FAKULTAT FUR !NFORMATIK

-I
-
p S

WIEN

Accurate Soft Shadows
In Real-Time Applications

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Computergraphik/Digitale Bildverarbeitung
eingereicht von

Michael Schwarzler
Matrikelnummer 0325222

an der
Fakultat fur Informatik der Technischen Universitat Wien

Betreuung:
Betreuer: Associate Prof. Dipl.-Ing. Dipl.-lng. Dr.techn. Michael Wimmer
Betreuender Assistent: Univ.Ass. Dipl.-lng. Mag.rer.soc.oec. Daniel Scherzer

Wien, 20.02.2008

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universitat Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1 /588010 http: //www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Michael Schwirzler
Anzengrubergasse 49, 2380 Perchtoldsdorf

“Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich
die verwendeten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich
die Stellen der Arbeit — einschlieBlich Tabellen, Karten und Abbildungen —, die
anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen
sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht
habe.”

Ort, Datum: Unterschrift:

Abstract

In this thesis, the generation and use of soft shadows in real-time rendering is
discussed. While hard shadow algorithms are already widely used in games and
applications, the fast and correct calculation of soft shadows, which are not cast by
a point light source but by an area light source, is a complex task and still an area
of active research. The simulation of soft shadows is worth the increased effort,
though: Nearly every shadow in reality has soft boundaries, so using soft shad-
ows in rendering applications significantly increases the realism of the generated
images.

After giving an explanation on where soft shadows come from and what prob-
lems occur during their computation, current real-time soft shadow algorithms are
presented and discussed. Nearly all of them are based on either the shadow map-
ping or the shadow volumes algorithm, which are extended in various ways to
work together with area light sources. Still, none of them is able to compute phys-
ically correct soft shadows in real-time for arbitrary scenes: Either the calculation
takes too long, or the soft shadow is only approximated.

Thus, we suggest a new approach, which uses Temporal Coherence between
frames in order to generate physically accurate soft shadows: By generating only a
single shadow map each frame from a different, random sampling position on the
area light source and storing the shadowing information in a screen space shadow
buffer, it is possible to compute exact shadows while achieving frame-rates as high
as in single-sample fake approaches.

4 Abstract

Kurzfassung

In dieser Diplomarbeit wird die Berechnung und Verwendung von weichen
Schatten in Anwendungen der Echtzeitgraphik behandelt. Wihrend harte Schatten
bereits hdufig in Spielen und Programmen eingesetzt werden, ist die Verwendung
von weichen Schatten, die anstelle von Punktlichtquellen von Flidchenlichtquellen
erzeugt werden, aufgrund der viel hoheren Berechnungskomplexitit noch eher
selten und stellt deshalb auch immer noch ein aktives Forschungsgebiet dar. Der
Mehraufwand, den die Verwendung von weichen Schatten mit sich bringt, lohnt
sich aber dennoch: Beinahe jeder Schatten, den wir in unserem alltéiglichen Leben
vorfinden, ist weich, weshalb wir computergenerierte Bilder mit weichen Schatten
als sehr viel realistischer wahrnehmen.

Nach einer Erkldarung, was weiche Schatten sind, warum sie auftreten, und
welche Schwierigkeiten sich bei ihrer Berechnung ergeben, werden aktuelle Al-
gorithmen vorgestellt, die in der Lage sind, weiche Schatten in Echtzeit zu be-
rechnen. Sie basieren stets auf einem der beiden bekanntesten Algorithmen fiir
harte Schatten, shadow mapping oder shadow volumes, und wurden auf verschie-
denste Arten und Weisen erweitert, um die Generierung von weichen Schatten zu
ermdglichen. Dennoch ist es mit keinem der vorgestellten Methoden méoglich, fiir
beliebige Szenen physikalisch korrekte weiche Schatten in Echtzeit zu erzeugen:
Sie sind entweder zu langsam, oder approximieren die Schatten nur.

Wir stellen deshalb einen neuen Ansatz vor, der mithilfe von Temporal Cohe-
rence die Berechnung von physikalisch korrekten weichen Schatten ermoglicht:
Durch die Generierung einer einzigen shadow map pro Frame, die jeweils von
einer anderen, zufélligen Stelle der Flichenlichtquelle erzeugt wird, sowie der
Verwendung eines sogenannten shadow buffers, der die bisherigen Schattenergeb-
nisse speichert, ist es moglich, exakte weiche Schatten zu berechnen, und dabei
tiberzeugende Bildwiederholraten zu erreichen.

Acknowledgements

Many thanks to all the people at the The Institute of Computer Graphics and
Algorithms at the Vienna University of Technology who assisted and helped me
during my studies; in particular to Michael Wimmer and Daniel Scherzer, who
both supervised my work on this master thesis and gave me lots of useful hints
and comments.

Many thanks also to the members of the Computer Graphics Club for their sup-
port, ideas, help, criticism and all the parties we had together! :-) Particularly
Alexander Kusternig helped me a lot during the development of the DirectX 10
framework and with many enlightening conversations.

Special thanks to all the university colleagues who helped me on my way through
all the exams and exercises. I would like to primarily thank Heinrich Fritz and
Martin Knecht for all the discussions, the excellent collaboration and — most im-
portant — the great friendship! :-)

For financial support, which made it possible to acquire the needed hardware,
I thank the Faculty of Informatics and its professors at the Vienna University of
Technology.

Finally, i thank my family and my girlfriend Susanne Schoffmann for their sup-
port, help and patience! :-)

Contents

1. Overview
2. Introductiono
2.1 Whyshadows?
2.2 Basicsanddefinitions
2.2.1 Whatareshadows?

2.2.2 Real-time vs. interactive framerates

2.2.3 Renderingmethods

2.3 Shadowinginreal-time
2.3.1 The shadow mapping algorithm

2.3.2 The shadow volume algorithm

24 Summaryo e e e e

3. Softshadows
3.1 Whatare soft shadows?
3.1.1 Umbra& penumbra

3.1.2 Hard shadows vs. soft shadows

3.1.3 Shadows from several light sources

3.1.4 Shadows from several objects

3.2 Physically correct vs. fake soft shadows
3.2.1 Problems with fake soft shadows

3.2.2 Ways to approximate the penumbraregion.

3.2.3 Shadows from several objects

33 Summary

4. Real-Time Soft Shadow Algorithms
4.1 Multiple shadow maps perlight.
4.2 Single sample soft shadow approaches with occluder search
4.3 Percentage closer filtering
4.3.1 Variance shadowmaps

4.4 Smooth penumbra transitions with shadow maps
4.5 Image-space flood-fill soft shadows

Contents 7

4.6 Occlusion textures oo ot e 43
4.7 Convolution techniques 44
4.8 Soft shadow mapping with backprojection 46
4.9 Soft planar shadows using plateaus 49
4.10 Penumbramaps 50
4.11 Smoothies 51
4.12 PenumbraWedges oo 53
413 Summary 54

5. Real-Time Soft Shadows using Temporal Coherence 56
5.1 Imtroduction 56
5.2 The Algorithm 58
5.2.1 Estimating Soft Shadows from n Samples 59

5.2.2 Temporal Coherence 60

5.23 Spatial Filtering 62

524 Blending 65

5.2.5 MovingObjects 65

5.3 Implementation 67
54 Results.o 69
5.4.1 Limitationso 70

5.5 Summary ... 70

6. Summary 72
A. Shader sourcecode 74
A.1 Depthpassshadercode 74

A.2 Shadowing pass shadercode 74

A false friend and a shadow attend only while the sun
shines.

(Benjamin Franklin)

Chapter 1

Overview

This chapter provides a first glance at the Chapters and outlines their contents.
The thesis is structured in five main parts, in which the following topics are dis-
cussed:

Chapter 2 of this thesis gives an introduction into the fields of real-time graph-
ics, shadow algorithms and rendering methods - the “basics” needed to understand
the following Chapters.

Chapter 3 will describe what so-called soft shadows are, why and how they
occur, how they differ from hard shadows, and what difficulties arise during their
implementation.

In Chapter 4, an overview of today’s real-time soft shadow algorithms is given:
A vast amount of such algorithms have been published during the past few years.
Most of them are based on either the shadow mapping or the shadow volumes al-
gorithm, but they still differ a lot: While some focus on generating physically ac-
curate but computationally costly soft shadows, other techniques use “fake meth-
ods” to achieve perceptually plausible, but faster results.

In Chapter 5, we present our own real-time soft shadow algorithm, called Real-
Time Soft Shadows using Temporal Coherence. It combines the speed of single-
sample fake methods with the physical accuracy of approaches where multiple
samples of the area light source are taken. We do this by exploiting the Temporal
Coherence of consecutive frames.

Chapter 6 summarizes and concludes this thesis.

Shadow reveals the true shape of a body.

(Leonardo Da Vinci)

Chapter 2

Introduction

In this chapter, an introduction into the fields of shadow generation and real-time
rendering is given. First of all, it is explained why shadow generation in computer
graphics application is needed at all (Section 2.1). In Section 2.2, the terms used
in this thesis are defined and explained:

e What are the reasons for shadows to be cast, and what are their characteris-
tics (2.2.1)?

e What is real-time rendering, what are interactive frame rates (2.2.2)?
e How are images rendered at all? Which techniques can be used (2.2.3)?

Finally, some real-time shadow generation algorithms are presented and explained
in Section 2.3, with focus on the two mostly used: shadow mapping and shadow
volumes.

2.1 Why shadows?

Shadows play an important part in the visual perception of the world, since they
appear in nearly every situation or scene of our daily life. They are in fact so
common that we usually notice them only unconsciously. Most of the time we
only realize the impact of shadows in a scene when they are missing: Images
created by artists, on which no Shadows are visible, do usually seem unnatural
and artificial, no matter whether they are hand-drawn or created digitally with
computer graphics methods.

The reason for this is that the absence of shadows reduces the usual informa-
tion a human perceives when looking at a scene: Shadows provide visual cues
which help the human brain to understand the geometry of the objects. Whenever
they are missing, it is harder or even impossible for the human visual system to
determine the correct three dimensional relationships:

9

10 Chapter 2. Introduction

°9p

Fig. 2.1: Shadows provide information on the relative position of an object in space. On
the left image, the crate’s position can’t be determined. In the middle and right images,
this is different due to the cast shadows.

Fig. 2.2: The camel is completely hidden Fig. 2.3: Shadows provide information on
behind the crate, but the shadow reveals its the light source size: The larger the source,
presence. the softer the shadow.

S

Fig. 2.4: The geometry of the receiver can be estimated by the cast shadow [HLHS03].

2.2. Basics and definitions 11

e Shadows give information on relative position and size of scene objects -
they “anchor” objects in a scene. They tell you if the object touches the
shadow receiver or (otherwise) the distance to it. Without shadows, an ob-
ject just “floats” (Figure 2.1).

e Through the projection of the shadow caster onto the shadow receiver, shad-
ows provide geometrical information on object parts of the occluder which
are not visible from the observers eye position (Figure 2.2).

e Shadows also give you details about the light source which is responsible
for their occurrence, like for example its extents or its distance (Figure 2.3).

e Depending on their projected shape, shadows also reveal much of the geom-
etry of the shadow receivers. Complex structures of certain surfaces only
become visible when a shadow is cast on them (Figure 2.4).

Simulating shadows in Computer Graphics applications can therefore help the
perceiver to gain a better sense of the three dimensional scene, increases the real-
ism of the generated images and adds a certain “atmospheric” effect to them.

2.2 Basics and definitions

In this section, the basics and definitions which are necessary to understand this
thesis are given. First, the term shadow itself is introduced, followed by a defini-
tion of real-time/interactive frame rates and the explanation of current rendering
methods.

2.2.1 What are shadows?

A point lies in shadow whenever it is not visible from the light source’s position
(and vice versa). This definition holds of course only for point light sources,
which have no extents and exist only theoretically. They produce so-called hard
shadows: Every single point in a scene is either in shadow or not, which is leading
to a high contrast at the shadow borders, making them very noticeable for the
human eye. This leads to the following problems:

e Artifacts at the borders are extremely noticeable as well.
e Hard shadows can in some occasions be interpreted as separate objects.

So-called directional light sources (light sources that are infinitely far away) emit
parallel light rays and produce hard shadows as well. In computer graphics, the
sun light is often approximated and modeled as a directional light source.

12 Chapter 2. Introduction

point light source

occluder

receiver

hard shadow

Fig. 2.5: Hard shadow cast by a point light source: An occluder blocks the light from the
receiver.

Apart from the light source, every shadowed scene consists of several objects,
which is illustrated in Figure 2.5: The object causing the shadow by blocking
the light is called shadow caster, shadow creator, occluder or blocker. The object
shadowed by this occluder is called the shadow receiver or occludee. A special
case called self-shadowing occurs whenever an occluder casts a shadow on itself
due to its special geometry. The object is then shadow caster and shadow receiver
at the same time (see Figure 2.6).

In many computer graphics applications, especially when real-time frame rates
have to be achieved, lights are modeled as point or directional sources due to
the fact that calculating a hard shadow is comparably easy and fast. In the “real
world”, every light source has its own area (or even volume), leading to so called
soft shadows, which are discussed in detail in Chapter 3.

2.2.2 Real-time vs. interactive frame rates

Shadow calculation in a computer graphics application is a global effect and com-
putationally expensive. Depending on the rendering method, the used shadow

2.2. Basics and definitions 13

Fig. 2.6: An example for self-shadowing: The object casts shadows on itself.

algorithm, the available hardware, the quality of the shadow, the scene complex-
ity and the size of the rendered frame, the generation and rendering of a shadowed
image can be a very time-consuming task: It can take from several milliseconds
up to several minutes or even hours.

In this thesis, the focus lies on methods and algorithms which allow shadows
to be rendered and used in real-time applications. Real-time means, that at least
30 frames per second (FPS) can be calculated and presented on the screen (or
twice the rate for stereo vision). It is important that the frame rate does not drop
below this value and is as constant as possible, because the human visual system
is quite sensitive to substantial frame-to-frame changes. Frame rates higher than
30 Hertz are perceived as continuous animations. An application which manages
to output “only” 2 to 15 FPS renders at so-called interactive speed.

Today’s hardware is capable of rendering various shadow techniques in real-
time. Especially programmable graphics processor units (GPUs), which speed up
polygon rasterization rendering methods (see Section 2.2.3) enormously and are
by now available in many home computer systems and gaming consoles, make it
easy for developers to include real-time shadows with increasing quality in their
applications and games. Since no shadow algorithm can fulfill the requirement
to render any arbitrary scene with guaranteed real-time frame rates, though, it is
necessary for an algorithm to be parameterizable to perform as needed. Such an
altering of a parameter in order to gain more speed often comes at the cost of
visual quality.

Although extremely realistic shadows can also be rendered with various tech-
niques like ray tracing, photon mapping or radiosity, interactive or even real-time

14 Chapter 2. Introduction

frame rates cannot be achieved with them today with consumer hardware. This
is especially true in the case of soft shadows. Therefore, algorithms for these
techniques are not handled in detail in this thesis - the focus lies on polygon ras-
terization methods. An in-depth overview on real-time rendering can be found in
[AMHHOS].

2.2.3 Rendering methods

In computer graphics, rendering is the process of calculating an image out of
mathematically described scene objects by a computer program. Such an object
description can for example consist of three dimensional vertices, which are con-
nected by edges, which in turn form a triangulated wireframe model. Another
possibility is to describe them by mathematical functions. Furthermore, a view
point, from which the scene is looked at, is specified, and the light sources are set.
The challenge in rendering is now to create color information (a digital image)
out of the given mathematical definitions. This problem can be solved by several
so-called rendering methods.

Each of the approaches has of course its own advantages and disadvantages,
but they are all capable of rendering shadowed images. In order to understand the
shadow algorithms which are presented later, it is necessary to know some details
about the most important underlying rendering methods (polygon rasterization,
ray tracing and radiosity).

Polygon rasterization

The most common way to render three dimensional objects in an application or
game is to use polygon rasterization. The methods works by transforming the
polygons the objects are made of into screen space and color their corresponding
pixels there (“rasterization”). The calculation of a pixel color is done by using
approximate illumination models and the polygon’s surface properties.

A big advantage is the fact that areas where no polygons appear can easily
be determined and ignored in the rendering process. Problems arise whenever
two polygons lie behind each other: Only the fragment of the polygon with the
smallest distance to the eye should be drawn, otherwise the visibility of the scene
would be wrong. Fragment is the term used for a pixel with additional data like
the depth or a normal.

This difficulty is solved by using a so-called z-buffer, which is a buffer with
exactly the same dimensions as the render window and saves the z-value (the
distance from the eye) for each drawn fragment. Whenever another polygon part
is transformed to this screen space pixel location, its depth is compared to the

2.2. Basics and definitions 15

+
+
+\t
+++***’+++ + t
o ++++++++++ . :
par et A e intersection
;}fr}+&**++++ oint
= + o+
yw******Jr P
R A A A T T
tt+ 4+ 4+ + 4+ + 4+ + + 4+ o+
SR
L A
. **+++++++++
ooo++++|,f++++
. ot w
eye point
+ o+ o4
0;,,'F' LN
+ o+
KT **++++
+ o+
ey,
P o oa
image plane

Fig. 2.7: Ray tracing basics: A ray is shot from the eye point into the scene. The color of
the object at the intersection point is projected onto the corresponding pixel in the image
plane [ray07].

value in the buffer: If the depth is smaller, it gets drawn and the new depth value
is stored - otherwise, the fragment is ignored.

The introduction and the following huge success of specialized graphics card
around 1995 were responsibly for a drastic improvement of this method in terms
of speed and visual quality, and graphics acceleration hardware soon became a
standard in today’s home PCs and consoles. In 2000, it became even possible to
program the whole rendering pipeline on the GPUs using small programs called
shaders. They allow developers to control every single step during the trans-
formation and rasterization and have been responsible for the invention and im-
provement of many new algorithms - especially in the area of real-time shadow
generation.

Ray tracing

Ray tracing is an algorithm which uses a data structure called ray to generate
images out of the scene description. For each pixel, a ray is shot from the eye
point into the scene, intersecting the objects there. The intersection point with the
smallest distance to the eye is used to determine the pixel color of the rendered
image (see Figure 2.7).

For this calculation of the pixel color, the material properties and the point
normal as well as the bounced rays are used to calculate the shading: In contrast to
Ray Casting, the rays are traced further recursively, which simulates the physical

16 Chapter 2. Introduction

Fig. 2.8: A test scene rendered with the radiosity technique [rad05].

effects of reflection and refraction. The more bounces a ray is allowed to make,
the more realistic the result is.

The simulation of shadows in ray casting is straight-forward: A point on an
object lies in shadow if an occluder lies between it and the light source. This
occluder-test can simply be performed by using a ray again, which is shot at the
object point from the light source. Whenever it is intersected by another object,
the point is in shadow, otherwise it is lit.

Even though ray tracing can generate very realistic images out of all inter-
sectable and mathematically described scene objects, its performance is quite bad
compared to polygon rasterization. This is due to the fact that it is a global ren-
dering method, which means that all scene objects have an influence on every
single scene point. This makes it impossible to be used in real time on today’s
graphics hardware, but recent developments have shown that real-time ray tracing
applications could soon become reality.

Radiosity

The radiosity algorithm only works on ideal diffuse object surfaces, which are
divided in a finite number of small patches. Each of these patches act as indirect
light source whenever they are illuminated directly, since they reflect all incom-
ing light they cannot absorb in all directions. First, it is necessary to compute
the energy-radiant interactions between all those patches. This is done by using
so-called form factors or view factors, which describe how much the patches influ-
ence each other (for example, large distances, oblique angles or blocking objects

2.3. Shadowing in real-time 17

between two patches will reduce the form factor value).

For each patch, a linear equation system is set up using the corresponding form
factors, which is solved numerically. The result is the radiosity (or brightness) for
each patch. Soft shadows are automatically computed using this approach. The
algorithm can be expanded to other materials, but it is limited in precision by the
amount of patches and the resulting memory requirements.

Once the radiosity values are computed and stored, the scene can be rendered
in real-time, as the lighting is independent of the viewing direction and does not
change during camera movement. This method is therefore a good solution for the
rendering of static scenes in real-time, if the preprocessing time does not matter.
See Figure 2.8 for an example image rendered with radiosity.

2.3 Shadowing in real-time

Shadowing in real-time is a non-trivial challenge, and there is no general solution
which can be applied on any arbitrary scene. Sometimes it is sufficient to calcu-
late static shadow information in a preprocessing step and store it in a special data
structure or texture, which can later be used to illuminate the corresponding ob-
jects in real time. But as soon as dynamic elements are involved, other techniques
have to be chosen.

Many older games use (blurry) dark textures, placed underneath the objects, as
approximate shadows (see Figure 2.10). Even though this technique is of course
no real shadow calculation but only a very rough estimation, it is quite cheap in
terms of computation, and it enhances the visual perception of the three dimen-
sional scene. Another method called projection shadows [Bli88] uses a matrix
transformation to project the shadow caster object flattened onto the ground plane.
The scene is first drawn without shadows, followed by a second pass on which the
transformed version of the occluder is drawn onto the plane as a shadow. Even
though it is possible to calculate correct shadows with this approach, it can’t han-
dle self-shadowing and is only applicable for scenes with very few, large objects.
An example is given in Figure 2.9.

The two most robust shadowing algorithms are presented in the following sec-
tions: Shadow mapping, an image based approach, and shadow volumes, an object
based approach, can both handle self-shadowing and are able to solve the visibil-
ity problem caused by the shadow calculation in real-time. For more information
on real-time shadows, we recommend [AMHHOS8] and [HLHSO3].

18 Chapter 2. Introduction

Fig. 2.09: Projective Fig. 2.10: Approximate shadows: Simple geometry is
shadows as proposed in used to “fake” a shadow (Screenshot from the game
[B1i88]. NFS V: Porsche, (©Electronic Arts).

2.3.1 The shadow mapping algorithm

Shadow mapping is an image based algorithm which was first introduced by
[Wil78] in 1978. The basic idea of this method is to view the scene from the posi-
tion of the light source in a first pass, and store the depth values of the fragments
in a texture (called the shadow map). The shadow map therefore contains the
distances to all sampled surface points which are illuminated by the light source.
Depending on the type of used light source, a perspective (for point lights) or an
orthographic (for directional lights) projection has to be used. The shadow map
has to be updated whenever an object in the scene or the light source moves.

In the second pass, the scene is rendered from the camera’s point of view.
Every fragment is transformed into light space, where its distance to the light
source is compared to the corresponding value in the shadow map. If the distance
to the current fragment is larger than the shadow map value, it lies in shadow;
otherwise it has to be illuminated by this light source. Figure 2.11 illustrates the
basics of the algorithm.

The shadow mapping algorithm can be implemented in a fully hardware accel-
erated way on modern GPUs and is therefore a comparatively fast and often used
method to simulate hard shadows in real-time applications and games. Further-
more, it can handle any geometry due to the fact that it is an image based approach,
its speed is independent of the scene and object complexity, and self-shadowing
is handled automatically.

Shadow mapping has some considerable drawbacks, though: It is not possible
to use only one shadow map when using an omni-directional light source, as no
view frustum can represent such a spherical view. Moreover, due to the sampling
of the scene during the creation of the shadow maps, aliasing and undersampling
artifacts are likely to occur:

2.3. Shadowing in real-time 19

Eye-view

i'.

Fig. 2.11: The shadow mapping algorithm: The depth values as seen from the light source
are stored in a shadow map, and are then used in a second pass to generate shadows on
the objects [SchO5].

e Perspective aliasing occurs whenever the shadow map resolution is insuf-
ficient for regions near the camera due to the fact that a perspective view
shows nearby objects larger than distant ones (see Figure 2.12). This prob-
lem can for example be reduced by using perspective shadow maps [SD02]
or light space perspective shadow maps [WSP04], where the shadow map
resolution near the camera is increased.

e Projection aliasing can be found on surfaces which are nearly orthogonal
to the shadow map plane (so the surfaces lie nearly parallel to the light
direction). It is possible that only very few shadow map texels are projected
onto such an area, leading to an insufficient resolution there (see Figure
2.13). By using the standard openGL shading model, such artifacts can be
nearly completely hidden.

e The limited precision of the depth values in the shadow map or resam-
pling errors can lead to incorrect self-shadowing or shadow-acne (see Fig-
ure 2.14). This can be avoided by using a depth bias, which is added to the
depth value in the shadow map before the shadow comparison takes place.

Sampling artifacts can also be reduced using a technique called percentage
closer filtering (PCF) introduced by [RSC87] which softens the shadow borders
(see Section 4.3). This filtering method is meanwhile included in current graphics
hardware and can be used without performance hits. Soft shadows generally help
to hide the artifacts which occur in shadow mapping.

More details on solving the problems in shadow mapping can be found in
[SchO5].

20 Chapter 2. Introduction

Fig. 2.12: Perspective alias- Fig. 2.13: Projection aliasing Fig. 2.14: Shadow acne arti-
ing artifacts artifacts facts

2.3.2 The shadow volume algorithm

The shadow volume algorithm, first introduced by [Cro77], is a completely dif-
ferent approach, as it is an object based method. It works by extruding the object
silhouettes as seen by the light source to infinity - the light and the occluders “cast
out a shadow volume”, which is used for the shadow query. The silhouette ex-
traction has usually been done on the CPU, but with the introduction of so-called
geometry shaders on newer GPUs, it has become possible to calculate the volumes
on the graphics hardware as well.

The shadow test is performed by using a counter: For each pixel, the volume
intersections which occur from the eye point to the object point are investigated.
Every time a volume is entered, the counter is increased by one, and every time
a volume is left, the counter is decreased by one (see Figure 2.15). Whenever
the object point is reached and the counter is larger than zero, it lies in a shadow
volume, otherwise, it is illuminated. This can be implemented by using a stencil
buffer:

1. Reset stencil, draw the scene with ambient lighting only, fill z-Buffer.
2. Draw the shadow volume twice with z-test on:

e The first time, render the front faces only & increment the stencil
buffer.

e The second time, render the back faces only & decrement the stencil
buffer.

3. Draw the scene with stencil test on, update & illuminate only pixels whose
stencil value is zero.

2.4. Summary 21

+1 -1
+1

T, T

Fig. 2.15: The shadow volumes algorithm: By entering a shadow volume, the counter is
increased, and by leaving it, the counter is decreased [Sch05].

The big advantage of the shadow volume algorithm is its object precision:
the shadow volumes represent the exact shadow, and not a sampled version as in
shadow mapping, so no aliasing artifacts can appear. Moreover, it supports omni-
directional point light sources and handles self-shadowing. A famous example for
a game which has shadow volumes implemented is Doom 3 (see Figure 2.16).

The drawbacks of the shadow volume algorithm appear immediately when
it comes to the rendering of polygon-rich scenes: A huge fill-rate is necessary
to render all the volumes, and the silhouette extraction is another costly factor.
Another disadvantage is the limitation to polygonal objects, as the determination
of the silhouettes has to be fast.

2.4 Summary

This chapter gave an introduction to the area of shadowing in computer graphics,
and described how the visual quality and realism of artificially generated images
can be improved by it. The terms necessary to understand the basics of shadowing
and real-time rendering were defined, followed by an explanation of the most
important rendering methods and real-time shadowing algorithms.

More information on the topics real-time rendering and shadows in computer
graphics can be found in Moller and Haines’ Real-Time Rendering book [AMHHOS].

22 Chapter 2. Introduction

Fig. 2.16: Screenshot from the game Doom 3 ((©)id Software), which uses the shadow
volumes algorithm.

Soft and quick as shadows, we must be.

(Gollum in “The Lord of the Rings”)

Chapter 3

Soft shadows

3.1 What are soft shadows?

As already explained in Section 2.2.1, light sources in real-time applications are
often modeled as point lights with no physical extent. Such point light sources
only exist in theory, though: In the “real world”, light sources consist of an area
or even a volume, causing so-called soft shadows to be cast. The shadow definition
given in Section 2.2.1 does not hold for them anymore, since we are not dealing
with a point-to-point, but an area-from-point visibility problem in such a case.
The calculation of soft shadows is therefore far more complex, but due to the
recent graphics hardware developments and the invention of new algorithms, it
has become possible to render them in real-time. Still, we are far away from
rendering realistic and physically correct (!) soft shadows in any arbitrary scene,
and a lot of research effort is put into this topic, which can also be seen by the
large number of recently published papers (see Chapter 4 for an overview).

In Section 3.1.1, an explanation on how and why area light sources cause soft
shadows as well as the definition of the terms umbra and penumbra are given.
Section 3.1.2 compares soft to hard shadows and lists their assets and drawbacks.
Special scene configurations in connection with soft shadows are treated in Sec-
tions 3.1.3 and 3.1.4.

An excellent survey on soft shadows can also be found in [HLHSO03].

3.1.1 Umbra & penumbra

In case of a point light source (and the resulting hard shadow), shadowing is a
binary decision: The point is illuminated whenever the source is visible from its
position, and otherwise not. For area light sources, things are more complicated:
If the light source is partly visible from the position of the affected point (which
means that this point is only partly hidden from the light source), it is neither com-
pletely lit, nor completely shadowed, but in the so-called penumbra. The penum-
bra is the region in which the fading from the unshadowed area to the completely

23

24 Chapter 3. Soft shadows

shadowed area (the so-called umbra) takes place (see Figure 3.1).

area light source

occluder

receiver

«“—rc—> <>
penumbra umbra penumbra

Fig. 3.1: An area light source leads to a soft shadow, which consists of umbra and penum-
bra.

So, in case of an area light source, the shadow consists of the union of umbra
and penumbra, and a point is shadowed, whenever some area of the light source
is not visible from its position. Apart from that, the terms already defined in 2.2.1
are the same.

The exact calculation of umbra and penumbra is a quite complex task as it
implicates solving a three-dimensional visibility problem. Their extents depend
on the light source area size, on the distance from occluder to receiver and on the
distance from light source to occluder. For example, the umbra is not just the hard
shadow region which would be generated by a point light - the larger the light
source is in respect to the occluder, the smaller the umbra region is.

Since the umbra is defined as the area where the light source is not visible
at all, it would have to be completely black in theory. In practice, the umbra is
of course illuminated due to light reflections on scene surfaces. This behavior is
usually simulated by using an ambient term which contributes to the final object
color no matter if it is in shadow or not.

3.1. What are soft shadows? 25

3.1.2 Hard shadows vs. soft shadows

The decision on whether to implement hard or soft shadows in a real-time render-
ing application relies heavily on its demands:

e Soft shadow algorithms are a lot more difficult to understand and evaluate
due to the increased complexity of the visibility problem. This can be seen
by the fact that nearly all real-time soft shadow algorithms are enhanced ver-
sions of basic hard shadow methods, namely shadow mapping and shadow
volumes.

e As a result, the rendering time for soft shadows is usually significantly
longer, and varying frame rates are more likely to occur. On the opposite
side, robust hard shadows can easily be implemented in real-time applica-
tions.

e Concerning the visual image quality though, soft shadows provide obvi-
ously far more realistic and convincing results, since they are caused by
light areas with finite extent. Observers are used to such shadows from the
“real world”. Even the sun cast shadows that consist of a penumbra and an
umbra due to its significant angular extent, whereas light points and hard
shadows only exist in theory and are often perceived as unrealistic in im-
ages. See Figure 3.2 for a comparison.

e Soft shadows are inherently blended into the scene because of the grad-
ual shifting of the penumbra color from light to dark, avoiding them to be
perceived as separate objects. Moreover, this reduces visible artifacts and
aliasing problems that are likely to occur in hard shadow approaches drasti-
cally.

In conclusion it is to say that as long as there are enough resources available
in a computer graphics application, the implementation of soft shadows is to be
preferred, as they greatly improve the visual quality and the realism of a rendered
image. Light sources should only be modeled as point lights when resolution of
the framebuffer is too low to properly render the penumbra. This can be the case
whenever the distance from light source to occluder is significantly larger than the
distance from occluder to receiver.

3.1.3 Shadows from several light sources

Soft shadows for more than one area light source can be rendered quite easily:
Once we know how to calculate a soft shadow for a single area single source, we
can do the same for all area sources in a scene and sum up their contribution (for
each wavelength or color band; see Figure 3.3 for examples).

26 Chapter 3. Soft shadows

Fig. 3.2: Soft shadows look much more realistic than hard shadows.

Fig. 3.3: Soft shadows from several light sources [HLHSO03].

3.1.4 Shadows from several objects

In contrast to the calculation of combined shadows from several occluders for
a point light, the evaluation for an area light source can be quite complicated.
Whereas the union of the individual hard shadows is equivalent to the overall
shadowed area, this does not have to be true for soft shadows: For example, a
point where the light source is not completely blocked by the occluders taken
separately can still be completely occluded by the union of these shadow casters.
The umbra region of the whole set is therefore larger than the union of all separate
umbra regions. Such a configuration is displayed in Figure 3.4.

A big problem for soft shadow algorithms is therefore the fact that the indi-
vidual partial visibility functions can’t be combined to a partial visibility function
of the whole set of occluders, making its prediction a very hard task, particularly
in real-time. Hence it is approximated or bounded in most approaches, especially
in single sample methods (see Section 3.2). Especially in animated scenes, this
approximation works quite well, and even though not all artifacts can be removed,

3.2. Physically correct vs. fake soft shadows 27

they are usually not very noticeable.

In Chapter 5, a new real-time algorithm is presented which makes it possible
to render physically correct soft shadows, including the capability to solve the
visibility problem associated with several occluders.

Light source
Occluder 2
Occluder 1
NN NN\

Occluder 1

Occluder 2

‘ Occluder 1 and 2

Fig. 3.4: Soft shadows from several overlapping occluders. Notice that the indicated area
in the middle lies in the umbra, although it is not completely blocked by a single occluder
[HLHSO03].

Visibility of light
source (in %)
L
i\\\
AN \\ \

AN
NN
A\ \\ \\

3.2 Physically correct vs. fake soft shadows

When calculating soft shadows cast by an area light source, we are dealing with
a difficult visibility problem: Due to the extents of the source, it is not sufficient
to identify the shadow caster from a single point. Theoretically, all parts of the
occluder which are visible from at least one point of the light source have to be
identified in order to guarantee a physically exact shadow to be cast. This is of
course hard to achieve in real-time.

For this reason, most real-time soft shadow approaches estimate the visibility
by calculating it from only one point of the area light source, and simulate the
effects which are typical for soft shadows using approximative heuristics. These
algorithms produce so-called fake soft shadows, which often look quite realistic,
but cannot guarantee physical correctness. In fact, they are enhancements of hard
shadow techniques combined with cleverly used border softening methods. Still,
they can be absolutely sufficient for many purposes - for example, in animated

28 Chapter 3. Soft shadows

scenes (which occur in most games), it is often nearly impossible to perceive any
differences between physically exact or fake soft shadows.

3.2.1 Problems with fake soft shadows

Fake soft shadows may work well in many cases, but in some situations, the dif-
ferences to an exact soft shadow solution become visible. Especially when the
light source area is quite large in relation to the shadow caster, the approximation
does not deliver satisfying results. For an example, see Figure 3.5: The large light
source is very close to the blocker, illuminating different sides of the object and
leading to a very small umbra region. Fake approaches do usually have difficulties
with this scene configuration.

-

Fig. 3.5: If the light source is close and significantly larger than the receiver, the gener-
ated shadow differs extremely from a shadow generated by a single sample fake shadow
approach - the umbra nearly disappears.

Even though such a scene configuration can usually be avoided in real-time
applications and games by the use of smaller area lights and clever positioning of
the objects, the same problems arise whenever an elongated objects lies along the
axis of the light source (one end of the object points to the light source, the other

3.2. Physically correct vs. fake soft shadows 29

end is close to the receiver). The shadow quality can in such a case be improved
by the following solutions:

e The visibility calculation can be performed using the whole extent of the
light source. This is usually too complicated to be performed in real-time.

e The area light source is split into several smaller areas, for which the visi-
bility gets estimated separately. This is geometrically closer to the previous
approach and reduces some artifacts. Of course, the calculation time com-
pared to a single sample approach is multiplied by the number of separate
light sources.

e Another possibility is to “cut” the object into slices and compute soft shad-
ows for each slice separately. The combination of these individual shadows
is usually quite difficult, though. The calculation time of the single sam-
ple approach is multiplied by the number of slices plus the time needed to
combine the shadows correctly.

3.2.2 Ways to approximate the penumbra region

As already explained before, fake soft shadow approaches compute the visibility
using extended hard shadow algorithms which approximate the penumbra region.
This can be done in several ways:

e The penumbra is computed by extending the umbra outwards. This leads to
shadows which always consist of an umbra and a penumbra, which can be
false in some scene configurations and significantly darkens the scene (see
Section 3.2.1).

e The opposite way is to compute the penumbra by shrinking the umbra re-
gion. This can lead to light leaks between neighboring objects when their
shadows overlap and influence each other.

e Of course, soft shadows can also be approximated by calculating both inner
and outer penumbra.

3.2.3 Shadows from several objects

In Section 3.1.4, the difficulties involved in calculating the soft shadows from
several occluders was explained: The umbra caused by the union of the individual
shadows can be smaller than the umbra caused by the shadow of the whole set of
the occluders. The exact computation is a hard task, as it requires the visibility to
be known from every single point of the light source.

30 Chapter 3. Soft shadows

Since fake soft shadow algorithms cannot estimate the visibility from all the
light source points due to the fact that most of them use only a single point to
compute the visible surfaces, they cannot generate physically exact soft shadows
from several objects and produce artifacts like in Figure 3.6. Even though these
effects are clearly visible on images, they are hardly noticeable in dynamic scenes.
Especially in games, clever object placement and animation can hide most of these
problems, making soft shadows preferable over a hard shadow solution.

Fig. 3.6: Soft shadows generated by overlapping occluders, created with different soft
shadow algorithms. Left: Reference image. Middle: Penumbra wedges (Section 4.12).
Right: Flood fill (Section 4.5). Notice the artifacts which occur by using these single
sample fake approaches (Images from [GBP06]).

3.3 Summary

In this chapter we have explained where soft shadows come from and why they
improve the quality of rendered images: Since hard shadows are only cast by
theoretical point light sources, they do not occur in reality. Therefore we are used
to soft shadows, which are caused by area light sources with a geometrical extent,
and consist of umbra and penumbra regions.

Generating physically exact soft shadows is a very complicated task, since the
visibility computation is more complex than for point lights. In order to achieve
real-time frame rates in games and applications, it is therefore usual to use fake
approaches to render visually plausible shadows. Of course, these simplified visi-
bility calculations do not provide exact solutions and do generate artifacts, but in
many cases (especially in dynamic scenes), the results are sufficient to convince
the casual observer.

- “Dark the other side is... very dark...”
- “Shut up and eat your toast, Yoda!”

(Unreleased dialogue from “Star Wars”)

Chapter 4

Real-Time Soft Shadow Algorithms

In this chapter, the most widely used real-time soft shadow algorithms are pre-
sented: All of them are either based on shadow mapping as presented in Section
2.3.1 or on the shadow volume algorithm (see Section 2.3.2). Some approaches
do even combine ideas from both methods. The main idea of all of them is to
enhance these standard hard shadow approaches by a penumbra.

An excellent survey on real-time soft shadows can be found in [HLHS03], but
since it was published in 2003, it does not cover the latest algorithms and methods
like for example backprojection techniques (Section 4.8).

4.1 Multiple shadow maps per light

The probably most intuitive approach to generate soft shadows is to generate hard
shadows from several sampling points on the area light source and accumulate this
information. Theoretically, if an infinite number of samples could be taken, this
idea would lead to the exact, physically correct soft shadow solution. Since this is
not possible, [HH97] suggests using only a few regularly distributed samples for
the calculation in order to simulate the penumbra.

This method can be implemented in an image based version, as described by
[Her97]. For each shadow receiver, a so-called attenuation map is computed:

e The light source is sampled N times, hence N binary occlusion maps are
generated for each shadow receiver. Such an occlusion map is generated by
rendering the scene from the light view and contains a O for the receiver and
a 1 for every other object.

e All the binary occlusion maps are then combined into the attenuation map.
Each of its pixels contains the number of times the receiver was occluded
after N light source samples (See Figure 4.1).

e Since it is necessary to calculate such an attenuation map for the whole set
of receivers P, it takes P x N passes to calculate all of them.

31

32 Chapter 4. Real-Time Soft Shadow Algorithms

Fig. 4.1: Several occlusion maps are combined to generate an occlusion map. Left: a
single occlusion map. Middle: attenuation map with 4 samples. Right: attenuation map
with 64 samples [HLHSO03].

e The attenuation map is then used in a final rendering pass to modify the
illumination of the scene objects.

Even though the idea is simple and not too complicated to implement, the
problems which can occur in this approach are obvious: Depending on the size of
the penumbra, enormous amounts of binary occlusion maps have to be calculated,
which is usually computationally too expensive to be performed in real-time. Of
course, the algorithm can easily be fastened by using fewer samples, but this dras-
tically reduces the soft shadow quality: For example, by taking less than 9 samples
in a simple scene with a moderately large light source, our visual system does not
perceive a soft shadow anymore, but several hard shadows. For large area light
sources, it can be necessary to calculate more than 256 binary occlusions maps
in order to gain high quality soft shadows. Other ways to speed up the render-
ing process are to limit the scene to a single shadow receiver or to parallelize the
computation by using several computers/CPUs/GPUs.

Despite its speed problems, the algorithm has an important advantage: It gen-
erates physically correct soft shadows (under the assumption that enough light
source samples are taken), which is not the case for the other real-time algo-
rithms. Of course, also the shadow volumes algorithm can be used to generate
such an attenuation map. The basic idea of this method has also been used in the
new algorithm we present in Chapter 5.

An enhancement of this algorithm was presented in [ARHMOO]: Instead of
calculating and using an attenuation map for each receiver, a single layered atten-

4.1. Multiple shadow maps per light 33

uation map for the whole scene is created:

e Like in the basic method, the light source is sampled, and different scene
views from these sample points are generated.

e These generated images are then transformed to a central reference view,
which lies at the center of the light source.

e By using the z-Values of the images, the object with the smallest distance
to the light source can be estimated and makes the first layer.

e The number of samples seeing this object is counted and stored in the lay-
ered attenuation map together with the distance, giving an estimate for the
occlusion percentage.

e The same is done for any other visible objects, forming further layers.

In the final rendering pass, the layered attenuation map is used like a standard
attenuation map, with the difference that it is used for the whole scene. When the
scene is rendered from the camera view point, a look-up in the layered attenuation
map takes place for every screen pixel: If it is in the attenuation map, the occlusion
percentage is used to modify the illumination. Otherwise, the pixel is completely
occluded and stays dark.

Using this approach still requires the area light source to be sampled N times
- but for the whole scene, and not for every single shadow receiver! Furthermore,
it is not necessary to differentiate between shadow casters and receivers, and self-
shadowing is handled automatically. Of course, speed and quality still depend
heavily on the number of samples taken. An enhanced version of this algorithm
can be found in [SAPPO5].

Another way to render soft shadows with several light source samples is to
generate a visibility channel encoding the percentage of the light source which
is visible, as suggested by [HBS00]. In the initial version of the algorithm, only
linear light sources could be used, but due to the research of [ZYDO02] it was
extended to polygonal light sources.

After the creation of comparatively few (for small linear light sources, only 2)
shadow maps, depth discontinuities are detected in each map using image analysis
techniques. Such discontinuities indicate a shadow boundary, separating a caster
and a receiver. As a next step, a polygon is created on each found boundary,
linking both objects in the front and in the back. These polygons are then rendered
from the other sample point, whereas the color value of the polygon is faded
from O on the closer points to 1 on the farthest points using Gouraud shading.
The resulting image is the visibility channel as shown in Figure 4.2, with values

34 Chapter 4. Real-Time Soft Shadow Algorithms

Light source

/ Occluder

P Py g4 ds

-

Fig. 4.2: The visibility channel (bottom) encodes the percentage of a linear light source
that is visible [HLHSO3].

7

A
>

Visibility of light
source (in %)

between O (the light source is completely hidden) and 1 (the corresponding point
is completely lit).

In the final rendering process, the shadow maps are used together with the
visibility channel in order to render the soft shadows:

e [f the point is hidden from the light source for all area light sample points,
the point stays dark, as it lies in the umbra.

e [f the point is visible from the light source for all area light sample points,
the point gets illuminated.

e [f the point is partly visible from the area light (it is visible from at least one
sample point, and hidden from at least another sample point), it lies in the
penumbra. The information found in the visibility channel is then used to
calculate the according illumination.

This method is a lot faster than the previous approaches, as it requires sig-
nificantly less sample points in order to calculate visually pleasing soft shadows.
Undersampling leads to artifacts, though. The generated soft shadows are usu-
ally not physically accurate, but perceptually convincing. The rendering speed is
mainly dependent on the complexity of the shadow casters.

4.2. Single sample soft shadow approaches with occluder search 35

4.2 Single sample soft shadow approaches with
occluder search

A completely different approach to calculate soft shadows was first proposed by
[PSS98] and later extended to be used in real-time with shadow mapping on graph-
ics hardware by [BS02]. The basic idea is to use a single shadow map sample only,
which is usually taken at the center of the area light source. As already explained
in Section 3.2, single sample soft shadow approaches cannot compute physically
accurate results, as the visibility is calculated for a single point only (like in hard
shadow calculation).

The region of partial visibility of the light source is divided into an inner and
an outer penumbra at the hard shadow border (see Figure 4.3) - an assumption
which is physically incorrect. While [PSS98] only computes the outer penumbra
(which darkens the scene significantly), [BS02] generates both an inner and an
outer one. An enhanced version of the algorithm by [KDO03], which is explained
later, calculates only the inner penumbra.

Point light

Blocked ,
pixels R .

Shadow map

3

. Umbra

l:l Inner penumbra

Receiver D Outer penumbra

Fig. 4.3: The hard shadow is extended by an inner and an outer penumbra. For each
pixel P, the corresponding shadow map texel P is estimated. Within a search radius R,
the nearest blocked pixel in the shadow map is searched from there, and an attenuation
coefficient is calculated based on the distance r between the hard shadow boundary and
P [HLHSO03].

The algorithm works by first creating a shadow map from the center of the
light source like in standard shadow mapping. In the second rendering pass, the

36 Chapter 4. Real-Time Soft Shadow Algorithms

shadow map is examined:

e Whenever the shadow map lookup returns that the current pixel is in shadow,
we search the shadow map for the next illuminated pixel within a radius R.

e Otherwise, if the current pixel is visible from the light source center, we
search the shadow map for the next shadowed pixel within a radius R (see
Figure 4.3).

Since the penumbra size varies according to the distances between light source,
occluder and receiver, the search radius R is modified to that effect.

Whenever the search is successful, the pixel is assumed to lie in the penum-
bra: Depending on the relative distance between the hard shadow boundary and
the current fragment, an attenuation factor is calculated and used during the illu-
mination process. The search gets more robust by using object ids as introduced
in [HN85], which however makes self-shadowing impossible.

Fig. 4.4: A screenshot showing the soft shadows generated with the algorithm presented
in [BS02].

4.3. Percentage closer filtering 37

The method produces visually plausible fake soft shadows at a comparatively
high speed, since only a single shadow maps needs to be computed (See Figure
4.4). Due to the adjustable search radius R, the effect of smaller penumbrae at
regions where an occluder is close to a receiver can be simulated quite well. The
search in the shadow map causes the biggest performance hit, though: Especially
for large penumbrae, it is by far the computationally most expensive part of the
algorithm.

This problem can be avoided by using the approach proposed in [KDO3]: In-
stead of the expensive search, a so-called shadow-width map, which contains the
distance to the nearest illuminated point for each point in shadow, is precomputed.
This is done by applying a smoothing filter on an inverted binary occlusion map
several times (see Figure 4.5). This way the distance to the hard shadow boundary
can be easily determined by a texture lookup in the shadow width map instead of
the costly search.

Fig. 4.5: An example shadow-width map generated by texture compositing [KDO03].

This method speeds up the algorithm significantly, so that real-time frame
rates can be achieved. Moreover, since it is an image-based approach and no ge-
ometrical edge detection is necessary, it is independent of the scene complexity.
Unfortunately, the approach suffers from artifacts (for example due to overlap-
ping occluders in light space) and physical incorrectness: Since only the inner
penumbra is computed, the shadow is significantly smaller than the correct result.

4.3 Percentage closer filtering

Percentage Closer Filtering (PCF) was first introduced by [RSC87] in order to
reduce the aliasing artifacts which appear during shadow mapping at the hard
shadow boundaries. It works by comparing the depth of the processed point not
only to its corresponding pixel in the shadow map, but also to its neighboring
pixels there. The percentage of successful shadow tests specifies the shadow in-
tensity. A slightly modified version of PCF with a 2x2 filter kernel is implemented
in hardware on today’s consumer GPUs (the 4 shadow test values are bilinearly
interpolated according to their shadow map texture coordinates).

38 Chapter 4. Real-Time Soft Shadow Algorithms

Since PCF softens the shadow boundary, it can also be seen as a penumbra
caused by an area light source. This effect can be intensified by using a larger filter
kernel, which increases the blurring effect and therefore the size of the penumbra.
Due to the vast amount of texture lookups needed, this has a major impact on
the performance, though. Furthermore, the penumbra is far from being physically
accurate, as it always has the same size (regardless of the distances between light,
blocker and receiver).

A solution for this problem called Percentage Closer Soft Shadows (PCSS)
was proposed in [FerO5]: By using an additional blocker search in the shadow
map, the filter kernel can be adjusted according to the relation between light,
blocker and receiver (see Figure 4.6). Even though this idea still gives no phys-
ically correct soft shadows, the generated penumbrae are visually far more plau-
sible, as they vary in size. This technique has already been used in various 3D
games, as it has no problems with dynamic scenes, is easy to implement and com-
putationally fast (it can be implemented in a way that it operates on the GPU
only).

The PCF filtering step in PCSS can be replaced by applying other techniques
in which the shadow map is pre-filtered, like for example Variance Shadows Maps
(Section 4.3.1) or Convolution Shadow Maps (Section 4.7).

Fig. 4.6: Screenshot from a PCSS sample application. Notice the varying penumbra size
[Fer05].

4.3. Percentage closer filtering 39

Fig. 4.7: Light bleeding artifacts can occur when using variance shadow maps (original
image from [DL06], contrast has been enhanced in marked area for visibility reasons).

4.3.1 Variance shadow maps

In [DLO6], the observation is made that in the PCF algorithm (Section 4.3) a sin-
gle depth value is in fact compared to a particular distribution of depth values. It
is only necessary to know the percentage of values in the sampled shadow map
region which are larger than the depth of the current screen space pixel - the indi-
vidual shadow tests don’t matter. The author therefore suggests the introduction of
so-called variance shadow maps (VSM), which are able to represent a distribution
of depths at each pixel.

A VSM differs from a regular shadow map by storing the squared depth in a
second channel. The generated VSM is then pre-filtered and blurred. By sampling
the map, we therefore obtain the mean of the depth and the squared depth from
the corresponding filter region, called the moments A/, and Ms. The mean ;o and
the variance o2 are then computed:

u= M, .1

These parameters describe the distribution of depth values in the filtered area. The
variance is interpreted as an estimation of the width of a distribution.

In order to find out the percentage P(x > t) of values in a filter region which
would fail the depth comparison test with a fixed depth ¢, Chebychev’s inequality

18 used:)

o

P (= @)

P(z > 1) < Dpax(t) =

40 Chapter 4. Real-Time Soft Shadow Algorithms

Even though the value we can compute is only an upper bound, we can use it as
a good approximation for the percentage of pixels failing the shadow test in PCF
filtering.

By applying an additional blocker search as introduced in the PCSS algorithm
[Fer05], VSMs can be used to generate soft shadows with varying penumbra size.
The algorithm is easy to implement and fast, and is therefore widely used in real-
time applications and games. A big advantage is that high-quality pre-filtering of
the VSM is possible.

Unfortunately, the approach suffers from light bleeding whenever the shadow
of two shadow casters, which are relatively far away from each other, overlap (see
Figure 4.7). A way to reduce these artifacts as well as suggestions on how to
improve the filtering of the VSM can be found in [Lau07].

4.4 Smooth penumbra transitions with shadow maps

This image-based algorithm presented in [dB04] introduces a data structure called
skirt, which is associated with an occluder silhouette edge and contains informa-
tion like an attenuation factor and a depth value (see Figure 4.8). It is possible to
render visually plausible fake soft shadows with inner and outer penumbrae.

shadow silhouette —
edges

Fig. 4.8: The skirt data structure: It contains attenuation and depth information and is
associated with a silhouette edge of the shadow caster [dB04].

The method consists of several steps (see Figure 4.9):

e A regular shadow map is generated from the center of a spherical light
source.

4.5. Image-space flood-fill soft shadows 41

e This shadow map is filtered with an edge detection kernel, leading to a rep-
resentation of occluder edges in a skirt buffer. This buffer initially contains
the depth values as well as an attenuation factor of 1 for all silhouette edges.

e By repeatedly applying a smoothing filter, the skirt is widened, leading to
a soft decrease of the attenuation factors. The according depth values are
estimated by taking the minimum depth of all pixels the filter is applied to.
The number of iterations depends on the area light radius.

¢ In a final rendering step, the information stored in both the shadow map and
the skirt buffer are used to illuminate the scene.

Fig. 4.9: The necessary steps to generate the skirts: The shadow map (left), its shadow
silhouettes (middle) and the final skirts buffer (right) [dBO4].

In order to calculate the inner penumbra, an additional search in the shadow
map (comparable to [BS02] presented in Section 4.2) is necessary. Of course, the
algorithm’s performance depends heavily on the penumbra size: Both the search
and the iterations needed to filter the skirt become computationally quite expen-
sive in case the partly occluded area is large. The biggest advantage, on the other
hand, is the fact that the approach is image-based, so the complexity of the scene
objects does not have a big impact on the rendering speed.

4.5 Image-space flood-fill soft shadows

Another purely image-based algorithm is presented in [AHTO04]. The main idea
is to use a modified flood-fill algorithm in screen space to generate a penumbra
out of hard shadows, which are created using standard shadow mapping in a first
depth pass and a following shadowing pass. During this second pass, a pixel clas-
sification is performed: every pixel in screen space lying on a shadow boundary

42 Chapter 4. Real-Time Soft Shadow Algorithms

is marked, and its shadow mapping coordinates are saved. The other pixels are
either marked as inside or outside the shadow. Care must be taken whenever a lit
object lies over a hard shadow cast by another object: In such a case, the screen-
space shadow boundary should not generate a hard shadow (see Figure 4.10)!
This can be avoided by checking if the pixel on the boundary is a silhouette pixel
in the shadow map (this information can be extracted out of the shadow map by
applying a simple edge detection filter).

Fig. 4.10: The generation of false penumbra regions (left) can be avoided by boundary
pixel verification (right). This is done by verifying that each classified boundary pixel is
occluded by a silhouette pixel as seen from the light source [AHT04].

For each pixel which is lying in the penumbra (at the beginning, these are
only the pixels classified as shadow boundaries), a visibility factor needs to be
calculated. This is done by casting a ray from the processed pixel through the
corresponding shadow map coordinate, intersecting the light source. There, a line,
lying perpendicular to the connection between intersection point and area light
center, is generated. This line “cuts” the light source into visible and invisible
part. The visibility factor is then calculated by dividing the visible part by the
total light source area (See Figure 4.11).

After the classification and initialization, several flood-fill render passes fol-
low, in which the penumbra is spread: For each pixel in screen space, the 8-
connected neighborhood is searched for shadow boundary pixels. Whenever the
search is successful, the penumbra is widened, a visibility factor is calculated, and
the shadow map coordinates from the neighbor pixel are stored. This is repeated
until no more lines during the visibility calculations intersect the light source, or
until a specified number of iterations has been reached.

It is possible to create visually plausible soft shadows with this approach, even
though they are not physically correct. Artifacts can occur whenever umbrae over-
lap, though, and the rendering speed depends heavily on the penumbra size, which
can be quite large for certain viewing positions and far extended light sources.
Moreover, flood-filling is not really well-supported on today’s graphics hardware,
which makes the computation costly, the implementation complicated, and real-
time frame rates hard to achieve.

4.6. Occlusion textures 43

light source
light source center

projected shadow
area covered boundary pixel (x, y)

by projection

shadow
boundary
pixel

(X ¥ 29

processed view ————
frustum pixel (x,, ¥, z,)

Fig. 4.12: Screenshot from a test ap-
plication with soft shadows generated
with the screen space flood-fill algorithm

Fig. 4.11: Estimating the amount of
occlusion by casting a ray through the
corresponding shadow map coordinate
[AHTO4]. [AHTO4].

4.6 Occlusion textures

In [EDO6] the use of so-called occlusion textures is suggested in order to generate
approximate soft shadows. These occlusion textures are generated by “cutting”
the scene into 4 to 16 slices parallel to the light source, which are then projected
onto separate binary textures. After pre-filtering, each texture is stored in a chan-
nel of a RGBA-texture, so that only 1 to 4 RGBA textures are needed to save all
occlusion maps.

First rendering from light -
get occlusion textures

For each point: For each slice:
use slices between Tex lookups according
position and light to frustum with light

Second rendering from eye-
accumulate shadow contributions (this image uses 4 slices)

Prefilter occlusion textures-
several slices are treated at once

Fig. 4.13: Summary of the occlusion textures algorithm [EDO6].

During the shadowing pass from the regular camera view, all slices between
the processed pixel P and the light source are visited and sampled with a kernel
size according to the projection of the area light on the slice as seen from P. The
contributions of the different slices are then combined and generate a smooth soft

44 Chapter 4. Real-Time Soft Shadow Algorithms

shadow. See Figure 4.13 for a summary of the algorithm.

Since the scene is split up into several slices in order to generate the occlusion
textures, the algorithm cannot handle self-shadowing completely correctly, and
the generated shadow is of course not physically exact. Still, the shadows are
quite plausible, and since this algorithm is image-based and can be implemented
in a way that nearly all work is done on modern programmable graphics hardware,
real-time frame rates can be achieved.

4.7 Convolution techniques

Fig. 4.14: By convolving an image of the light source (left) with the receiver (middle),
soft shadows (right) can be generated [SS98].

Using convolution for soft shadow generation was first proposed in [SS98].
Although purely image-based, the algorithm does not rely on shadow mapping.
The main idea is to convolve an image of the area light with an image of the
blocker. The resulting image is then used to modulate the illumination. See Figure
4.14 for an example.

At first sight, this method seems to be very fast and easy to use, especially
since the calculation of the convolution can be done in a computationally inexpen-
sive way on the GPU using the Fast Fourier Transformation (FFT). Unfortunately,
valid soft shadows can only be generated whenever the area light, the blocker and
the receiver lie in parallel planes. The author therefore suggests an error driven
subdivision algorithm for a reasonable shadow quality in general scenes, which
slows down the algorithm significantly. Moreover, it does not work in all cases,
especially whenever elongated objects are lying parallel to the light direction.

Another approach using convolution is presented in [AMB*07]: It tries to
combine shadow mapping with convolution techniques by introducing so-called
convolution shadow maps (CSM). The idea is to pre-filter the shadow map, which

4.7. Convolution techniques 45

Fig. 4.15: The shadow map and the corresponding base images B;, generated with Fourier
expansion [AMB107].

Fig. 4.16: Result image with smooth shadow borders, generated with the technique pre-
sented in [AMB107].

46 Chapter 4. Real-Time Soft Shadow Algorithms

requires to expand the shadow function s()

s(z) = f(d(), 2(p) :={ ; if;lgg - jgg (4.4)

into a separable Fourier series

fld(z), z(p)) = >_ ai(d(z))Bi(2(p)), (4.5)

=1

where d(x) is the distance of the processed screen-space pixel x to the light source,
and z(p) is the depth value found for the corresponding shadow map pixel p.
B; are the corresponding basis images, and a; are coefficients depending on the
distance. Due to the linearization of the shadowing function, it can now be filtered
by convolving it with a kernel w:

sp(x) = [w* f(d(x), 2)](p)
a;(d(x))[w * B;](p). (4.6)

i=1

Q

In practice, the filtering is done by using mipmapping or by computing summed
area tables [Cro84]. During the shadowing step, the basis images B; are sampled,
weighted by a;(d(z)) and summed up in order to obtain soft shadow borders (see
Figure 4.16).

The authors suggest using this approach only to avoid aliasing artifacts and
not for the generation of soft shadows, since the penumbra size would always be
the same (like in PCF, see Section 4.3). This problem has recently been solved in
[ADM™08], where a blocker search (which is also based on convolution) helps to
dynamically set a suitable filter kernel size and to generate visually plausible fake
soft shadows.

4.8 Soft shadow mapping with backprojection

Several papers (e.g. [GBP06], [AHL*06], [ASKO06], [SS07], [GBPO7]) have re-
cently been released, which all suggest to use a technique originally presented in
[DF94] in order to generate soft shadows. The idea is to use a single shadow map
(generated with the standard shadow mapping algorithm) not only for depth com-
parison, but to see it as a discretized representation of the scene. For each shadow
map pixel, the shadow map coordinates (u, v) and the corresponding depth z are
known, making it possible to project these so-called micropatches into the scene.
In order to calculate the visibility factor v for a screen-space pixel p, each of these

4.8. Soft shadow mapping with backprojection 47

clipped N gccluded area

normalized

70.0) light source

4----o---- / -------- > A
light source :
/_\ ;
&
;E """" 1'4'/ """""" ’ (;Q,o
(b) (a)

Fig. 4.17: Each shadow map sample is projected into the scene as a so-called micropatch.
This patch is then backprojected onto the light source, where its percentage of occlusion
is estimated [GBPO6].

Fig. 4.18: Creation of a soft shadow map according to [AHLT06]: For each micropatch,
a penumbra area is estimated (left). For all pixels in this penumbra region, the patch is
backprojected and its percentage of occlusion is determined (right). This is done for all
micropatches, and the results are summed up in the soft shadow map, which is used to
illuminate pixels in the penumbra accordingly.

48 Chapter 4. Real-Time Soft Shadow Algorithms

micropatches is backprojected from p onto the light source. The process of back-
projecting pixels onto the shadow map is illustrated in Figure 4.17.

In case of an intersection, the fraction of occlusion is determined and sub-
tracted from 1 (visibility factor v = 1 indicates a completely lit, v = 0 a com-
pletely occluded point p). The visibility factor v is then directly used to modify
the illumination of the screen space pixels, generating very convincing soft shad-
ows. Alternatively, the amount of occlusion of a micropatch can also be estimated
by using the relative solid angle of its bounding sphere [ASKO06].

Since every single micropatch is a potential occluder for every processed pixel
p, several ways to optimize the backprojection and occlusion have been suggested
to make this method usable in real-time applications:

e In [AHL106], receivers and occluders are separated, and a so-called soft
shadow map 1is generated. This is done by first estimating the penumbra
extent of a single micropatch, and then backprojecting this patch for every
single screen space pixel p which lies in this penumbra area (see Figure
4.18). The computed visibility amounts are stored in the soft shadow map.
After looping over all micropatches, the map is used to render the penum-
brae accordingly.

e Other approaches like [GBP06] or [SSO7] don’t use a soft shadow map, but
calculate the backprojection directly for each point by considering only the
micropatches which can have an influence on the visibility. This requires a
search in the shadow map, which is computationally expensive. [GBP06]
therefore suggests an approach in which the shadow map is converted into a
hierarchical shadow map (HSM). It is comparable to a mip-map structure,
but saves the minimal and maximal depth of the previous level, and can be
used to decrease the amount of necessary backprojections. A similar data
structure is proposed in [SSO7].

e Instead of the search, [ASKO06] suggests to sample the micropatches to be
backprojected according to a Gaussian Poisson distribution.

Like any other single sample soft shadow algorithm, the backprojection method
suffers from the fact that the visibility is computed for a single point only, lead-
ing to noticeable artifacts in certain cases. Other artifacts occur due to gaps and
overlaps of the backprojected patches, as shown in Figure 4.19. While [GBP06]
fixes the gaps by extending the patches, [SSO7] places samples at the light source
and uses a bitfield there to track which of them is occluded, and [GBPO7] tries to
solve the problems with an additional occluder contour detection.

Despite these limitations and drawbacks, soft shadows generated by backpro-
jection are visually and physically very plausible. They benefit a lot from recent

4.9. Soft planar shadows using plateaus 49

light source

-
-

overlapping

/

extension

gaps filling

Fig. 4.19: The backprojection can lead to artifacts: Gaps and overlaps are likely to occur.
In [GBPO06], the micropatches are extended, so the gaps can be avoided.

hardware developments (for example, the bitfield technique proposed in [SS07]
is only possible on GPUs which support the Shader Model 4), and it is possible
that they will be used in real-time games and applications as soon as graphics
hardware is fast enough.

4.9 Soft planar shadows using plateaus

The approach presented in [HaiOl] does not rely on shadow mapping, but is an
object-based method. It consists of two passes:

e First, an attenuation map is created. This is done by rendering hard shadows
into a texture which is “lying” on the planar receiver. These hard shadows
are computed using the shadow volume algorithm and form the umbra. In
order to generate the penumbra, cones placed at the silhouette vertices as
well as polygons connecting these cones at their outer tangents are ren-
dered with decreasing shadow intensity from the umbra outwards (see Fig-
ure 4.20).

50 Chapter 4. Real-Time Soft Shadow Algorithms

Fig. 4.20: The occluder shadow volume is extended by cones and planes, generating an
outer penumbra [HaiO1].

e In the second pass, the generated attenuation map is used to modify the
illumination on the planar receiver.

Apart from the typical fill-rate problems which occur in all object based ap-
proaches, this method suffers from the fact that it is limited to planar receivers and
a spherical light source. Moreover, only the outer penumbra is calculated, leading
to a darker shadow than expected and a constant umbra size regardless of the area
light source extents.

4.10 Penumbra maps

In [WHO3], an approach very similar to the algorithm presented in Section 4.9 is
suggested. It avoids the fill-rate bottleneck by using the shadow mapping algo-
rithm instead of the shadow volume algorithm to generate the hard shadows, and
introduces a so-called penumbra map, which stores the shadow intensity of the
corresponding shadow map pixel instead of using a texture on the planar receiver.
Three passes are necessary:

e A standard shadow map is created from the center of the spherical light
source.

e Then, the penumbra map is generated. Cones and sheets are placed at the
vertices and edges similar as in [HaiO1], generating the penumbra regions.

4.11. Smoothies 51

Fig. 4.21: The shadow map (left) and the corresponding penumbra map (right) of a test
scene [WHO3].

The intensity of each of the pixels lying there can be evaluated using shader

fragment programs and is stored in the penumbra map (see Figure 4.21):
Zp—Zy Zp—Zy,
Zp—Zy, Zp— Ty

I=1 “.7)

where Z,, is the current vertex depth from the light, Z the depth of the cur-
rent cone or sheet fragment, and Zp the corresponding shadow map depth.

e In the final pass, the information stored in both the shadow map and the
penumbra map is used to illuminate the scene accordingly.

Despite the use of the shadow mapping algorithm and the hence resulting in-
creased robustness, it is still necessary to detect the object silhouettes in order
to generate the cones and sheets, making this algorithm dependent on the scene
complexity. Moreover, the limitation that only the outer penumbra is generated
still exists.

4.11 Smoothies

Another very similar technique to the algorithms presented in Sections 4.9 and
4.10 is suggested in [CDO03]: After creating a shadow map, geometric primitives
are attached to the silhouette edges of the objects, which are extracted in object
space (see Figure 4.22). These primitives are called smoothies and are rendered
from the light’s view into a so-called smoothie buffer, storing a depth and an alpha
value for each pixel, which can be seen in Figure 4.23. The alpha value is depen-
dent on the ratio of distances between the light source, blocker, and receiver.

52 Chapter 4. Real-Time Soft Shadow Algorithms

silhouette vertex blocker interior

<

light source

silhouette edges

smoothie edge

A
smoothie corner ‘/ é °
. a. b. c. receiver
blocker exterior

Fig. 4.22: Smoothies are created by extending the occluders’ silhouettes by rectangles,
which are connected at the corners (left). The smoothie then defines whether a pixel is lit,
completely dark or in the penumbra (right) [CDO3].

smoothie

During rendering from the observer’s view point, the generated information
stored in the smoothie buffer as well as the shadow map is used to generate soft
shadows:

e If the shadow map lookup returns that the processed point is in shadow, it
stays dark.

e Else, if the sample’s depth value is greater than the smoothie buffer depth’s
value, the point lies in the penumbra, and the corresponding alpha value is
used to modify the illumination.

e Otherwise, the point is completely unoccluded.

shadow map smoothie buffer smoothie buffer
(depth values) (depth values) (alpha values) final image

Fig. 4.23: From left to right: The standard shadow map, the depth values of the smoothie
buffer, the alpha values of the smoothie buffer, and the final rendered image [CDO03].

As in the two previously presented algorithms, only the outer penumbrae are
calculated, and the object-based silhouette extraction precludes the algorithm to be
used in arbitrarily complex scenes. Furthermore, connecting the smoothie edges
is a big problem for large light sources, leading to noticeable artifacts.

4.12. Penumbra Wedges 53

4.12 Penumbra Wedges

An extension to the shadow volumes algorithm as explained in Section 2.3.2 was
first presented in [AMAO2] and later improved in [AAMO03] and [ADMAMO3].
The main idea is to calculate for each polygon which is part of the shadow volume
a so-called penumbra wedge - a volume representing the penumbra (see Figure
4.24).

light source

shadow casting

silhouette points object

eye
@ hard shadow quad
3o penumbra

-, wedge

.....
......

.....

Fig. 4.24: For each hard shadow quad generated with the standard shadow volume algo-
rithm from the center of the light source, a penumbra wedge volume is created [AAMO3].

Instead of using the stencil buffer like in the hard shadow version, a high-
precision floating point visibility buffer is used and initialized with a value of 1.0,
which indicates that the viewer is outside any shadowed region. The algorithm
then consists of the following steps:

e First, the scene is rendered in order to initialize the z-Buffer.

e In the second pass, the hard shadow volumes are then rendered exactly as
in the regular shadow volumes algorithm, with the z-test enabled. Front-
facing polygons decrease the value in the visibility buffer by 1.0, back-
facing polygons increase it by 1.0. The visibility buffer now contains the
hard shadows.

e Next, the soft shadow pass is executed: The front faces of all penumbra
wedges are rendered, and for each pixel covered by these triangles, its in-
tensity is calculated in a fragment program by computing the percentage
of occlusion of the area light source. For this, the corresponding silhouette

54 Chapter 4. Real-Time Soft Shadow Algorithms

edge and its hard shadow quad are projected onto the light source, where the
coverage ratio is estimated (see Figure 4.25). According to this intensity, the
visibility buffer is updated: If the point lies outside the hard shadow borders,
the intensity value is subtracted, if it lies inside, the intensity is added. The
visibility buffer now contains the amount of light source visibility for all

pixels.
area covered
------------ . X,.Y,
_____________ by projection XY (

........... . —
projected lfgce ./<‘4>/. “
hard shadow. € el
quad, Q

Fig. 4.25: Right: The hard shadow quad is projected onto the light source (as seen from
pixel P, which lies in the penumbra wedge). Right: The silhouette edge ege; is clipped
and used to estimate the percentage of occlusion [AAMO3].

e In the final pass, the information stored in the visibility buffer is used to
illuminate the scene.

The major drawback of this algorithm is, like in the standard hard shadow ver-
sion, its fill-rate bottleneck. For scenes with a suitable polygon count, high frame
rates and visually very convincing soft shadows (which are even physically cor-
rect in simple cases) can be achieved, though. Problems arise whenever the light
source is very close to the receiver, so that the actual silhouette is very different
from that generated from a single sample (see Section 3.2.1), or whenever several
occluders generate a combined shadow (see Section 3.1.4). The authors suggest
splitting up the light source in such cases. In [FBP06], the problem with the com-
bined shadows of several occluders is treated with a special penumbra blending
strategy.

4.13 Summary

In this Chapter, many state-of-the-art real-time soft shadow algorithms have been
presented and explained. It is obvious that none of them can be seen as the “per-
fect” solution for any arbitrary scene configuration - it depends heavily on the ap-
plication or game itself, which approach is to prefer, since all of them have their
drawbacks. Still, the result images show us that both the image quality as well as

4.13. Summary 55

the realism increase dramatically whenever soft shadows are used instead of hard
shadows. It will be interesting to watch the further progress in this research area,
especially since multi-core GPUs are becoming more and more popular, from
which highly parallelizable algorithms (like many soft shadow algorithms here)
could gain a lot.

Where there is much light, the shadow is deep.

(Johann Wolfgang von Goethe)

Chapter 5

Real-Time Soft Shadows using
Temporal Coherence

As shown in Chapter 4, a vast amount of real-time soft shadow algorithms have
been developed during the past few years: While most of them use a fast sin-
gle shadow map sample approach combined with clever filtering techniques or
additional geometry to generate so-called “fake soft shadows”, some slower algo-
rithms (like in Section 4.1) compute the penumbra by taking multiple samples of
the area light source and combining them to a physically accurate soft shadow.

In this Section, we present a new soft shadow algorithm, which is able to
combine the speed of single sample approaches with the accuracy of multi sample
approaches: The area light source is sampled over time, and only a single shadow
map is calculated and evaluated per frame. By storing this shadowing information
into a screen-space shadow buffer and employing temporal coherence [SJTWO07]
together with spatial filtering, correct and very fast soft shadows can be generated.
We recently submitted a corresponding paper [SSMO09] to the Graphics Interface
2009 conference.

5.1 Introduction

In Chapters 3 and 4 it was shown how important soft shadows are for a plausi-
ble perception of a computer-generated scene, and which algorithms are currently
used in real-time applications in order to compute them: Most real-time soft shad-
owing methods approximate an area light by a point light source, which is located
at the center of the area light source. By using clever filtering methods or with
the help of additional geometry which is plugged onto the umbra, a perceptually
plausible fake penumbra is estimated. Other single sample approaches use back-
projection techniques; treating the shadow map texels as micro-patches and pro-
jecting them back onto the area light source, where they are used to estimate the
amount of occlusion (see Section 4.8). Depending on the scene, such single sam-
ple approaches can generate visually pleasing (and, in the case of back-projection

56

5.1. Introduction 57

Fig. 5.1: This image shows a scene rendered with our method with overlapping occluders

with 70k triangles at 344 FPS.

Fig. 5.2: Left side: Our Method (634FPS). Right Side: Bitmask Soft Shadows (156 FPS)
[SSO7]. Even very good single sample soft shadow methods show some artifacts, like
biasing problems and contact shadow undersampling. Both can be avoided by using mul-
tiple samples as in our approach.

58 Chapter 5. Real-Time Soft Shadows using Temporal Coherence

techniques, even physically plausible) soft shadows, especially since the human
eye 1s not very sensible to their correctness. Still, no single sample algorithm
can be used to calculate physically accurate soft shadows, as the area-from-point
visibility problem is always replaced by a much simpler point-to-point visibility
problem, and some artifacts caused by overlapping occluders or large penumbras
are very likely to occur.

In order to generate accurate soft shadows, light source area sampling has to be
used (see Section 4.1): The idea is to calculate many hard shadows by sampling
the area of the light source and combining the results. Due to the vast amount
of samples which are necessary to generate visually plausible shadows, a real-
time application is problematic - but under the assumption of a light source with
uniform color and dense enough sampling of the light source, the result of these
approaches are correct soft shadows.

The new approach described here can be seen as a combination of light source
area sampling and single sample filtering: Each frame, a single shadow map from
a randomly selected position on the area light is created and used to update a
screen space buffer called the shadow buffer. This buffer contains soft shadowing
information accumulated over the previous frames for each screen space pixel.
Whenever a buffer pixel needs to be updated, the newly gathered shadow map
is used to evaluate the current shadow information, which is then added to the
shadow buffer. The stored data is used to estimate the shadowing amount of this
pixel. As long as the soft shadow information is judged to be insufficient, addi-
tional spatial filtering is applied to the buffer. For this, the soft shadow information
from the neighboring pixels of the shadow buffer is gathered, and in combination
with a penumbra size estimation, the shadows converge very fast (3-30 frames),
smooth and graceful to the correct solution and can finally be rendered directly
from the shadow buffer.

By combining temporal coherence as introduced by [SJTWO07] (through the use
of the shadow buffer) with spatial filtering (penumbra estimation and pixel neigh-
borhood), this soft shadow mapping algorithm produces accurate real-time soft
shadows which are as fast as an optimized variant of PCSS [Fer05] (see Section
5.4).

5.2 The Algorithm

In order to calculate the amount of illumination of a fragment in a scene, the
fraction of the area light source that is visible from this fragment position has
to be estimated. In the presented algorithm, the reverse value, called occlusion
percentage or soft shadow result ¢)(x, y) for a fragment (z, y), is used: ¢(z,y) is
0 for a fragment that is illuminated by the whole area of the light source, and 1 for

5.2. The Algorithm 59

a fragment that is not illuminated by the light source at all.

5.2.1 Estimating Soft Shadows from n Samples

The soft shadow information is calculated by approximating the area light source
by n different point light sources, which are randomly distributed over the area
light. In order to obtain a high frame rate and to make the calculation feasible
for rasterization hardware, sampling and shadow mapping (see Section 2.3.1) are
used. A shadow map is evaluated for each point light source, providing informa-
tion on whether a screen space fragment is illuminated by it or not.

(z,y) = 0 lit from point light ¢
T Y) =1 1 in shadow of point light

7;(x, y) is the result of the hard shadow test for the ith shadow map for the screen
space fragment at position (z,y). Assuming that the point light placement on
the area light source is sufficiently random, the soft shadowing result ¢ (i.e., the
fractional light source area occluded from the fragment) can be estimated by the
proportion @Zn of shadowed samples

(5.1

@/;n(x, y) = Ti(z,y). (5.2)

1

1 n
n i

The number of occluded samples n, underlies the Binomial distribution with
variance ni, (1 — 1,). It is therefore possible to give an unbiased estimator for
the variance of the proportion v, as

U&T(l[)n(x, y)) _ wn(xa y)(l — ¢n(xv y))
n—1

This estimation makes it possible to estimate the quality of the soft shadow solu-
tion after taking n samples. The standard error derived from this estimate is later
used to switch to other methods when the statistical approach has an expected
error that is deemed too high. Table 5.2.1 shows these formulas applied to some
real-world 7; and increasing sample sizes. Please note that although the standard
error decreases when the sample size is increased, the estimator for the standard
error is not guaranteed to do so.

To create smooth penumbrae for the 256 attenuation levels available with 8bit
color channels, at least 256 shadow maps are required, so n > 256. However, just
having a smooth penumbra is not enough to completely solve the area visibility
problem associated with light sources. Arbitrarily complex visibility events can
make it necessary to take even more samples, which would make it a hard task to
achieve real-time performance. A solution for this problem is to employ Temporal
Coherence, which is explained in Section (5.2.2).

(5.3)

60 Chapter 5. Real-Time Soft Shadows using Temporal Coherence

n | 1 2 3 4 5 6 7
Tn I 0 I I I 0 I
Pn 100 050 067 075 080 067 071
var(n) | 0 025 011 006 004 004 003
3 0 050 033 025 020 021 018

Tab. 5.1: Evaluation of the presented formulas for one fragment. Increasing the sample
size generally reduces variance and standard error, 5§ = Vvar.

5.2.2 Temporal Coherence

Since the calculation of hundreds of shadow maps per frame is very costly and
makes real-time frame rates nearly impossible, only a single shadow map is cre-
ated and evaluated per frame. Using the temporal coherence of the current frame
with the previous ones makes it possible to solve the formulas from Section 5.2.1
iteratively.

The temporal coherence method as described in [STW07] improves the resolu-
tion of standard hard shadow maps. It is based on the assumption that most screen
space fragments stay the same from frame to frame. By reprojecting (to account
for camera movement) fragments from the new frame into the old and comparing
their respective depths, it is possible to detect whether a fragment has also been
present in the previous frame. If the compared depth difference is smaller than a
predefined ¢, the two fragments are considered equal and therefore fragment data
from the previous frame is reused.

|d€pthcur7’ent(l‘a y) - depthprevious (I, y)| <€ (54)

Otherwise, the fragment was not present in the last frame and is therefore consid-
ered to be disoccluded, and no previous data for this fragment is available.

In the new soft shadow approach, this technique can be re-used to solve a very
similar problem: it is necessary to compute 1@”(1;, y) iteratively for each frame
from the information saved from previous frames together with the information
gathered for the current frame. This is done by keeping p,,(x,y) := >" , Ti(z, y)
from the previous frame. p,(z,y) stores all the shadow map tests already per-
formed for the n previously calculated shadow maps. The sample size n is equal
to the number of shadow map test which have already been performed for this
fragment.

If this fragment was occluded in the last frame, n = 0 and p,(z,y) = 0,
because no previous information is available. Therefore n can be different for
each screen space fragment, which is denoted by writing n(z,y) instead of n.
zﬁcmrent (x,y) for the fragment at screen space position (x, y) for the current frame

5.2. The Algorithm 61

Fig. 5.3: Top: A visualization of the shadow buffer belonging to the scene displayed in the
lower right corner. Bottom: The different channels the shadow buffer consists of. In this
example, the red channel is used to store the depth, the green one to count the successful
shadow tests, and the blue one to store the number of all performed shadow tests. The
a-channel is used to store the penumbra estimation value as described in Section 5.2.3.
Note: The buffer values have been adapted to fit into RGB color space.

62 Chapter 5. Real-Time Soft Shadows using Temporal Coherence

can now be calculated as

Teurrent ([L’, y) + Pn (ZE, y)
n(z,y) +1

Note that it is only necessary to access 7(x,y) (the sample size of this fragment
from the previous frame), p,,(x, y) (sum of the shadow map tests up to the previous
frame) and the current shadow map. This is done by storing the updated sample
size (x,y) + 1 and Teyprent (T, y) + pn(x, y) for every fragment into a screen sized
off-screen buffer called the shadow buffer, which can then be accessed and used
in the next frame. Using this technique, the above formula can be evaluated very
quickly in a fragment shader and real-time frame rates can easily be achieved.
Note that the depth of each fragment has to be stored as well in order to be able
to evaluate the test in Equation 5.4. See Figure 5.3 for a visualization example of
the shadow buffer.

Problems occur whenever a fragment is newly disoccluded due to camera
movement: Especially for the first few shadow tests, the soft shadow estimation
error is usually quite large. This can be seen in detail by looking at the example
in Table 5.2.1: Atn = 2, the standard error is 0.5, which means the real ¢ is
probably inside of 0.5 £ 0.5 - definitely a very bad estimate for @@2.

Another closely connected problem that worsens the situation even more is
caused by discontinuity in time. The difference between zﬁn and zﬁnﬂ can be quite
large for the first few samples. For instance, ‘1&1 — 152‘ = 0.5, meaning that the
soft shadow results are 128 attenuation values apart, and causing very noticeable
flickering artifacts due to the large alteration of the soft shadow value from frame
to frame. In Section 5.2.3, it is therefore suggested to use spatial filtering to avoid
this.

&cur‘rent (33', y) = (55)

5.2.3 Spatial Filtering

So by employing Temporal Coherence and random sampling of the area light
source, it is possible to simulate physically correct soft shadows with real time
performance. Still, some drawbacks remain:

e The fragment needs to be visible for many frames in order to obtain a good
estimation of ¢ (z, y) with 1, (z, y).

e Whenever a fragment is disoccluded, zﬁn(a:, y) has a large standard error and
may change drastically from one frame to the next. This causes visually
noticeable flickering of these fragments.

To account for these problems, spatial filtering similar to the techniques used
in many single sample soft shadow approaches is used if \/var (¢, (x, y)) is larger

5.2. The Algorithm 63

than a predefined threshold. In such a situation, the error introduced by a simple
single sample soft shadow approach is probably smaller than the method with
Temporal Coherence. In order to avoid sudden changes in the shadow caused by
hard switching between these orthogonal methods (the one samples in time, the
other in space), the two approaches are softly blended using the standard error as
blending weight.

In the following Sections a fast single sample approach is introduced, which
uses a simple penumbra estimation (Section 5.2.3) and the soft shadowing infor-
mation stored in the neighboring fragments of the shadow buffer (Section 5.2.3).
The two approaches are then finally blended together (Section 5.2.4). Please note
that other single sample soft shadow approaches could also be modified to work
together with the basic Temporal Coherence approach.

Penumbra width estimation

The penumbra width estimation is based on the formula also used in the PCSS
algorithm [Fer(05], in which the assumption is made that blocker, receiver and light
source lie in parallel planes. This makes the calculation of the penumbra,,;,;, fast
and simple:

Tecetver gepty, — blocker geptn

penumbra,;u, = light (5.6)

size)

blocker gepin,

where receiver ey, is the depth of the current fragment and light,,,, is the size
of the light source. The calculation of the average blocker depth blocker gepn,
is one of the costliest steps in the PCSS algorithm, as it is necessary to search
the neighboring k& texels in the shadow map and average these %k depths for each
fragment each frame. By exploiting temporal coherence again, this costly search
can be avoided for most of the time: When a fragment is disoccluded, the blocker
search is performed as described above, and the average blocker depth is stored
in the shadow buffer and can be accessed in the next frame. There it is used to
reconstruct the sum of the depths sampled so far:

n—1

Z depth; = blocker gepen(n — 1+ k), (5.7)

i=1
where blocker jep, is the stored average blocker depth from the last frame, £ is

the number of neighborhood samples searched in the first step and n is the current
sample size of this fragment. The new blocker depth blockereu,,,,, from the

shadow map of the current frame is added, and the new average blocker gepin,, ., 18
calculated (and again stored in the shadow buffer):

blockernew,,,y, + Z?;ll depth;
n+k '

blocker qepth,, g, = (5.8)

64 Chapter 5. Real-Time Soft Shadows using Temporal Coherence

Neighborhood sampling

In the PCSS algorithm [Fer05], the estimated penumbra width value (as described
in Section 5.2.3) modifies the kernel size of the PCF filter which is used during
shadow map sampling. A larger penumbra estimation value leads to a larger filter
size, which results in a wider and softer penumbra. However, this approach does
not work together with Temporal Coherence: Since the shadow map is created
from a different sampling point on the area light source each frame, using a PCF
filter would lead to inconsistent or “jumping” shadows.

Instead, it is assumed that neighboring fragments in the screen space shadow
buffer will probably have a similar @n(x, y), as long as the difference between
their depths is smaller than a predefined e¢. This is of course not true for hard
shadow borders, but they have a tiny penumbra width estimation and therefore
their neighborhood can be disregarded anyway. Thus, a filter in screen space is
applied by sampling the shadow values in the shadow buffer using a Poisson disk
centered at the current fragment with a fixed sample size (usually 16 samples).
The penumbra width estimation is used to modify the sample spacing, making the
penumbrae softer the farther the blocker is away from the shadowed fragment. The
looked up screen space values are already in post perspective space, so perspective
foreshortening as well as the camera aspect (which changes the Poisson disk into
an ellipse) have to be taken into account in the calculation of the Poisson disk size
by noting

near

scaleg,,,;, = penumbrawidtheyemasped (5.9)
EpPtheye
near
scale, . = penumbra,,;;, ——— (5.10)
yp'lo] widt eye fragd th
Eptheye

where scaley,),,,; are the z and y scale factors to apply to the Poisson disk in
projective space, penumbra,;qy,,,, is the penumbra width estimation in eye space
and fragaeptn,,. is the fragment’s depth in eye space. near is the near plane
distance and aspect is the aspect of camera height to width, which depends on the
camera model and could also be related to the field of view of the camera.

The final Poisson deltas which are added to the current fragment coordinates
are then given by

delta;, = P scale,,,, (5.11)
delta;, = P scaley, ., (5.12)

where P;, . is the ith Poisson sample’s x or y coordinate. The average of the soft

(=]y)
shadow values V.yrprent (€ + delta;,, y+ deltaiy) is computed from all samples that
pass the discontinuity test (i.e. their depth values are nearly the same) and taken

5.2. The Algorithm 65

as the soft shadow value 1 (z, y) for the current fragment. v (x,y) is not stored
in the shadow buffer and reused in the next frame, since every neighbor will then
have an updated ¥cyrrent-

5.2.4 Blending

Apart from the Temporal Coherence method that samples the light source and
generates correct soft shadows if the sample size is high enough, a single sample
approach that generates perceptually plausible shadows is now available. Depend-
ing on the standard error of the variance estimator in Equation 5.3, the one or the
other approach is to be preferred. Note that this standard error can be wrong with
high probability if the sample size is below a very low (10-16 samples) limit, so
solely the single sample approach is used for n < 16.

Two error bounds are introduced: A maximal error bound s,,,,, at which the
sampling approach is started to be used, and a minimal error bound 5,5, < Spazs
at which the single sample approach is stopped to be used. In between these error
bounds, the two approaches are blended by using

w o= M (5.13)
Smaz — Smin
Fr9whadon(®y) = U(@,y)(1 —w) + (z,y)w (5.14)

where s(x,y) is the current standard error of (), and [rag,,,gon (T, y) is
the soft shadow result for the current fragment to be used in the shading of the
fragment. A s(z,y) = 1/16 for 8 Bit fragment color channels would for instance
mean that the result of z@(:v, y) is expected to be within +16 attenuation levels of
the correct result. If s,,,, = 1/16, solely the single sample approach would be
used with this error. If on the other hand s,,,, = 1/8 and s,,,;,, = 1/32, the two
approaches would be blended using 1/3 of ¢)(x,) and 2/3 of ¢)(z, y).

Although s,,,;, and s,,,,, can be chosen freely and can be constant, one could
also use light and material parameters to guide the selection. The calculated
soft shadow value frag;.40,(2,y) is a darkening factor that is applied (1 —
fragadow (T, y)) to the diffuse color of the light source. So other factors like the
diffuse color, the ambient light, or the texture and material color used for shading
the fragment limit the attenuation range that can be influenced by f7rag ., 40u (%, ¥)-
In such circumstances, higher s,,;, and s,,,, can therefore be chosen for this frag-
ment.

5.2.5 Moving Objects

Dynamic scene objects do not work very well together with Temporal Coherence
techniques: As a result of the object movement, disocclusions happen very fre-

66 Chapter 5. Real-Time Soft Shadows using Temporal Coherence

Fig. 5.4: Some noise artifacts can appear at the shadow borders of moving objects.

quently and increase the standard error in these areas. It is therefore necessary to
tag them in the shadow map as well as in the scene in order to be able to treat them
separately.

Therefore, in the depth pass, the shadow map depth values caused by moving
objects are stored with a negative sign. This is possible since the shadow map
depth values are always positive, and so a moving object can easily be identified
in the second pass by simply checking the sign (this can be during the shadow map
test, when the absolute depth value needs to be retrieved for every screen-space
fragment anyway).

Artifacts caused by moving objects are most likely to occur whenever an ob-
ject starts or stops being an occluder for the current fragment, since the illumi-
nation of this fragment has to change drastically (e.g. a completely unoccluded
fragment, on which several thousand sampling tests have been performed, could
be completely occluded within three frames due to a fast moving blocker object -
and the shadow value should be adapted just as fast.). Without special treatment,
newly occluded areas don’t darken fast enough, and newly unoccluded areas suf-
fer from shadows that are “dragged behind” the caster.

5.3. Implementation 67

Therefore, shadows which have been cast by moving objects in previous frames
have to be identifiable. This is done by storing the information in the shadow
buffer, making it easily accessible in the next frame. Again, a negative sign can
be used on any of the signless values of the buffer (e.g. the eye space depth used
for the depth comparison) for tagging.

For these detected fragments, the dynamic shadow needs to be removed by
gradually decrementing the sample size 7(z, y) stored at this fragment and chang-
ing the p,(z,y) accordingly with

pn(x,y)

r(z,y) = (5.15)
n(x,y)

n'(x,y) = nlx,y) —A (5.16)

pn(z,y) = 'z, y)r(z,y), (5.17)

where A is the decrementing factor and 7/(z,y) and p! (x,y) are the new values
for n(x,y) and p,(z,y). This is done repeatedly each frame until n'(z,y) =
0. This way, shadows that are dragged behind the object can be removed at the
expense of some noise artifacts (see Figure 5.4).

5.3 Implementation

Our new approach was developed and tested using our own DirectX 10 frame-
work (under Windows Vista), in which several state-of-the-art shadow algorithms
were implemented as well, allowing us to compare our algorithm directly to other
methods in terms of speed and shadow quality (see Figure 5.5 for an application
screenshot). We performed tests on several different hardware configurations, but
the test images and benchmarks were all taken on a system with an Intel Core 2
Duo E6600 CPU and a NVIDIA 280GTX GPU, using shadow maps that were
generated with standard uniform shadow mapping with a resolution of 10242,

For the shadow map, a 32bit floating point texture is used to store the values
computed in the first pass. We store the depth linearly, as was proposed in the
PCSS paper [Fer(O5]. Selecting the sample position on the area light is done using
a Halton sequence, but other quasi-random sequences showed similar behavior.

In the second pass, the multiple render target functionality is used to render
into the shadow buffer and into an 8bit RGB buffer at the same time. The shadow
buffer consists of a 4-channel 32bit floating point texture and is double buffered,
since read and write operations on the same render target are not possible on
current graphics hardware. This results in an additional memory requirement of
840 x 630 x 4 x 4 ~ 8M B. It contains p,(z,y), n(x,y), the linear depth of the
fragment and the blocker gepth-

68 Chapter 5. Real-Time Soft Shadows using Temporal Coherence

[N Soft Shadows. Press F1 to turn menu on/off. FPS: 59.86

Fig. 5.5: A screenshot of our test application used to develop and compare our new algo-
rithm (Windows Vista, DirectX 10).

Finally, the RGB buffer is rendered into the frame buffer in a third render pass.
By choosing the resolution of the shadow buffer about 5% larger than the frame
buffer, the shadow quality on frame buffer border texels can be improved, since
they can then use more and better converged shadow data from their neighboring
texels during the spatial filtering step. This means, for example, that if a frame
buffer size of 800x600 is chosen, the shadow buffer size would be 840x640.

We found that the test depicted in Equation 5.4 used in [SJWO7] for deter-
mining if fragment data is available from previous frames is numerically unstable,
when used in conjunction with linear depth values. We therefore use

depth'currentzy

— < 5.18
depthpreviouszy ‘ ()

instead in the reprojection step and in the discontinuity test when sampling the
neighborhood of a fragment, resulting in an error threshold that is relative to the
distance.

5.4. Results 69

i
] W

§ 300 ﬂ‘w""“‘%ﬁ : e i ¥ v ~

H R I [T VN
g 250

-3 TVAARAY M 7

£ 200 ! f

s . P ey

= 3 ey ——New Algorithm

- PCS816

-- PCS8832

1 52 103 154 205 256 307 358 409 460 511 562 613 664 715 766 817 868 919 870 1021 1072 1123 1174 1225 1276 1327 1378 1429 1480
frames

Fig. 5.6: A sample walkthrough in one of our test scenes for our new method, PCSS using
16/16 samples for blocker/PCF lookup and PCSS with 32/32 samples.

Note: In Appendix A, the shader source code (DirectX 10 HLSL, shader
model 4.0) used in our framework can be found.

5.4 Results

Our goal was to create a physically accurate soft shadow algorithm which runs
at a similar frame-rate as single-sample approaches like for example PCSS. We
compared our algorithm to a fast PCSS version using only 16 texture lookups for
the blocker search and 16 texture lookups for the PCF kernel. Figure 5.6 shows
the performance in frames per second for a typical walkthrough of our test scene,
using a frame buffer size of 800x600 pixels.

In cases of many disocclusions, our algorithm is slower, as it has to perform the
blocker search there (which PCSS has to perform each frame): Due to the higher
complexity (more ifs) than the PCSS shader, the performance of our method can
be worse compared to PCSS in such circumstances. Still, the used PCSS16 always
performs 16+16 lookups, while our shader usually only performs one shadow map
lookup and one shadow buffer lookup every frame. 16 shadow map lookups only
occur in the case of a disocclusion, and 16 shadow buffer lookups are necessary
for the neighborhood filter for every fragment where the spatial filtering approach
is active.

Moreover, the shadow quality of our approach is significantly better (see Fig-
ure 5.7): Apart from being physically accurate, our method does not suffer from
typical single-sample artifacts (like for example artifacts caused by overlapping
occluders and band artifacts caused by big penumbras).

70 Chapter 5. Real-Time Soft Shadows using Temporal Coherence

Fig. 5.7: Left side: Our Method. Right Side: PCSS 16/16 [Fer05]. Overlapping occluders
(upper row) and bands in big penumbras (lower row) are known problem cases for single
sample approaches.

5.4.1 Limitations

Due to the use of Temporal Coherence methods, our approach has difficulties
with moving objects and moving light sources, as disocclusions are very likely
to happen. Even though moving objects can be handled, their shadows suffer
from artifacts. Moving light sources cannot be handled yet. A solution to these
problems might be an approach where older light source samples are weighted
less, and where shadow fragments are assigned an “age factor”.

5.5 Summary

In this chapter, a fast, image-based real-time soft shadow approach, which gen-
erates physically accurate soft shadows and uses Temporal Coherence, was pre-
sented. Spatial filtering is applied whenever temporal reprojection is insufficient,
allowing perceptually plausible results also on recently disoccluded fragments.

5.5. Summary 71

We tested the method in our framework, and the results show that it is as fast as
the fastest single sample approaches, but at the same time provides better image
quality.

I don’t need a friend who changes when I change and
who nods when I nod; my shadow does that much
better.

(Plutarch)

Chapter 6

Summary

This thesis gave a detailed overview of the field of real-time soft shadow algo-
rithms. Chapter 2 introduced the reader to the basic concepts and methods: Apart
from an explanation of the terms shadow, real-time and rendering, it was shown
why the use of shadows in computer-generated images is important at all. The
most widely used shadow algorithms, namely shadow mapping and shadow vol-
umes, were described as well.

Soft shadows, which were introduced in Chapter 3, are far more complex to
calculate than hard shadows. They are cast by area light sources, making the
calculation much more complicated, as the point-to-point visibility problem is
expanded to a three-dimensional visibility problem. Still, the increased effort is
definitely worthwhile: Since point light sources do only exist in theory, we are
used to area light sources and the resulting soft shadow boundaries, and perceive
them as much more “realistic”.

Since the generation of physically exact soft shadows is a very complicated
and computationally expensive task, none of the algorithms presented in Chapter
4 is able to generate correct soft shadows in real-time for an arbitrary scene. It
is therefore necessary to make trade-offs between speed and accuracy, and use
fake approaches which use a simplified, but faster way to calculate visually plau-
sible results. Of course, these simplified visibility calculations do not provide
exact solutions and do sometimes generate artifacts, but in many cases (especially
in dynamic scenes), they are absolutely sufficient. Which approach is to prefer,
depends heavily on the requirements of the application or the game itself.

Finally, we presented our own algorithm in Chapter 5: By exploiting Tem-
poral Coherence, it is possible to generate physically accurate soft shadows in
real-time. The main idea is to sample the area light source randomly, but only
once per frame, making the method run as fast as single sample fake soft shadow
approaches. The shadow results are stored in a screen space shadow buffer, from
where they can be re-used in the next frame. In cases when there is only insuffi-
cient shadowing information available for a fragment, additional spatial filtering
is applied, allowing perceptually plausible results also on recently disoccluded

72

73

fragments (see Figure 6.1 for a screenshot).

Fig. 6.1: Screenshot of a test scene rendered with our soft shadow algorithm in our shadow
mapping test framework (DirectX 10).

0N R W —

NN R LN —

Appendix A

Shader source code

In this Appendix, the shader code used in our test framework (DirectX 10 HLSL,

shader model 4.0) is shown.

A.1 Depth pass shader code

// Variables
matrix View;
matrix Projection;
matrix World;
bool bMovingObject;

// Structures
struct VS_INPUT

float3 Pos : POSITION ; //position
}:
struct PS_INPUT
float4 Pos : SV_POSITION ; //position
float Tex : TEXCOORD; //texture coordinates

}s

// Vertex Shader
PS_INPUT VS(VS.INPUT input)

{
PS_INPUT output = (PS_INPUT)O;
output.Pos = mul(float4 (input.Pos,1), World);
output.Pos = mul(output.Pos, View);
output.Pos = mul(output.Pos, Projection);
output.Tex = output.Pos.z;
return output;

}

// Pixel Shader
float PS(PS_INPUT input) : SV_Target

return input.Tex.x*(bMovingObject ? —1.0f:1.0f);

A.2 Shadowing pass shader code

// Variables

Texture2D g_txDiffuse; // Object texture
Texture2D g_txSM; // Shadow Map

Texture2D g_txHistoryBuffer; // History Buffer Texture
matrix World; // World Matrix

matrix View; // View Matrix

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

32
33
34
35
36
37
38
39
40
41
42

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

A.2. Shadowing pass shader code

75

matrix Projection; // Projection Matrix

matrix LastView // Last View Matrix

matrix LastProjection; // Last Projection Matrix

matrix LightView; // Light View Matrix

matrix LightProjection; // Light Projection Matrix

float2 vLightDimensions; // Area Light x/y Dimensions

float2 vSMtexelSize; // Shadow Map Texel Size (1/SMsize)

float2 vAspectRatio; // Screen aspect ratio (y=1, x=resolution_y/resolution_x)
// Definitions

const float EPSILON_SM_BIAS = 0.03f;
const float EPSILON.DEPTH = 0.001f;
const int BLOCKER_SEARCHLOOKUP = 16;
const int PCFNUM_SAMPLES = 16;

//Shadow Mapping Bias

// Poisson disk:
cbuffer POISSON_DISKS

float2 poissonDisk[16] = {
float2 (—0.94201624, —0.39906216),
float2 (0.94558609, —0.76890725),
float2 (—0.094184101, —0.92938870),
float2 (0.34495938, 0.29387760),
float2 (—0.91588581, 0.45771432),
float2 (—0.81544232, —0.87912464),
float2 (—0.38277543, 0.27676845),
float2 (0.97484398, 0.75648379),
float2 (0.44323325, —0.97511554),
float2 (0.53742981, —0.47373420),
float2 (—0.26496911, —0.41893023),
float2 (0.79197514, 0.19090188),
float2 (—0.24188840, 0.99706507),
float2 (—0.81409955, 0.91437590),
float2 (0.19984126, 0.78641367),
float2 (0.14383161, —0.14100790)

}s

}s

// Structures
struct VS_.INPUT

//Depth Comparison Epsilon (for reprojection)
//Number of lookups for blocker search
//Number of samples for spatial filtering

float3 Pos : POSITION ; //position

float3 Norm : NORMAL; //normals

float2 Tex : TEXCOORDO; //texture coordinate
}s
struct PS_INPUT

float4 Pos SV_POSITION ; // position

float3 Norm NORMAL ; //normals

float4 wPos TEXCOORDO; //world space position

float4 LightPos TEXCOORD1 ; //fragment position

float4 BufferPos: TEXCOORD?2; //fragment position

in light space
in shadow buffer

float2 Tex TEXCOORD3; //texture coordinates
float Depth TEXCOORD4 ; //fragment depth

}:

struct PS_OUTPUT_2RT
float4 Col0O : COLORO; //render target 1 (RGB)
float4 Coll : COLORI;

}s

// Texture Samplers
SamplerState samLinear

Filter = MIN.MAG_MIP_LINEAR;
AddressU = Wrap;

AddressV = Wrap;
}s

SamplerState samPoint

Filter = MIN.MAG_MIP_POINT;
AddressU = Clamp;
AddressV = Clamp;

}s

// Vertex Shader
PS_INPUT VS(VS_INPUT input)

PS_INPUT output = (PS.INPUT)O;

//render target 2 (shadow buffer)

76 Appendix A. Shader source code

91

92 //transform vertices to world space

93 output.wPos = mul(float4 (input.Pos,1), World);
94

95 //transform to light projection space

96 output.LightPos = mul(output.wPos, LightView);
97 output.LightPos = mul(output.LightPos, LightProjection);
98

99 //transform to shadow buffer space

100 output.BufferPos = mul(output.wPos, LastView);
101 output.BufferPos = mul(output.BufferPos, LastProjection);
102

103 //transform to camera projection space

104 output.Pos = mul(output.wPos, View);

105 output.Pos = mul(output.Pos, Projection);

106

107 // transform normals to world space

108 output.Norm = mul(input.Norm, World);

109

110 //propagate tex coords

111 output.Tex = input.Tex;

112

113 //save Depth

114 output.Depth = output.Pos.z;

115

116 return output;

117 }

118

119| //Helper function checking validity of texture coordinates
120| bool outsideOld(float2 _Tex) {

121 return any(bool2(.Tex.x < 0.0f, _Tex.y < 0.0f))

122 || any(bool2(_-Tex.x > 1.0f, _Tex.y > 1.0f));
123] }

124

125| // Helper function performing the shadow test

126| float shadowTest(const float depthSM., const float fragmentDepth_) {
127 return depthSM_+EPSILON_SM_BIAS < fragmentDepth_. ? 0.0 : 1.0;
128 }

129
130| // Helper function calculating the SM coordinates
131| float2 texSpace(const float4 input.) {

132 float2 output = 0.5 * input..xy / input_.w + float2(0.5, 0.5);
133 output.y = 1.0f — output.y;

134 return output;

135] }

136

137| // Helper function doing the blocker search
138| float findBlockerSM (const float2 pos_.TS_, const float fragmentDepth_) {

139 float sum = 0;

140 float cnt = 0;

141

142 for(int i = 0; i < BLOCKER.SEARCHLOOKUP; ++i) {

143 const float2 offset = poissonDisk[i] * vSMtexelSize*7.0f;
144 const float2 pos = pos.TS. + offset;

145

146 const float Depth = abs(g-txSM.SampleLevel(samPoint, pos, 0).x):
147 if (0.5 > shadowTest(Depth, fragmentDepth_)) {

148 sum += Depth;

149 cnt++;

150 }

151 }

152 return (cnt > 0) ? sum / cnt : —1000000.0f;

153] }

154

155| // Helper function doing the screen space spatial filtering
156| float neighborhoodFilter (const float2 uv, const float2 filterRadiusUV ,

157 const float currentDepth_,

158 const float currentCnt_) {

159 float sum = 0;

160 float cnt = 0;

161

162 for(int i = 0; i < PCFNUMSAMPLES; ++i) {

163 const float2 offset = poissonDisk[i] = filterRadiusUV;

164

165 if (!outsideOld (uv + offset)) {

166 const float3 data = g_txHistoryBuffer.SampleLevel(samPoint, uv + offset, 0).xyz:
167 const float count = data.z;

168

169 const float depth = abs(data.x);

170 if (abs(l1—currentDepth_/depth) < 15*EPSILON_DEPTH) {
171 sum += data.y/count;

172 ++cnt;

173 }

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

205

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

A.2. Shadowing pass shader code

77

}

}

if (cnt>0) {
return sum / cnt;

} else {

return —1;
b

PS_OUTPUT2RT PSSoftShadows(PS_INPUT input) : SV_Target

PS_.OUTPUT_2RT output = (PS.OUTPUT.2RT)O0;

bool bCurrentShadowFromMovingObject = false; // Blocker does not move

bool bPreviousShadowFromMovingObject = false; //Blocker DID not move

bool inDisoccludedRegion = true; // Fragment has just been disoccluded
float ShadowAmount = 0.0f; // Shadow amount

float cnt = 1; //Number of shadow tests

//Average Blocker Depth, needed for penumbra estimation.

// a negative value indicates that no blocker has been found

// note: this has to be extremely low, since a linear lookup takes place in the

// histoy buffer, and the value gets interpolated! it can become positive, leading
// to a wrong penumbra estimation. a very low value can extremely reduce this effect!
float avgBlockerDepth = —1000000.0f;

//shadow sampling coordinates

const float2 smCoord = texSpace(input.LightPos);
//Linear depth of current fragment in light space
const float fragmentDepth = input.LightPos.z;

if (! outsideOld (smCoord)) {
//sample depth in shadow map
const float Depth = g_txSM.SampleLevel(samPoint, smCoord, 0).x;
//get absolute value
const float absDepth = abs(Depth);

//make shadow test
ShadowAmount = 1.0—shadowTest(absDepth, fragmentDepth);

//if the current fragment is in shadow

if (ShadowAmount == 1.0)
// get new depth as estimate for avgBlockerDepth
avgBlockerDepth = absDepth;
//check if the blocker is moving
bCurrentShadowFromMovingObject = Depth < 0.0;

}

// history buffer sampling coordinates:
const float2 HisBuffTexC = texSpace(input.BufferPos);

//check if the pixel is inside the history buffer:
if (! outsideOld (HisBuffTexC)) {
//inside of old data —> we can check for depth delta

//get the history buffer info:

float4 oldData = g_txHistoryBuffer.Sample(samLinear, HisBuffTexC);
//Moving Object Shadow identification

if (oldData.x < 0) bPreviousShadowFromMovingObject = true;

const float oldDepth = abs(oldData.x);
const float oldAvgBlockerDepth = oldData.w;
float oldSum = oldData.y;

float oldCount = oldData.z;

//check if the pixel was in shadow of a moving object and is outside of it now:

if (! bCurrentShadowFromMovingObject && bPreviousShadowFromMovingObject) {
//drastically reduce the shadow
const float ratio = oldSum/oldCount;
const float delta = 1.0;
if (oldCount > 6.0f) {
oldCount = delta;

} else {

oldCount = oldCount—delta;
}
0oldSum = ratio * oldCount;

if (oldCount <= delta) {
oldSum = 0;

78

Appendix A. Shader source code

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

oldCount = 0;
bPreviousShadowFromMovingObject = false;

}

//check if depths are alike, otherwise we have a very different sample
if (abs(1—input.BufferPos.z/oldDepth) < EPSILON.DEPTH && !bCurrentShadowFromMovingObject)

{
//calculate the new shadow amount:
ShadowAmount = oldSum + ShadowAmount;
cnt = oldCount + 1;
inDisoccludedRegion = false;
//Average Blocker Depth
if (oldAvgBlockerDepth >= 0.0f) {
if (avgBlockerDepth >= 0.0f)
float sum = oldAvgBlockerDepth *(cnt —1+BLOCKER.SEARCH.LOOKUP) ;
sum += avgBlockerDepth;
avgBlockerDepth = sum/(cnt+BLOCKER_SEARCHLOOKUP) ;
} else {
avgBlockerDepth = oldAvgBlockerDepth;
}
¥
}

}

//for newly dissoccluded fragments estimate avg blocker depth
if (cnt < 1.5) avgBlockerDepth = findBlockerSM (smCoord , fragmentDepth);

//calculate the soft shadow value generated with Temporal Reprojection:
float softShadow = ShadowAmount / cnt;

//if little samples or large error just do aproximation
const float errorMin = 1.0/50.0;
const float errorMax = 1.0/5.0;
const float error = cnt <= 1.5 ?2 1.0 : sqrt(softShadow=*(l—softShadow)/(cnt —1));
if ((cnt <= BLOCKER.SEARCH.LOOKUP || error >= errorMin) && (avgBlockerDepth > 0)) {
//penumbra estimation like in PCSS, but with the
//average occluder depth from the history buffer:
const float penumbraEstimation = ((fragmentDepth — avgBlockerDepth) / avgBlockerDepth) x*
vLightDimensions [0];

//do spatial filtering in the shadow buffer (screen space) using the penumbra estimation:
const float multiplicator = (0.1f/input.Depth);
const float blurredShadow = neighborhoodFilter (HisBuffTexC,

vAspectRatio = multiplicator * penumbraEstimation, input.Depth,cnt);

if (blurredShadow > 0.0f) {

if (inDisoccludedRegion) {
ShadowAmount = (blurredShadow + softShadow) = 8;
cnt = 16;
softShadow = ShadowAmount / cnt;

} else if (error > errorMax || cnt <= BLOCKER SEARCH.LOOKUP) {
//very big error —> only use aproximation
softShadow = blurredShadow ;

} else {
//blend
const float weight = (errorMax—error)/(errorMax—errorMin);
softShadow = blurredShadow =* (l—weight) + softShadow * weight;

}

//store a moving object in the shadow buffer by giving a value a negative sign later
const float encodeMovingObject = (bCurrentShadowFromMovingObject
|| bPreviousShadowFromMovingObject ? —1.0f : 1.0f);

// store depth (with encoded moving object), nr of positive shadow tests ,
//nr of all shadow tests , and average blocker depth in shadow buffer
output.Coll = float4 (encodeMovingObjectxinput.Depth, ShadowAmount, cnt, avgBlockerDepth);

// vLight is the unit vector from the light to this pixel

const float3 vLight = normalize(float3 (vLightPos.xyz — input.wPos.xyz));

//per pixel lighting — use whatever function you want...

const float4 DiffuseColor = DiffusePerPixelLighting (vLight, input.Norm);

//set the output color depending on lighting and shadowing:

output.Col0.rgb = DiffuseColor.rgb * (1—softShadow) + vLightColor * vMaterialAmbient;
//add texture information (if available):

if (bUseTexture) output.Col0 %= g_txDiffuse.Sample(samLinear, input.Tex);

return output;

List of Figures

2.1

2.2

23

24

2.5

2.6

2.7

2.8
29
2.10

2.11

2.12

2.13

2.14
2.15

2.16

Shadows provide information on the relative position of an object
in space. On the left image, the crate’s position can’t be deter-
mined. In the middle and right images, this is different due to the

castshadows. L Lo 10
The camel is completely hidden behind the crate, but the shadow
reveals itS Presence. e e e e 10
Shadows provide information on the light source size: The larger
the source, the softer the shadow. 10
The geometry of the receiver can be estimated by the cast shadow
[HLHSO3]. 10
Hard shadow cast by a point light source: An occluder blocks the
light from the receiver. 12

An example for self-shadowing: The object casts shadows on itself. 13

Ray tracing basics: A ray is shot from the eye point into the scene.
The color of the object at the intersection point is projected onto

the corresponding pixel in the image plane [ray07]. 15
A test scene rendered with the radiosity technique [rad05]. 16
Projective shadows as proposed in [B1i88]. 18

Approximate shadows: Simple geometry is used to “fake” a shadow
(Screenshot from the game NF'S V: Porsche, (©Electronic Arts). . 18
The shadow mapping algorithm: The depth values as seen from

the light source are stored in a shadow map, and are then used in

a second pass to generate shadows on the objects [Sch05]. 19
Perspective aliasing artifacts 20
Projection aliasing artifacts 20
Shadow acne artifacts L. 20

The shadow volumes algorithm: By entering a shadow volume,
the counter is increased, and by leaving it, the counter is decreased
[SchO5]. 21
Screenshot from the game Doom 3 ((©)id Software), which uses
the shadow volumes algorithm. 22

80

List of Figures

3.1

3.2
3.3
3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

An area light source leads to a soft shadow, which consists of
umbra and penumbra.o L Lo oL
Soft shadows look much more realistic than hard shadows.

Soft shadows from several light sources [HLHSO03].
Soft shadows from several overlapping occluders. Notice that the
indicated area in the middle lies in the umbra, although it is not
completely blocked by a single occluder [HLHSO3].
If the light source is close and significantly larger than the re-
ceiver, the generated shadow differs extremely from a shadow
generated by a single sample fake shadow approach - the umbra
nearly disappears. Lo
Soft shadows generated by overlapping occluders, created with
different soft shadow algorithms. Left: Reference image. Middle:
Penumbra wedges (Section 4.12). Right: Flood fill (Section 4.5).
Notice the artifacts which occur by using these single sample fake
approaches (Images from [GBP06]).

Several occlusion maps are combined to generate an occlusion
map. Left: a single occlusion map. Middle: attenuation map with
4 samples. Right: attenuation map with 64 samples [HLHSO03]. . .
The visibility channel (bottom) encodes the percentage of a linear
light source that is visible [HLHS03].
The hard shadow is extended by an inner and an outer penumbra.
For each pixel P, the corresponding shadow map texel P is esti-
mated. Within a search radius R, the nearest blocked pixel in the
shadow map is searched from there, and an attenuation coefficient
is calculated based on the distance r between the hard shadow
boundary and P [HLHSO3].
A screenshot showing the soft shadows generated with the algo-
rithm presented in [BSO02].
An example shadow-width map generated by texture compositing
[KDO3].
Screenshot from a PCSS sample application. Notice the varying
penumbra size [FerOS].
Light bleeding artifacts can occur when using variance shadow
maps (original image from [DL06], contrast has been enhanced in
marked area for visibility reasons).
The skirt data structure: It contains attenuation and depth informa-

tion and is associated with a silhouette edge of the shadow caster
[dBO4]. e

30

37

38

List of Figures 81

4.9

4.10

4.11

4.12

4.13
4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

The necessary steps to generate the skirts: The shadow map (left),
its shadow silhouettes (middle) and the final skirts buffer (right)
[dBO4]. 41
The generation of false penumbra regions (left) can be avoided by
boundary pixel verification (right). This is done by verifying that
each classified boundary pixel is occluded by a silhouette pixel as

seen from the light source [AHTO4]. 42
Estimating the amount of occlusion by casting a ray through the
corresponding shadow map coordinate [AHTO04]. 43
Screenshot from a test application with soft shadows generated
with the screen space flood-fill algorithm [AHTO04]. 43
Summary of the occlusion textures algorithm [EDO6]. 43
By convolving an image of the light source (left) with the receiver
(middle), soft shadows (right) can be generated [SS98]. 44
The shadow map and the corresponding base images B;, gener-
ated with Fourier expansion [AMB*07]. 45
Result image with smooth shadow borders, generated with the
technique presented in [AMBT07]. 45

Each shadow map sample is projected into the scene as a so-
called micropatch. This patch is then backprojected onto the light
source, where its percentage of occlusion is estimated [GBP06]. . 47
Creation of a soft shadow map according to [AHL06]: For each
micropatch, a penumbra area is estimated (left). For all pixels
in this penumbra region, the patch is backprojected and its per-
centage of occlusion is determined (right). This is done for all
micropatches, and the results are summed up in the soft shadow
map, which is used to illuminate pixels in the penumbra accordingly. 47
The backprojection can lead to artifacts: Gaps and overlaps are
likely to occur. In [GBPO06], the micropatches are extended, so

the gapscanbeavoided. 49
The occluder shadow volume is extended by cones and planes,
generating an outer penumbra [HaiOl]. 50
The shadow map (left) and the corresponding penumbra map (right)
ofatestscene [WHO3]. 51

Smoothies are created by extending the occluders’ silhouettes by
rectangles, which are connected at the corners (left). The smoothie
then defines whether a pixel is lit, completely dark or in the penum-
bra (right) [CDO3]. 52
From left to right: The standard shadow map, the depth values of
the smoothie buffer, the alpha values of the smoothie buffer, and
the final rendered image [CDO3]. 52

82

List of Figures

4.24 For each hard shadow quad generated with the standard shadow
volume algorithm from the center of the light source, a penumbra
wedge volume is created [AAMO3].

4.25 Right: The hard shadow quad is projected onto the light source (as
seen from pixel P, which lies in the penumbra wedge). Right: The
silhouette edge epe; is clipped and used to estimate the percentage
of occlusion [AAMO3].

5.1 This image shows a scene rendered with our method with over-
lapping occluders with 70k triangles at 344 FPS.
5.2 Left side: Our Method (634FPS). Right Side: Bitmask Soft Shad-
ows (156 FPS) [SSO7]. Even very good single sample soft shadow
methods show some artifacts, like biasing problems and contact
shadow undersampling. Both can be avoided by using multiple
samples asinour approach. oL L.
5.3 Top: A visualization of the shadow buffer belonging to the scene
displayed in the lower right corner. Bottom: The different chan-
nels the shadow buffer consists of. In this example, the red chan-
nel is used to store the depth, the green one to count the success-
ful shadow tests, and the blue one to store the number of all per-
formed shadow tests. The a-channel is used to store the penumbra
estimation value as described in Section 5.2.3. Note: The buffer
values have been adapted to fit into RGB color space.
5.4 Some noise artifacts can appear at the shadow borders of moving
objects.
5.5 A screenshot of our test application used to develop and compare
our new algorithm (Windows Vista, DirectX 10).
5.6 A sample walkthrough in one of our test scenes for our new method,
PCSS using 16/16 samples for blocker/PCF lookup and PCSS
with 32/32samples.
5.7 Left side: Our Method. Right Side: PCSS 16/16 [Fer05]. Over-
lapping occluders (upper row) and bands in big penumbras (lower
row) are known problem cases for single sample approaches. . . .

6.1 Screenshot of a test scene rendered with our soft shadow algo-
rithm in our shadow mapping test framework (DirectX 10).

List of Tables

5.1 Evaluation of the presented formulas for one fragment. Increasing
the sample size generally reduces variance and standard error, § =

VUAT. oo e e 60

Bibliography

[AAMO3]

[ADM'08]

[ADMAMO3]

[AHL"06]

[AHTO04]

[AMAO2]

[AMB*07]

UIf Assarsson and Tomas Akenine-Moller. A geometry-based soft
shadow volume algorithm using graphics hardware. ACM Trans.
Graph., 22(3):511-520, 2003.

Thomas Annen, Zhao Dong, Tom Mertens, Philippe Bekaert,
Hans-Peter Seidel, and Jan Kautz. Real-time, all-frequency shad-
ows in dynamic scenes. ACM Trans. Graph., 27(3):1-8, 2008.

Ulf Assarsson, Michael Dougherty, Michael Mounier, and Tomas
Akenine-Moller. An optimized soft shadow volume algorithm
with real-time performance. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
pages 33—40. Eurographics Association, 2003.

Lionel Atty, Nicolas Holzschuch, Marc Lapierre, Jean-Marc
Hasenfratz, Chuck Hansen, and Francois Sillion. Soft shadow
maps: Efficient sampling of light source visibility. Computer
Graphics Forum, 25(4), dec 2006.

Jukka Arvo, Mika Hirvikorpi, and Joonas Tyystjarvi. Approximate
soft shadows using image-space flood-fill algorithm. Computer
Graphics Forum, TODO(TODO):TODO, 2004.

Tomas Akenine-Moller and Ulf Assarsson. Approximate soft
shadows on arbitrary surfaces using penumbra wedges. In Pro-
ceedings of the 13th Eurographics Workshop on Rendering, pages
309-218. Eurographics, 2002.

Thomas Annen, Tom Mertens, Philippe Bekaert, Hans-Peter Sei-
del, and Jan Kautz. Convolution shadow maps. In Jan Kautz and
Sumanta Pattanaik, editors, Rendering Techniques 2007: Euro-
graphics Symposium on Rendering, volume 18 of Eurographics
/ACM SIGGRAPH Symposium Proceedings, pages 51-60, Greno-
ble, France, June 2007. Eurographics.

Bibliography

85

[AMHHOS]

[ARHMO0]

[ASKO06]

[Bli88]

[BS02]

[CDO03]

[Cro77]

[Cro84]

[dB0O4]

[DF94]

Tomas Akenine-Moller, Eric Haines, and Natty Hoffman. Real-
Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA,
2008.

Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich, and Lau-
rent Moll. Efficient image-based methods for rendering soft shad-
ows. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 375-384. ACM
Press/Addison-Wesley Publishing Co., 2000.

B. Aszdi and L. Szirmay-Kalos. Real-time soft shadows with
shadow accumulation. In Eurographics 2006 Short Presentations,
pages 53-56, 2006.

James F. Blinn. Me and my (fake) shadow. IEEE Computer Graph-
ics and Applications, 8(1):82-86, Jan. 1988.

Stefan Brabec and Hans-Peter Seidel. Single Sample Soft Shadows
Using Depth Maps. In Proceedings of Graphics Interface, pages
219-228, May 2002.

Eric Chan and Frédo Durand. Rendering fake soft shadows with
smoothies. In Proceedings of the Eurographics Symposium on
Rendering, pages 208-218. Eurographics Association, 2003.

Franklin C. Crow. Shadow algorithms for computer graphics. In
James George, editor, Proceedings of the 4th annual conference on

Computer graphics and interactive techniques, volume 11, pages
242-248. ACM Press, July 1977.

Franklin C. Crow. Summed-area tables for texture mapping. In
SIGGRAPH ’84: Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, pages 207-212,
New York, NY, USA, 1984. ACM.

Willem H. de Boer. Smooth penumbra transitions with shadow
maps. In Submitted to Journal of Graphics Tools, pages 185-195.
AK Peters, 2004.

George Drettakis and Eugene Fiume. A fast shadow
algorithm for area light sources using backprojec-
tion. In SIGGRAPH °94 Proc., pages 223-230, 1994.
http://safran.imag.fr/Membres/George.Drettakis/pub.html.

86

Bibliography

[DLO6]

[EDO6]

[FBPO6]

[Fer05]

[GBPO6]

[GBPO7]

[HaiO1]

[HBS00]

[Her97]

[HHI97]

William Donnelly and Andrew Lauritzen. Variance shadow maps.
In In SI3D 06: Proceedings of the 2006 symposium on Interactive
3D graphics and games, ACM, pages 161-165. Press, 2006.

Elmar Eisemann and Xavier Décoret. Plausible image based soft
shadows using occlusion textures. In Rodrigo Lima Oliveira Neto,
Manuel Menezes deCarceroni, editor, Proceedings of the Brazil-
ian Symposium on Computer Graphics and Image Processing, 19
(SIBGRAPI), Conference Series. IEEE, IEEE Computer Society,
2006.

Vincent Forest, Loc Barthe, and Mathias Paulin. Realistic Soft
Shadows by Penumbra-Wedges Blending. In Graphics Hard-
ware, Vienne, Autriche, 03/09/2006-04/09/2006, pages 39-48,
http://www.eg.org/, 2006. Eurographics.

Randima Fernando. Percentage-closer soft shadows. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Sketches, page 35, New
York, NY, USA, 2005. ACM.

Gael Guennebaud, Loc Barthe, and Mathias Paulin. Real-time soft
shadow mapping by backprojection. In Eurographics Symposium
on Rendering (EGSR), Nicosia, Cyprus, 26/06/2006-28/06/2006,
pages 227-234, http://www.eg.org/, 2006. Eurographics.

Gael Guennebaud, Loc Barthe, and Mathias Paulin. High-Quality
Adaptive Soft Shadow Mapping. Computer Graphics Forum, Eu-
rographics 2007 proceedings, 26(3):525-534, septembre 2007.

Eric Haines. Soft planar shadows using plateaus. J. Graph. Tools,
6(1):19-27, 2001.

Wolfgang Heidrich, Stefan Brabec, and Hans-Peter Seidel. Soft
shadow maps for linear lights. In Proceedings of the Eurograph-
ics Workshop on Rendering Techniques 2000, pages 269-280.
Springer-Verlag, 2000.

Michael Herf. Efficient generation of soft shadow textures. Tech-
nical Report CMU-CS-97-138, CS Dept., Carnegie Mellon U.,
May 1997.

Paul S. Heckbert and Michael Herf. Simulating soft shadows
with graphics hardware. Technical Report CMU-CS-97-104,

Bibliography

87

[HLHS03]

[HN85]

[KDO3]

[Lau07]

[PSS98]

[rad05]

[ray07]

[RSC87]

[SAPPO5]

[SchO5]

[SDO02]

CS Dept., Carnegie Mellon U., Jan. 1997. CMU-CS-97-104,
http://www.cs.cmu.edu/ ph.

Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and
Francois Sillion. A survey of real-time soft shadows algorithms.
In Eurographics. Eurographics, Eurographics, 2003. State-of-the-
Art Report.

J. C. Hourcade and A. Nicolas. Algorithms for antialiased cast
shadows. Computers and Graphics, 9(3):259-265, 1985.

Florian Kirsch and Juergen Doellner. Real-time soft shadows us-
ing a single light sample. In Journal of WSCG (Winter School on
Computer Graphics 2003), page 11(1), 2003.

Andrew Lauritzen. Summed-area variance shadow maps. In Hu-
bert Nguyen, editor, GPU Gems 3, chapter 8, pages 157-182. Ad-
dison Wesley, 2007.

Steve Parker, Peter Shirley, and Brian Smits. Single sample soft
shadows. Technical Report UUCS-98-019, Computer Science De-
partment, University of Utah, october 1998.

http://de.wikibooks.org/wiki/Datei:
Blender3D_Radiosity_FromTest. jpg, 2005.

http://de.wikipedia.org/wiki/Datei:
Raytracing.svg, 2007.

William T. Reeves, David H. Salesin, and Robert L. Cook. Ren-
dering antialiased shadows with depth maps. volume 21, pages
283-291, July 1987.

Jean-Francois St-Amour, Eric Paquette, and Pierre Poulin. Soft
shadows from extended light sources with penumbra deep shadow
maps. In Graphics Interface 2005, pages 105-112, May 2005.

Daniel Scherzer. Shadow mapping of large environments. Mas-
ter’s thesis, Institute of Computer Graphics and Algorithms, Vi-
enna University of Technology, Favoritenstrasse 9-11/186, A-1040
Vienna, Austria, 8 2005.

Marc Stamminger and George Drettakis. Perspective shadow
maps. In Proceedings of the 29th annual conference on Computer

88

Bibliography

[STWO7]

[SS98]

[SSO7]

[SSMO09]

[WHO3]

[Wil78]

[WSP04]

[ZYDO02]

graphics and interactive techniques, pages 557-562. ACM Press,
2002.

Daniel Scherzer, Stefan Jeschke, and Michael Wimmer. Pixel-
correct shadow maps with temporal reprojection and shadow test
confidence. In Jan Kautz and Sumanta Pattanaik, editors, Ren-
dering Techniques 2007 (Proceedings Eurographics Symposium
on Rendering), pages 45-50. Eurographics, Eurographics Asso-
ciation, June 2007.

Cyril Soler and Francois X. Sillion. Fast calculation of soft shadow
textures using convolution. In Proceedings of the 25th annual con-

ference on Computer graphics and interactive techniques, pages
321-332. ACM Press, 1998.

Michael Schwarz and Marc Stamminger. Bitmask soft shadows.
Comput. Graph. Forum, 26(3):515-524, 2007.

Daniel Scherzer, Michael Schwirzler, and Oliver Mattausch. Real-
time soft shadows using temporal coherence, 2009. Submitted to
GI 2009 for publication.

Chris Wyman and Charles Hansen. Penumbra maps: approximate
soft shadows in real-time. In Proceedings of the 14th Eurograph-
ics workshop on Rendering, pages 202-207. Eurographics Associ-
ation, 2003.

Lance Williams. Casting curved shadows on curved surfaces.
Computer Graphics (SIGGRAPH 78 Proceedings), 12(3):270-
274, Aug. 1978.

Michael Wimmer, Daniel Scherzer, and Werner Purgathofer. Light
space perspective shadow maps. In Proceedings of Eurographics
Symposium on Rendering 2004, 2004.

Min Tang Zhengming Ying and Jinxiang Dong. Soft shadow maps
for area light by area approximation. In /0th Pacific Conference
on Computer Graphics and Applications, pages 442-443. 1EEE,
2002.

