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ABSTRACT

Labradorescence is a complex optical phenomenon that can be
found in certain minerals, such as Labradorite or Spectrolite. Be-
cause of their unique colour properties, these minerals are often
used as gemstones and decorative objects. Since the phenomenon
is strongly orientation dependent, such minerals need a special cut
to make the most of their unique type of colourful sheen, which
makes it desirable to be able to predict the final appearance of a
given stone prior to the cutting process. Also, the peculiar prop-
erties of the effect make a believable reproduction with an ad-hoc
shader difficult even for normal, non-predictive rendering purposes.

We provide a reflectance model for labradorescence that is di-
rectly derived from the physical characteristics of such materials.
Due to its inherent accuracy, it can be used for predictive rendering
purposes, but also for generic rendering applications.

Index Terms: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—

1 INTRODUCTION

Labradorescence, sometimes also called Schiller, is an iridescence
phenomenon that occurs in some minerals, such as the namesake
Labradorite, and Spectrolite. A typical example of the effect can be
seen in Figure 1. Such minerals are normally gray, but when they
are viewed under certain conditions, vivid metallic colours flash
out of the stone. Commonly, these are a very intense bright blue or
green, but sometimes also red, gold or violet.

Figure 1: Photo of a Labradorite, on the left a raw specimen, and
on the right a polished stone. The bright colour, which is similar to
that of the wings of certain tropical butterflies, is caused by complex
thin film effects, and changes when the stone is rotated. The colour
effects are strongest when the stone is cut parallel to the layers.
Image c© 2008 by Andrew Alden, geology.about.com

The reason for this colour play is that the material is made up
from repeated, microscopically thin twinned crystal lamellae, i.e.
thin layers. Such twinned structures can appear when two types of

∗e-mail: weidlich@cg.tuwien.ac.at
†e-mail: wilkie@cgg.mff.cuni.cz

crystal with similar structure inter-grow, and both end up sharing
the same crystal lattice. The two different crystals form alternat-
ing, parallel layers that are approximately 50 to 100 nm thick. On
each of these lamellae, light is partly reflected and partly refracted –
which, together with the thinness of the layers, can cause significant
interference colours. In contrast to most other materials that exhibit
this effect, though, the interference colours are highly directional in
this case; this is one of the main characteristics of labradorescence.
A schematic illustration of this process can be seen in Figure 2.
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Figure 2: Schematic illustration of reflection and refraction on alter-
nating Albite and Anorithe layers. The reflected light waves can con-
structively or destructively interfere with each other.

The phenomenon of labradorescence is, however, not exclusively
caused by a simple thin film interference effect alone. This can be
confirmed by examining the colours that are shown at varying an-
gles. As with genuine thin films, they do vary continuously, but no
alternating dark and bright bands can be seen. Nor are the first or-
der colours of the Newtonian sequence visible; instead, the colour
sequence immediately begins with a bright blue. It can be demon-
strated that, apart from interference, diffraction also plays a major
role in the appearance of crystals that exhibit labradorescence, and
that it is responsible for the deviations from a pure interference ef-
fect behaviour.

Due to their special colour and reflection properties, crystals that
exhibit labradorescence are often used as gemstones or decorative
objects. Most Labradorescent minerals are not particularly rare, but
a proper cut can greatly increase the value of what is an otherwise
inexpensive stone. The main goal of this paper is to transport rele-
vant physics knowledge to the realm of graphics engineering, and to
enable the convincing replication of the effect in renderings. How-
ever, a secondary aim of this paper is also to explore the possibilities
of performing gemstone prototyping for Labradorescent stones in a
way that is helpful for improving the cut of a given rough stone.

To demonstrate our technique, we used the actual mineral
Labradorite as the focus of our investigation; it is the most com-
mon, and probably also most spectacular representative of all mate-
rials that exhibit labradorescence. However, the background theory
holds true for similar minerals as well, so the method we propose
can be adapted to represent a variety of different layered twinning
crystals, such as Spectrolite.

2 RELATED WORK

The mineral Labradorite, and the origin of its peculiar
colour, have frequently been discussed in physics literature



[17][18][16][15][25]. However, the direct application of this ac-
cumulated knowledge to computer graphics is not always easy, or
even possible.

To the best of our knowledge, the effect of labradorescence itself
has so far not been investigated in the computer graphics commu-
nity. However, there are quite a lot of publications that deal with
thin film effects [3][12][13][6][8] and diffraction [20][5][23][24].
Labradorescence is, however, a special phenomenon where inter-
ference and diffraction both play a part, and the overall result is not
a simple combination of the two. Consequently, none of the models
for pure interference and diffraction can be used for Labradores-
cent materials. What comes closer to our work are the models that
deal with multiple thin films [11][10][21][22][7][19], although they
are usually designed for only a few layers of film. This limits their
applicability for our purposes - the appearance of Labradorescent
materials is caused by large numbers of lamellae. Please note that
due to the huge volume of work that deals with layered surfaces,
this list is by no means complete, but only gives a brief overview of
those papers that are relevant to the following work.

3 A MODEL OF LABRADORESCENCENT REFLECTANCE

Labradorite is a plagioclase feldspar variation and is – apart from
minor inclusions – a mixture of Albite and Anorithe, with a
small percentage of Orthoclase. Chemical analysis shows that
Labradorite always has an Anorithe contribution of 44 to 61 per-
cent, which in mineralogy is referred to as the ”Bøggild Range”.
Within the material, the twinned Anorithe and Albite crystals are
aligned in parallel lamellae of varying thickness, usually according
to the albite law. This means that the twin plane is the (010) plane,
i.e. the plane of one of the unit crystal cell faces for this mineral.
These lamellae are responsible for the appearance of a stone.

To derive a useable reflectance model for labradorescence, we
take a closer look at the properties of the effect, and the theoretical
explanations that are available for it.

3.1 Optical Properties
When examining a mineral that exhibits labradorescence, the fol-
lowing optical properties can be observed:

1. The colour originates inside the stone and is mainly due to
interference.

2. The interference colours only start with the second order
colour sequence.

3. The effect is highly directional.

4. The coloured light is unpolarised.

An important consequence of the first point is that a useable re-
flectance model that captures labradorescence will perform colour
and reflection computations that are specific to the effect only
for rays that are refracted into the material. Although in general
labradorescent materials exhibit subsurface-scattering like the ma-
terials discussed in e.g. [14], [9] or [4], this effect can be neglected
for the coloured reflections since the lamellae are so thin that the
light exits more or less at the same position.

The normal specular reflection off the polished stone surface
obeys the standard rules of Fresnel reflectance. The remainder of
this paper deals with the model that is needed to describe the be-
haviour of the refracted light that enters the stone.

3.2 The Colour of the Effect
One remarkable property of Labradorescent minerals is that their
iridiscence colour hue can be predicted from their chemical com-
position alone. A good model for this effect was proposed by [1];
basically, the thickness of the lamellae is directly dependent on the

ratio between the different minerals in the stone. And with increas-
ing thickness of the lamellae, the iridescence colour shifts towards
longer wavelengths. According to Bragg’s law,

nλ = 2d sinθ (1)

which means that the longer wavelengths λ are more strongly re-
flected from thicker lamella layers. d is the distance between the
lamellae, θ the incoming angle and n the order of diffraction. Fig-
ure 3 shows the effect of the composition on the iridescence colour.
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Figure 3: Relationship between iridescence colour hue, and mineral
composition (in percent) for several sample concentrations found in
real stones. The data is taken from [15]; Al = Albite, An = Anorithe,
Or = Orthoclase.

3.2.1 Reflection Intensity and Direction

For graphics purposes, we not only need a model for the reflectance
colour hue, but also for the reflection intensity and direction of the
coloured reflection that occurs within the stone. It can be simulated
with a statistical model which is based on three assumptions

1. The birefringence of both types of inter-growing crystal is so
small that it can be ignored.

2. Multiple reflections within lamella layers are ignored.

3. The main beam is not weakened on its downward path through
the layers of the crystal, because the amount of light reflected
from each plane is very small.

These three assumptions may seem somewhat arbitrary at first, but
they are actually not implausible, and they do make a treatment of
the effect much easier. The birefringence of Albite and Anorithe
is so small that the material can for all practical purposes be con-
sidered to be isotropic, and the second assumption is in accordance
with the kinematical theory of diffraction. A good justification for
the second and third assumption is also the fact that the differences
between the indices of refraction (IOR) of the layers are very small;
for interfaces with such almost negligible IOR differences, the Fres-
nel terms predict very little reflection. Also, both materials exhibit
very weak absorption, which further reinforces the third assump-
tion. Comparisons with measured data show that the model is in-
deed suitable to capture and simulate the effect [1]. Based on these
assumptions, a statistical model that assumes Labradorite to consist
of many very thin, parallel aligned lamellae can be formulated. The
path difference between light that is reflected from two successive
lamellae is given by

(xi − xi−1)2sinθ (2)

if
x1,x2,x3, ...,xi, ...,x2N−1,x2N (3)

are the positions of the reflecting planes, and θ is the angle between
incident light ray and a lamella. xi − xi−1 is therefore the thickness
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Figure 4: Spectral distribution of the reflection coefficient of different samples with decreasing mean thickness d in nm of one layer (left),
decreasing variance σ of one layer (middle) and with different angle of incidence (right).

of a given layer. The total reflection amplitude V is given by

V = r[1−
exp i{pa(x2 − x1)}+
exp i{pa(x2 − x1)+ pb(x3 − x2)}−
exp i{pa(x2 − x1)+ pb(x3 − x2)+ pa(x4 − x3)}− ...−
exp i{pa(x2 − x1)+ ...+ pa(xN − xN−1)}]

where

pa =
2π

λa
·2sinθana (4)

pb =
2π

λb
·2sinθbnb (5)

and r is the amplitude reflection coefficient and N(da + db) is the
overall thickness of the crystal. The subscripts a and b refer to the
two different types of alternating lamellae, and na and nb are their
indices of refraction. The actual thickness of each layer is then
replaced by a set of random variables {γm}

(xi − xi−1) = (1+ γi)da (6)

with da as the mean thickness of the lamellae. A similar expression
exists for the b-type of lamella. The random variables have a sym-
metric probability distribution so that the average of the variables
< γm >= 0. For each random variable γi an approximation of

< eiLγ >= e−α (7)

is possible where

αa,b =
(pa,bda,b)2σ2

a,bd2
a,b

2
(8)

σa and σb are the variance of the lamellae thickness from the mean
thickness. Since each lamella is very thin, the overall number of
lamellae N is very large. Therefore only the terms of order N are
retained and the intensity I =< |V | >2 /2Nr2 can be written as

I = (9)
[1− e−2αa−2αb ]×

1− cosM cosN
e−αa − e−αb

1− e−2αa−2αb
+ sinM sinN

e−αa + e−αb

1+ e−2αa−2αb

1+ e−2αa−2αb −2cos(2M)e−αa−αb

M =
(pada)+(pbdb)

2

N =
(pada)− (pbdb)

2

Equation 9 yields the intensity of the reflection for every wave-
length, and is only based on the the IOR na, nb for the two types of
lamellae, the mean layer thickness da, db and its variance σa, σb.
Figure 4 shows the influence of these parameters on the spectral re-
flectance distribution for the refracted ray that enters the stone, i.e.
the appearance of the coloured reflection within the crystal. Two
interesting properties can be observed:

• The peak of the reflection intensity moves towards the longer
wavelengths if the mean thickness of one of the lamellae is
increased. This means that the interference colour changes
from blue to red.

• If the variance is increased, the peak becomes less prominent
and ultimately vanishes. In that case, the colour of the mate-
rial turns gray, and no interference can be observed any more.
Interestingly, only height and width of the peak change, but
not the wavelength at which the maximum reflection intensity
can be seen, which still follows Bragg’s law.

It is important to note that with this model it is possible to predict
the appearance of a given piece of Labradorite, if its composition is
exactly known. As discussed later, though, it is sufficient in most
cases to predict the overall appearance of a specific stone. For this
task, it is much more important to find the direction in which the
lamellae are oriented, because this ”plane of schiller” determines
how a stone must be cut. In a real stone, this plane can be easily
determined by a gemmologist, since it is parallel to the (010) cleav-
age; and the average the thickness of the lamellae can be estimated
from the colour of the stone.

3.2.2 Colour Zoning
As stated earlier, the phenomenon of Labradorite is not limited to
one particular reflection colour. In fact, different zones of colour
can usually be seen in a single stone; it is rare to find stones with
completely monochromatic reflection patterns. The reason for this
is that the individual lamellae do not grow regularly, but that the
overall chemical composition of the mineral, and therefore also
the thickness of the individual lamellae, usually changes slightly
throughout the material. Figure 5 shows an example of such zon-
ing.

It would of course be possible to measure the composition of a
real stone with an appropriate device and use these values, but it is
obvious that for most applications this approach is neither necessary
nor practical. It has to be noted that our proposed method would be
capable of using such measured data from real stones as input, and
would yield correct results – as far as the rendering step of a predic-
tive rendering application is concerned, we provide a solution that
solves the problem. The remaining difficulty in obtaining predic-
tive images of a given stone lies not in the replication of the effect
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Figure 5: Colour zones in Labradorite. Left: sketch of the relation
between colour and composition; the Figures are the Anorithe per-
centages for each area (after [15]). Right: photo of colour zones in
a real Labradorite sample.

as such, but solely in the fact that reliable data for the distribution
of the lamellae is very hard to obtain.

For normal computer graphics purposes, a much better approach
is to find an adequate procedural texture that can simulate the round
and smoothly changing zones of colour. For such applications, our
method has the significant advantage that it yields intrinsically real-
istic results, since it is a true simulation of the effect. These texture
maps that one has to generate have to provide values for the mean
thickness and the variance of the stone; this can be either done in a
2D or a 3D texture. This texture map is then applied to the object,
and used during the reflection computations.

We found out that Perlin noise can simulate the natural structure
of these zones very well, so we used such a noise function to create
a texture map that contains values between 0 and 1. These values
are then used to index two or more surfaces with different param-
eters for mean thickness and variance. Between these parameters
linear interpolation is performed to create smooth colour change. A
schematic illustration of this process can be seen in Figure 6.

Surface Lookup Table

LabradoriteSurface(
da=70nm,db=60nm,σa=60,σb=50)
L
dx < 0.5

LabradoriteSurface(
da=72nm,db=67nm,σa=16,σb=16)
L
dx = 0.7

Surface Lookup Table

L b d it S f (L

LabradoriteSurface(
da=90nm,db=60nm,σa=20,σb=16)
L
dx = 0.8

LabradoriteSurface(
da=152nm,db=60nm,σa=20,σb=16)
L
dx > 0.9

x = 0x

Figure 6: A lookup table is used to linearly blend surfaces with dif-
ferent parameters. Values below 0.5 and above 0.9 are not blended
while a value of e.g. 0.6 would mean that the parameter sets of two
different forms of the material are interpolated. Which is permissible,
since such gradual variations also exist in nature, and are due to the
kind of gradual change in chemical composition of the material that
such an interpolation describes very well.

3.3 Polarisation
Labradorite is a biaxial crystal, and since birefringence gives rise to
polarisation effects, this aspect should be included in the discussion
of labradorescence for the sake of completeness, even if polarisa-
tion is often neglected in rendering applications.

Labradorite does exhibit polarisation effects. This can easily be

Figure 7: A series of rendered cube surfaces with increasing Anorithe
content. The dominant colour shifts towards longer wavelengths with
increasing Anorithe content. Please note that the images are gamut
mapped. The data was taken from [15].

Figure 8: A series of rendered cube surfaces with increasing variance
of lamellae thickness. σa increases (from left to right) from 1.0 to 10,
20, 30, 40, 50 and 80nm. The variance of the second lamellae type
is fixed at 16nm. All images are again gamut mapped. Note the
progressive de-saturation of the resulting colour.

seen when viewing a Labradorite sample through a linear polarisa-
tion filter. Light that is reflected directly from the top of the surface
and that does not undergo refraction is linearly polarised. The part
of light that enters the material and returns as coloured reflection,
however, is unpolarised. Although the refracted light is split into
two components that are polarised perpendicularly to each other,
both rays have the same phase when they emerge from the crystal.
This is not particularly surprising: the birefringence of the mineral
is so weak that from a macroscopic viewpoint it can be considered
to be isotropic. Also, any orientation of the oscillation would be
destroyed during the diffusion of light that takes place between the
lamellae.

Given these observations, capturing of these properties is not
complicated at all, since the standard polarisation techniques for
Fresnel reflectance apply for the directly reflected rays, and a de-
polarising Mueller matrix has to be used for the coloured reflection
that takes place within the stone [26].

4 RESULTS

Spectrolite or Labradorite gemstones are most often cut en cabo-
chon, an unfaceted cut with a round surface. Sometimes more fancy
cuts are applied, or they are used as the material for complex dec-
orative objects. The shapes of real Labradorite gems are usually a
trade-off between an appealing shape and maximisation of the ef-
fect, though, since the effect actually can be seen best on simple
geometries. For this reason we just used cubes and spheres for the
generation of most of the results shown in this paper.

4.1 Effect of the Parameters
To demonstrate the change of appearance when the individual pa-
rameters are altered, we reproduced some of the characteristics that
can be seen in the plots from Figure 4 on real objects.

We first rendered a series of images that show a cube with vary-
ing Anorithe content under diffuse illumination (Figure 7); the cube
is viewed from the top in close-up, so that only the reflection colour
of the material can be seen. As expected, the dominant colour shifts
towards longer wavelengths with increasing Anorithe content. The
reason for this is that with increasing concentration, the Anorithe
lamellae become thicker and the shorter wavelengths are increas-
ingly subjected to destructive interference.

In contrast to that, if the variance of the lamellae is changed, the
dominant wavelength stays the same, but changes from more or less
pure spectral colour to a de-saturated version and becomes neutral
when the variance between the lamellae becomes too big, i.e. the
lamellae thickness is not regular enough for the effect of labradores-
cence to manifest itself (Figure 8). Again, this is in agreement



with observations made on real stones, and our understanding of
the causes of the phenomenon.

4.2 Smooth vs. Sharp Transitions
It is possible to either blend between the parameters linearly, or to
generate sharp edges between the colour zones; both cases occur in
nature. Labradorite often shows smooth transitions between colour
zones, while Spectrolite tends to have sharp edges between them.
However, no general rules can be given; the appearance of such
materials differs from stone to stone, and very often both forms of
transition are present.

Figure 9: Smooth transitions between colour zones in Labradorite.
Left: a synthetic image rendered with a Perlin noise function that
controls lamella thickness and variance. A fracture texture was over-
laid on the stone geometry for greater similarity with the cracks
that are present in the real stone. Right: a photograph of a real
Labradorite.

Both colour patterns can be simulated with the method we de-
scribed in Section 3.2.2. The only differences are how smooth the
noise function is, and how much we interpolate between the differ-
ent parameters. Figure 9 shows an example of a smooth pattern,
while Figure 10 is an example of the second form of transition.
A schematic overview of the basic shader structure that was used
to generate Figure 9 is shown in Figure 11. The cracks that were
overlaid on the stone geometry to provide a better match with real
Labradorite samples were done with a comparatively simple proce-
dural texture that seems to be sufficient in this case. Arguably, more
sophisticated approaches for crack generation like [2] could further
improve this aspect of overall gemstone appearance.

Figure 10: Sharp transitions between colour zones in Labradorite.
Left: a synthetic image rendered with a Perlin noise function, As
in Figure 9, a fracture texture was overlaid on the stone geometry.
Right: a photograph of a real Labradorite.

Figure 12 shows such patterns applied to cabochon cut geome-
tries. Note that as with real labradorescent stones cut en cabochon,
the coloured flash is the dominant reflection feature. However, in-
terference colours are not only evident in the ”prime position” on
top of the stones – as with many real Labradorite gemstones, a very
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Figure 11: Schematic illustration of the shader hierarchy used for
the pattern seen in Figure 9. As in Figure 6, x corresponds to the
single float value that the Perlin noise function generates, and the
ranges are those for which a particular set of parameters is chosen.
Each of the coloured swatches represents one particular set of these
numerical parameters; in the interest of clarity, the we just show the
resulting dominant interference colour for each set, instead of the
actual parameters like in Figure 6. Note that each individual mapping
function node (i.e. each box) has its own, local value scale for x. In
each node, x lies in the range [0,1], and values that are passed from
higher-level nodes are appropriately translated before use.

weak coloration can also be seen in other places, e.g. at half height
around the circumference of the left object. This does not contradict
the theory that the coloured flash only occurs on faces parallel to the
(010) axis; rather, such seemingly off-axis interference colours are
due to ambient light that is reflected from within the stone. As a
consequence, such off-axis colours are only visible in a global illu-
mination renderer that takes all components of light transport into
account.

Figure 12: Textures that are roughly similar to those shown in Fig-
ures 9 and 10, applied to cabochon cut geometries.

In Figure 12, the patterns appear as less colourful than in fig-
ures 9 and 10 partly because the stone geometry is curved, and the
other images are of cube faces that are viewed under optimal light-
ing conditions. Real labradorescent gemstones are cut to curved



Figure 13: Rendered images of a complex decorative biplane model, some parts of which are assumed to be cut from labradorite. The only
difference between the images is the lamella orientation. Given the properties of the effect, the coloured flash will only appear in one location for
a given cut; no change of lighting and viewing angle can e.g. cause the large coloured area seen in the right image to appear in the left image,
where the stone from which the parts are cut has been oriented differently.

shapes to provide a good trade-off between visibility of the coloured
flash, and its intensity. The visibility of the flash is poor for a cube
geometry (or indeed any faceted shape) – it can only be seen from
a few combinations of viewpoint and lighting direction for planar
facets, and only occurs on two faces of the cube; curved shapes
are much better in this regard. On the other hand, the intensity of
the flash is optimal for planar faces cut along the (010) axis, and
curved geometries can only yield a smaller, less intense flash. Still,
their more benign viewing characteristics make them the geometry
of choice for such materials.

4.3 Orientation of the Lamellae

It is not difficult to properly cut a labradorescent stone en cabochon,
since the overall orientation of the lamellae can be determined com-
paratively easily, and the choice of how to cut the stone (and in par-
ticular, how to orient the cut with respect to the lamella orientation)
is straightforward in this case.

However, for more complex gemstone shapes the question of
how one should orient the cut in order to maximise the effect
quickly becomes difficult. In this scenario one can potentially ben-
efit from a model that can predict the appearance of such a material.
It should be noted that for such a simulation to deliver helpful re-
sults, it is not necessary to know the exact distribution of the colour
zones within the material, since the goal is just to determine which
faces of the object in question will look best when aligned with the
lamellae.

Figure 13 shows a sample scenario for this kind of imagery: two
rendered images of the same decorative object, a biplane model,
some parts of which are assumed to be made of Labradorite. The
general properties of the material are the same, but the stone from
which the biplane parts are cut is rotated differently in the two im-
ages. As can be seen, the overall appearance is fairly different, and
a designer could conceivably use such renderings to determine the
best lamella orientation for a given, complex shape that he wants to
produce from Labradorite, or a similar material. It should be noted
that while the images in Figure 13 are not predictive in the narrow
sense of the term (mainly, as discussed in Section 3.2.2, because
exact information on the structure of the uncut stone is so hard to
come by), they are still a reliable forecast of where the coloured
flash will appear on the object. The exact texture of the cut stone
will vary, but this main property will not.

5 CONCLUSION

In this paper we presented a model for rendering the effect of
labradorescence solely based on the same few material parameters
that govern its appearance in reality. Although we only demon-
strated our approach for the namesake mineral Labradorite, is is not
limited to this substance, because no assumptions were made that
are only true for Labradorite. Due to its relative simplicity our ap-
proach is easily integrated in any existing renderer, and could also
be implemented in a real-time environment.
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