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ABSTRACT

echnological and research advances in both acquisitiosiandation devices
T provide continuously increasing high-resolution volurietiata that by far
exceed today's graphical and display capabilities. Noieam representations
offer a way of balancing this deluge of data by adaptively sneiag (sampling)
according tothe importance (variance) of the data. Alsmany real-life situations
the data are known only on a non-uniform representation.

Processing of non-uniform data is a non-trivial task andckeenore dif cult
when compared to processing of regular data. Transformimm hon-uniform
to uniform representations is a well-accepted paradignmensignal processing
community. In this thesis we advocate such a concept. The maiivation
for adopting this paradigm is that most of the techniquesraathods related to
signal processing, data mining and data exploration arkedeehed and stable for
Cartesian data, but generally are non-trivial to apply to-noiform data. Among
other things, this will allow us to better exploit the capgigis of modern GPUs.

In non-uniform representations sampling rates can vargtidely even by
several orders of magnitude, making the decision on a taggetiution a non-
trivial trade-off between accuracy and ef ciency. In selerases the points are
spread non-uniformly with similar density across the vodymvhile in other cases
the points have an enormous variance in distribution. Ia thésis we present
solutions to both cases. For the rst case we suggest congpugiconstructions
of the same volume in different resolutions based on thd lefvdetail we are
interested in. The second case scenario is the main motivédr proposing a
multi-resolution scheme, where the scale of reconstrngialecided adaptively
based on the number of points in each subregion of the whalene

We introduce a novel framework for 3D reconstruction and&igation from
non-uniform scalar and vector data. We adopt a variatioeebmstruction ap-
proach. In this method non-uniform point sets are transéoito a uniform rep-
resentation consisting of B-spline coef cients that araeitied to the grid. With
these coef cients we can de ne@? continuous function across the whole volume.
Several testings were performed in order to analyze andume-our framework.
All the testings and the results of this thesis offer a viesnfra new and different
perspective to the visualization and reconstruction fram-aniform point sets.






KURZFASSUNG

er standige Fortschritt in Forschung und Technik bei deadsidng und der

Simulation von Vorgangen fihrt zu immer gr6 eren hochaliégeen volu-
metrischen Daten. Die enormen Datenmengen Ubersteigemeitem die Kapa-
zitdten heutiger Graphikkarten und Bildschirme. Die urgfi&irmige Verteilung
der Information in den Daten bietet eine Mdglichkeit, dig&anenge zu reduzie-
ren. Durch adaptives Messen der Daten werden Bereiche mer Wtchtigkeit
(Varianz) genauer gemessen und reprasentiert.

Im Vergleich zu regelma ig repréasentierten Daten ist dieswbeitung von unre-
gelma igen Daten sehr viel aufwendiger. In der Signalveestung ist aus diesem
Grund die Transformation von unregelma igen zu regelméngdaten ein hdu g
verwendetes Modell. In dieser Arbeit wird dieses Konzepndalls verwendet.
Der Hauptgrund fur die Verwendung dieses Ansatzes ist digehabarkeit von
vorhandenen Techniken und Methoden der Signalverarlgities Data-Minings
und der Datenexploration fir regelma ige Daten. Diese Md#n sind fir cartesi-
sche Daten wohlde niert und stabil. Fur unregelma ige Duist die Anwendung
dieser Techniken und Methoden hingegen nicht trivial.

In unregelma igen Daten kann die Datendichte in unterstiiftken Regionen
stark variieren. Dies erschwert, eine geeignete Au dsuiirgdie Rekonstruktion
in regelma ige Daten festzulegen, welche einen Ausgleistsehen Genauigkeit
und Ef zienz herstellt. In der Arbeit wird prinzipiell zwehen zwei Arten der
Verteilung in unregelmé igen Daten unterschieden: eireafiférmige Verteilung
der Daten und eine Verteilung mit starken Konzentrationram Daten in kleinen
Teilbereichen des Datenraums. FUr die erste Art der Vartgilird in der Arbeit
eine Rekonstruktion in verschiedenen Au 6sungen vorgesgdn, die auf dem
gewulnschten Detailgrad basieren. Die zweite Art der Mg wird mit Hilfe
eines adaptiven Au 6sungsschemas behandelt. Die genauséng der Rekon-
struktion wird dabei adaptiv in Abhangigkeit der Datendécim jeder Region des
Datenraums bestimmt.

Des Weiteren stellt die Arbeit ein komplettes System zui-diensionalen
Rekonstruktion und Visualisierung unregelma igen Skalard Vektordaten vor.
Dabei wird ein Rekonstruktionsansatz mittels Varianteimmeag angewendet. Mit
dieser Methode werden unregelmé ige Daten in regelma igeed umgewandelt
indem Koef zienten einer B-Spline-Reprasentation in eindteestruktur gespei-
chert werden. Mit diesen Koef zienten ist es moglich, eidé stetige Funktion
Uber das gesamte Volumen zu de nieren. Fiur die Analyse umdabstimmung
des vorgestellten Systems wurde auch eine Reihe von Testsgdiftihrt. All die-
se Tests und die Resultate der Arbeit bieten einen neuafbekwinkel auf die
Visualisierung und Rekonstruktion von unregelma igen Datizen.
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The reasonable man adapts himself to
the world, while the unreasonable one
persists in trying to adapt the world to
himself. Therefore, all progress depends
on the unreasonable man.

George Bernard Shaw
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Man's understanding of every eld of
life is often through non-uniform
observations in space or time. Indeed,
most of the readers of this thesis may
sample out the introduction, the
conclusion, and possibly a few sections
and then try to gure out the rest by
reconstruction!
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ith recent technological advances, non-uniform represent

tions are becoming a crucial factor in acquisition and sim-
ulation devices and as such the development of better and mor
reliable reconstruction and visualization schemes is &ssity.
After presenting the motivation of this work, in this chapiee
give a general information about the data representatiodstee
existing techniques applied for processing and visuajizion-
uniform data. After introducing the datasets and critesadifor
evaluating the work, we present the scope and outline ofigs.






CHAPTER 1

INTRODUCTION

Visualization is focused on enabling and conveying a bettet deeper insight
about data and processes. In the last decades, unpreaktsiieological growth
and development have contributed to the overall improvemktine visualization
pipeline, in particular for the processes of data acqoisiind data enhancement.
In practical applications over awide eld of studies, onteoffaces the problem of
reconstructing an unknown functiérfrom a nite set of discrete data. These data
consist of data sites and data values, and the reconstiutdi® to approximate
the data values at the data sites. In other words, a funé&tias sought that
either interpolates or at least approximates the data. dttex kcase is in particular
important if the data contain noise.

The traditional sources of volumetric data are simulateswell as data acqui-
sition devices. The majority of these devices acquire dataraform (Cartesian)
lattices. In an effort to study larger and more complex peotd, there has been a
move toward non-uniform data representations, since tfiey@way of adapting
the measure location (or sample points) according to theltapce (variance) of
the data. Examples include: a) simple data loss during datarwnication in
sensor networks [99], b) Doppler measurements or other maogeisition models
(polar or spiral) for tomography and magnetic resonancgingg10], ¢) adaptive
and moving mesh approaches in mathematical simulatiohipttysical sciences
[50], d) particle simulations [70], and e) data from geneglals such as astronomy,
spectroscopy and signal processing [14].

While the acquisition of data on non-uniform grids has beconte-spread,
the available tools for processing, Itering, analysisgaendering of data are most
ef cient for uniform representations. There are two conmgefforts to deal with
non-uniform data: (1) create novel and ef cient tools thiagdtly work on them, or
(2) convert the non-uniform representation into an ef ¢igtermediate uniform

3



On Visualization and Reconstruction from Non-uniform P&ats

representation and apply standard tools. Both approachesatvantages and
disadvantages. In this thesis we make a contribution tosvédel latter approach.
Among other things, this will allow us to better exploit thegpabilities of modern

GPUs. A simple illustration of the general paradigm of thesik is shown in

Figure 1.1. The continuous representations are derived the reconstructed
uniform lattices.

(Acquisition Device}‘ o 3'
x, Variational .

) #
i i . R
Non-uniform Reconstruction Continuous
Point Setg 7w ) Representation
ol AN

. . g

Figure 1.1: Abstraction of the general work- ow of the thesis.

In order to nd the best way to transform the non-uniform datdo a uni-
form grid, we rst need to analyze the nature of the given da@ne reason
for non-uniformity is the ability to capture different seal of information den-
sity (e.g. mathematical simulation of shock waves). Anptteason for non-
uniform data representations could come from imprecisdterreative measure-
ments (e.g. Doppler measurements) or sparse represestétiq. compressive
sensing). While in the former case multi-resolution repnésigons might be most
suitable, in the latter case a single resolution repretientaight be all what is
needed. In this thesis we present a framework to adapt toseactario.

1.1 Data Representations

Three-dimensional (3D) acquisition and simulation devipeovide us with a va-
riety of data representations. Depending on the orgaoizati the points (voxels
in volumes, or cells in nite element analysis) the data carctlassi ed as regular
(Figure 1.2(a)), rectilinear (Figure 1.2(b)), curvilimg#&igure 1.2(c)), and non-
uniform (Figure 1.2(d)). The sampling positions in Figur2 &re considered to
be the line intersections. The rst three data represemattan be classi ed as
structured, because the 3D point positions (coordinates)e derived from the
implicit structure. Non-uniform grids, also known as uanstured or irregular, are
considered in our work as point sets. Hence they do not peoait/ neighbor-
hood information about the elements (in our case 3D pointH)e data. In order
to be able to access any single element, we have to explgatlg each point's
coordinates along with its respective value. Thus, foristpthe same amount
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of non-uniform 3D points we need four times more storage thanamount of
storage required for the regular (uniform) counterpartFigure 1.2(d) the non-
uniform representation is shown just for display purposebeaing triangulated,
since triangles are one of the simplest forms of display pines.

(a) Regular grid (b) Rectilinear Grid

(c) Curvilinear grid (d) Non-uniform grid

Figure 1.2: Grid Structures.

1.2 Non-uniform Data Encoding and Visualiza-
tion Techniques

Ourthesis brings together concepts from reconstructidisampling theory, signal
processing, multi-resolution analysis, visualizatiom aendering. As such the
citation of all prominent related work in one section wougldf cult. Hence, in
this section we give a general overview of the most well-known-uniform data
encoding and visualization techniques.

Depending on the underlying data structure and source afisitign differ-
ent, techniques have been developed for the visualizatidnrepresentation of
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(@) (b)

Figure 1.3: Reconstruction of an image (b) from a given non-uniform point set (a).

non-uniform data. The early works in this eld are extensiaf 2D encoding
techniques to 3D, especially those with regard to functiap@roximation and
scattered data interpolation [37, 38, 77, 76]. In Figure @we3show an image
where 80% of the points were removed, and the respectivenséection from

this non-uniform representation.

A usual approach to the rendering of non-uniform points, inite element
style, is by rst polyhedralizing the point set and then reridg the new structures.
There is a considerable body of literature on the renderfngoa-uniform data
based on nite element analysis (see e.g., [23, 53, 60, 6988692, 95, 96,
115, 119]). While there are very good reasons to adapt suclp@amach for
rendering, we postulate here that an intermediate tramsftoon onto a regular data
structure opens up the possibilities for much more soaitdd data processing
in general and henceforth focus on such a pipeline. The mahblgms here
are that the data has rst to be subdivided into polyhedraaedrrect and fast
visibility ordering has to be computed. These problems wackled by Silva
et al. [96], Krishnan et al. [53] and Callahan et al. [23]. Weiét al. [115]
and Schreiner and Scheidegger [92] propose a GPU-basexstanygof tetrahedra
with minimized discontinuities between structures. Rds$shle [87] propose
reconstruction of non-discrete uniform tetrahedra part# via quasi-interpolating
quadratic super splines. In Figure 1.4 are shown examplessoélizing non-
uniform point sets through nite elementanalysis. Althdubere is a continuously
increasing number of techniques applied to nite elementctires, they cannot
match the performance and quality of uniform representatisince they cannot
be ef ciently implemented in hardware as their uniform ctarpart.

6
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@) (b) (©

Figure 1.4: Visualization of non-uniform point sets through nite element analysis: a)
hardware-assisted visibility sorting [23], b) extraction of isosurfacesfiaegular grids
[92], and c) hardware-based ray casting for tetrahedral meshd$]1

Data approximation through basis functions is another comapproach for
encoding non-uniform point sets. The majority of these mégtries to ef ciently
reconstruct surface and shape from non-uniform point d@edjuired by 3D scan-
ning devices [6, 7, 16, 24, 28, 42, 79, 80, 90, 103, 122]. Rpdgimmetric
functions or radial basis functions (RBFs) were extensiveldun most of these
approaches. Alexa et al. [6] propose a moving least squa@®x@mation for
evaluating local maps. Ohtake et al. [80] propose the apmation of point sets
over a piecewise smooth surface by specifying the centetdamal support of
RBFs according to point density and surface geometry. Zwiekat. [121] pro-
pose the usage of an elliptical average lIter for the directdering of opaque and
transparent surfaces. Some rendering examples from swiswalization using
RBFs are given in Figure 1.5.

Radial basis functions have also been applied for the appiation of volumet-
ric data [47, 48,117, 121]. Extensive research was conduicte the acceleration
of the approximation process and the elimination of thealisutifacts from the
non-compactness of the basis functions. In Figure 1.6teat shown from pre-
vious work where radial and ellipsoidal basis functions @sed for the volume
tting process. Further details will be given in Chapter 3.

Particle systems have received special attention in reesns [1, 61, 70, 71,
72]. While most of the methods of this category are used foveotional isosur-
face visualization techniques, special interest is drawhaw these methods can
be applied to volumetric reconstruction/ tting. The basmncepts of these ap-
proaches is that the particles can be distributed adaptivelvenly to accomodate
world-space features (in this case the surface). This gesvcompact, ef cient
and accurate representations [72]. Examples from visatadiz methods using
particle systems are shown in Figure 1.7
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@) (b) (©

Figure 1.5: Surface reconstruction through basis function representations: a) ceirfa
approximation with moving least squares [6], b) surface tting with RBF4][2and c)
data approximation with compactly supported RBFs [80]

(@) (b) (©)

Figure 1.6: Volumetric reconstruction through basis function representations: ajeen
ing using spherical Gaussian basis functions [48], b) rendering usliigtieal Gaussian
basis functions [47], and c) rendering using Gabor wavelets [117].

All the above mentioned approaches offer solutions to aispgpe of data
under special constraints. Recently, there has been some ffcombining
rendering techniques for structured and unstructuredgnidini ed frameworks
[51, 58, 74]. Figure 1.8(a) shows a rendering of astronontg, dehere the regular
grid ray casting has been merged with point sprites obt&noaad the non-uniform
representation. In Figure 1.8(b) the Blunt Fin dataset isleesd using a mov-
ing least square (MLS) approximation tted to an uniform arah-uniform grid
displayed using raycasting.

In this thesis we offer a framework converting non-uniforoint sets onto a
uniform representation either through single- or muliai@tion reconstruction.
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@) (b) (©

Figure 1.7: Particle systems for the visualization of non-uniform point sets: a) adaptively
sampled patrticle uids [1], b) particle-based processing of multi-matevielumes [72],
and c) particle-based meshing of CT data [70].

(@) (b)

Figure 1.8: Visualization of non-uniform point sets with hybrid approaches: a) astmuio
data rendered with a hybrid ray caster [51], and b) simulation data readevith a ray
caster adopted to MLS [58].

1.3 Datasets

Most of the visualization techniques are tted to data acegifrom speci c sources.
We tested our framework on several data either obtained agnsicg devices,
simulation devices, or synthetic simulations. Followisgaidescription of these
datasets.

1.3.1 Scalar Datasets

The Oil Reservoir dataset was computed by the Center for Subsurface Modeling
at the University of Texas at Austin. This data represenitmalation of a black-oil
reservoir model used to analyze the placement of injectiipaoduction wells in
order to minimize oil explorations. The non-uniform poiet sonsists of 29,094
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points containing water pressure values for the injectieti.w

The Natural Convectiondataset consists of several timesteps of temperatures
generated from a natural convection simulation of a non{deian uid in a
box. The domain is heated from below, cooled from above, asdhxed linear
temperature pro le imposed on the sidewalls. The simufatias developed by
the Computational Fluid Dynamics Laboratory at the Uniugrsi Texas at Austin
and consists of 68,921 points organized in hexahedral farikmperature values
were encoded as they accurately represent the structwaesrtierge during the
convection process.

The Synthetic Chirp dataset is a synthetic radial sinusoidal wave with spatial
frequency that decreases from center to the edges as denrteguation 1.1:

1 sin(z =2)+b 05 1+ cos Werls0

(r+ro)
2+Db

Chirp(x;y;2) = (1.1)
wherer controls how close we go to in nity as we approach the cemtggontrols
the number of maxima between the center and the edges, biimalmation term,
r=2(x2%2+y?),x;y2[ 0:505]andz 2 [0;1]. In our testing scenario we set
ro =5,wy =4 andb= 0:5. We create a non-uniform point set by evaluating the
Chirp function for 75,000 random pointg;y; z).

The Bypassdataset is a simulation performed at the department of Mecha
ics at the Royal Institute of Technology in Stockholm [91]. ctinsists of 421
timesteps of a simulation from a laminar-turbulent traosiin a boundary layer
that is subject to free stream turbulence. The datasetstsrsd 7,929,856 non-
uniform points in a curvilinear grid with uniform spacingrass the x and z axes
and non-uniform spacing along the y axis. Laminar ow is duwerized by low
momentum convection, pressure, and velocity independéme. Turbulent ow
is characterized by chaotic and stochastic property clsaage tends to produce
vortices. The breakdown to turbulent ow in a at-plate balary layer is dom-
inated by the exponential growth of (unstable) Tollmiem&hting (TS) waves,
which form typical Lambda-shaped vortices. The visuaiarabf this simulation
is of great importance to better analyze how the "bypass"®ivaves develops.

The X38 Vehicle dataset consists of 323,192 non-uniform points computed
from an inviscid nite element calculation on a tetrahedgald. The grid was
computed using an advancing front method and was genenaisdd geomet-
ric representation emulating the X38 Crew Return Vehicle. Geemetry and
the simulation were computed at the Engineering ResearcleCaniississippi
State University by the Simulation and Design Center. Thta dat represents a
single time step in the reentry process of the vehicle ingcettmosphere. During
the reentry process, interesting shock structures emergelissipate and these

10
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structures have a signi cant impact on the stability of tkeicle. It is a typical
non-uniform dataset where 99% of its points are concemtiatabout 5% of the
volume.

With the exception of the Synthetic Chirp dataset, all theeptitatasets are
de ned as a cloud of points concentrated only at speci ¢ poss in the object
space. Hence, there is no possibility to exactly measuradheracy of a recon-
struction or visualization method at positions not knowri@p In order to better
understand this behavior we created non-uniformly samtégéa from regular data
sets by adaptively sampling them. For the adaptive samplitige data we used
a 3D Laplacian kernel de ned as follows:

@v .,k ev, K ev
@x @y @z

whereV represents the volume given as a 3D regular grid. After comvg the
data with this 3D Iter we sorted the point values accordingheir magnitudes
and retain only those points that have the biggest absodltes (i.e., 20% of all
points in our experiments). We denominate these datasetspacian dataset.
Other Iters could have been used, but since the idea of nufeumly sampled
datasets is to represent higher frequency regions with moirgs, convolution
with a Laplacian Iter would result in a similar effect. Theniorm datasets used
in this thesis can be found http://www.volvis.org

Laplacian(V) = 1.2

1.3.2 Vector Datasets

The Flow Transport dataset was generated at AVL List GmbH in order to evaluate
computational uid dynamics for re simulation. It contasnow as well as heat
transport solutions. The non-uniform point set consisis’ef 20 points containing
the 3D velocity eld components of the ow data.

The Cooling Jacket dataset was generated at AVL List GmbH in order to
evaluate a cooling jacket design for a four cylinder diesgjiee. This stationary
ow simulation incorporates a heat transport solution id@rto predict critical
temperature regions within the engine. The original datesspeci ed on an
unstructured grid composed of different cell types sucheashedra, four sided
pyramids, three sided prisms and tetrahedra. The non+umip@int set consists
of 1,537,898 points containing the 3D velocity eld compaoteof the ow data.

The Fuel Injection dataset was computed by the Institute for Internal Combus-
tion Engines and Thermodynamics at The Graz University ahmelogy. This
data represents a simulation of fuel injection into a sing@éon shape. It consists
of 25,190 non-uniform points giving the 3D velocity eld cqonents of the fuel
simulation.

11
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In order to create non-uniformly sampled vector data, wheeeknow the
uniform ground truth, we used the gradients computed froifoun data sets and
adaptively sampled them. For the estimation of the gradiemetused the central
difference operator. For the adaptive sampling of the gratdilata we used the
3D Laplacian kernel as described in %action 1.3.1. Inputbedkernel are the
amplitudes of the vector elds, kvk = = u2+ 2+ w2, After convolving the
gradient amplitudes with this 3D Iter, we sorted the valumording to their
magnitudes and retain only the points that have the bigdestlate values. We
denote these datasetslagplacian-Gradient datasets.

All the vector data is normalized so that the maximum amgétacross the
vector eldis 1.0.

1.4 Evaluation Metrics

We have tested our method with a variety of datasets and widreht parameter
settings. An important task of any reconstruction or appnation technique is
the reporting of the reconstruction errors and the metsesidor this.
In order to evaluate the quality of our reconstruction, we the Root Mean
Square error (RMS) de ned as follows:
s

CM(Fiviz) f)2 100

RMS =
M Maxy alue

(1.3)

whereF is the approximating functiorf, are the given valuedaxy que IS the
maximum value in the given point set aMl is the number of points. For the
error estimation in Laplacian datasets we will use &3Sy which gives the
global RMS in all regular points (including the points notieed in the Laplacian
dataset).

Our testing platform is an Intel Dual Core 2.70 GHz processacimme with
8GB of RAM. Since our program s single threaded we are usihgamre dedicated
processor during the reconstruction process.

1.5 Thesis Scope and Outline

The scope of this thesis is to provide an alternative franmkwwthe visualization

of non-uniform point sets. The main dif culty of such repesgations, the lack
of neighborhood information, is avoided by providing anaént method for the
reconstruction for 3D scalar and vector data. In this chrapgementioned some
of the most important categories of techniques that ded man-uniform point

sets.
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Chapter 2 presents the mathematical background and knosviefdgxisting
reconstruction techniques with special focus on the vianiat approach. The basis
of the variational approach is given. A block-based metkgaoposed for solving
the memory and ef ciency problems encountered when adgyltie variational
approach to the reconstruction of large non-uniform 3D pséts.

Reconstruction from non-uniform point sets is a non-tripidcess especially
regarding the speci cation of an optimal reconstructiosaletion. We de ne
as optimal reconstruction resolution the lowest resofututich ensures minimal
reconstruction error and no visual artifacts. In Chapter 3weduce a statistical-
based concept for selecting an optimal reconstructioduen. Furthermore, an
new regularization functional is proposed to reduce themstuction errors.

Whereas selecting a single resolution can give solutionageswhen the data
has an even distribution of points across the volume, a smestlution approach
is required for the cases when this distribution is not eweChapter 4 we present
two multi-resolution reconstruction approaches thatétthe latter problem from
different perspectives.

While the main motivation of this thesis is dedicated to theorestruction
from scalar non-uniform point sets, in Chapter 5 we apply @pgreach to non-
uniform vector data. We initially present a straightfordiapproach obtained
by doing component-wise reconstruction of vector data. Mie¢hod is applied
to non-uniform vector datasets obtained either from sitraria or from thresh-
olding gradients of uniform datasets. By means of error egion and vector
visualization we show the behavior of our proposed recanson technique.

We build Chapter 6 upon statistical data interpretation imt#@mpt to create
a basis for the criterion of selecting an optimal percentddke Laplacian points.
Optimal here refers to the minimal percentage of pointscsetein a way that the
reconstruction errors are lower than a user-de ned thrigshn iterative selection
method is presented in an effort to nd the non-uniform paiet, which will yield
a reconstruction with minimal error.

Finally, Chapter 7 presents a summary of the thesis and afterlgsions are
drawn, the ideas for future work are presented.
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veral mathematical concepts existin relation to recanston

from non-uniform data in shift-invariant spaces. Gengréil
there is no restriction on the distribution of the samplés, re-
construction is not uniquely de ned and hence is ill-posdd.
such cases a variational approach is used and the recdiwiruc
routine is formulated as a minimization of two ternag:the sum
of squared errors, arg) the regularization term that controls the
smoothness of the solution. In this chapter we introducertid-
ematical background for the variational approach, theragnta-
tion that supports the selection of B-splines as basis fonstior
the variational approach, and a proposed method for impgovi
the ef ciency in terms of memory and time.






CHAPTER 2

VARIATIONAL RECONSTRUCTION

Non-uniform data reconstruction (approximation) is a réckast growing research
area. It deals with the problem of reconstructing an unknfumtion from given
non-uniform data. A considerable number of approaches &es proposed for
the reconstruction of non-uniformly sampled scalar dadageially for one- and
two-dimensional signals [33, 34, 39, 59, 67, 89, 94, 120} Mbn-uniform recon-
struction techniques can be classi ed as:

* Global tting methods [33, 34, 39, 89, 100, 120]

Distance-weighted methods [94]

Moving least-squares (MLS) methods [32, 35]

Shift-invariant methods [2, 4, 25, 63]

Mesh-based methods [54, 65]

Variational methods [10, 59, 75, 111, 112]

Radial basis function (RBF) methods [22, 57, 66, 73]

Most of the methods are based on the reconstruction of thee lgatsolv-
ing large systems of equations, hence suffering from longpedational times
[33, 34, 39]. Feichtinger et al. [33] propose a reconstarcalgorithm by using
adaptive weights, conjugate gradients, and Toeplitz syst® reduce computa-
tional effort. Grishin and Strohmer [39] extend this work tsing Toeplitz and
Hankel matrices with a Neumann boundary condition to imptbe reconstruction
speed and quality with piecewise trigonometric polynosidVhile they provide
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good reconstruction results, most of these approachesagezllon global recon-
struction techniques, since they use basis functions withite support. This
makes them impractical to use for real-time visualizatipplgations, where -
nite support reconstruction kernels are desired. Park §82] have presented an
ef cient discretization of Sibson's natural-neighborenpolation for 2D and 3D
data tting. While ensuringC?! continuity, they fail to report experiments for real
non-uniform point sets. Nielson [76] has presented an aeerof several approx-
imation techniques for non-uniform point sets. While eaathtéque performs
best only in particular cases, the use of local compact epesregs considered the
fastest approach.

A major part of the literature related to non-uniform redomstion starts from
the general assumption that the underlying continuoustifmmées band-limited,
hence constraining the space of possible results. UnsBr [11®] suggests to re-
place the concept of band-limitedness by minimum-errojgoetmn on a space of
shift-invariant functions. A more general overview on mdeon-uniform recon-
struction techniques in shift-invariant spaces has beemwarized by Aldroubi
and Grochenig [4]. Perhaps the most popular shift-invasaaces are based on
Radial Basis Functions (RBFs).

When choosing a reconstruction method there are severatésatat should
be taken into account, as:

» Explicit expression except the MLS and the mesh-based methods all the
other methods can be formulated through explicit matherakaformula-
tions.

* Ability to handle large sampling gaps variational and RBF methods are
the best ones in handling large sampling gaps. The leasieet ones are
the global- tting and shift-invariant methods, since theguire a minimum
density to ensure the convergence of the solution. Meskebasd MLS
methods handle the gaps moderately well.

» Reconstruction quality: variational methods are usually believed to be the
best in terms of reconstruction errors and smooth visualltes Global
tting and Shepard's method yield the worst quality.

» Computational complexity: global tting, variational and RBF methods
have the highest computational complexity, since theyiregolving adense
system of linear equations. Among the local ones, meshdbas¢éhods also
have a complexity that is comparable to the global ones,ceslhein the
presence of regularization.

* Robustness to noise methods that use regularization, as the variational
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method, are robust to noise. The RBF methods can be consiaebedit
the next best techniques with regard to robustness to noise.

2.1 Sampling and Reconstruction

Sampling and reconstruction are two closely related psesesApriori knowledge
of the sampling process on the acquisition device can lebdtter reconstruction
results. Modern digital data processing of signals (in asecvolumes) use a
discretized version of the original signilthat is obtained by samplinfy on
a discrete set. The natural question that arises is whetieethaw canf be
recovered from its samples. Sampling theorems guarantedexpreconstruction
under speci ¢ mathematical conditions. Shannon's thegpeovides a method to
perfectly reconstruct band-limited signals from their ieégtant samples [93]. A
function f is band-limited if its energy is nite (inL?-space ) and its Fourier
transform vanishes outside a speci c interval. The reamsion formula for
one-dimensional signals that derives from Shannon's #raas:

sin (x k)

X
0= 07"

k2z

(2.1)

wheref (k) : k 2 Z are the discrete samples of the band-limited function.

In 1977, Papoulis [81] introduced an extension of Shannsaxspling theory,
showing that a band-limited signal can be exactly recontgdifrom the samples of
the responses on linear-shift invariant systems sampled]szrnth of the Nyquist
rate [78]. The main contribution of Papoulis is the idea thate are many ways
of extracting data for a complete characterization of the@ad function [109].
However these theorems require the signals to be banctinaibhd to have an
in nite number of samples. Real world signals are never dydi@nd-limited and
the number of samples is nite. There is no such device as eal idw-pass to
produce a perfectly band-limited signal. Furthermore,fBloa’'s reconstruction
formula is rarely used due to the very slow decay and nitepgupof thesinc
function. In order to deal with those problems, there is aemecent trend that
approaches sampling from the perspective of approximaiibe goal is to obtain
a solution that is as close as possible to the original signabrding to some
criterion, e.g., in a least squares sense. These methoidsgiye a solution to the
consistent sampling problem [46], using more realistic-handlimited functions
asreconstruction bases. Unser and Aldroubi [106] furtherstigated such signals
and proposed the use of consistency criteria for the sagpliocess.

Similar ideas have been extended to the domain of non-umigampling and
reconstruction. Special interest has been dedicated tetoastruction of signals

19



On Visualization and Reconstruction from Non-uniform P&ats

in shift-invariant spaces. However, a lower bound on thaméhdistance between
two sampling positions has to be assured. For generalishidtiant spaces a Beurl-
ing densityD  1is necessary for a stable and perfect reconstruction [3mFr
the shift-invariant spaces a logical connection can be dortbe reconstruction
with splines, and in particular with B-splines [104]. Witheth shift-invariance,
compact support and approximation properties they asbaredst conditions for
the reconstruction process.

2.2 B-splines

Interpolation can be de ned as a model-based recovery dfimeous data from
discrete data within a known range of abscissa [101]. Themgéform of interpo-
lation is: X
F(x) = &' k(X) (2.2)
k2zd

wherex is a d-dimensional vector,,(x) are the basis functions used in the recon-
struction process ang are the unknown coef cients associated with each basis
function. In the classical form of interpolation, the cogéntsc, are the values

of the input samples. The usage of the general form offers pwsgibilities in
choosing a wider range of attractive basis functions.

In our framework we use B-splines as basis functions in thengtcuction
process. B-splines, with their shift-invariance and compapport, offer optimal
conditions for faster and more accurate reconstructionltses Their symbolic
representation is", wheren 2 N is the degree of the spline. B-splines are
piecewise polynomials of degreethey are symmetric and hav€a * continuity.
They can be formulated as:

8 . . 1
R Mg
= 3 MW=3 (2.3)
T 0 x> 3
and .
X () "
= L DED ol (2.4)

o (1 Kk 2

where(x)! = (max(0;x))" and n is a positive integer.

As described by Thévenaz etal. [101] and by Unser et al. [108], B-splines
have several properties which make them very suitable fprasiapproximation.
We mention properties such as easy analytical manipulasewveral recursion
relations, minimal curvature, easy extension to quasrpat@tion and simplicity
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of their parametrization. One basic feature, which makegplBss very suitable
in applications related to signal approximation, is thaytkenjoy the maximal
order of approximation for a given integer support, pravigihe best quality for a
given computational cost [102]. B-splines of degree highantone do not enjoy
the interpolating property, but this is not required in maisthe applications that
deal with noisy samples. If such a feature would be requitethn be achieved
through an additional digital Itering step [104], which rn would introduce
extra computational effort.

2.3 Variational Reconstruction: Theory

In approximation theory, if there is no restriction on thetdbution of the samples,
the reconstruction problem is not uniquely de ned and haltgesed. The vari-
ational approach gives a solution to the general ill-pogedmstruction problem
expressed by Equation 2.2. In such cases the reconstruotitine is formulated
as a minimization of two termsi) the sum of squared errors, arg) the regular-
ization term that controls the smoothness of the solutidre Tst part guarantees
that the solution is close to the sample points, while the@ségart ensures that
there are no discontinuities in the reconstruction. Inataynal theory the best
results with regard to approximation accuracy are given by®kBFRd particularly
by a speci c class of basis functions known as thin platergdi[22]. While thin-
plate splines are one of the preferred approaches to ddalmuitti-dimensional
non-uniform data, they tend to be computationally expengikien the number of
points increases signi cantly. To overcome this problengAvindan et al. [10]
propose to discretize the thin-plate splines using unifBrsplines attached to the
reconstruction grid. While the discretization process bohédthematically for one
dimensional signal reconstruction, for higher dimensithiese are no compactly
supported B-splines that span the same space as the thensplates. However
cubic B-splines are very good candidates for the reconstrugrrocess. Cubic
B-splines can be formulated as:

8
2 % GixP@ix) 0 jx<1

3(x)= _ (2 ] xj)? 1jxj<2 (2.5)
>
-0 2 ] Xj

Given a set of sample pointg, = (Xi,yi,z), | = 1,2,...,M, letf; be the scalar
value associated with. We de ne the B-spline approximation through the form:

N¢ 1M 1 1
F(xy:2) = Gim (X k) Ay D)z m) (2.6)
k=0 1=0 m=0
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where 3(x) is the cubic B-spline basis function agd., the B-spline coef cients.
In order to determine the coef cients the following cost €tion is minimized:
1 Z 77
C(F) = KF(x;y;z) fik®+ KDPFK?dxdydz  (2.7)
i=0
where is a parameter that controls the smoothness and the seaomdstéhe
regularization term that uses Duchon's seminorrbs’F can be formulated as
follows:

£z X pop oa
kD PF k?dxdydz = D 100105 (2.8)
it G+ =p %
with 7 7 7 5
@F
Daiepias = @rEYO® dxdydz (2.9)

The crucial part of the variational technique is to exprégsgecond term in
Equation 2.7 by means of the rst term. This can be achievedguBuchon's
semi-norms which are a combination of the sum of partiaMdéries of a degree
chosen respectively to the reconstruction technique aimesgegreeg should be
smaller than the spline degree [30]). In our framework wepse? .

2.3.1 Matrix formulation

We can express Equation 2.7 with a simpler formulation uiedollowing matrix
representations:

8
< C=[Co00: 530Ny 1,0,00 -5 Oy LNy LN, 1]
f=[:fi] (2.10)
FiN Ny m+ Ny I+ k = xi k) yi ) ¥z m)
The cost function can now be rewritten as:

C(F)= kf Fck?’+ c'Rc (2.11)

whereR is a block-circulant Iter that corresponds to a regulatiaa Iter which
is derived from the Duchon's semi-norm. By applying the Edlangrange func-
tional equation for variable we have:

[FTF+ R]c= F'f (2.12)

We denoteA = FTF + R andb= FTf for the sake of simplicity. Then
Equation 2.12 takes the forfc = b. We solve this system of linear equations by
using a multi-grid V-cycle method [20, 44]. In each cycle #wdution is re ned
through a Gauss-Seidel iteration operator [43].
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2.3.2 B-spline Interscale Relation

One of the most important properties of B-splines of odd deggéhe interscale
(two-scale) relation:

n X — X n X
)= hK® "G5 K (2.13)

whereh(k) is the binomial Iter [12].

Being based on the basic feature of the two-scale relatiorddfdegree B-
splines Arigovindan et al. [10] propose a multigrid iteoatialgorithm for nding
the solution to the cost minimization problem. Considerimg teconstruction at
different scales, we specif} as the scale size and we have:

z
z

x 1Ny 1Nz 1

] )QJ ] J ) X 7z
FO(xy;2)= e A5 WG DA M @14
k=0 =0 m=0

X
PSS

Forj =0 the reconstruction is atits nestresolutigN, N, N;) and for
| =1 each dimension is divided by two. Once we specify the desi&sdlution
level, we can make use of the downsampling and upsamplinteddignal related
to the two-scale relation of B-splines. The idea is to dowrdarthe signal to a
coarser resolution, solve Equation 2.12 iteratively ar@htbpsample the signal
for getting a ner resolution. The upsampled signal will\geas initialization for
the B-spline coef cients at a ner level of resolution. At datevel of resolution
an error re nement scheme is applied. The multigrid schemsuees the fast
convergence of Equation 2.7 to its solution in each dimemsiat the end this
scheme will give our desired reconstructed signal. Theluésa coarsening can
be de ned through the following equations:

8
2 Aj+1 = UJ-TAJ' Uj
S Rj +1 = UJ-TRJ' Uj (2.15)

+1 = UjTh

whereU; is a matrix representing the upsampling operation whiclclsexed by
convolving the signal with a circulant matrix corresporglto the lIter kernel of
the B-spline two-scale relation formula ([83] and [110]). eTadjoint operation
is the downsampling operatidd; whereD; = U;T. Once a coarser resolution
signal is obtained the equation 2.12 is solved through a &8eg&del iterator. The
advantage of this multigrid interscale technique is thatghblution in the lower
resolution is more ef cient and faster. The upsampling andrere nement is
applied several times until we obtain the target resolution
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2.4 Block-based Reconstruction

A custom solution to the variational method with thin-plafdines as basis func-
tions would require the calculation of the weights as wethascenters of the basis
functions. The linear system to nd such a solution is modthposed and has
a poor numerical behavior. For solving such a system, wheroMuniformly
sampled points are given, we have to deal withCyiM ) complexity. Once the
weights are speci ed, the next step would be to resamplettimefiate splines on
aregular grid. This would require an additio@(MN 2) operations wherdl 3 is
the resolution of the dataset [9].

The method adopted in our framework has several advantagediee thin-
plate spline solution. Since B-splines have a compact stfip@system is better
conditioned. Thanks to the multigrid interscale relatiba solution of the system
is very ef cient and the complexity is reduced®(N %). Furthermore, there is no
need for a resampling step since the samples at the gridgusian be obtained
by a simple Itering of the B-spline coef cients. Hence, theconstruction time is
dependent not on the number of non-uniform points but oniieeds the uniform
grid.

One of the main problems of the variational method is memeyuire-
ments. For each grid position we estimate the B-spline basnstibns
( 3(x); 3(y); 3(2)), that vary in accordance with the point coordinates. Each
coef cient is affecting four positions by its value alongobadimension (due the
support of cubic B-splines), hence we are dealing with 4N 4N data. As-
suming oating point numbers, for a dataset of s2&6 256 256we will need
4GB of memory.

This bottleneck brought us to the idea of reconstructingothiat set in block-
wise fashion. One importantissue we faced in the straightiod implementation
of block-based reconstruction was the discontinuity peobbetween neighboring
blocks (Figure 2.1(b)). To overcome this problem we decidezktend the blocks
in each direction by a certain number of voxels. Taking inbosideration the
local support of a cubic B-spline and also the reconstructisnlts, we extended
each block by two voxels in each direction, having thus axXeloverlap between
blocks. In Figure 2.1 we show the rendering of the CT-Headsaéétaith and with-
out block-overlap. No visual discontinuities are presenemwwe apply a 4-voxel
block overlap (Figure 2.1(c)).

In order to improve performance, the implementation of dugational method
is based on reconstruction of blocks with sizes that are aepai/two. The
size of the block in uences the reconstruction times. Timetineeded for the
reconstruction of a block of siz& 2N 2N s 8 times higher than the time
required for reconstructing a block of si2k * 2N 1 2N 1 When we selecta
small block-size (e.qg., 8, 16 or 32) the impact of overlapeiconstruction times is
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(@) (b)

(€

Figure 2.1: Rendering of the CT-Head dataset: a) original dataset, b) reconstlucte
dataset with no overlap between blocks, and c) reconstructed datdket-woxel overlap
between blocks. 20% of the original dataset points were used in b) afithe)block size
usedisl28 128 128

higher than in the case when blocks of a bigger size are udesisize of a block
(optimal block-size) along each dimension for which the dstreconstruction
time is required can be found through the following reasgnifiwe denote with
N, one of the dataset dimensions, e.g. its width, and @4tthe maximum block
size dimension due to memory constraints, then the optineakksize is2Q
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where k minimizes the following function:

BlockSize(k) = 2 K (2.16)

2Q kL
whereL is the overlap between blockdxeis the smallest integer greater or equal
tox and(2? ¥ L) > 1. The expression inegives the number of blocks to
be used for dimensiohl,. As the block-size ° ) increases the number of
blocks decreases, but the time required for reconstruetict) block increases by
a two-order relation (hence the multiplication wizh®).

2.5 Results

We have tested our method with a variety of datasets and vifdreht parameter
settings. We obtained the non-uniform representation feo@artesian (high-
resolution) representation, by selecting the Laplaciantpas explained in Section
1.3. Unless stated otherwise we use 1:0 for the all the results of this section.

Firstwe tested various block sizesin orderto ndthe optiome. Here, optimal
refers to minimal reconstruction error and best timing @emnance. In Table 2.1
we show the reconstruction timings and errors of severalsgas for four different
block sizes. As we found in our results, the variation of klsize has a negligible
effect on the reconstruction errors. However, timings arengly dependent on
the block size. According to these results and the mathealaonceptintroduced
in the previous section, the optimal block size for most efdatasets is 64x64x64.
As we reduce the block size, the overlap portion becomesigedn the timing
performance. Wheth6 16 16 blocks are used the reconstruction timings are
almost twice the timings of thé4 64 64 block-size cases.

The calculated errors for some well-known and widely usddsids are given
in Table 2.2. For each dataset we take only 20% of the points ft Cartesian
dataset after applying a Laplacian Iter. Then we show theoretruction error
and the times (in minutes) required for reconstructing thmle dataset from
the non-uniform point set. All the reported errors were cated with a block-
based reconstruction, except for the Neghip and Hydrogéasda which have
dimensions that allow non-block-based reconstructions.

For the rendering of the datasets we have used VolumeShmwfidh is an
open source volume rendering platform. The volumes areereadwith a GPU-
based raycaster with a sampling step of 0.25. For some ottiaselts the rendered
images are shown in Figures 2.2, 2.3 and 2.4.

In non-uniform reconstruction approaches which apply exéerpolation tech-
niques, the number of points used for reconstruction higffgcts the reconstruc-
tion error. In approximation approaches that use basidifumcthat are not inter-
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Table 2.1: Reconstruction times (in minutes) aR#1S 4 errors for different block sizes
applied to several datasets.

Dataset RMS 4 and Times (min)
Name Size \ 16x16x16 32x32x32  64x64x64  128x128x128
Engine 256 256 128| 2.20|2.37 226|129 224|155 2.24]|2.67
Tooth 256 256 160 0.24|3.75 0.23]2.12 0.23]1.88 0.23]3.22
CT-Head 256 256 224|3.04|4.74 292|283 293|260 293|340
Carp 256 256 512|0.57|11.48 055]|6.23 0.50|5.73 0.55]|8.36
CT-Chest 394 394 240| 1.33|11.06 1.31|6.13 1.31]6.15 1.32|6.28
Christmas 512 499 512| 0.50|42.14 0.50|24.94 0.50|17.94 0.50|24.08
Stag-Beetle 832 832 494| 0.32|114.59 0.31|58.94 0.31]50.12 0.31]61.65

Table 2.2:Reconstruction times (in minutes) and RM@ors for the variational method.
Each reconstruction is based on 20% of the points of the original datasetopfimal
block-size estimated using Equation 2.16 is used in the reconstructionsgroce

Dataset Size \ Block size RMSg4 Times (min)
Neghip 64 64 64 64 64 64 2.14 0.02
Hydrogen 128 128 128|128 128 128 0.17 0.21
Lobster 301 324 56 |32 128 64 1.21 0.83
StatueLeg 341 341 93 | 128 128 128 0.95 1.47
Engine 256 256 128 |64 64 32 2.24 1.28
Tooth 256 256 160| 64 64 64 0.23 1.88
CT-Head 256 256 224 |64 64 128 2.93 2.60
Foot 256 256 256 |64 64 64 2.16 3.10
Carp 256 256 512 |64 64 64 0.50 5.73
CT-Chest 394 394 240| 64 64 128 1.31 5.08
Christmas 512 499 512|64 64 64 0.50 17.94
Stag-Beetle 832 832 494 | 64 64 64 0.31 50.12

polating, as the variational method that we have presentegl lthere is always
a certain limit where even if we increase the number of pdimesreconstruction
error will remain stable. This is strongly connected to tbgularization parame-
ter which controls the smoothing. In our experiments we kated that we can
achieve a stable reconstruction rate when using 15%-25keqfdints. In Chapter
6 we give further details for the behavior of the variatiomgproach.

Smoothing is another factor that affects the reconstroaiwor. Smoothing
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@)

(b)

Figure 2.2: Rendering of the Stag Beetle datas®84 832 494): a) original dataset,
and b) reconstructed dataset using 20% of points. The R®r is 0.31.
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(@)

(b)

Figure 2.3: Rendering of the Carp datasé&36 256 512): a) original dataset, and b)
reconstructed dataset using 20% of points. The RBt®r is 0.5.

lowers the noise levels but it also eliminates details inda&. A compromise is
required between accuracy and smoothness. In Figure 2.5playlthe CT-Chest
dataset for different levels of smoothing. In Figure 2.5(i@re is too much visual
noise due to low smoothing. In Figure 2.5(d) the high freaqiesare removed
due to the high smoothing operator.

The reconstruction from non-uniform point sets is very imgot also in com-
munication theory where parts of a uniform signal often ast turing transmis-
sion, hence creating a non-uniform representation. Wetenlea typical testing
scenario for this case. We blurred a signal (uniform dajag#ét white noise (with
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@

(b)

Figure 2.4: Rendering of the Christmas dataset (512x499x512): a) original éatasd
b) reconstructed dataset using 20% of points. The R&t®r is 0.50.
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€Y (b)

(c) (d)

Figure 2.5: Examples of reconstructions using different levels of smoothing of the CT
Chest dataset (394x394x240): a) original dataset, b) reconstdudé¢aset with = 0:5,

c) reconstructed dataset with = 0:7, and d) reconstructed dataset with= 1:0. The
reconstruction errors (RMg are, respectively, 2.43, 1.34 and 1.76. 20% of the Laplacian
points were used.
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€Y (b)

Figure 2.6: Renderings of the Engine datas2b6 256 128): a) uniform representation
corrupted with 5dB white Gaussian noise, b) reconstruction of 2,516,882uniform
points taken randomly from the uniform representation corrupted with 5d&& Waussian
noise.

a signal to noise ratio of 5dB) and then discarded 70% of thepkmnandomly. In

Figure 2.6(a) we show the rendering of the uniform datasetpted with noise.
In Figure 2.6(b) we give a result of the reconstruction fréw mon-uniform data.
The result shows that our method performs well also in the edsere the signal
is corrupted with noise.

Although we do not aim for a compression technique, our ntbtahieves a
reduction of up to 60% of the original dataset size when 20%adfits are kept
for reconstruction. We do not apply any compression tealaiqut just save the
coordinates and values in a slice/row basis.
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The truth is rarely pure and never
simple!
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he key issue in resampling a non-uniform point set into a uni-

form representation is the selection of the proper resmiuti
This will be the central question we are trying to answer is th
chapter. We rst assume that we can only afford a single reso-
lution and we make suggestions on how this resolution can be
best obtained. This is applicable for non-uniform data, nehe
the distribution of samples is even (in the sense of a discrep
measure), e.g., ultrasound data or seismic data. Furtherwm
introduce a new regularization functional and show its iot @
the improvement of the reconstruction results.






CHAPTER 3

LSINGLE—RESOLUTION RECONSTRUCTION

In the previous chapter we introduced the basics of the twamial approach and
how to adapt this technique for the usage in a block-wisedador large 3D non-
uniform point sets. In this chapter we give more insight to factors that affect
the variational reconstruction process: (1) the optimsdhation selection, and (2)
regularization. As we will show in the results section bdibge factors have a
huge impact on the reconstruction quality. In Figure 3.1 @@ such a relation
showing the behaviour of our variational approach. i§ small then there is less
regularization, hence the reconstruction is closer tortpatipoints. While this is
positive for the reduction of the reconstruction error,ibgative side effect is that
our approach will show poor reconstruction in areas whegeghps are present.
This is due to the low regularization and smoothing. We atsae that the higher
the resolution of reconstruction the lower the RMS error. Qdrse a trade-off
between memory requirements and reconstruction qualgéydiae made.

In Chapter 2, we stated that the variational and RBF-based agipes are
considered the best with regard to reconstruction qudfiby.every reconstruction
technique to be evaluated, comparison to state of the dnhigues should be
provided. Hence, in this chapter we give a detailed comparaf our method
[112] to two methods introduced by Jang et al. [47, 48]. Jdrad.'s [48] method
is formulated as an iterative algorithm for nding the castand weights of the
RBFs using a PCA-based clustering technique by applying ttedcaaussians as
basis functions. This technique suffers from high-encgtimes and is best suited
for locally isotropic structures. Later they [47] adaptithechnique to ellipsoidal
basis functions (EBFs). The high computational cost is ttél main bottleneck
of this approach.

Welsh and Mueller [117] introduce a method for convertirgystar volumes to
non-uniform spherical and ellipsoidal Gaussian RBFs andaethém via splatting.
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Figure 3.1: Graphs showing the RMS error according to the changes of the lamigda re
ularization and resolution of reconstruction. The testing was performedthéiNatural
Convection dataset.

Juba and Varshney [49] propose the encoding of volumes wititated Gaussian
basis functions and rendering with a GPU-based ray casteckér et al. [121]
propose direct volume rendering using a splatting appre@aeisualize volumes
encoded with elliptical Gaussian kernels.

The non-uniform reconstruction techniques can be divided two main
groups according to the way the data was acquired [68, 118 t&chniques
in the rst group try to reconstruct a signal by considerihg hon-uniform points
as part of a uniform grid where the missing point values hav®etevaluated. The
techniques of the second group consider the reconstructithre point set at any
desired resolution. All the above-mentioned approachesider the resolution
of reconstruction as known apriori. In this chapter we pdevan insight on the
selection of an optimal resolution.
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3.1 Resolution Selection

The key issue in resampling a non-uniform point set into &owum representation
is the selection of the proper resolution. This will be thatcal question we are
trying to answer in this section. We rst assume that we caly afford a single
resolution and we make suggestions on how this resolutiorbeabest obtained.
This is applicable for non-uniform data, where the disttida of samples is even
(in the sense of a discrepancy measure), e.g., ultrasodagdsgégsmic data, or data
with missing samples.

Increasing the resolution results in a decrease of the, sinme the oscillations
in the data can be captured with more precision. Finding giemal resolution
(Nx Ny N,), interms of minimal reconstruction error, would therefoequire
estimating the error. We propose to do so by simply lookinthaterror within
a single grid cell. If there are many non-uniform points diesia cell, and their
standard deviationy is large, the cell might be too large. Therefore, we propose
to approximate the error by using the average standardta®vjae ned as:

P Ntotal 1 K
= k0 - (3.1)
v Ntotal

as an indicator for the proper uniform grid resolutidfes is the number of cells
inthe volume, i.e.Nww = Nx Ny N,. Empty cells are considered as cells with
zero standard deviation.

We analyze a number of data sets in order to arrive at a reblsotimeshold.
Ourideais motivated by the strong correlation observeda®en the reconstruction
error and the average standard deviation of point values.

3.2 Improving Regularization

Regularization provides a framework for converting ill-pdgroblems into well-
posed ones by restricting the domain of possible solutioassmoothing con-
straints. Arigovindan et al. [10] suggest using Duchonisiseorms DPF) for
regularization. Fop = 1 andp = 2 this norm yields a minimization of an energy
functional associated with a membrane and a plate modeécasely [30, 85].
Here, we propose a new regularization functional in ordegtinice reconstruction
errors for anisotropic signals. We denote it as Laplacigulegizer. The main
motivation for this idea lies in the fact that cubic B-splirtes/e a better response
to high frequencies. These frequencies can be better ddtaad preserved by
convolving the signal with a Laplacian regularization kedrfi05]. Our proposed
regularization functional consists of the sum of secondekegerivatives if cubic
B-splines are used as a basis function for reconstruction:
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In order to deal with anisotropic characteristics we exteéqdation 3.2, so that
we can achieve a different regularization in each direction

Rao(F; )= dxdydz  (3.2)

F F F
Rs(F; xi yi 2)= x % + % + 5 % dxdydz
(3.3)
Equation 3.3 provides a very good application scenario $sesavhen we have
apriori knowledge of the directional variance of the dataame reconstructing.
A high variance in the x-direction for example, means we $#thset a lower
and vice-versa. As opposed to Duchon's seminorms, the aggation terms
introduced in Equation 3.2 and Equation 3.3 do not enjoydltetional invariance

property.

3.3 Results

We tested our framework on several data either given frogirally non-uniform
data, or obtained by taking Laplacian points from a unifoatadet. A GPU-based
raycaster is employed for single resolution rendering. fEmelerer is developed
inside the VolumeShop platform [21]. The rendering intégr&valuated at each
point along the ray by using Equation 2.6. On the y gradiestiraation is used
by taking partial derivatives of the function de ned in Edioa 2.6 and applying
the fact that the derivative of a B-spline of degreis a B-spline of degrea 1
[104]. It can be de ned as follows:

@"(x) _
@x

In order to determine an appropriate resolution for a unifgrid representation
of our non-uniform data points, we would ideally vary theugabfN,, reconstruct
using this resolution and measure the errbl, andN, are determined by the
proper aspect ratio of our underlying axis-aligned bougddox enclosing the
given non-uniform data points. Unfortunately, this is cartgtionally infeasible,
since we would have to explicitly reconstruct the data. H@wein the search
for a good heuristic, we did indeed reconstruct a number sifdata sets under
various resolutions. Then we measured the RMS error of th& pet as well as
the average variance of point values (as opposed to the siaonon error) in

Tk ) " Mx ) (3.
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Figure 3.2: Graphs showing the correlation ofyg to the: a) resolution of reconstruction,
and b) to the respective RMS error. A threshold gfy = 0:05is shown with a vertical
line.

each cell, according to Equation 3.1. The resulting retetp for the Natural
Convection dataset can be seen in Figure 3.2. We found a siri&ionship in
all test data sets. A complete listing can be found in the driieosection (see
Figure 3.6 and Figure 3.7)

From Figure 3.2 we can analyze the behavior gf,. When we increase the
resolution, the number of non-uniform points per cell isrdased, hence decreas-
ing the variance of the cell. A low cell-variance results ibedter approximation
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capability from the B-splines, hence a lower RMS error. Baseth@analysis,
we suggest, that a value of,q = 0:05yields a low RMS. In order to use this
effectively for an unknown data set, we start from a low valtis, and increase it
until the value of 4 falls below the desired value o,y monotonically decreases
with the increase of resolution. Typically we doublg in each step, usiniy, = 8

as a starting resolution. Oncg,4 has a value lower than the speci ed threshold
we re ne the exact value dil, with a binary-search method. Arigovindan et al.
[10] suggested a heuristic such that the number of uniformtpas 4-5 times the
number of non-uniform points (i.eNy Ny N, 5 M). With our heuristic, on
the other hand, we sometimes nd4 M to be good enough.

Table 3.1 compares the reconstruction results with our egwlarization func-
tional to the results obtained using the regularizatioretlasn Duchon's semi-
norms. We used uniform data, computed and thresholdedLltaplacian to keep
20% of the original points and reconstructed the complet®un data set from
this sparse representation. While computational times irethe same, we ob-
serve a 20%-60% improvement in the reconstruction errompered to the results
shown in Chapter 2. For our new regularization functionalu@apn 3.2) we use

= 0:3, while in the previous chapter the results are obtained mguduchon'’s
regularization and = 1:0 (for consistency reasons with the results from our pre-
vious work [111]). The comparison of the behavior of our restouction method
for the two different regularization functionals is givenkigure 3.3.

Table 3.1: RMS, errors and computation times (in minutes) for different non-uniform
datasets created by taking 20% of Laplacian points from their original unii@pnesen-
tation.

Dataset \ RMS, and Times (min)
Name Size \ Laplacian Regularization Duchon's Regularization
Engine 256x256x128 0.94 | 1.28 2.24|1.28
Tooth 256x256x160 0.18|1.88 0.23]1.88
CT-Head 256x256x2241.17 |2.60 2.93]2.60
CT-Chest 394x394x2400.60 | 5.08 1.31|5.08
Carp 256x256x512 0.25 | 5.73 0.50|5.73

Table 3.2 compares our method to the work presented by Jaalg [@f7, 48].
Our method has lower reconstruction errors and improvegatetion times by
several orders of magnitude. We show further visual comsparresults at the
end of the section in Figures 3.8, 3.9 and 3.10. Our approaitesmit possible
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Figure 3.3: Performance of our reconstruction method for varyingn two different
regularization functional. The testing was performed with the Bypass dataset.

to render images of better quality and does not suffer froenktlobby artifacts

present in the images obtained using the RBF and EBF-basedasetho

Table 3.2: RMS errors and computation times (in minutes) for different non-uniform
datasets for our approach and the methods proposed from Jang et7ql4$}. The ratio
column shows by how much percent the size of the dataset was rédoogatessed). The

resolutions in our approach are selected based on thg = 0

:05threshold.

Dataset \ RMS and Times (min)
Name Resolution Rati¢ Our method RBF[48] EBF [47]
oil 38x40x38 50/ 0.19|0.07 1.02|1.10 1.08|0.21
Natural Convection 61x61x61 170.63]10.07 151]6.95 1.41]|4.16
Synthetic Chirp 64x64x64 121.12]0.08 3.06|229 1.37|36.4
Bypass 766x92x192 5r0.61|6.40 3.38|3987 3.33|3889
Blunt-Fin 93x36x25 49 1.14|0.12 158|6.83 1.41|5.38

For all point sets in Table 3.2 we have computed the errorattlye points used
for the reconstruction (the input-points). However, an ant@ant measure is the
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quality of the reconstruction at other locations as well tRe original non-uniform
datasets the ground truth is not given, hence is dif cultialeate. Instead we took
a Laplacian dataset and reconstructed it on the origindlrgsolution. In Figure
3.4 we show such a scenario using the Laplacian points frenToloth dataset.
We compute the errors at the non-uniform points used for éeenstruction as
well as at all the original uniform data points. While our apgch has the same
error rates in both cases, the techniques of Jang et al. $} éxibit a signi cant
increase in the reconstruction error at the non-input gowshich is quite visible.
In Figure 3.5 we show the original Synthetic Chirp datasetreconstruction

with a regularization term as de ned in Equation 3.2 and e@onstruction with a
directional regularization term as de ned in Equation 3[Be function represent-
ing the Synthetic Chirp dataset is changing very fast inxhe@lane (the screen
plane), while it is changing very slowly along teaxis. In order to reduce the
reconstruction error a lower smoothness control alongxth@lane is required.
All three cases were reconstructed o84a 64 64 grid, selected based on the

avg = 0:05threshold. There is a clear improvement in the visual qualten
directional regularization is used; the error is reduce&4s.
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() (b)

(©) (d)

Figure 3.4: Renderings of the Tooth dataset: a) original uniform dataset, b) recocksdin
from 2,110,259 non-uniform points using our method. The resolution ohgtaiction is
selected to be the same as in the origin&6 256 160dataset. The RMS erroris 0.19
at the input points, and 0.18 at the entire uniform volume, c) reconstruftbomthe same
set of input points using RBFs. The RMS error is 1.26 at input points2a8idfor the
entire volume, and d) reconstruction from the same set of input pointg &Bs. The
RMS error is 0.76 at input points, and 2.45 at the entire uniform volume.
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€Y (b)

(©

Figure 3.5: Renderings of the Chirp dataset: a) the original uniform data, b) recon-
struction from 75,000 non-uniform points using regularization as de nedqgudfion 3.2
( =0:3), RMS is 1.12 with a reconstruction time of 0.08 min, and c) reconstructiom fro
75,000 non-uniform points using regularization as de ned in Equation 3.3 y =0:3,

2 = 1:0), RMS is 0.51 with a reconstruction time of 0.08 min.
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(@) (b)

(©)
Figure 3.8: Renderings of the Natural Convection dataset: a) reconstruction using o

method, RMS is 0.63, b) reconstruction using RBFs proposed by Jahg[48], RMS is
1.51, and c) reconstruction using EBFs proposed by Jang et al. RVIS is 1.41.
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(@) (b)

(©)
Figure 3.9: Renderings of the Oil Reservoir dataset: a) reconstruction using othode

RMS is 0.19, b) reconstruction using RBFs proposed by Jang et al, RME is 1.02, and
¢) reconstruction using EBFs proposed by Jang et al. [47], RMS is.1.08
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(@) (b)

(©)
Figure 3.10: Renderings of the Synthetic Chirp dataset: a) reconstruction using our

method, RMS is 1.12, b) reconstruction using RBFs proposed by Jahg[48], RMS is
3.06, and c) reconstruction using EBFs proposed by Jang et al. RVIS is 1.37.
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It is possible to fail in many ways, while
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here are many scenarios where we observe a large variance in
the density of the data points. Hence, nding a single reso-
lution to minimize the error in a uniform representationds&o
very large data sets with lots of redundancy. In such a cage, i
typical to encode the data with a multi-resolution représsgon.
A multi-resolution function can generally be decomposdd &
coarse resolution part, and into a collection of detail @erfts at
different resolution levels, necessary to recover theimaigunc-
tion. In this chapter we propose two multi-resolution scherto
tackle this problem.






CHAPTER 4

LI\/IULTI—RESOLUTION RECONSTRUCTION

One reason for non-uniformity is the ability to capture eliéint scales of informa-
tion density. There are many scenarios where we observge Variance in the
density of the data points. Hence, nding an optimal resolutas proposed in
Chapter 3, to minimize the error in a uniform representatiouia lead to very
large data sets with lots of redundancy. In such a caseypisal to represent the
data in a multi-resolution pyramid. Our B-spline basis ishared on a regular
grid, preventing the need to store the grid geometry exjyliand opening the door
for ef cient multi-resolution representations. B-splinggve been previously used
for multi-resolution reconstruction of one- or two-dimensal signals in a wavelet
style [26, 59].

Multi-resolution approaches have been introduced to impthe rendering
speed as well as the quality of the data representationiadgpt/hile minimizing
the memory overhead [88]. Generally, the visual importapicéhe local data
points is based on the distance to the viewer or other usectsd criteria. These
criteria can be intrinsic properties such as temperaturesspire, velocity and
so on. Cignoni et al. [27] propose a multi-resolution techeidor rendering
tetrahedral meshes with scattered vertices obtained from3® data. Lamar
et al. [56] present an adaptive multi-resolution rendetiachnique based on
a hierarchical octree scheme. Kahler et al. [52] adoptedrthki-resolution
octree scheme to adaptive mesh re nement trees. Linsen 462] as well as
Entezari et al. [31] propose a multi-resolution approadhgigsvavelet concepts
and alternate lattices. Wavelets provide a very suitablaé&work for multi-scale
signal processing, hence many approaches related to wsaete dedicated to
multi-resolution analysis [5, 15, 98, 113].

The proper continuous interpolation between differentexctevels has re-
mained a challenge in multi-resolution volume renderingeilgV et al. [116] as
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well as Beyer at al. [17] minimize rendering artifacts betwééck-boundaries
by overlapping data blocks. Ljung et al. [64] propose a rasolution interblock
interpolation that permits extreme changes in resolut@moss block boundaries.
Wang and Shen [114] present a level-of-detail (LOD) map foprioving LOD
quality by taking into account distortions and contribngsdrom multi-resolution
data blocks as a formulation of entropy. Several of the pged@pproaches ensure
only aC® continuity in their rendering algorithms [17, 64]. The mwksolution
function in our approach is a hierarchical sun€dfcontinuous functions, ensuring
the C? continuity over the entire domain.

Based on the data structure, multi-resolution schemes cdivided into regu-
lar schemes [56] (e.g., octrees) and irregular schemeg¢52] adaptively re ned
meshes). Regular schemes are desirable for fast renderengpdbieir explicit
structure, but are not ef cient in representing data wheny @#ferent resolutions
of re nement are required. Irregular schemes have hightx ddaptivity but are
less suitable for fast rendering. Staadt [97] presents\egun irregular and regu-
lar schemes. We propose one regular scheme, namely bofiomuti-resolution
pyramid (BMRP), and one hybrid multi-resolution scheme, rigiaéaptive multi-
resolution reconstruction (AMR), in an effort to reconstrine non-uniform point
sets ef ciently and without loosing details of the data. @ybrid multi-resolution
scheme adopts concepts from both classes. It is a multitesearchy where the

rst level represents the coarse resolution and has a regepaesentation. Ad-
ditional levels encode the errors and are re ned adaptivélye structure of the
re ned cells is again regular.

4.1 Bottom-up Multi-resolution Pyramid

In research it is often needed to visualize the same datdfenatit scales. In such
cases it is typical to encode the data with a multi-resofupigramid. One usually
starts with the highest resolution and gradually nds ceargpresentations. To
tackle this problem we propose a multi-resolution schensedan the interscale
relation of the B-splines of odd degree (see Section 2.3.2).

We consider a 3D signal approximated through the funckdn at scalej
and represented by a set of coef ciemts (see Equation 2.14). Using results
from multi-resolution analysis, the same signal can beasgmted at a ner scale
(i 1) by the coefcientscl Y, which are obtained by rst upsamplindy’ and
then ltering with h(k). In the same fashion, by using the inverse transform of
Equation 2.13 we can Iter and downsample e to get a projection of these
coef cients to the space spanned by the coarser coef ciehty . For a specic
scalej we denote the upsampling and downsampling process by thecasi;
andD; respectively.

54



Multi-Resolution Reconstruction - Chapter 4

We initially estimate the coef cients at the nest resoluti and then process
them to create a top-down hierarchy of coarser resolutigves obtain the coef -
cients of the coarser resolutign€ 1) by downsampling from the ner resolution
(): U™ = D;c). Ignoring the nerresolution completely would create aroer
at scalg(j), i.e.,el) = ) U, cU*D . By saving the coarser scale coef cients
and also part of the error volumes (where the error is highgavereconstruct the
data at a ner resolution with little or no error.

For example, for a signal which we want to reconstruct wigh tiest resolution
of Ny Ny N, using three levels of hierarchy, we rst estimate the nest
coef cientsc® by minimizing Equation 2.7. Then, by using the interscalatien
we estimate™ andc®, as well a€® andeV). In our scheme we save ont{?
and parts oB® ande®, which we denote bg andel’. When visualizing the
data, we can either use the coef cien® for a coarse resolution representation, or
the approximations® = U;c® + &5” ore® = Uye® + € for a ner resolution
representation.

Our bottom-up multi-resolution pyramid requires an explitermediate rep-
resentation of the nest resolution, which might not be feeescomputationally.
Hence, we propose a novel algorithm to build an adaptiveirmesblution data
structure.

4.2 Adaptive Multi-resolution Reconstruction

Whenever ,,4 demands a resolution that is too large to handle directlydegde
to create a multi-resolution representation starting feoeoarse resolution rst.
This prevents us from having to compute the highest resw@xplicitly and gives
the opportunity to create an adaptive multi-resolutiororstruction algorithm.

Estimating a reasonable coarse resolution is typically teehardware con-
straints. One should not choose a very high resolution, utht compromises
real-time rendering or analysis performance, yet, it sthawdt be too coarse to
avoid storing too many levels in the hierarchy. We call thesciimum resolution
Nmnax. Next, we determine whether each cell of the coarse resolghould be
subdivided or not, i.e., whether itis composite or not. Thaone based on an error
criterion. These steps applied recursively will create dimesolution hierarchy,
that adapts to the variance in the data. What follows is pseode outlining this
algorithm as well as the procedure how to use the multi-tegol hierarchy to de-
termine the value of the function. We will use the notatioimdduced in Chapter
2 and 3.

Algorithm 1 starts by determining the resolution of the vokiV (line 1). This
is done based on the,4 threshold. In order to create a balanced tree, the chosen
resolution cannot exceed a maximum resolufibn,. Given a resolution we can
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Algorithm 1: cf}) = AMR(Molume V, point seP, with valuesf, levelj)
1 determine the resolution N for volume V (Nax);

2 determine the B-spline representatiey with coef cientscy ;

3 forall cells U of grid Vdo

4 | estimate reconstruction errqs = Fy  fy of all pointsPy inside the
cell U;

5 | if (yistoolarge) AND [Pyj > NI) then

6 \ ™ = AMR(U, Py with values y, levelj +1);

7 | end

s end

Algorithm 2 : Evaluate Functiofry at(x;y; z) for Volume V
1 evaluatd-y (x;y; z) by using coef cientscy ;

2 1f (X;y;z) is in composite cell Uhen

3 | evaluate Functiofy at(x;y; z) for Volume U;

4 | returnFy (X;y;2) + Fu(Xy; z2);

5 else

6 | returnFy (x;y;z);

7 end

then determine the B-spline coef cientg for this resolution using Equation 2.7
(line 2). For each cell of this resolution, we will determiwiether we should
recursively subdivide (line 5). This is based on the celbrestruction error (com-
puted in line 4) as well as whether the number of points in tleis above a
thresholdvr. M is used to prevent the algorithm from subdividing cells vaitbw
number of points inside. Once we determine that we shouldigidle the given
cell, we only reconstruct the error functiof( fy)inline 6.

Algorithm 2 is used during the raycasting process. It chedke B-spline
coef cients to use in Equation 2.6 accordingly. If the pamtn a composite cell,
it recursively adds the error estimation of each level ofttlegarchy.

4.3 Results

In order to implement our BMRP scheme we need to nd an errorstiwt, that
determines which detail coef cients to keep. In our expenms we found that
keeping 20% of the coef cients with the highest error in ebestel is a good trade-
off between storage overhead and accuracy. Although theseopef cients can
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be anywhere in the volume, they are still located on a unifgrigh. Hence, using
a run-length encoding data-structure [19], we found tha2€86 of the points of a
uniform dataset we need approximately 40% of the storaganestjfor the entire
uniform dataset.

In Figure 4.1 we show timestep 360 from the Bypass dataseigiiog on the
"bypass” process, i.e., the creation of vortex-shape titras) reconstructed with
our BMRP approach. There is a visible difference in the levedletil in the
different resolutions. The le size for saving?, €)Y, ande}” altogether is 49%
of the size of the non-uniform dataset. Analyzing the plsuits of the relation
of the RMS error to the percentagesef? ande™, we observe a drastic change
in the errors in the 20% region. In Figure 4.2 we show the i@tabf the RMS
error to the percentages &f ande®, justifying to keep only 20% of the error

coef cients in each level.

To visualize the multi-resolution hierarchy created froor AMR algorithm
we have adapted our CPU-based raycaster to implement Algo8f which takes
all resolution levels into account during rendering.

One of our main concerns is the continuity or smoothnesgprason through
different levels of resolution. Since each level of the &iehy isC? continuous
and we are simply adding these levels, the nal result resiai@? continuous
function. In order to avoid discontinuities at the boundsayiwe extend the borders
of the cells in each direction by a speci c number of voxelsalue zero (here the
voxel size depends on the resolution of the cell). We take eonsideration the

nite support of cubic B-splines. Extending by two voxels s direction ensures
that the function representing the cell smoothly goes to asiit approaches these
extended borders and is zero-valued everywhere beyond them

Taking into consideration rendering performance a sugtabloice OfN pax
could be8, 16, or 32 In fact, in our experiments we cho8@& for the initial level,
but experimented with differertl,ox for the subsequent levels. The decision
whether a cell has to be re ned is based on the reconstruetiam of that cell (see
line 5 in Algorithm 1). The RMS error threshold is always selt0. In order to
prevent the subdivision of cells with only few non-uniformipts we seir = 100.

The X38 Vehicle dataset consists of 323,192 non-uniformig@mulating the
X38 Crew Return Vehicle. It is a typical non-uniform dataseevwh99% of its
points are concentrated in about 5% of the volume. In FiguBeme show the
dataset reconstructed with our multi-resolution schemesisting of two levels.
Due to the aspect ratio of the axis-aligned bounding boxct@se resolution is
32 23 17with an RMS of 6.39.

Table 4.1 summarizes several scenarios we tested to arthlybehavior and
performance of our AMR method. In all cases we specify thesseesolution to
be 32 i.e., for the X38 and Bypass data set this translates to #ialidataset of
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@

(b)

(©)

(d)

Figure 4.1: Renderings of the Bypass dataset reconstructed using our BMRRe¢mest
resolution1024 120 256): a) coarse representation reconstructed frdf coef cients,
RMS is 4.55, b) ner representation reconstructed frefl = U;c® + &5, where we
used 20% of the points from tle€") error volume, RMS is 2.69, ¢) nest representation
reconstructed frone® = U;je® + &, where we used 20% of the points from the error
volumee®, RMS is 0.6, and d) nest representation reconstructed where we 16@%b

of the points from the error volumes) andel’), RMS is 0.4.
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Figure 4.2: Graph showing relation of RMS to the percentages®f and e for the
Bypass dataset.

32 23 17cellsand32 5 9 cells, respectively. Level one represents the
coarse data details, while the other levels represent taedetails. Since there is
no subdivision in level one, the entries for Error, Times &imk in Table 4.1 are the
same for the respective datasets. In the second and thel] Vee selected either

8 8 8,16 16 160ranadaptive resolution based onthg, = 0:05threshold,

to subdivide (re ne) the composite cells. The number of redrcells in level two
depends on the threshdWi. A small value ofVf' results in more re ned cells, and
vice-versa. Using a resolution 8f requires more levels in order to capture the
data accurately, however, the storage per level is redugdising a resolution
of 16® or an adaptive resolution we increase the storage requiignee level, but
achieve a better approximation of the data. The number ¢4 td®t the data is
subdivided when 46 16 16o0r adaptive subdivision is used is greater than in
the8 8 8subdivision case. Furthermore, the number of cells thatquglify

for re nement in the next level will be lower for th#6 16 16 and adaptive
case, since there will be fewer cells that have the numbeoiotphigher thaivr .
When using the adaptive resolution the impact of the thirdiginér levels in the
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reconstruction error is very small. For the Bypass datageetis no re nementin
level three for thel6 16 16 and adaptive case, since no cell has an error and
number of points higher than 1.0 aNtl, respectively.

Figure 4.3: The X38 Vehicle dataset consisting of 323,192 non-uniform points resder
with our multi-resolution scheme using two levels of hierarchy.

In addition we also analyzed the impact of the threshdld In Figure 4.4
we show graphs that give the relationNf to the reconstruction error and to the
storage required for the multi-resolution hierarchy. Lawg the NI threshold,
lowers the error, but increases the storage requiremeassichlly. Driven also
from the results of Figure 4.4T = 100 s selected as a trade-off between accuracy
and storage requirements.
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Figure 4.4: Graphs showing the impact §f on the: a) RMS error, and b) storage require-
ments for storing the multi-resolution hierarchy dataset (in MB). Testingparformed
with X38 Vehicle dataset and an adaptive resolution is used for the subdivisilba cells

in level two. 61
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Table 4.1: AMR results for different datasets and settings. Size shows the storagereq
ments in MB, Sub shows the resolution of reconstruction of the compdssté.ee either
xed or selected adaptively (adp) based on thgg = 0:05threshold) M is the minimum
number of points for which a cell can be subdivided, Cells is the numbengbasite cells

in each level of the hierarchy and Times are in minutes.

|

Dataset Name

Level | Feature] X38 \ Bypass \ X38
Size 511 5.11 511 121 121 121} 5.11 511 5.11
Sub 8 16® adp 8 16® adp| adp adp adp
1Y) 100 100 100 100 100 100, 50 10 1
RMS 6.39 6.39 6.39 433 433 433639 6.39 6.39
One | Times 0.03 0.03 0.03 052 052 052003 0.03 0.03
Size 0.05 005 005 0.01 0.01 0.0170.05 0.05 0.05
Cells 136 136 136] 938 938 938 183 427 787
RMS 2.66 167 160 241 0.79 0.34 1.59 1.33 1.30
Two | Times 0.07 0.17 052 1.22 1.72 753 055 0.58 0.63
Size 0.27 213 314 184 1466 5891 3.32 3.58 3.88
Cells 1765 651 33 13270 - -1 292 7535 17948
RMS 1.99 1.60 158 1.54 - -1 1.55 0.97 0.75
Three| Times | 0.27 0.58 0.03 1.95 - -1 025 503 1243
Size 3.46 10.18 0.18 25.99 - -1 1.37 28.63 81.60
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The most exciting phrase to hear in
science, the one that heralds new
discoveries, is not "Eureka!" but "That's
funny ..."

Isaac Asimov
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n this chapter we extend the concepts of the variationalneco
I struction to non-uniform vector data reconstruction. \\eon
duce a component-wise vector reconstruction method. Wetues
algorithm with non-uniform vector datasets obtained eithem
simulations or from the gradients of uniform datasets. Bymsea
of error estimation and vector visualization we show theaveh
ior of our proposed reconstruction technique. The usagéef t
reconstructed gradients for shading during the rendeninggss
improves the smoothness of the images.






CHAPTER b

VECTOR RECONSTRUCTION

Vector eld reconstruction or simply vector reconstructis a method of creating
a vector eld from experimental or computer generated dAt&ector eld asso-
ciates a vector to every point in a subset of Euclidean spgaeaerally, the goal of
vector reconstruction is to nd a mathematical represémtiedf the data. In turn,
this representation can be used for the study and analygiseoiomena, especially
in elds related to computational uid dynamics (CFD).

Initially introduced for the study of magnetic elds in clsisal eld theory, to-
day, vector elds occur in subjects such as tomographygesptjuantum mechanics
and medical imaging. Several techniques have been devkfopthe reconstruc-
tion of 2D and 3D vector elds with special focus in tomogrgpteconstruction
[13, 40, 41, 45, 84]. Variational methods have also beenegfbr the reconstruc-
tion of vector elds. Bookstein [18] introduces a componéatsed reconstruction
for 2D vector elds. Amodei and Benbourhim [8] address 2D wegkeconstruc-
tion by using a regularization functional based on the cod divergence of the
vector eld. They carry out the reconstruction as a mininia in the second
order Beppo-Levi space. Arigovindan et al. [11] present aatianal method
for the reconstruction of 2D vector elds acquired from Dégpmeasurements.
They use a regularization functional based on Green's semms for the curl and
divergence of the vector eld. Dodu and Rabut [29] presentraatianal method
for reconstruction of 3D vector elds using radial-basisel functions.

Laidlaw et al. [55] and Forsberg et al. [36] give a generalroisv and
comparison of 2D and 3D vector eld visualization technigueespectively.
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5.1 Problem Formulation and Metrics

The formulation of variational vector reconstruction igywsimilar to the scalar
reconstruction problem introduced in Chapter 2. Given assample positions,
P = (Xiyizi), i =1;2::0;M; letf; = [fy, f . fy,]" be the vector eld values
associated witlp,. We denotev(x;y;z) = [u(x;y;z) (X;y;z) w(x;y;z)]" to be
the underlying function of the vector eld which approxineatthe input data.

We want to nd a vector eldv such that it best approximates the given vector
point set. In order to evaluate the reconstructions obthfnem our proposed
technique we use different error metrics. In Equation 5.lcampute the recon-
struction error for thes component. The errors for the other two components can
be formulated similarly.

1 M

M
i=1

o<

RMS, =100 (u(xizyi;z)  fu)? (5.1)

While reconstructing vectors, we are interested not onlguwnRMS errors for
the components of the vector, but especially in low RMS er@rshe amplitude
and the orientation of the vector. In order to estimate thereffor the amplitudes,
Equation 5.1 can be reformulated as Equation 5.2. We rdwlithe vector com-
ponents are normalized so that the maximum amplitude atives&ctor point set
is 1.0. For the orientation we measure the angbetween the reconstructed and
the input vector as expressed in Equation 5.3. The anglevémgn degrees and
de ned over the interva]0 ; 180].

Y
X
RMSka:].OO M (kV(Xi;yi;Zi)k k fik)2 (52)
i=1
_ 180 X 1 v(Xi;VYi;z) i
B %% xiyizk Kik (5-3)

i=1

5.2 Component-wise Reconstruction

In the previous chapters we introduced the idea of variaticgconstruction and
applied it to non-uniform scalar data. In this chapter welaur variational
reconstruction scheme to vector data in a component-wieda. We search the
solution in the space of uniform B-splines which can be foated as follows:
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DR S A
u(x;y;z) = Gum “(x k) vy 1)z m) (5.4)

k=0 =0 m=0

wherecy,,, are the B-spline coef cients associated with theomponent of the
vectorv. The other two components are formulated in a similar wayortter to
nd the coef cientsc,..,, the following cost function is minimized:

w
Cv)=  kv(xi;yiiz) fik®+ R (V) (5.5)
i=1

It is important to note that this regularizer does not hawe @upled terms,
meaning that it does not enforce any special relationshipdsn velocity compo-
nents. As a regularization functional we use the Laplacégularizer introduced
in section 3.2 (see Equation 3.2).

In Table 5.1 we show the results from the reconstruction plagan-Gradient
datasets. We reconstruct the whole gradient eld from 20%piit vector points.
We give the reconstruction errors for each component ( w) and for the
amplitudeskvk, as well as the average andte (in degrees) for the deviation of
the reconstructed vector from the original one. The recanson times are given
in minutes (min). The errors are computed only for the inpuibfs, i.e., if 20%
of gradient points are used, then only those are used fonatitig the errors. We
have denoted the Laplacian-Gradient datasets widteyanbol next to the name of
the scalar dataset.

In Table 5.2 we give the reconstruction errors and timeshersame datasets
as in Table 5.1, but the errors are computed over the whoése(including the
points discarded from the thresholding process). The d@naa@iand angle errors
are higher when computed over the whole dataset, since therveld cannot be
smoothly reconstructed. For the Engirend CT-Chegf datasets we observe high
reconstruction errors. We argument this behavior is basevo factors. First,
the number of zero-amplitude vectors for the Engiaed CT-Chegt datasets is
about 33% and 63% of the total number of vectors, respegti¥eirthermore, the
bounding box for the non-zero vector points in these twoskdtahas a resolution
of 256 256 111and352 320 240 respectively. Since there are no input
points for reconstructing the vector eld in many slicesr ceconstruction method
has to extrapolate from the neighboring points, resultmgigh reconstruction
errors on these slices.

In Figure 5.1 we show 2D vector plots of a slice from the Negldptaset. The
slice was taken parallel tp  z plane. The displayed 2D projected vector eld
is the error between the reconstructed vector eld and tpetinector eld. The
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Table 5.1: Vector reconstruction errors given as RMS for each compongnt, (w ) and
for the amplitude&vk, as well as the average andle (in degrees) for the deviation of the
reconstructed vectors from the original ones. Each component isstitwted separately
with =0:3.

Dataset \ Error and Times (min)
Name Resolution u w kvk E Times
Neghips 64 64 64165 154 171 231 433 0.57

Hydrogers 128 128 128| 0.11 0.11 0.11 0.16 3.96 4.67
Engines 256 256 128|0.69 0.65 098 122 721 27.57
Tooths 256 256 160|083 0.85 0.82 120 13.75 41.93
CT-Heagg 256 256 224|0.67 0.69 0.61 095 6.98 57.68
Aneurisng 256 256 256| 1.13 1.12 1.10 163 142 66.23
Bonsag 256 256 256|084 086 0.64 1.13 7.26 70.83
CT-Chesg 394 394 240|0.73 0.77 0.24 097 551 117.05

Table 5.2: Vector reconstruction errors given as RMS for each component (w ) and

for the amplitudeg&vk, as well as the average andte (in degrees) for the deviation of the
reconstructed vectors from the original ones. Each component issttcted separately

with = 0:3. The values are computed over the all the points, i.e., estimated at 100% of
points.

Dataset \ Error and Times
Name Resolutiod u w kvk E Times
Neghips 64 64 64|174 321 225 421 447 057

Hydroger; 128 128 128|085 2.01 200 296 3.32 4.67
Engines 256 256 128 | 1.07 1.05 22.84 2287 31.64 27.57
Toothg 256 256 160|791 7.78 1.03 11.06 19.98 41.93
CT-Heads 256 256 224 |7.09 7.76 277 10.82 4217 57.68
Aneurisny 256 256 256|4.32 454 411 747 029 66.23
Bonsag 256 256 256|528 8.69 167 1026 4.63 70.83
CT-Chesg 394 394 240|20.36 1292 0.81 24.09 6.55 117.05

vector amplitudes have been magni ed 10 times. In Figurégd.ve show only
vectors that have an amplitude higher than a user-spechegshold. This was
done for visualization purposes. In Figure 5.1(b) we shaavsblected area from
Figure 5.1(b) with a higher resolution.

In Table 5.3 we give reconstruction results from non-umifaector point sets
acquired from simulations. The selection of the reconsisanaesolution is based
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Figure 5.1: 2D vector plot from the Neghipdataset: a) 2D slice, b) zoomed version of
selected area of (a). Vectors with the smallest amplitudes are colorecdbbtithose with
largest amplitudes are colored red.
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onthe .4 assumption introduced in Section 3.1. In this cagg is estimated for
the amplitudes of the input vector point set, since the sesisting of the vector
amplitudes can be considered as a scalar non-uniform patint s

Table 5.3: Vector reconstruction errors given as RMS for each compongnt, (w ) and
for the amplitudeskvk, as well as the average angte (in degrees) for the deviation of
the reconstructed vectors from the original ones.

Dataset \ Error and Times
Name Points Resolutioh u w kvk E Times
Flow Transport 17,120 44 58 58| 0.26 0.70 0.34 0.64 0.91 0.48
Fuel Injection 25,190 39 51 60|0.36 0.65 062 062 042 0.50

Cooling Jacket 1,537,898222 128 122|095 0.94 125 130 251 9.50

In Figure 5.2 we show the 3D vector plot of the non-uniformutyector point
set and the reconstructed point set for the Flow Transptasda For visualization
purposes we show only those vectors that have amplitudésihitpan a user
de ned threshold and we magnify the amplitudes by 10 timesFigure 5.3 we
show the 3D vector plot of the difference vector eld betweka datasets shown
in Figure 5.2. The amplitudes are 30 times magni ed. In Fgg&r4 we show
two visualizations from the Flow Transport and Fuel InjeatDataset. We used
glyphs and streamlines to visualize the vector elds.

To understand the visual quality of the reconstructionsnfithe Laplacian-
Gradient datasets we used them in the rendering proceskddimg. In Figures
5.5 and 5.6 we show renderings for the Neghip and Engineelatds each Figure
we have used for shading the gradients computed from tharsgata during the
rendering process (Figures 5.5(a) and 5.6(a)), and thésgrsdeconstructed from
the respective Laplacian-Gradient datasets (Figureb)Yahd 5.6(b)). The usage
of the reconstructed gradients for shading during the némgl@rocess improves
the smoothness of the images. By reconstructing the Lapla@radient datasets
we assure that the underlying gradient eld used for the sitad represented by
aC2 continuous function, hence ensuring visually better lngkimages.
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Figure 5.2: 3D vector plot of the Flow Transport dataset: a) input dataset, and @me
structed dataset. Vector points are shown idda 58 58resolution. Vectors with the
smallest amplitudes are colored blue and those with largest amplitude®kned red.
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Figure 5.3: 3D vector plot showing the error vector eld between the reconstructet] a
input vector point set for the Flow Transport dataset. Vectors with thélestamplitudes
are colored blue and those with largest amplitudes are colored red.

72



Vector Reconstruction - Chapter 5

(@)

(b)

Figure 5.4: 3D vector visualization: a) the Flow Transport dataset, b) the Fuel Injectio
dataset. The HSV colorspace has been used for color mapping.
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@

(b)
Figure 5.5: Renderings of Neghip dataset: a) shading is based on gradients cainpute

from the scalar data, and b) shading is based on the reconstructed gtadi®m the
Neghig; dataset.
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(@)

(b)
Figure 5.6: Renderings of Engine dataset: a) shading is based on gradients cainpute

from the scalar data, and b) shading is based on the reconstructed gtadi®m the
Enging; dataset.
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You need chaos in your soul to give birth
to a dancing star!

Friedrich Nietzsche

OPTIMAL
THRESHOLD

OPTIMAL

INTRODUCTION

VECTOR
RECONSTRUCTION

VARIATIONAL
RECONSTRUCTION

THRESHOLD

MULTI
RESOLUTION
RECONSTRUCTION

SINGLE
RESOLUTION
RECONSTRUCTIO

n Chapter 1 we introduced the idea of using uniform datasets to
I produce non-uniform representations by thresholding #ped-
cian. We selected the threshold in order to keep 20% of th&goi

In this chapter we investigate to nd an optimal threshold &ow

to improve the selection of points in order to have lower reco
struction errors. Be means of graphs we analyze the behavior o
our variational scheme in the reconstruction of Laplaciatasets.






CHAPTER O

OPTIMAL THRESHOLD

In Chapter 1 we introduced the idea of creating non-unifortagkgs thresholding
the Laplacian of uniform datasets. We selected 20% of thetpdiom the uni-
form representation. In the chapters that followed, we stbthat this threshold
ensured reconstruction with a low RMS error and good visualityu Although
the selection of Laplacian points is not supposed to be a cegswn technique,
keeping only 20% of the points of a uniform representaticuits in an up to 60%
reduction in the storage requirements for the respectitee da

6.1 Thresholding the Laplacian

In an attempt to nd the optimal threshold we pursued seuvessk by reconstruct-
ing the Laplacian datasets with different percentages mtpoThe results related
to some of the tested datasets are given in Figure 6.1. Thésetow how the
RMS error depends on the number of points selected as inpgu ietonstruction
process. We can see that for the displayed graphs the reacinst error becomes
stable in the intervdll5% 25%] A similar behavior is observed by all the other
tested datasets. From the reconstruction point of view tiee does not change
(signi cantly) when we further increase the number of psinfThis fact is con-
nected with the approximative and non-interpolating progpef cubic B-splines.
The control points of the B-splines tend to oscillate in adence with fast chang-
ing values of the input points (e.g., edges). In images armels edges represent
only a small part of the whole data. If we want the further @age of number
of points to in uence the reconstruction error we have todowhe regularization
value . As approaches zero the variational approach tends to behawgraple
least square approximation.
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Figure 6.1: The relation of RM@vs. percentage of Laplacian points selected as non-
uniform data. The results were obtained from our variational reconstractiethod using
the Laplacian regularizer (Equation 3.2) and= 0:3.

In Figure 6.2(a) we show a typical example from the image @ssing com-
munity. Figure 6.2(b) shows the image after being convolvét the Laplacian
kernel and scaled to rang@; 255] (for display purposes). We take the highest
absolute values for a Laplacian dataset (the values clobiatk in the image).

It is obvious that these values constitute only a small pathe image. Hence
selecting thg15% 25%]threshold interval assures that all important points (i.e.
edges) are taken into account. The increase of the threslmildl include points
from areas with a low variance into the reconstruction psscéience this would
not affect the B-spline coef cients and the reconstructiongess.

In Figure 6.3 we show the response of the variational recocisbn error
to a changing -regularization and percentage of Laplacian points foiNbghip
dataset. Figure 6.3(a) gives tR&1 S error estimated for the uniform points of the
dataset. The erroris high when the percentage of the paitiie Laplacian dataset
is low, regardless of the-regularization. When the percentage of points increases
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(@) (b)

Figure 6.2: Input image (a), and the response after convolution with a Laplaciangkern
and scaling (b).

the -regularization plays a more important role in the recarton. A high

-regularization means more smoothing and better resuléhie percentage is
low and the gaps between non-uniform points are bigger. A lewgularization
means less smoothing and better results when the percemtagg@ses over the 25%
threshhold. Tests with more than ten datasets show thaestedsults, regarding
the reconstruction errors, can be achieved wh@n[0:2 0:3]and the percentage
of points is in the intervall5% 25%] When -regularization is high then the
RMS error is high even though we may have a high percentagepditian points.
This is due to the strong regularization and its smoothirigces. Figure 6.3(b)
gives the RMS error only for the input points present in thelaeipn dataset,
hence the reconstruction error is expected to be low whesgularization is very
small. As -regularization goes to zero, the variational approachabes like
a simple least-squares approximation. When the percentfdggptacian points
goes towards 100%, both graphs of Figure 6.3 tend to be sisiilae they both
give the errors over the whole points of the uniform data.

The comparison of the graphs in Figure 6.3 gives us a besgghihon the se-
lection of -regularization and optimal threshold. An ideal reconsgion method
is required to deliver similar reconstruction error ratesanly for the input points
but also for the whole data domain. From the graphs in Figusen@ see that
the zone, wherRMS andRM S exhibit similar behavior, is for 2 [0:2  0:3]
and the percentage of points is in the interj@E#% 25%)] The selection of
such a percentage threshold is also reinforced by the vsaraparison of the
rendered images of the Laplacian datasets reconstructiedifferent numbers of
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Figure 6.3: The relation of RMS to the percentage of Laplacian points and

regularization.
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non-uniform points.

6.2 lterative Point Selection

When selecting the Laplacian points for creating non-unifdatasets, we stated
that other Iters could be possible candidates for the pegiection. Due to the
sensitivity of B-splines to high-frequency details, we achted that convolution
with a Laplacian kernel is the optimal choice. In this settwe want to build
upon such conclusions, in order to nd a representation aftsahat leads to
lower reconstruction errors when used with our variati@pdroach. The idea is
to select a speci c low-percentage from the Laplacian girgconstruct the data,
and then increment the number of points on those positiorsevinie RMS error
is highest. The diagram of this scheme is shown in Figure 6.4.

Figure 6.4: Diagram showing the proposed iterative point selection scheme.

In Table 6.1 we show results from our iterative point setacicheme. The tests
were conducted for three different starting percentagdswan different increment
steps. For each starting percentage we measure the reatiwstrerrors when the
number of points constitute 15%, 20% and 25% of the totaltgoim each case we
check also the in uence of the incremental step on the pfe&s set it either to
1% or 5%). From the results we understand that the best pesfure is achieved
when the 1% incremental step is used. The results relatbd sidrting percentage
are very close. Taking into consideration that we have tonsttuct the dataset for
each iteration step, the obvious selection would be théirsigpercentage which
needs less iterations. Hence our iterative scheme givésdsedts when 15% is
selected as starting percentage and in each iteration wenient the number of
points by 1%. The results obtained from our iterative schéemonstrate an up to
15% reduction of the RMS error when compared to the resultansio Chapter
3 (see Table 3.1). Computation times for each dataset arathe as in Tables
2.2 and 3.1, but multiplied by the number of iterations. Igufe 6.5 we show
the behavior of the proposed iterative approach when tigjgpercentage is 5%
and the incremental step is 1% and 5% respectively.
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Table 6.1: Table showing the performance of the variational reconstruction when the
non-uniform points are selected through our iterative scheme.

RMS,
Starting Percentage 5% | 10% | 15%

Dataset / Increment 1% | 5% | 1% | 5% | 1% | 5%
Neghip (15%) 1.13] 2.50] 1.56| 2.41| 1.02| 1.02

Neghip (20%) 0.99| 1.31|1.04| 1.42| 0.99 | 1.01
Neghip (25%) 0.96| 1.10| 0.96| 1.07 | 0.97 | 0.98

Engine (15%) 1.29] 5.48] 1.71| 1.90| 1.58| 1.58
Engine (20%) 0.78| 2.82| 0.89| 1.42| 0.80| 1.10
Engine (25%) 0.66| 1.58| 0.65| 1.02| 0.61| 0.70

CT-Head (15%) 1.30| 3.65| 2.74| 3.09| 3.62| 3.62
CT-Head (20%) 0.66]| 1.96| 0.84| 1.93| 1.12| 2.02
CT-Head (25%) 0.48|1.05/0.49|1.11|0.51|1.15

5%,+1
5%,+5| A

RMSg Error

0 20 40 60 80 100
Laplacian Points

Figure 6.5: Relation ofRMSg to the percentage of Laplacian points for our iterative
approach.
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A scienti ¢ truth does not triumph by
convincing its opponents and making
them see the light, but rather because its
opponents eventually die and a new
generation grows up that is familiar

with it.

Max Planck
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n this work we presented a framework for reconstruction and v
I sualization from non-uniform point sets on uniform gridswgs
B-spline basis functions. We improve our reconstructioniliss
by introducing a new regularization functional and a heioi®r
selecting an optimal resolution. We introduce a new linknsen
non-uniform representations and the interscale B-spliatgioa in

a multi-resolution context. We show the performance anditgua
of our technique when compared to other competing techeique






CHAPTER [/

SUMMARY AND CONCLUSIONS

Advances in technology are providing us every day with moekraore complex
data representations obtained either from real acquis@t@vices or simulations.
Non-uniform data is a fast-spreading data type since inalline representation of
information with more samples where itis needed. Providingh a representation,
which has no explicit internal structure, comes with a prites not trivial to be
processed, analyzed and/or visualized.

In this thesis we present a general framework for recontstigiand visualizing
non-uniform point sets. We approximate the data with%continuous function
that uses B-splines as basis function.

We adopted a successful approach for the variational réemti®on of two-
dimensional non-uniform data to the three-dimensionakca%Ve proposed a
block-based reconstruction, which does not suffer froreriblock discontinu-
ities, in order to reconstruct 3D large datasets withoutdgpbiampered by memory
limits. As every variational approach is affected by thesghoregularization, we
conducted several tests showing the impact of requlaoizatn the reconstruction
process. To improve the reconstruction results we intredacLaplacian-like reg-
ularizer. This regularizer does not ensure rotational @atesnvariance, but these
features were traded for lower reconstruction errors afdeced visual quality
of the images rendered from the reconstructed data. Baseevenastests, we
proposed a logical heuristic for selecting a reconstractesolution. Being de-
pendent on the distribution of points across the volume hedrariance of their
values, this heuristic is closely correlated to the reaoicsibn resolution and to
the reconstruction error.

Whereas selecting an optimal single resolution is advisabén the points are
uniformly spread across the volume, multi-resolution ceméo play for the cases
where the distribution of points is highly variant across Wilelume. We propose a
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multi-level pyramid style representation as a simple apping but nally opt for
an adaptive multi-resolution approach. The proposed sehman represent the
volume with multiple levels of details. Yet we suggest thagesof only two levels.
The rst level represents the coarse data details, whilesdu®nd level re nes the
details only in the areas where the reconstruction errorglk.hBoth levels are
represented b2 continuous functions, and considering an appropriateiapat
overlap we ensure th@? continuity of the multi-resolution function.

We make a rst step in the reconstruction of vector data. Werek our
framework to vector reconstruction by doing a componerswieconstruction.
We analyze our vector reconstruction scheme by applyingataseéts obtained
either from simulations or from the gradients of uniformadagts. Our component-
based reconstruction gives low RMS errors. We will use sustlt®in our future
work as a starting point for developing more elaboratedmstaction techniques.

Finally, in our thesis we try to better understand the beatrayfi the variational
approach with regard to the reconstruction of Laplaciamaskts. By means of
graphs and statistical analysis we arrive into the conafuthat best results, in
terms of minimal reconstruction errors and good visual itgyatan be achieved
when 2 [0:2 0:3]and the percentage of points is in the intefl&% 25%)]

After all what was stated above, the natural question woald'ls everything
said and done?". The straight answer is "NO!". There is no eskaddl theory
that could suggest an optimal reconstruction resolutidanms of minimal recon-
struction errors and good visual quality (no artifacts mténdered images). With
respect to the variational reconstruction there is no nma#ttieal basis that would
precisely state which regularization functional and whatlue should be taken to
achieve the best reconstruction for a speci c data. Witpeesto visualization and
multi-resolution there is no clear answer whether uniforman-uniform grids are
the best data representations in terms of ef ciency of eimgpdnd representation
of information (signals). All these questions were offeedi@rnative answers in
this thesis. Until such answers do not become de nitiveséhguestions will still
remain the headings of our "Future Work".
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