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Abstract

In this paper we present a novel framework for the visualization and reconstruction from non-uniform point sets.

We adopt a variational method for the reconstruction of 3D non-uniform data to a uniform grid of chosen reso-

lution. We will extend this reconstruction to an efficient multi-resolution uniform representation of the underlying

data. Our multi-resolution representation includes a traditional bottom-up approach and a novel top-down hi-

erarchy for adaptive hierarchical reconstruction. Using a hybrid regularization functional we can improve the

reconstruction results. Finally, we discuss further application scenarios and show rendering results to emphasize

the effectiveness and quality of our proposed framework. By means of qualitative results and error comparisons

we demonstrate superiority of our method compared to competing methods.

Categories and Subject Descriptors (according to ACM CCS): Numerical Analysis [G.1.2]: Spline and piecewise
polynomial approximation.—Image Processing and Computer Vision [I.4.5]: Reconstruction.—Computer Graph-
ics [I.3.5]: Computational Geometry and Object Modeling.—

1. Introduction

The traditional sources of volumetric data are simulations
as well as data acquisition devices on uniform (Cartesian)
lattices. In an effort to study larger and more complex prob-
lems, there has been a move toward non-uniform data rep-
resentations, since they offer a way of adapting the mea-
sure location (or sample points) according to the importance
(variance) of the data. Examples include a) simple data loss
during data communication in sensor networks, b) Doppler
measurements or other novel acquisition models (polar or
spiral) for tomography and magnetic resonance imaging, c)
adaptive and moving mesh approaches in mathematical sim-
ulations in the physical sciences, and d) particle simulations.

While the acquisition of data on non-uniform grids has
become wide-spread, the available tools for processing, fil-
tering, analysis, and rendering of data are most efficient on
uniform representations. We do not make use of the explicit
neighborhood information in non-uniform grids in this work
and hence they are used like point-sets. There are two com-
peting efforts to deal with non-uniform data: a) create novel
and efficient tools that directly work on them, or b) convert
the non-uniform representation into an efficient intermediate
uniform representation and apply standard tools. Both ap-

proaches have advantages and disadvantages. In this paper
we make a contribution towards the latter approach. Among
other things, this will allow us to better exploit the capabili-
ties of modern GPUs. In Section 2 we will contrast these two
approaches further and review alternative works.

In order to find the best way to transform the non-uniform
data onto a uniform grid, we first need to analyze the nature
of the given data. One reason for non-uniformity is the abil-
ity to capture different scales of information density (e.g.
mathematical simulation of shock waves). Another reason
for non-uniform data representations could come from im-
precise measurement devices (e.g. ultrasound) or sparse rep-
resentations (e.g. compressive sensing). While in the former
case multi-resolution representations might be most suitable,
in the latter case a single resolution representation might be
all what is needed. Therefore, we develop some heuristics,
based on a statistical analysis, to adapt to each scenario.

In this paper we propose a uniform representation con-
sisting of B-spline coefficients which define a C2 continuous
function across the whole volume. Our main contributions
are: a) a statistical approach for selecting the resolution of
reconstruction for non-uniform datasets (Section 4.1), b) a
bottom-up multi-resolution pyramid (Section 4.2), c) a novel
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top-down adaptive multi-resolution scheme (Section 4.3),
and d) a novel hybrid regularization functional for the varia-
tional approach leading to improved accuracy (Section 5).

We compare our approaches with similar approaches, that
perform a resampling of the data domain on a variety of dif-
ferent data sets (Section 6). Conclusions and ideas for future
work are summarized in Section 7.

2. Related Work

There is a considerable body of literature on the render-
ing of non-uniform data without any resampling steps (see
e.g. [KSW01, WKME04]). While there are very good rea-
sons to adapt such an approach for rendering, we postulate
here that an intermediate transformation onto a regular data
structure opens up the possibilities for much more sophis-
ticated data processing in general and henceforth focus on
such a pipeline.

A number of approaches have been proposed for the re-
construction of non-uniformly sampled data, especially for
one- and two-dimensional signals. Most of the methods are
based on the reconstruction of the data by solving large sys-
tems of equations [FGS95, GS04]. However, their use of
basis functions with infinite support makes them impracti-
cal to use for real-time visualization applications, where fi-
nite support reconstruction kernels are desired. Park et al.
[PLKO06] presented an efficient discretization of Sibson’s
natural-neighbor interpolation for 2D and 3D data fitting.
They ensure C1 continuity, but they fail to report experi-
ments for real non-uniform point sets. Nielson [Nie93] pre-
sented an overview of several approximation techniques for
non-uniform point sets. While each technique performs best
only in particular cases, the use of local compact operators
is considered the fastest approach.

The necessity of basis functions with infinite support
comes from a desire of reconstructing bandlimited signals.
Unser [Uns00] suggests to replace the concept of band-
limitedness by minimum-error projection on a space of
shift-invariant functions. A more general overview on mod-
ern non-uniform reconstruction techniques in shift-invariant
spaces has been summarized by Aldroubi and Gröchenig
[AG01]. Perhaps the most popular shift-invariant spaces are
based on Radial Basis Functions (RBFs). They have been
used for surface [ABCO∗01, OBS04, CBC∗01] as well as
volumetric [JWH∗04, JBL∗06, WM03] approximation and
reconstruction techniques. Our focus is on volumetric data.

Jang et al.’s [JWH∗04] method is formulated as an iter-
ative algorithm for finding the centers and weights of the
RBFs using a PCA-based clustering technique by applying
truncated Gaussians as basis functions. This technique suf-
fers from high-encoding times and is best suited for locally
isotropic structures. Later they [JBL∗06] adapt their tech-
nique to ellipsoidal basis functions (EBFs). The high com-
putational cost is still the main bottleneck of this approach.

Our approach uses B-splines as basis functions. B-splines,
with their smoothness and compact support, offer optimal
conditions for fast and accurate reconstruction results. They
are related to RBF-based approaches since B-splines are
very good approximators of thin-plate splines, which in turn

are widely used RBFs in approximation theory. Further, our
B-spline basis will be anchored on a regular grid, preventing
the need to store the grid geometry explicitly and opening
the door for efficient multi-resolution representations.

Arigovindan et al. [ASHU05] proposed to use B-splines
in a multi-grid framework for the reconstruction of non-
uniform 2D data. Vuçini et al. [VMG08] extended these
ideas for 3D volumes and proposed a block-based variational
reconstruction technique for large datasets. In this paper we
build on these ideas.

Multi-resolution approaches have been introduced to im-
prove the rendering speed as well as the quality of the
data representation adaptively while minimizing the mem-
ory overhead [Sam05]. Based on the data structure, multi-
resolution schemes can be divided into regular schemes
[LHJ99] (e.g., octrees) and irregular schemes [KSH03] (e.g.,
adaptively refined meshes). Our scheme adopts concepts
from both classes. It is a multi-level hierarchy where the first
level represents the coarse resolution and has a regular repre-
sentation. Additional levels encode the errors and are refined
adaptively. The structure of the refined cells is again regular.

The proper continuous interpolation between different oc-
tree levels has remained a challenge in multi-resolution vol-
ume rendering. Several proposed approaches ensure only
a C0 continuity in their rendering algorithms. The multi-
resolution function in our approach is a hierarchical sum of
C2 continuous functions, ensuring the C2 continuity over the
entire domain.

3. Variational Reconstruction Basics

Variational reconstruction is a well-known technique applied
to solving ill-posed problems such as the reconstruction
from non-uniform point sets. The variational functional is
formulated as the sum of two terms: a) the sum of squared er-
rors, and b) the regularization term that controls the smooth-
ness of the solution. The first part guarantees that the solu-
tion is close to the sample points, while the second part en-
sures that there are no discontinuities in the reconstruction.

Given a set of sample points, pi = (xi,yi,zi), i = 1,2, . . . ,M,

let fi be the scalar values associated with pi. We define the
B-spline approximation through the form:

F(p) =
N−1

∑
k=0

ckβ3(p−k) (1)

where β3() is the tensor product of cubic B-spline basis func-
tions and where we denote with N = (Nx,Ny,Nz) the resolu-
tion of the axis-aligned bounding box of our non-uniform
data set. Although cubic B-splines do not enjoy the interpo-
lation property, they have the maximal order of approxima-
tion for a given integer support, providing the best quality for
a given computational cost [TBU00,Uns99]. In order to find
the coefficients ck the following cost function is minimized:

C(F) =
M

∑
i=1

‖F(pi)− fi‖
2 +λ

ZZZ

‖D
p
F‖2

dxdydz (2)

where λ is a parameter that controls the smoothness and
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the second term is the regularization functional that uses
Duchon’s seminorms DpF [Duc79].

The key idea of the variational reconstruction is to ex-
press the second term of Eq. 2 by means of the first term
and then minimize the error C(F) with regard to the B-
spline coefficients ck in Eq. 1. Once we solve the equa-
tion, we have Nx ×Ny ×Nz B-spline coefficients defined at
the reconstruction-grid positions. We can compute F(p) (a
C2-continuous function) at any position inside the volume,
from a 64 point neighborhood using Eq. 1. For a deeper
insight into the method we refer the reader to Arigovin-
dan [ASHU05].

4. Single and Multi-Resolution Reconstruction

The key issue in resampling a non-uniform point set into a
uniform representation is the selection of the proper resolu-
tion. This will be the central question we are trying to answer
in this section. We first assume that we can only afford a sin-
gle resolution and we make suggestions on how this resolu-
tion can be best obtained. This is applicable for non-uniform
data, where the distribution of samples is even (in the sense
of a discrepancy measure), e.g., ultrasound data or seismic
data.

4.1. Single Resolution

Increasing the resolution results in a decrease of the error,
since the oscillations in the data can be captured with more
precision. Finding the optimal resolution (Nx × Ny × Nz)
would therefore require estimating the error. We propose to
do so by simply looking at the error within a single grid cell.
If there are many non-uniform points crammed into a cell,
and their standard deviation σk is large, the cell might be
too large. Therefore, we propose to approximate the error by
using the average standard deviation, defined as:

σavg =
∑

N−1
k=0

σk

Nx ·Ny ·Nz
(3)

as an indicator for the proper uniform grid resolution. Empty
cells are considered as cells with zero standard deviation.

In Section 6.1 we analyze a number of data sets in order
to arrive at a reasonable threshold. Our idea is motivated by
the strong correlation observed between the reconstruction
error and the average standard deviation of point values.

4.2. Bottom-up Multi-Resolution Pyramid (BMRP)

There are many scenarios where we observe a large variance
in the density of the data points. Hence, finding a single reso-
lution to minimize the error in a uniform representation leads
to very large data sets with lots of redundancy. In such a case,
it is typical to encode the data in a multi-resolution pyramid.
One usually starts with the highest resolution and gradually
finds coarser representations. To tackle this problem we pro-
pose a multi-resolution scheme based on the interscale rela-
tion of the B-splines of odd degree:

βn(
x

2 j
) = ∑h(k)βn(

x

2 j−1 − k) (4)

where h(k) is the binomial filter [AL96].

We consider a 3D signal being represented by a set of
coefficients c( j) at scale j:

F
( j)(p)=

N−1

2 j

∑
k=0

c
( j)
k β3(

p

2 j
−k) (5)

Using results from multi-resolution analysis, the same sig-
nal can be represented at a finer scale ( j−1) by the coeffi-
cients c( j−1), which are obtained by first upsampling c( j)

and then filtering with h(k). In the same fashion, by using
the inverse transform of Eq. 4 we can filter and downsam-
ple the c( j) to get a projection of these coefficients to the
space spanned by the coarser coefficients c( j+1). For a spe-
cific scale j we denote the upsampling and downsampling
process by U j and D j respectively [ASHU05].

We initially estimate the coefficients at the finest reso-
lution and then process them to create a top-down hier-
archy of coarser resolutions. We obtain the coefficients of
the coarser resolution ( j + 1) by downsampling from the
finer resolution ( j): c( j+1) = D jc

( j). Ignoring the finer res-
olution completely, would create an error at scale ( j), i.e.,
e( j) = c( j) −U jc

( j+1). By saving the coarser scale coeffi-
cients and also part of the error volumes (where the error is
high) we can reconstruct the data at a finer resolution with
little or no error.

For example, for a signal which we want to reconstruct
with the finest resolution of Nx ×Ny ×Nz, using three levels

of hierarchy, we first estimate the finest coefficients c(0) by
minimizing Eq. 2. Then, by using the interscale relation we
estimate c(1) and c(2), as well as e(0) and e(1). In our scheme
we save only c(2) and parts of e(0) and e(1), which we denote

by e
(0)
p and e

(1)
p . When visualizing the data, we can either use

the coefficients c(2) for a coarse resolution representation, or

the approximations c̃(1) = U1c(2) + e
(1)
p or c̃(0) = U0c̃(1) +

e
(0)
p for a finer resolution representation.

This approach requires an explicit intermediate represen-
tation of the finest resolution, which might not be feasible
computationally. Hence, we propose a novel algorithm to
build an adaptive multi-resolution data structure.

4.3. Adaptive Multi-Resolution (AMR)

Whenever our σavg demands a resolution that is too large
to handle directly, we decide to create a multi-resolution
representation starting from a coarse resolution first. This
prevents us from having to compute the highest resolution
explicitly. Estimating a reasonable coarse resolution is typ-
ically tied to hardware constraints. One should not choose
a very high resolution, such that it compromises real-time
rendering or analysis performance, yet, it should not be too
coarse to avoid storing too many levels in the hierarchy.
We call this maximum resolution Nmax. Next, we determine
whether each cell of the coarse resolution should be sub-
divided or not, i.e., whether it is composite or not. This is
done based on an error criterion. These steps applied recur-
sively will create a multi-resolution hierarchy, that adapts to
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the variance in the data. What follows is pseudo-code outlin-
ing this algorithm as well as the procedure to use the multi-
resolution hierarchy to determine the value of the function.
We will use the notation introduced in Section 3.

Procedure 1 c
( j)
V = AMR(Volume V, point set PV with values

fV , level j)
1: determine the resolution N for volume V (≤ Nmax)
2: determine the B-spline representation FV with coeffi-

cients cV

3: for all cells U of grid V do

4: estimate reconstruction error εU = FV − fV of all
points PU inside the cell U

5: if (εU is too large) AND (|PU | > M̃) then

6: c
( j+1)
U = AMR(U, PU with values εU , level j +1)

7: end if

8: end for

Procedure 2 Evaluate Function FV at (x,y,z) for Volume V

1: evaluate FV (x,y,z) by using coefficients cV

2: if (x,y,z) is in composite cell U then

3: Evaluate Function FU at (x,y,z) for Volume U
4: return FV (x,y,z)+FU (x,y,z)
5: else

6: return FV (x,y,z)
7: end if

Procedure 1 starts by determining the resolution of the
volume V (line 1). This is done based on the σavg thresh-
old. In order to create a balanced tree, the chosen resolution
cannot exceed a maximum resolution Nmax. Given a resolu-
tion we can then determine the B-spline coefficients cV for
this resolution using Equation 2 (line 2). For each cell of this
resolution, we will determine whether we should recursively
subdivide (line 5). This is based on the cell reconstruction
error (computed in line 4) as well as whether the number of
points in the cell is above a threshold M̃. M̃ is used to pre-
vent the algorithm from subdividing cells with a low number
of points inside. Once we determine that we should subdi-
vide the given cell, we only reconstruct the error function
(FV − fV ) in line 6.

Procedure 2 is used during the raycasting process. It
chooses the B-spline coefficients to use in Eq. 1 accordingly.
If the point is in a composite cell, it recursively adds the error
estimation of each level of the hierarchy.

5. Improving Regularization

Regularization provides a framework for converting ill-
posed problems into well-posed ones by restricting the
domain of possible solutions via smoothing constraints.
Arigovindan et al. [ASHU05] suggest using Duchon’s semi-
norms (DpF) for regularization. For p = 1 and p = 2 this
norm yields a minimization of an energy functional as-
sociated with a membrane and a plate model respectively
[Duc79]. Here, we propose a hybrid regularization func-
tional in order to reduce reconstruction errors for anisotropic
signals. The main motivation for this idea lies in the fact that
cubic B-splines have a better response to high frequencies,

that can be detected and preserved by convolving the signal
with a Laplacian regularization kernel [Uns00]. The regu-
larization functional consists of the sum of second degree
derivatives if cubic B-splines are used as a basis function for
reconstruction:

R2(F,λ) =λ

ZZZ

(d2
x F)2 +(d2

y F)2 +(d2
z F)2

dxdydz (6)

where (d2
x F)2, (d2

y F)2 and (d2
z F)2 are the directional sec-

ond degree derivatives of F . In order to deal with anisotropic
characteristics we extend Eq. 6, so that we can achieve a dif-
ferent regularization in each direction.

R2(F,λx,λy,λz) =
ZZZ

λx(d
2
x F)2+λy(d

2
y F)2+λz(d

2
z F)2

dxdydz

(7)

Eq. 7 provides a very good application scenario in cases
when we have apriori knowledge of the directional variance
of the data we are reconstructing. In other cases, we sug-
gest a pre-estimation of the variance of directional gradients
and hence setting λx, λy, λz accordingly to an inversely pro-
portional formula. A high variance in the x-direction for ex-
ample, means we should set a lower λx and vice-versa. As
opposed to Duchon’s seminorms, the regularization terms
introduced in Eq. 6 and Eq. 7 do not enjoy the rotational
invariance property.

6. Implementation and Results

Our test platform is an Intel Dual Core 2.70 GHz proces-
sor machine with 6GB of RAM. We tested our framework
on several data either given from originally non-uniform
data, or obtained by taking Laplacian points from a uniform
dataset [VMG08]. Unless stated otherwise our experiments
are using Eq. 6 where we set λ = 0.3. In order to evaluate the
quality of our reconstruction, we use the Root Mean Square
error (RMS) defined as follows:

RMS =

√
∑M

i (F(xi,yi,zi)− fi)2

M
×

100
MaxValue

(8)

where MaxValue is the maximum value in the given point set.

6.1. Determining the threshold σavg

In order to determine an appropriate resolution for a uni-
form grid representation of our non-uniform data points, we
would ideally vary the value of Nx, reconstruct using this res-
olution and measure the error. Ny and Nz are determined by
the proper aspect ratio of our underlying axis-aligned bound-
ing box enclosing the given non-uniform data points. Un-
fortunately, this is computationally infeasible. Hence, in the
search for a good heuristic, we did indeed reconstruct a num-
ber of test data sets under various resolutions. Then we mea-
sured the reconstruction RMS of the point set as well as the
average variance of point values (as opposed to the recon-
struction error) in each cell, according to Equation 3. The
resulting relationship for the Bypass data set can be seen in
Fig. 1. We found a similar relationship in all test data sets (a
complete listing can be found in the supplemental material).
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Based on this analysis, we suggest, that a value of σavg =
0.05 yields a low RMS. In order to use this effectively for an
unknown data set, we start from a low value of Nx and in-
crease it until the value of σavg falls below the desired value.
σavg monotonically decreases with the increase of resolu-
tion. Typically we double Nx in each step, using Nx = 8 as
a starting resolution. Once σavg has a value lower than the
specified threshold we refine the exact value of Nx with a
binary-search method.

Arigovindan et al. [ASHU05] suggested a heuristic such
that the number of uniform points is 4-5 times the number
of non-uniform points (i.e., Nx ·Ny ·Nz ≈ 5 ·M). With our
heuristic, on the other hand, we sometimes find ≈ 4 ·M to be
good enough.

0 0.5 1 1.5 2
0

1

2

3

4

Average Standard−Deviation

R
M

S
 E

rr
o
r

Figure 1: Graph showing relation of RMS to σavg for the

Bypass dataset. A hairline shows the suggested threshold of

σavg

6.2. Single-Resolution and Improving Regularization

A GPU-based raycaster is employed for single resolution
rendering. The renderer is developed inside the VolumeShop
platform [BG05]. The rendering integral is evaluated at each
point along the ray by using Eq. 1. On the fly gradient esti-
mation is used by taking partial derivatives of the function
defined in Eq. 1 and applying the fact that the derivative of a
B-spline of degree n is a B-spline of degree n− 1 [Uns99].
It can be defined as follows:

∂βn(x)

∂x
= βn−1(x+

1
2
)−βn−1(x−

1
2
) (9)

Table 1 compares our hybrid regularization to our pre-
vious work [VMG08]. We used uniform data, computed
and thresholded their Laplacian to keep 20% of the origi-
nal points and reconstructed the complete uniform data set
from this sparse representation.

While computational times remain the same, we observe
a 20%-60% improvement in the reconstruction error com-
pared to our previous results [VMG08].

Table 2 compares our method to the work presented by
Jang et al. [JWH∗04, JBL∗06]. Our method has lower re-
construction errors and improves computation time by sev-
eral orders of magnitude.

So far we computed the error only at the points used for
the reconstruction (the input-points). However, an important
measure of the quality of reconstruction is the quality of the

Table 1: RMS errors and computation times (in minutes)

for different non-uniform datasets created by taking 20% of

Laplacian points from their original uniform representation.

Here we use our hybrid regularization (Eq. 6) with λ = 0.3,

while previously [VMG08] the results are obtained by using

Duchon’s regularization and λ = 1.0.

Dataset RMS and Times (min)
Name Size Our method [VMG08]
Engine 256x256x128 0.94 | 1.28 2.24 | 1.28
Tooth 256x256x160 0.18 | 1.88 0.23 | 1.88
CT-Head 256x256x224 1.17 | 2.60 2.93 | 2.60
CT-Chest 394x394x240 0.60 | 5.08 1.31 | 5.08
Carp 256x256x512 0.25 | 5.73 0.50 | 5.73

reconstruction at other locations. Since the ground truth is
not given, this is typically hard to evaluate. Instead we took
a dataset given on a uniform grid, created a non-uniform ver-
sion by removing 80% of its values (according to a Laplacian
threshold) and reconstructed it on the original grid. In Fig. 2
we show such a scenario using the Laplacian points from
the Tooth dataset. We compute the errors at the non-uniform
points used for the reconstruction as well as all the original
uniform data points. While our approach has the same er-
ror rates in both cases, Jang et al. [JWH∗04, JBL∗06] show
a significant increase in the reconstruction error at the non-
input points, which is quite visible.

The Synthetic Chirp is a synthetic radial sinusoidal wave
with a spatial frequency that decreases from the center to
the edges. We create a non-uniform point set by evaluating
the Chirp function for 75,000 random points. The function is
changing very fast in the xy plane (the screen plane), while
it is changing very slowly along the z axis. In order to re-
duce the reconstruction error a lower smoothness control
along the xy plane is required. In Fig. 3 we show the orig-
inal dataset, our reconstruction with a regularization term as
defined in Eq. 6 and our reconstruction with a directional
regularization term as defined in Eq. 7. All three cases were
reconstructed on a 64× 64× 64 grid, selected based on the
σavg = 0.05 threshold. There is a clear improvement in the
visual quality when directional regularization is used; the er-
ror is reduced by 54%.

6.3. Bottom-up Multi-Resolution Pyramid

In order to implement our BMRP scheme we need to find
an error threshold, that determines which detail coefficients
to keep. In our experiments we found that keeping 20% of
the coefficients with the highest error in each level is a good
trade-off between storage overhead and accuracy. Although
these error coefficients can be anywhere in the volume, they
are still located on a uniform grid. Hence, using a run-length
encoding data-structure, we found that for 20% of the points
of a uniform dataset we need approximately 40% of the stor-
age required for the entire uniform dataset.

The Bypass dataset consists of 421 timesteps of a simula-
tion from a laminar-turbulent transition in a boundary layer
that is subject to free stream turbulence. Each timestep is
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Table 2: RMS errors and computation times (in minutes) for different non-uniform datasets for our approach, the method

in [JWH∗04] and in [JBL∗06]. Size (MB) in the third and fifth column shows the storage (in megabyte) required for the

non-uniform dataset and the reconstructed dataset, respectively. The resolutions in our approach are selected based on the

σavg = 0.05 threshold.

Dataset RMS and Times (min)
Name Points Size(MB) Resolution Size(MB) Our method [JWH∗04] [JBL∗06]
Oil 29,094 0.44 38x40x38 0.22 0.19 | 0.07 1.02 | 1.10 1.08 | 0.21
Natural Convection 68,921 1.05 61x61x61 0.87 0.63 | 0.07 1.51 | 6.95 1.41 | 4.16
Synthetic Chirp 75,000 1.14 64x64x64 1.00 1.12 | 0.08 3.06 | 229 1.37 | 36.4
Bypass 7,929,856 121.00 766x92x192 51.62 0.61 | 6.40 3.38 | 3987 3.33 | 3889
Blunt-Fin 40960 0.63 93x36x25 0.32 1.14 | 0.12 1.58 | 6.83 1.41 | 5.38

a) b) c) d)

Figure 2: Renderings of the Tooth dataset: a) original uniform dataset, b) reconstruction from 2,110,259 non-uniform points

using our method. The resolution of reconstruction is selected to be the same as in the original 256x256x160 dataset. The RMS

error is 0.19 at the input points, and 0.18 at the entire uniform volume, c) reconstruction from the same set of input points using

RBFs proposed in [JWH∗04]. The RMS error is 1.26 at input points, and 2.87 for the entire volume, and d) reconstruction from

the same set of input points using EBFs as proposed in [JBL∗06]. The RMS error is 0.76 at input points, and 2.45 at the entire

uniform volume.

represented by 7,929,856 non-uniform points in a curvilinear
grid with uniform spacing across the x- and z-axes and with
non-uniform spacing along the y-axis. The visualization of
this simulation is of great importance to better analyze how
the ”bypass” of the Tollmien-Schlichting (TS) waves devel-
ops. In Fig. 4 we show timestep 360 from this dataset (fo-
cusing on the ”bypass” process, i.e., the creation of vortex-
shape structures) reconstructed with our BMRP approach.
There is a visible difference in the level of detail in the dif-
ferent resolutions. The file size for saving c(2), e

(0)
p , and e

(1)
p

altogether is 49% of the size of the non-uniform dataset. An-
alyzing the plot results of the relation of the RMS error to
the percentages of e(0) and e(1), we observe a drastic change
in the errors in the 20% region. Hence, we decided to keep
only 20% of the error coefficients in each level.

6.4. Adaptive Multi-Resolution

To visualize the multi-resolution hierarchy we have adapted
our CPU-based raycaster to implement Procedure 2, which
takes all resolution levels into account during rendering.

One of our main concerns is the continuity or smoothness
preservation through different levels of resolution. However,
since each level of the hierarchy is C2 continuous and we are
simply adding these levels, the final result remains a C2 con-
tinuous function. In order to avoid any discontinuity at the

boundaries, we extend the borders of the cells in each direc-
tion by a specific number of voxels of value zero (here the
voxel size depends on the resolution of the cell). We take into
consideration the finite support of cubic B-splines. Extend-
ing by two voxels in each direction ensures that the function
representing the cell smoothly goes to zero as it approaches
these extended borders and is zero-valued everywhere be-
yond them.

Taking into consideration rendering performance a suit-
able choice of Nmax could be 8, 16, or 32. In fact, in our ex-
periments we chose 32 for the initial level, but experimented
with different Nmax for the subsequent levels. The decision
whether a cell has to be refined is based on the error of re-
construction of that cell (see line 5 in Procedure 1). The error
threshold is always set to 1.0. In order to prevent the sub-
division of cells with only few non-uniform points we set
M̃ = 100.

The X38 dataset consists of 323,192 non-uniform points
emulating the X38 Crew Return Vehicle. It is a typical non-
uniform dataset where 99% of its points are concentrated in
about 5% of the volume. In Fig. 5 we show the dataset recon-
structed with our multi-resolution scheme consisting of two
levels. Due to the aspect ratio of the axis-aligned bounding
box, the coarse resolution is 32x23x17 with an RMS of 6.39.
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a) b) c)

Figure 3: Renderings of the Chirp dataset: a) the original uniform data, b) reconstruction from 75,000 non-uniform points using

regularization as defined in Eq. 6 (λ = 0.3), RMS is 1.12 with a reconstruction time of 0.08 min, and c) reconstruction from

75,000 non-uniform points using regularization as defined in Eq. 7 (λx = λy = 0.3, λz = 1.0), RMS is 0.51 with a reconstruction

time of 0.08 min.

a) b) c) d)

Figure 4: Renderings of the Bypass dataset consisting of 7,929,856 non-uniform points, reconstructed using our BMRP scheme

(finest resolution 1024x120x256): a) coarse representation reconstructed from c(2) coefficients, RMS is 4.55, b) finer represen-

tation reconstructed from c̃(1) = U jc
(2) + e

(1)
p , where we used 20% of the points from the e(1) error volume, RMS is 2.69, c)

finest representation reconstructed from c̃(0) = U j c̃
(1) + e

(0)
p , where we used 20% of the points from the error volume e(0), RMS

is 0.6, and d) finest representation reconstructed where we used 100% of the points from the error volumes e(0) and e(1), RMS

is 0.4.

Figure 5: The X38 aircraft dataset consisting of 323,192
non-uniform points rendered with our multi-resolution

scheme using two levels of hierarchy.

Table 3 summarizes several scenarios we tested to analyze
the behavior and performance of our method. In all cases we
specified the coarse resolution to be 32, while for the com-
posite cells we either selected 8, 16 or an adaptive resolution
by using the σavg = 0.05 threshold. Using a resolution of 8
requires more levels in order to capture the data accurately,
however, the storage per level is reduced. By using a resolu-
tion of 16 or an adaptive resolution we increase the storage
requirement per level, but achieve a better approximation of
the data. When using the adaptive resolution the impact of
the third or higher levels in the reconstruction error is very

small. For the Bypass dataset there is no refinement in level
three since no cell has an error higher than 1.0.

In addition we also analyzed the impact of the threshold
M̃. Lowering this threshold, lowers the error, but increases
the storage requirements drastically. Since the minimal re-
finement of the composite cells is 83 = 512, having a thresh-
old M̃ set to 100 is sensible.

7. Conclusion and Future work

In this work we presented a framework for reconstruction
and visualization from non-uniform point sets on uniform
grids using B-spline basis funcions. We improve our recon-
struction results by introducing a new regularization func-
tional. We introduce a new link between non-uniform rep-
resentations and the interscale B-spline relation in a multi-
resolution context. We show the performance and quality
of our technique when compared to other competing tech-
niques.

In the future we plan to improve on our work by: a) ana-
lyzing the possibility of an automatic setting of the λ param-
eters, b) extending our framework to vector and time-varying
data, c) providing a GPU implementation of the CPU-based
multi-resolution raycaster, and d) investigating alternative
lattice structures.
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Table 3: AMR results for different datasets and settings. Size shows the storage requirements in MB, Sub shows the resolution of

reconstruction of the composite cells (i.e., either fixed or selected adaptively (adp) based on the σavg = 0.05 threshold), Thresh

is the minimum number of points for which a cell can be subdivided, Cells is the number of composite cells in each level of the

hierarchy and Times are in minutes.

Dataset Level 1 Level 2 Level 3
Name Size Sub Thresh RMS Times Size Cells RMS Times Size Cells RMS Times Size

X38 5.11 83 100 6.39 0.03 0.05 136 2.66 0.07 0.27 1765 1.99 0.27 3.46
X38 5.11 163 100 6.39 0.03 0.05 136 1.67 0.17 2.13 651 1.60 0.58 10.18
X38 5.11 ad p 100 6.39 0.03 0.05 136 1.60 0.52 3.14 33 1.58 0.03 0.18
Bypass 121 83 100 4.33 0.52 0.01 938 2.41 1.22 1.84 13270 1.54 1.95 25.99
Bypass 121 163 100 4.33 0.52 0.01 938 0.79 1.72 14.66 - - - -
Bypass 121 ad p 100 4.33 0.52 0.01 938 0.34 7.53 58.91 - - - -
X38 5.11 ad p 50 6.39 0.03 0.05 183 1.59 0.55 3.32 292 1.55 0.25 1.37
X38 5.11 ad p 10 6.39 0.03 0.05 427 1.33 0.58 3.58 7535 0.97 5.03 28.63
X38 5.11 ad p 1 6.39 0.03 0.05 787 1.30 0.63 3.88 17948 0.75 12.43 81.60
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Natural Convection

Oil

BypassTooth

Blunt−FinSynthetic Chirp

Figure 6: The relation of RMS as computed in Equation 8 vs. the average standard deviation σavg as computed in Equation 3

for several non-uniform datasets. A threshold of σavg = 0.05 is shown with a vertical line.

Natural Convection

Oil

BypassTooth

Blunt−FinSynthetic Chirp

Figure 7: The relation of resolution of reconstruction vs. average standard deviation σavg as computed in Equation 3 for several

non-uniform datasets. A threshold of σavg = 0.05 is shown with a vertical line.
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a) b) c)

Figure 8: Renderings of the Natural Convection dataset: a) reconstruction using our method, RMS is 0.63, b) reconstruction

using RBFs proposed in [JWH∗04], RMS is 1.51, and c) reconstruction using EBFs proposed in [JBL∗06], RMS is 1.41.

a) b) c)

Figure 9: Renderings of the Oil dataset: a) reconstruction using our method, RMS is 0.19, b) reconstruction using RBFs

proposed in [JWH∗04], RMS is 1.02, and c) reconstruction using EBFs proposed in [JBL∗06], RMS is 1.08.

a) b) c)

Figure 10: Renderings of the Synthetic Chirp dataset: a) reconstruction using our method, RMS is 1.12, b) reconstruction using

RBFs proposed in [JWH∗04], RMS is 3.06, and c) reconstruction using EBFs proposed in [JBL∗06], RMS is 1.37.
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