 42.4 2 0.36 41.6 2
13 1 0.26 39.9 3 0.23 40.6 4 0.23 40.7 3
13 2 3.68 34.6 4 0.29 45.5 2 3.68 34.6 4
13 3 0.25 48.1 1 0.25 48.1 1 0.25 48.1 1
14 0 1.43 45 2 0.3 48.4 2 0.31 48.2 2
14 1 0.35 39.8 2 0.31 40.3 3 0.32 39.5 2
14 2 1.07 46.9 2 0.24 50.9 2 1.08 46.9 3
14 3 5.26 19.8 12 0.4 37.4 3 4.97 20.3 11
15 0 0.49 44.1 2 0.27 45.7 2 0.27 45.7 2
15 1 0.43 36 3 0.21 37.2 3 0.43 36 3
15 2 0.26 38.9 2 0.26 39.3 3 0.27 40.3 2
15 3 0.2 48.2 2 0.19 48.4 2 0.19 48.3 2

Table A.4: Accuracy measures for testing datasets 08 – 15
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AD AI AT
D V mm score rank mm score rank mm score rank
16 0 0.93 39.3 2 0.18 45.6 2 0.37 43.6 2
16 1 0.31 40.1 2 0.29 40.3 2 0.3 39.9 2
16 2 4.11 30.9 3 0.23 40.7 2 4.11 30.9 3
16 3 0.39 39.7 1 0.32 40.8 1 0.37 36.8 1
17 0 11.61 29.8 8 0.33 42.8 7 11.61 29.8 8
17 1 1.67 37.4 3 0.34 46.2 2 1.67 37.4 4
17 2 0.94 38.1 3 0.33 41.2 2 0.92 38.3 2
17 3 2.96 29.5 9 0.48 40.3 8 3.02 30 9
18 0 2.88 37.1 2 0.2 45 2 2.88 37.1 2
18 1 0.3 40.7 3 0.21 41.5 4 0.21 41.4 3
18 2 1.82 35.7 2 0.3 40.8 3 1.82 35.7 2
18 3 0.48 37.9 3 0.25 39.3 3 0.25 39.3 3
19 0 0.5 44 3 0.28 45.5 3 0.32 45 3
19 1 13.78 23.7 12 0.38 42.8 3 13.78 23.7 12
19 2 0.29 44.3 2 0.29 44.3 2 0.29 44.3 2
19 3 2.47 39.9 2 0.25 46.2 2 2.47 39.9 2
20 0 1.45 42.9 2 0.25 46.7 2 0.25 46.6 2
20 1 0.39 44 2 0.36 44.8 2 0.39 44 2
20 2 0.4 39 2 0.38 39.4 2 0.39 39.3 2
20 3 0.52 40.6 2 0.49 41.3 3 0.52 40.6 2
21 0 0.44 36.8 2 0.17 39.4 2 0.16 39.7 2
21 1 1.03 35.3 4 0.21 38.6 5 0.34 37.4 4
21 2 4.04 33.9 2 0.18 42.1 1 1.51 36.4 2
21 3 0.3 42.8 2 0.28 43 2 0.3 42.8 2
22 0 2.22 27.7 3 0.3 33.1 3 2.07 27.9 3
22 1 17.17 12.8 13 0.35 36 4 16.76 13.1 13
22 2 0.57 39.4 2 0.34 41 2 0.34 40.5 2
22 3 0.29 38.8 2 0.25 39.3 2 0.26 39.4 2
23 0 0.28 40 1 0.23 40.6 1 0.23 40.6 1
23 1 0.28 43.4 3 0.26 43.8 3 0.26 43.8 3
23 2 22.2 11.6 13 0.29 34.1 4 18.34 12.6 13
23 3 0.23 48.8 2 0.22 49.1 2 0.23 48.8 2

Table A.5: Accuracy measures for testing datasets 16 – 23
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Appendix A: Details Challenge Results

AD AI AT
D V mm score rank mm score rank mm score rank
24 0 0.89 36.3 2 0.17 38.6 2 0.17 38.1 2
24 1 0.39 34.1 2 0.24 37.3 3 0.35 35 2
24 2 0.24 40.4 2 0.22 40.8 2 0.22 39.6 2
24 3 2.18 42.5 2 0.17 48.3 3 0.17 48.3 2
25 0 0.47 30.6 4 0.37 32 4 0.4 31.6 5
25 1 0.45 31.8 2 0.38 33.2 4 0.42 32.1 2
25 2 1.3 35.2 2 0.3 41.6 2 1.3 35.2 2
25 3 1.15 30.3 3 0.37 33.8 2 0.58 31.7 2
26 0 37.88 18.5 9 0.37 59.7 1 33.91 19.8 9
26 1 30.83 23.3 6 0.66 65.7 1 30.69 23.3 6
26 2 25.84 13.2 9 0.61 50.3 1 25.84 13.2 9
26 3 22.49 14.9 11 0.45 36.4 11 22.49 14.9 11
27 0 0.45 41 2 0.34 44.4 3 0.46 42.6 2
27 1 10.53 25.9 4 0.38 38.6 3 10.53 25.9 4
27 2 0.32 40.6 1 0.27 41.6 2 0.31 40.8 1
27 3 0.33 37.3 2 0.32 37.5 2 0.32 37.4 2
28 0 1.14 37.5 2 0.15 40.9 2 1.14 37.5 2
28 1 2.21 31.4 2 0.21 35.5 3 1.45 32.3 2
28 2 3.69 27.9 5 0.22 37.2 2 2.14 30.6 4
28 3 4.76 28.5 4 0.22 39.7 2 0.72 35.6 3
29 0 0.42 38.4 2 0.18 40.3 2 0.18 40 2
29 1 0.76 35.4 2 0.25 38.1 3 0.76 35.4 2
29 2 0.24 40.9 2 0.23 41.1 2 0.24 41.3 2
29 3 0.26 41.4 2 0.26 41.5 2 0.27 41.4 2
30 0 3.42 31.1 3 0.18 42.6 2 1.79 34.4 3
30 1 0.27 39.3 2 0.21 40 2 0.21 40 2
30 2 0.51 36.2 3 0.23 38.5 3 0.46 36.5 3
30 3 0.37 40.4 1 0.25 41.5 2 0.25 41.6 2
31 0 1.93 31.1 4 0.17 36.4 2 0.17 36.6 2
31 1 17.56 21 8 0.21 37.2 3 17.56 21 8
31 2 0.19 39.4 2 0.18 39.5 2 0.19 38.4 2
31 3 0.22 35 3 0.21 35.3 3 0.22 35 3

Table A.6: Accuracy measures for testing datasets 24 – 31
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