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Abstract

Building facades typically consist of multiple similar tiles which are arranged quite strictly in

grid-like structures. The proposed method takes advantage of translational symmetries and

is able to analyze and segment facades into tiles assuming that there are horizontal and

vertical repetitions of similar tiles. In order to solve this quite complex computer vision task

efficiently a Monte Carlo approach is presented which samples only selected image features.

This method, which is meant to be a preprocessing step for more sophisticated tile seg-

mentation and window identification in urban reconstruction tasks, is able to robustly identify

orthogonal repetitive patterns on rectified facade images even if they are partially occluded,

shadowed, blurry or otherwise damaged. Additionally, the algorithm is very running time ef-

ficient because neither quality of results nor the computational complexity are significantly

depending on the image size.
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Zusammenfassung

Gebäudefassaden bestehen üblicherweise aus einer regelmäßigen gitterförmigen Anord-

nung von ähnlichen Elementen. Diese Eigenschaft, nämlich die Translationssymmetrie von

Fenstern auf Fassaden, wird von der vorgeschlagenen Segmentierungsmethode ausgenutzt

um ohne aufwändige Analyse des Bildinhalts Rückschlüsse auf die Anordnung der Fenster

zu ziehen und diese anschließend in ähnliche Stücke aufzuteilen, sofern sie sich horizontal

oder vertikal wiederholen. Um diese relativ komplexe Aufgabenstellung der Computer Vision

effizient umzusetzen wird ein Monte-Carlo-Ansatz präsentiert, welcher aus einer Menge von

speziell ausgewählten Features im Bild zufällige Stichproben nimmt. Die präsentierte Seg-

mentationsmethode, die als Vorverarbeitungsschritt für andere Algorithmen zur Erkennung

von Fassadengeometrie für Stadt-Rekonstruktionsprozesse dienen soll, ist äußerst robust

bei der Identifikation von sich wiederholenden Bildmustern in rektifizierten Fassadenaufnah-

men, selbst wenn diese von Gegenständen verdeckt, beschattet, verschwommen oder an-

ders beeinträchtigt sind. Außerdem sind die Algorithmen äußerst Laufzeiteffizient ausgestal-

tet, da weder die Qualität der Ergebnisse noch die Rechenkomplexität wesentlich von der

Bildgröße beeinflusst werden.
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Chapter 1.

Introduction

1.1. Motivation

Automatic urban reconstruction is currently under intensive research in the Computer Vision

community. One of the still challenging tasks is the recognition and reconstruction of facade-

details like windows and balconies. These are considered key elements of realistic repre-

sentations of building facades. The appearance of reconstructed building geometry texture

mapped from photographs gains a lot of realism from the displacement of windows, balconies

and other coarse geometric detail. Otherwise the reconstructed facade looks strangely flat

when viewed from certain angles especially in walk-through scenarios.

Figure 1.1.: Left: Non-realistic impression of a texture mapped building model when viewed
from a grazing angle nearby the building. Right: Highly increased realism by modeling
coarse geometric detail of the facade which casts shadows (and using high-resolution
textures). Image courtesy of [MZWVG07].
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In the last ten years a variety of approaches to urban reconstruction and facade element

recognition have been developed. Raw building geometry is acquired either by terrestrial

laser range finders or reconstructed from satellite, airborne or ground based images or video.

Facade details like windows are mostly extracted from images and then superimposed on the

coarse building models. However, fully automatic methods are still utopia. The vast number

of different architectural forms and styles makes it extremely difficult to develop a method that

works for every urban environment without requiring a fair amount of user input.

The VRVis Company in Vienna is actively researching novel methods for computer aided

Urban reconstruction based on ground based photographs. VRVis is participating and con-

tributing major parts to the Wiki-Vienna project, which intends to create a platform for recon-

struction and visualization of the city of Vienna. In this context, this thesis explores a new

approach for automated content-independent segmentation of building facades into repetitive

tiles, where each tile contains just one single feature. The presented method is designed to

be a preprocessing step which serves as the base for a sophisticated tile segmentation and

facade geometry reconstruction algorithm.

1.2. Related Work

The problem of facade image analysis for reconstruction purposes has been tackled by many

researchers in the last ten years. Many different approaches for extraction of facade structure,

facade elements and facade geometry have been proposed. This section structures the

literature of related work in order to give a good overview of all the different techniques that

have been applied or created to solve problems in the class of recovering facade details,

depth information and compositional structure.

In the literature, there is a clear trend towards mass-produced city models and there is also

a trend towards approaches that require less redundant and easy obtainable input data like

photos. A good example for this trend towards simplification of input acquisition is [VG07],

demonstrating a sophisticated method that requires only one single input image with strong

enough perspecitve distortion. Another observation that can be made is that city reconstruc-

tion applications, as soon as they are developed to the point where they become usable

products instead of research toys, are showing a greater demand of automation in order to

cope with the vast amounts of data. The following discussion of the state of the art attempts to
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judge the degree of automation of the proposed solutions, which is not always easy because

many authors conceal information regarding this matter.

In the next few sections, the problem solution strategies are categorized by their general

approach and briefly explained. Most methods approach the facade reconstruction prob-

lem as an image segmentation problem, others define it as a feature detection challenge.

Then again, some of the proposed solutions use both approaches in different steps of their

processing pipelines. Finally, a subsection is devoted to the treatment of irregularities and

damages in input data.

1.2.1. Reconstruction from Multiple Views versus Single View

Almost all of the earlier methods are based on multiple views of the same facade for sev-

eral reasons. The most approaches infer a geometric 3D-model of a facade and its details

using well known image matching and triangulation algorithms [WTT+02], [SB03], [DTC04],

[MR07]. For example, Wang et al. [WTT+02] conduct a simple depth estimation for automatic

displacement of the recognized windows from the facade plane. Schindler and Bauer [SB03]

calculate a dense point cloud from multiple views. After fitting planes against the point clouds

representing the facades they classify outliers which are displaced from the main planes as

window regions.

Other uses of multiple images have been proposed by Wang et al. [WTT+02] and Tsai et

al. [Tsa06] who merge overlapping building textures to handle occlusions, image noise or

differences in shading. Furthermore, by searching for the same features in multiple views,

image recognition tasks such as finding good window outlines appear to be significantly more

robust [SB03], [DTC04].

Many of the multi-view methods yield fully automatic building reconstructions for specific

classes of buildings provided that enough images from many different angels are given. On

the contrary, it is very hard to find an automatic solution based on only a single image. Al-

though, many of the more resent publications describe methods which require only a single

input image. Some of them need user input or additional data to accomplish their tasks. For

example, Brenner and Ripperda [BR06] use 3D data from a laser range scanner to clas-

sify certain image regions as windows due to their small depth displacement relative to the

facade plane. Müller et al. [MZWVG07] developed a method that automatically infers a hi-

erarchical grammar based model of the facade from which detailed 3D facade models can

9



be generated. Still, they need user input to adjust the depth of specific facade elements like

windows sills, balconies etc. Lee and Nevatia [LN04], on the contrary, have an automatic

solution for estimating the depth of single facade elements from a single image. They solved

it by conducting a plane sweeping search. On the other hand, their method is also not fully

automatic because they need a 3D building model in order to rectify their facade images.

The one and only fully automatic single-view-based method has been published by Van Gool

et al. [VG07]. They extend Müller’s method for images with strong perspective, from which

they are able to reconstruct the 3D geometry of many common facade details without the

need for user interaction. Their method is restricted to images with sufficient perspective

distortions though.

1.2.2. Segmentation Methods

The earlier works are based on morphological segmentation, for example [WTT+02], which

applies oriented region growing (ORG) to segment dark regions (usually windows) on light

facades. The assumption that windows are darker than their surrounding facade is, however,

weak and may work well only for airborne pictures. Ground based photographies often reflect

buildings or the bright sky, especially when shot in an urban environment. Another use of

morphological segmentation is presented by Tsai et al. [Tsa06] who calculate a greenness

index (GI) to identify and suppress occlusions by vegetation on their facade textures which

they extract from drive-by video recordings. On the cleaned textures they also apply ORG to

find dark window regions.

A quite easy and robust segmentation of window panes is possible on dense point clouds re-

sulting from image based triangulation or triangulations of laser range scanners [WTT+02],

[SB03], [BR06]. Since most windows are displaced behind the wall the majority of facades

can be reconstructed. To improve the segmentation results and provide a simple facade

description all solutions apply template matching of simple geometric facade features mod-

els against the segmented points. To model windows the majority of methods usually use

rectangular shapes. Models for arches have also been proposed [SB03], [LN04].

Monte Carlo Marcov Chain approaches. The most promising class of solutions are hier-

archical rule based segmentation algorithms. They cut down a facade into small irreducible

parts which are arranged according to hierarchical context free grammar rules. Alegre and
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Dellaert [AD04] first proposed a specific set of grammar rules and a Monte Carlo Marcov

Chain (MCMC) approach to optimize the parameters in order to fit the hierarchical model

against the facade image. Yet, the model they provide does not generalize to a large class of

building facades. Brenner and Ripperda [BR06] show that it is possible to infer a hierarchi-

cal model from grammar rules and constraint equations using reversible jump Monte Carlo

Marcov Chain (rjMCMC) for parameter optimization and rule tree inference. The approach

seems promising but the solution is very complex, requires laser scan data of the facade

and seems not yet good enough for mass production of building models. For facades that

are asymmetric or based on complicated rules this method is the only feasible one. But the

main class of facades is very simple and regular. A single-view approach for rule based seg-

mentation of simple regular facades has been published by Müller et al. [MZWVG07]. They

split the facade image into floors and the floors into tiles. the tiles are then split by some

simple rules to approximate the window outlines. As splitting criterion they define an energy

functional over the local density of vertical and horizontal edges. While this is a very robust

method, it works only for the class of highly regular and symmetric facades that are based

on such simplistic grammar rules. Annother MCMC method that should be mentioned here

but is discussed in the next section is [DTC04].

1.2.3. Feature Detection Approaches

A good example for the texture-based feature detection approach is given by Dick et al.

[DTC04]1. They assume, for example, that image regions of windows have many strictly

orthogonal texture elements or that Greek pillars have only strong vertical texture elements.

Of course, this solution is only applicable for a very limited group of buildings. Similar and also

very limited are window detection approaches that rely on the fact that sometimes windows

are darker than their surrounding walls [WTT+02], [Tsa06], [BR06].

Lee and Nevatia [LN04] published a window detection method that uses only edges. First

they project the edges horizontally and vertically to get the marginal edge pixel distributions.

They assume that these have peaks where windows are located. From the thresholded

marginals they construct a grid which approximates the window outlines. They then match

the window outlines against the image edges to detect the correct outlines of the windows.

Later, they detect if their found windows happen to have arches and try to fit a general arch-

model against the image evidence.

1This work is not easy to classify as it is also making use of Monte Carlo Marcov Chains.
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Many methods rely on template matching to model windows and other facade detail. Schindler

and Bauer [SB03] match shape templates against point clouds. Mayer and Reznik [MR07] ef-

ficiently match template images from a manually constructed window image database against

their facades. Müller et al. [MZWVG07] match appearance of their geometric 3D window

models against facade tiles. The advantage of template matching is that reconstruction re-

sults look very realistic but, on the other hand, these reconstruction results are in most cases

not authentic because there is no template data base that contains all possible shapes. Some

have also combined template matching with machine learning, like Ali et al. [ASJ+07] who

showed that it is possible to train a classifier such that it identifies a high percentage of win-

dows even in images with perspective distortion.

Given the fact, that the majority of windows and other facade elements are rectangular, a

common approach to facade reconstruction is searching for rectangles or assuming that all

windows are rectangular. Almost all methods discussed here somehow assume rectangular

shapes in some stages of their algorithms but do not solely rely on it. A recent approach

that bases solely on rectangle detection is the window-pane detection algorithm by Cech

and Sara [CS07] which identifies strictly axis-aligned rectangular pixel configurations. Their

algorithm in fact solves a NP-hard optimization problem which is approximated sufficiently.

Finally, the repetitive nature of facade elements can be exploited to identify them. Van Gool

et al. [VG07] search for similarity chains in perspective images to identify repeated facade

elements.

1.2.4. Treatment of Irregularities

Quite a lot of the referred works assume, that facade structures are more or less regular.

Some even use this widely shared property of facades to fix recognition errors or missing

data, like Wang et al. [WTT+02] who introduced a periodic pattern fixing algorithm (PPF)

or Tsai et al. [Tsa06] who replicate features along detected mirroring axes to fix occlusions

by vegetation. The common approach to cope with unexpected irregularities in the data

introduced by eccentric facade designs or missing data resulting from occlusions is to rely on

certain final user interactions. The bottom line is, as time of this writing, there are no known

city reconstruction methods which are really completely automatic for a wide variety of input

data but some of them do quite a good job in reducing the necessary user interactions to a

minimum.
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Figure 1.2.: Geometric facade detail modeling interactions support difficult cases which the
automatic process cannot handle correctly. Images courtesy of [XFT+08].

1.2.5. General Approaches to Processing of Repetitive Patterns

Apart from these highly specialized methods for building reconstruction there are other more

general works which are related to this thesis because they deal with detection of repetitive

patterns in images. Bailey [Bai97] shows that it is possible to detect repetitive image patterns

by self-filtering in the frequency domain. He is able to reconstruct missing data in highly

repetitive images. This approach could be used to reconstruct missing data in occluded

facades.

Turina et al. [TTVG01] detect repetitive patterns on planar surfaces under perspective skew

using Hough transforms and application of various grouping strategies. They also demon-

strate some good results on building facades but there is no application for urban reconstruc-

tion using this approach yet.

Han and Zhu [HZ05] detect regular rectangular structures in photographs of arbitrary scenes.

Their approach combines bottom-up and top-down image interpretation by selecting out of

many possible detected candidate rectangles using an attribute grammar. Results on facade

images show, that rectangular windows are detected quite robustly due to the grammatical

constraints. Further development for reconstruction purposes seems to be promising.

Boiman et al. [BI07] detect irregularities in images using cross-correlation and Shechtman

and Irani [SI07] apply a similar approach to identify local self similarities in images from which

they generate very robust feature descriptors. The two methods could be used to detect

13



occlusions in facade images and to identify repetitive facade elements by shape template

matching.

Hsu et al. [HLL01] use wavelet decomposition of the autocorrelation surface to segment

a regular image into tiles. Liu et al. [LCT04] detect crystallographic groups on repetitive

image patterns using a sophisticated dominant peak extraction method for extraction of max-

ima in the autocorrelation surface. They also achieve a segmentation into non-repetitive

regions. The most advanced local repetitive pattern detection algorithm is given by Hays et

al. [HLEL06] which is able to detect even distorted regular grids. These repetitive pattern

segmentation algorithms, however, cannot be directly used for facade window detection be-

cause the patterns created by repetitions of windows and intermediate walls cannot be split

at any possible location. For window segmentation a method is needed, that reliably splits

between the windows, as shown in [VG07].
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Chapter 2.

Automatic Recognition of Repeating

Patterns in Rectified Facade Images

2.1. Introduction

The process of urban reconstruction comprises many stages such as data acquisition, recon-

struction of building geometry, texture generation and efficient rendering, each of which are

subject to active research in the community. Especially the topic of automatic reconstruction

of structural facade details, such as windows, is one of the many open topics in the urban

reconstruction field. It has received increasing attention of international research groups but

because of the complex problem there are not yet any sufficiently efficient and at the same

time highly generic and automatic solutions.

The contribution of this thesis addresses this topic and presents a novel approach for recog-

nition and segmentation of repetitive facade details. Due to the fact that repetitive patterns

are independent of appearance and architectural style of facade elements this segmentation

method is shown to be outstandingly robust with respect to common unpredictable variations

in input images such as shadows, cables, excessive decorative elements or variations of

appearance caused by pollution.

Considering the high volumes of data that city reconstruction systems have to deal with it is

particularly important for any of the processing steps to be highly optimized and fast. The

introduced method is able to compute a facade tile segmentation very efficiently, even for

high-resolution images. The presented method is designed to be a generic preprocessing

step for specialized facade detail fitting and reconstruction algorithms.
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Figure 2.1.: Window tile segmentation on partially shadowed facade (detail). The computed
segmentation is illustrated by red lines superimposed on the original image. The segmen-
tation is not obscured by shadowing or other potentially disturbing image artifacts (see
chapter 3).

The facade segmentation method presented here is a particular part of a large process for

automatic urban environment reconstruction. To give the reader a rough overview of the

whole process and a context for this work this process is shortly summarized.

Data acquisition. First, data about the city to be modeled has to be acquired. In most

of the cases detailed CAD models are not available so that the complete geometry has to

be reconstructed from laser scans or from multiple overlapping photographs. The latter data

source is getting more popular lately because it shows great potential when opened for public

contribution via the wiki paradigm. The high volumes of photos required for detailed recon-

struction have to be handled efficiently giving rise to advanced image database concepts.
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In the case of the Wiki-Vienna research project at the VRVIS the input images come from

ground based photographs shot by people walking in the streets using standard consumer

photo cameras. Today almost everyone is carrying a cell phone which is equipped with a

camera.

The images are captured with cameras and are of course subject to lens distortion. The

exact camera parameters are not necessarily known because it is not practicable to calibrate

everyone’s camera, especially if photos from the public are accepted. In this case, it is a

great challenge to apply automatic inference of lens parameters in order to undistort the

photographs.

Image matching and triangulation. For the multiple view reconstruction approach it is re-

quired to find pairs of overlapping images from the large pool of photos. Use of Geo tags

might reduce the search complexity. Clever feature extraction and descriptor hashing tech-

niques are being applied to reduce the potentially high computational complexity of this task.

Some have also used successive frames from video instead of photographs to overcome the

expensive image grouping step. The registration of overlapping photos against each other is

typically done via comparison of SIFT features [Low03] in both images .

From such identified multiple overlapping views it is then possible to infer camera positions

and triangulate 3D point clouds of the photographed buildings.

Coarse geometry reconstruction. Such point clouds are not yet presentable using a point

based surface rendering technique because they are quite noisy due to the limited precision

imposed by image resolution, number of matching image features and missing points caused

by optical occlusions in the input images. Therefore, it is needed to find high-level geometric

models for these point clouds which is another challenging task. The typical approach is

to identify high-level geometric primitives such as planes and convert the point cloud into a

lower resolution mesh of building blocks.

Visualizations of the resulting coarse building block models textured with projections of the

original photos yet lack a crucial property that is necessary for a realistic impression: fine

grained geometric facade details such as window sills which can be modeled as displace-

ments from the facade planes. The sun usually casts shadows from window sills on the walls

and the glass windows usually reflect other buildings or the sky. If these effects are missing

visualizations of urban environments are perceived quite unrealistic.
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Detail geometry reconstruction. The identification and reconstruction of such facade de-

tails can only be conveniently done in the original input photos. For this purpose the photos

are projected onto the identified facade planes effectively reverting the perspective distor-

tion. This process is called rectification or orthogonalization [TS08]. Such orthogonalized

facade images are much easier to process than the original photos which are perspectively

distorted. See figure 2.2 for an example.

Figure 2.2.: Original photo and extracted rectified facade. This facade image has been ex-
tracted by manually by specifying four corresponding points in both images and warping
the image using a linear transformation as described in Appendix A.

This is the point where the fast facade segmentation method presented in this thesis may

be applied. The output tiles can then be further segmented to reconstruct size and location

of facade details like windows, balconies, doors and the like. The geometry of the identified

facade details can be modeled (i.e. by choosing from a database of 3D CAD-models of win-

dows. Also, a procedural grammar might be derived which efficiently describes the repetitive

alignment of facade tiles and reduces the memory footprint of the model.

Rendering. The reconstructed 3D geometry of a city is so enormously large that highly

sophisticated rendering methods are required to allow for interactive walk-through scenarios

or other real time visualization applications. Even high-end graphics hardware can not handle

models of such scale. To prevent the graphics card memory from overflowing sophisticated

visibility culling strategies dynamically render only the visible parts of the city model with

18



respect to the viewer’s location. Also very important are work load reducing automatic level-

of-detail algorithms which reduce the geometric resolution of visible elements according to

the screen-space they currently occupy. For instance a highly detailed building model that is

projected onto an area as small as a few pixels can be temporarily reduced to a simple cube

or silhouette-polygon without loss of perceived visual accuracy.

This work presents a contribution to the sub-process of recognition of geometric details in

orthogonalized facade images. The next sections describe the general idea and give a brief

overview of the approach.

2.1.1. Idea

The main idea behind the proposed method is to exploit the inherently repetitive nature of

almost all facade elements to identify facade tiles, locate them and finally partition the facade

image into tiles. The approach to only use similarity as segmentation criterion was driven by

the challenge to segment typical art-nouveau facades of the inner city in Vienna. Art-nouveau

facades are heavily decorated with stucco elements and are therefor imposing difficulties

upon any model based feature detection approach because their appearance is relatively

unpredictable.

Also, facades of this category contain many fine grained details and are thus very difficult to

model or reconstruct automatically. There are some properties of all typical facades which

are also suitable for segmenting art-nouveau buildings. Symmetries, for instance, are reliable

indicators of the existence, size and location of window tiles in a very large class of building

facades. In this thesis translational symmetries are used to identify repetitive features and

segment the facades into tiles accordingly.

2.1.2. Overview

The algorithm takes as input a single orthogonalized view of a facade. The output is a

orthogonal grid that defines a segmentation of the facade image into repetitive tiles. The

algorithm itself is subdivided in the following stages:

Search for dominant repetitive patterns. To identify the relevant repetitive regions of a fa-

cade image (e.g. floors or windows) it is necessary to search the high dimensional space of

similar image regions. This is done by comparing small image regions on multiple resolutions
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scope of
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Figure 2.3.: Overview over the steps of the method and scope (represented by the dashed
line) with respect to the whole urban reconstruction process. The main steps are a) image
acquisition, undistortion, storage and efficient retrieval, b) triangulation of 3D points from
multiple views, identification of facade planes, extraction of orthogonalized facade images,
c) identification of dominant repetitive patterns and their offsets, d) segmentation of the
image into repetitive tiles, e) exact identification and reconstruction of 3D facade details, f)
efficient rendering of large reconstructed urban 3D data for visualization applications.

of the image for similarity. Because it is not feasibly to compare all potential corresponding

regions in the image for efficiency reasons a Monte Carlo importance sampling strategy is

applied to collect statistical evidence about any translational similarities. The developed multi-

resolution similarity measure based on the normalized cross-correlation coefficient is shown

to greatly improve the quality of the results. Further improvement is achieved by focusing on

patterns that actually cover a larger image area. To extract these relevant patterns out of all

the collected evidence the representative offsets are sorted into a histogram where large pat-

terns result in large peaks. These are then extracted by Mean-Shift clustering [CM02]. The

computational result of this stage are offsets in pixels which relate directly to the prevailing

repetitive patterns in the image.
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Localization of the identified patterns. The offsets computed in the previous step convey

the size of important repeating patterns but there is no information about their location in

the image. To determine these locations the image has to be sampled regularly to test the

image’s similarity response for a given offset at a given location. Again efficient random-

ized multi-resolution sampling approximates a costly per-pixel analysis of the image. The

computed similarity curves for every offset are the input to the next stage.

Dividing the image into facade tiles. Eventually the image is partitioned into regions with

and without repetitive patterns. For the regions which exhibit repetitive patterns the most

dominant pattern is selected and the pattern’s offset is taken into account in the splitting

process. As a result, the facade is divided into floors and individual window tiles which can

be processed by continuative reconstruction algorithms.

2.2. Search for dominant repetitive patterns

The goal of this stage is to search for repetitive patterns and measure their representative

spatial offset. From all the detected patterns eventually the dominant ones are extracted

and supplied as input for the next stage. Before going into detail about the search algorithm

the next section elaborates on the understanding of repetitive patterns in the context of this

thesis.

A closer look at the typical structure of facades helps to understand which image patterns

are relevant for window detection. In most facades there are many windows of the same

size and similar appearance. The arrangement of windows is almost always the same for the

floors of the same facade. Common exceptions to this rule are usually the first floors which

are irregular or different from the others due to their different use as shops or restaurants.

Other than that, most facades exhibit strictly regular structure. If we consider a sequence of

axis-aligned pixels as a function of the intensities we notice certain regular repetitions in the

signal (figure 2.4). These repetitions are coherent over multiple adjacent pixel lines of the

image. In conclusion, coherent axis-aligned translational similarities that are recognized over

larger connected areas are the relevant patterns to be identified for detection of repetitive

arrangements of similar windows or other facade elements in a typical facade image.
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Figure 2.4.: Example of a repetitive pattern in 1D with a highly similar but not exact instance.
Relative differences in signal intensities between instances of the pattern should not influ-
ence the detection algorithm. An appropriate similarity measure must be applied which is
insensitive to the overall intensity level of the region.

2.2.1. Definition of a Repetitive Pattern

A repetitive pattern on a spatial signal is defined in terms of local self-similarities in a 1D

signal or 2D image. It is characterized by its offset, the smallest distance to the next most

similar recurrence of certain distinguishable features in the original sequence of the pattern

which is called a repetitive instance (see figure 2.4). A signal without distinguishable features

does not exhibit repetitive patterns. In the case of patterns in images the distinguishable

features are relatively fast changes of the intensities. The same image features that are very

important for human vision such as edges and corners are most important for our repeti-

tive pattern detection algorithm. Since we are interested in repetitive image features which

represent 3D-details on flat facades, the characterizing features are corners and edges.

In the context of this work, a repetitive instance of a pattern is never expected to be perfectly

the same but should be highly similar. An appropriate measure for the similarity of two image

regions which is insensitive to relative differences in intensities and not easily disturbed by

noise and other common image artifacts is presented later. The insight, that the similarity of

patterns depends mostly on the discontinuous image features is later used to implement an

optimized search strategy.

There may be many patterns with different similarity on different image resolutions which
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offset 1

offset 2
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Figure 2.5.: For simplicity patterns are defined by their offset only. Accordingly in this im-
age there are two different (overlapping) patterns. This does not hinder correct tile
segmentation.

overlap each other. This makes it hard to distinguish the relevant patterns which are gener-

ated by similar architectural detail from the other patterns which are mostly random. Exper-

iments have shown, though, that the relevant patterns for our purposes are those with the

highest multi-resolution similarity.

Note that for this thesis the actual information carried by the image is not of interest and is not

subject to the analysis. Just the similar re-occurances of significant instances of visual pat-

terns is detected under the simplifying assumption that these patterns are strictly orthogonal

and grid-aligned.

2.2.2. Segmentation of Repetitive Patterns

We can distinguish between repetitive and non-repetitive regions in a signal or image1. When

traversing an image in a specific direction we can also distinguish between the first occur-

rence of a specific pattern and its repetitive instances. This thesis proposes an image seg-

mentation technique which divides an image in repetitive and non-repetitive regions and splits

each pattern into its repetitive instances.

To define the border of a repetitive pattern we assume that the pattern begins at the first

distinctive feature (i.e. edge) that is similar to the signal at the characteristic offset and ends

as soon as the signal at the offset starts to differ too much from the original instance. The

bounds of a repetitive pattern are not sharp and have to be defined by a similarity threshold.

1Note that we only consider the image intensities of grey scale images in this work. We could consider colors
with some performance hit but grey values proved to be good enough for our purpose.
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part of facade
is occluded

Figure 2.6.: Without a priori knowledge about the signal content it is not possible to evaluate
the correctness of a split. In this case half of the first window has been occluded so the
start of the repetitive pattern is shifted.

With such a threshold non-repetitive regions can be distinguished from pattern regions and

a segmentation is possible.

We also want to split the original region from the repetitive instances in order to split a pattern

of many repeating windows into tiles with only one window (or other facade element) each.

This problem can not be solved in general without knowledge about the appearance of the

pattern (see figure 2.6). From a signal processing point of view, there is no definite start or

end in a repetitive pattern such as an infinite sine wave for instance. After defining a start

point we can split a sine wave into periods using the offset 2π . For building facades, we

can constrain our input images to complete pictures of a facade, such that it is impossible

(except in case of occlusions like in figure 2.6) for a pattern to start in the middle of a window.

Assuming this, a series of repetitive instances of a pattern is easily segmented by placing a

splitting line at every offset pixels.

A difficult problem for image segmentation based on repetitive patterns is the handling of

overlapping patterns. To demonstrate the problem consider the facade image in figure 2.7.

There are two possible concurring segmentations based on either the one pattern’s offset or

the other’s. A solution to this problem which is applied in this thesis is to exclude some of the

detected patterns according to a priori knowledge or image area constraints.

Another problem is the non-uniqueness of patterns. The same signal can be interpreted as

many different patterns with different offsets. The offsets of these patterns are, of course, re-

lated arithmetically. A pattern with offset δ can be interpreted as a larger pattern with offset

2δ . This can be detected easily and eliminated, as described later. Multiple interleaved pat-

terns with different offsets which are interpreted as the sum of different non-multiple patterns
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Figure 2.7.: Two overlapping repetitive patterns and their respective splitting lines. There
are often highly frequent overlapping patterns, especially in art nouveau facades which
exhibit much decor. The problem can be solved by constraining the offset to minimum and
maximum values.

are a much more challenging problem which is not yet solved because it rarely happens.

2.2.3. Similarity measure

Repetitive patterns are defined by local self-similarities in an image. To measure the similar-

ity of image regions we need a robust operator that is suitable for images of repeated real

world objects which can exhibit a large range of defects. In literature, a common compar-

ison operator is cross correlation of image patches which is simple and relatively cheap to

compute making it the ideal basis for the implementation of an efficient similarity measure.

To remain insensitive to relative intensity variations in the compared locations the normalized

cross correlation coefficient (NCC) is computed. Due to its simplicity and efficiency the NCC

was decided to be employed to measure similarity between distinct image locations2.

NCC eliminates the differences in intensities caused by lighting conditions by substracting the

mean of the subimages and normalizing the resulting dot product with the standard deviation.

2In theory other operators that are useful for template matching could be applied. In our case, NCC seems to
be a good trade-off between performance and robustness.
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That is, the normalized cross-correlation of a template t(x,y) with a subimage f (x,y) can be

written as

NCC(t, f ) =
1

n−1 ∑
x,y

( f (x,y)− f )(t(x,y)− t)
σ f σt

(2.1)

where n is the number of pixels in t(x,y) and f (x,y).

In functional analysis terms, this can be thought of as the dot product of two normalized

vectors. That is, if

F(x,y) = f (x,y)− f (2.2)

and

T (x,y) = t(x,y)− t (2.3)

then we can write the operator as

NCC(T,F) =
〈

F
‖F‖

,
T
‖T‖

〉
(2.4)

where 〈·, ·〉 is the inner product and ‖ · ‖ is the Euclidian Norm.

The size of the template t(x,y) is called window size further on. The impact of window size

when measureing similarity is discussed in more detail in the next section.

2.2.4. Influence of the window size

When measuring local similarities the size of the sub-image regions to compare, in short

the window size, is an important parameter to consider with respect to performance and

robustness. The Cross Correlation of small windows like 3x3 or 5x5 pixels can be computed

very fast as compared to larger window sizes like 63x63 or 127x127 are very expensive to

compute. This is due to the computational complexity of Cross Correlation which is quadratic

with respect to the size of the compared image regions. On the other hand, the quality and

robustness of the similarity measure for two image regions increases with larger windows.

Small window sizes are sensitive to damages of repetitive real world patterns in images

such as dirt, scratches, camera chip noise and other micro differences which influence the

resulting values and increase the variance of the measured data. In order to gain sufficient
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robustness for the similarity operator it is necessary to compare sub-images of at least 15x15

pixels. This window size is, as determined empirically with facade images, the best trade-off

between speed and operator robustness.

Also, when seen through a small window certain image regions may look very similar to

others even if they are not when seen through a larger window (see Fig. 2.8). As a result of

very small window sizes such as 3x3 pixels, small patterns with high frequencies are favored

over larger patterns with lower frequencies. This is an example of overlapping patterns. As a

conclusion, using a constant window size increases the potential to favor the wrong patterns

over others or, in other words, the similarity measure is biased by the window size of its

operator.

a

b

Figure 2.8.: Two differently sized similarity windows with highly similar matches. a) A correct
match with a window size of similar dimension with respect to the size of the sampled
features. b) An example of a wrong match with a high similarity value caused by a too
small sampling window.

This imposes that an approach with a constant window size is not feasible because the size

of the patterns is not known a priori. To solve this problem we need to change the definition of

our similarity measure to automatically adapt to the pattern’s size, in order to obtain unbiased

results.

A possible approach to this problem is to choose from a set of different operator sizes at

random e.g. 15, 31, 63, 127 pixels. However, due to the quickly increasing computational

cost of larger window sizes a different strategy has been chosen.
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2.2.5. Multi-Resolution Similarity

Rather than relying on larger windows to improve robustness and reduce bias the multi-

resolution similarity operator measures similarity with a constant window size on different

resolutions of the image at the corresponding location of the unscaled image. The similarity

values are computed for every different resolution and then averaged to form the final multi-

resolution similarity value.

This can be implemented quite straight forward with a classical image pyramid. Each layer

of the image pyramid is computed by subsequently scaling down the image with the factor

s = 1
2 , where we use cubic down-sampling to preserve smoothness. On the down-scaled

image the same absolute window size covers 1
s2 -times the area as in the next lower image

pyramid layer, which means, that although we have the same operator size in pixels we are

comparing much larger areas. The similarity ς results from similarity in all pyramid levels

which have been taken at the closest position to the original position in the unscaled picture

and are then combined into the final result by taking the mean.

If fk and tk are the template and subimage of constant size accross all pyramid layers cen-

tered at the positions pi
sk and p j

sk in the k-th pyramid layer, our multiscale similarity operator

between the two image positions pi and p j in the original image is given by

ς(pi, p j) =
1
S

S

∑
k

NCC (tk, fk) , (2.5)

where S is the number of layers in the image pyramid, s the scale factor for down sampling

from one layer to the next higher one and NCC is the similarity operator which operates on

the k-th layer of the pyramid defined over the input image I. As shown in figure 2.9 the

window size is kept constant on all layers.

A very big advantage of this multi-resolution similarity measure is its robustness against any

sort of highly frequent noise or variations in the image. On the other side, architectural

facade features are typically evident in both high, medium and low image frequencies. This

is demonstrated by figure 2.9 where the windows are still well recognizable even on highly

down scaled3 pyramid layers.

Since we are searching exactly for such repetitive features that are evident accross all pyra-

mid layers and the noise or small variations in the patterns are only evident in high-resolution

3Cubic down sampling has been applied which is equivalent to a low-pass filter in the frequency domain.
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Figure 2.9.: Multi scale similarity measure.
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pyramid layers multi-resolution similarity matching is conveniently robust for this kind of ap-

plication compared to the simple similarity measure on the original image only. On the other

hand, while being very robust, multi-resolution similarity is also more accurate than mea-

suring on down scaled or low-pass filtered images only because it measures also the high

resolution layers where small image features such as edges and corners allow exact match-

ing of repetitive image regions. Hence, the multi-resolution similarity operator produces high

quality results4.

By using a constant window size the multi-resolution similarity operator on the image pyramid

is highly efficient compared to using large similarity windows on the original image. Also,

the multi-resolution similarity operator on the pyramid is not totally equivalent to the multi-

sized similarity operator on the original image because the latter lacks the implicite low-pass

filtering of the former approach.

Also, by virtually comparing relatively large areas by using small ares of low-resolution pyra-

mid layers of the image the quality and the performance of the multi-resolution similarity

measure is completely independent from the size of the input image and the sizes of the

repetitive patterns we are interested in.

The image pyramid is computed only once so it does not add to the complexity of the method.

Given that the number of pyramid layers is bound and will not be higher than five to ten layers

depending on the size of the original image (possible image sizes are bound too) this also

does not add to the algorithmic complexity of the multi-resolution similarity operator. Of

course, the higher the pyramid the more computations have to be made for each similarity

value. This added computational cost of evaluating the similarity operator on multiple pyramid

levels can be greatly reduced by a so called early break strategy. Early break stops the

evaluation of all pyramid layers if the similarity value on the highest pyramid level (lowest

resolution) is under a certain threshold. In practice a very high number of compared regions

are not similar at all. With early break the full cost of evaluating the similarity operator on

multiple resolutions can be reduced to a single measurement in all the cases where the

compared windows do not match and thus a high quality multi-resolution evaluation is not

necessary anyway.

4Multi-resolution image analysis is a common approach to robust matching, e.g. [ZG02].
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2.2.6. Monte-Carlo self-similarity sampling

This section discusses, how the self-similarities of an image can be efficiently and sufficiently

determined by a stochastic sampling process. The basic idea is, that if enough randomly

chosen image locations are compared for similarity locally the offsets of the relevant repetitive

patterns in the image can be determined through a statistical analysis of the sampled global

distribution of offsets.

A randomly chosen pair of image locations are considered similar or repetitive if the similarity

is beyond a certain threshold or if the similarity value is higher than for any other pair on the

same line when one of the pair’s location is fixed. The distance of the positions of such a

pair of corresponding image locations with a high similarity value is called the offset of the

local repetitive image pattern. From all the randomly sampled offsets with high similarity we

can select the most prevailing offsets. These represent the dominant repetitive patterns in

the image. The following paragraphs go further into detail.

Exhaustive search. Before we look at the efficient way to solve it, let’s first take a naive

approach to better understand the problem. It is quite a computational challenge to search for

all the repetitive patterns originating from arrangements of similar image regions because we

are searching a very large domain of many possible combinations of offsets and positions.

A naive deterministic approach to the problem of finding horizontal translational similarities

would be the brute force approach also known as exhaustive search:

1. computing and storing similarity values ς for all possible horizontal offsets ∆ in a range

D as subset of the image width W :

H(i) = ς
(

pi, p∆ j

)
,

where ∀ i ∈ I and ∀ j ∈ D⊆ {W}.

2. statistical analysis of the computed data H.

This is an approximation of the well known approach of extracting maxima in the auto-

correlation surface of a repetitive image which is used in many publications to repetitive pat-

tern recognition. The standard procedure is to compute the auto-correlation of the complete

image and to employ different techniques to analyze it [HLL01], [LCT04], [HLEL06]. Another
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exhaustive search approach which is specialized on facades compares large image slices us-

ing Mutual Information [MZWVG07]. All these methods are very costly operations especially

for high-resolution images supplied by common digital cameras. Also, for the objective of this

thesis calculating an auto-correlation surface of the whole image is not necessary. Since we

are interested in horizontal and vertical similarities only, a majority of the computations of the

auto-correlation surface would be wasted for nothing. The auto-correlation surface is actually

an implementation of the classical brute force search strategy when it is used to search for

repetitive patterns. Since exhaustive search is too costly especially for large high-resolution

images a more sophisticated search strategy is presented in the next paragraph.

Monte Carlo sampling. A common approach to deal with complex or high-dimensional

search spaces are Monte-Carlo (MC) solutions. Using MC sampling to obtain samples of the

same data as computed above allows for a low cost approximation of the expensive deter-

ministic computation. Instead of computing the similarity for every pair of different locations,

the Monte Carlo algorithm takes a statistic probe of the similarity at a constant number of

random positions:

1. computing and storing N similarity values ς for all possible offsets ∆ in the range D

as subset of the image width W , where i is determined randomly from an appropriate

distribution and ∀ j ∈ D⊆ {W}:

H(i) = ς
(

pi, p∆ j

)
.

2. statistical analysis of the computed data H

The quality of the results of Monte Carlo sampling is of course depending on the probe size

(the number of random samples taken) so eventually with a very large probe size the Monte

Carlo result converges against the true solution. If some information about the underlying

distribution that is sampled is known the convergence speed of the Monte Carlo process can

be sped up dramatically. With clever sampling strategies that make use of these informations

the results of Monte Carlo sampling quickly converges against the true deterministic solution

with relatively few samples.

The big advantage of Monte Carlo solutions is that they are much more efficient to compute,

especially for high dimensional problems. Indeed, in our case the computation of the most

important offsets is significantly faster than the equivalent exhaustive search solution.
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2.2.7. Importance sampling

Importance sampling is a technique to improve the convergence speed of Monte Carlo sam-

pling by incorporating a priori knowledge about the sampled distribution into the sampling

process. In contrast, simple sampling just casts uniformly distributed random samples. The

sampling error with simple sampling is much higher than with importance sampling for certain

functions.

We want to sample the distribution of repetitive image features which comes down to the dis-

tribution of pairs of image locations that are highly similar. In this case, importance sampling

would be to draw more samples from some image regions than others based on information

where such repetitive regions might be. As a result, the regions of interest are sampled much

better than others and thus the number of necessary samples is kept as low as possible.

Facade elements such as windows, balconies etc. are characterized by sharp orthogonal

edges and corners. Based on this information we can implement an importance sampling

strategy. It is not so important to sample image regions without any edges or corners be-

cause they might not contain any facade elements. Instead we focus on edges and corners

which are better indicators for facade elements. The implementation of such an edge-based

importance sampling strategy is quite simple: in a pre-processing step an edge image is

computed using Sobel-filtering and Canny edge detection [Can86]. Then the positions of all

edge pixels are collected into an array. During the stochastic sampling process the Monte

Carlo algorithm takes positions from this array at random. Using this sampling strategy, the

accuracy of the result is much higher than for simple uniformly distributed random position

sampling of the image while requiring significantly less samples.

Our sampling strategy can be further improved. When looking at typical Art Nouveau facades

in Vienna one might notice that decorative elements which produce dominant horizontal im-

age features are very common (see figure 2.2.7). Searching for repetitive horizontal patterns

on such features would introduce a lot of errors because any offset would yield high similarity

values. By adjusting the importance sampling strategy we can further improve the conver-

gence speed and reduce the variance of the results. One way to adjust the sampling strategy

would be to avoid sampling on horizontal edges. Since windows are still represented good

enough by vertical edges we tune our importance sampling strategy to perform better on Art

Nouveau facades by restricting random samples to positions from vertical edges only.
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Figure 2.10.: A typical Art Nouveau facade in Vienna featuring strong horizontal edges. Such
image features introduce errors when searching for horizontal repetitive patterns which
results in a higher number of samples to be cast to get reliably results.

Distinguishing important patterns via estimated image size. The offsets found through

stochastic sampling need to be qualified for their relevance. The most important criterion is

of course the similarity. A pattern that is based on sampled corresponding image locations

with a specific offset with lower similarity values is less relevant than a pattern with a different

offset and higher similarity values. However, high similarity values do not necessarily make

an offset representative for a dominant image pattern. It could be just coincidence that a

single pair of image regions are highly similar but do not belong to the prevailing repetitive

pattern in that image.

The area covered by windows and their surrounding decoration on typical apartment building

facades in Vienna ranges from 40% to 90%. This has been determined empirically from

hundreds of art noveau facade photos taken on different locations in vienna. Because we

are especially interested in facade features like windows, we are searching for patterns that

cover a quite large area of the image. This way we are able to distinguish between relevant

and irrelevant regular patterns which otherwise can not be distinguished by their similarity

values.

In order to be able to estimate the image area covered by a specific pattern the random

samples which are not rejected are classified and sorted into a histogram by their offset. The
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more samples with the same offset are counted the more area is covered by the pattern and

thus the higher is its relevance. This technique is inspired by Monte Carlo integration which

counts random samples to estimate the area defined by a mathematical function to compute

its integral. Monte Carlo integration is a very efficient way to numerically solve complex

integrals especially for high-dimensional functions. It is also known to outperform standard

numerical quadrature methods with respect to accuracy if a sophisticated sampling strategy

is applied, such as importance sampling.

The proposed sampling process to identify large image patterns casts a number of random

samples and sorts the resulting offset into histogram bins if they meet certain criteria. As said

before, patterns that cover more image area are more relevant than others so the quantity of

occurrence of a specific offset is the decision criterion. Larger patterns will cause significant

peaks in the offset histogram, because according to Monte Carlo integration, the larger an

area the more random samples will hit it. The resulting histogram represents the distribution

of similar offsets in the image.

2.2.8. Sample quality criteria

In order to identify patterns and measure their offset, we need some criterion to judge what is

the best matching corresponding region for a given location. A trivial criterion is the similarity

value itself. This criterion is called the threshold criterion.

The threshold criterion simply defines a global threshold for the accepted similarity values.

The similarity values range of our operator is between 1 and -1, where 1 means high trans-

lational similarity and ≤ 0 means no translational similarity at all. For identification of transla-

tional repetitions we could define a threshold criterion with a similarity threshold of 0.8. This

means, that all samples with a similarity value below 0.8 are rejected and thus treated as not

significantly similar.

The histogram classification function h(∆) with threshold criterion for N random samples and

threshold t is given by:

h(∆) =
N

∑
i

{
1 if ς(pi, p∆) > t

0 otherwise.
(2.6)

The function counts how many samples (random pairs of points) with a given offset ∆ have

a multi-resolution similarity value greater than a fixed threshold t. When measuring similarity
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with the normalized cross-correlation operator, a threshold of 0.8 or higher ensures that only

highly similar matches are counted. By counting only samples with very high similarity values

the variance of the estimated distribution of offsets is significantly lower. However, a quality

criterion with a single fixed threshold still counts a lot of imprecise matches because the

sampled offsets are not compared to each other in any way. Even significant deviations from

the perfect match of two regions may feature insignificantly high similarity values which might

be much higher than the threshold. The problem arising from this fact is, that the results are

noisy and the significant offsets may be hard to distinguish from the rest. ´

A much more accurate criterion for finding the best recurrence of a spot in the image is

to compare the similarity values of multiple possible candidate offsets and choose the best

match. This best match criterion is shown to significantly boosting the signal-to-noise-ratio

of the estimated offset distribution histogram. Basically, the idea is to draw more than one

sample from one random location, compare them against each other and record only the

best match which is the sample with the highest similarity value.

A definition of the histogram classification function h(∆) implementing the best match criterion

for N random samples from a uniform distribution is given as:

h(∆) =
N

∑
i

{
1 if ∆ = ∆ j,

0 otherwise.
(2.7)

where ∆ j = argmaxς
(

pi, p∆ j

)
, ∀∆ j ∈D. The range D is defined as a subset of all possible

offsets W : D ⊆ {W} in the current row or column of the image with respect to the current

sample position.

To sample according to the best match criterion means to count how many times a given

offset ∆ j is the best one in such that its multi resolution-similarity is higher compared to the

similarity of any other offset at the sample location pi. An offset with a high number of hits

represents a pattern that is more dominant in terms of recurrence similarity and was found

on a large image area.

2.2.9. Extraction of the relevant patterns

Due to real imprecisions of the facade or due to the unavoidable perspective distortions on

photographs the best match of different samples of the same pattern might show some small
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Figure 2.11.: Comparison of histograms resulting from 100k samples with threshold criterion
selection (left) and 1k samples with best match criterion selection (right). The broad peaks
in the left hand histogram and high peaks of irrelevant offset combinations are signs of the
much higher overall error of the simple threshold criterion.

differences. Even after rectification certain artifacts resulting from perspective distortions

remain in the image which account for variations of the measured offsets of the same pattern

in different image regions. Typically, the dominant patterns are represented by a number

of very similar offsets forming peaks in the histogram. These peaks are superimposed with

random noise which might corrupt the results unless a good evaluation method is used. As

a result, a technique is required to classify similar significant peaks of offsets into a cluster

representing the same repetitive pattern. In other words, the significant peaks need to be

extracted from the histogram using a method that is not disturbed by the unavoidable noise.

To reduce the impact of noise it is advantageous to smooth the histogram function before

peak extraction. The histogram curve can be smoothed with a box filter or a Gaussian kernel

or any other smoothing operator. In the reference implementation a simple and efficient

smoothing term has been chosen. Each value f (x) of the sequence f is normalized such

that

f (x) =
1

2n+1

n

∑
k=−n

f (x+ k) (2.8)

where n is the size of the smoothing kernel. Note that this smoothing kernel directly alters the

sequence it operates on instead of creating a filtered copy of the sequence. This means that

previously filtered values are re-used which results in a error-diffusion of the noise. The major

peaks which mark the relevant offsets remain while the noise and the outliers are removed.
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The results of this smoothing operator are quite similar to a Gaussian blur but come at lower

computational cost.

Smoothing of the histogram curve is essential for the peak extraction. If the ambient noise

generated by the Monte Carlo random sampling algorithm is not smoothed out the peak

extraction would find too many peaks. In this context it is also important to discuss the

optimal size of the filter kernel. While for small images up to one megapixels a 3-pixel filter

kernel is sufficient it is certainly not adequate for a 10 megapixel image because it can no

longer remove the large-scale noise. An optimal filter kernel size must therefor be derived

from the size of the input image in order to adapt the filter kernel to the optimal relative size.

In the reference implementation a filter kernel size of n = d
50 proofed to be useful for most

images, where d is the currently relevant image dimension (with or height), dependent of the

processing direction.

In order to preserve precision of procedure while smoothing the histogram caution is advis-

able not to smooth to much. In an extensively smoothed histogram near standing peaks

may merge into a single peak that is located in the middle. The reference implementation

smoothes only once with the above given smoothing window size.

Figure 2.12.: Original histogram (a) and a smoothed and normalized histogram (b). In the
smoothed histogram some close peaks are merged together because of oversmoothing.
This reduces the number of concurring extracted peak locations on the one hand but also
degrades precision of the segmentation on the other hand.

The peaks can either be obtained from the smoothed histogram function by extracting the

maxima by numerical differentiation or better by clustering. The problem with maximum
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extraction is, that even very small variations may result in local maxima which are not relevant

peaks. One could try to define a threshold for relevant maxima by means of the standard

deviation but it is error prone. The best method for robust peak extraction proved to be mean

shift clustering [CM02]. The mean shift algorithm is a nonparametric clustering technique

which does not require prior knowledge about the number of classes and does not constrain

the shape of the clusters.

The mean shift algorithm is an iterative procedure where a number of sampling windows (i.e.

circles with a specific radius) successively move towards the greatest increase in density and

finally stabilize in the center of mass of a cluster. For every iteration the center of mass for

every window is computed and the window is moved to that new location. The vector from the

old location to the new location (the mean shift vector ) always points towards the direction of

maximum increase in density. The iterative procedure is guaranteed to converge to a local

density maximum. The number of resulting clusters depends on the window size and the

position and number of starting values.

Figure 2.13.: Position of mean shift clusters (red) after a few iterations over a smoothed offset
histogram.

Post processing of extracted offsets. When stochastically sampling repetitive patterns

that are normally re-occurring multiple times in the image, it happens that a very good match

or even the best match is not the first recurrence of the pixel configuration in the image.

According to that, in many cases the extracted offsets include doubles, triples and higher

multiples of the smallest offset to the first recurrence. If a pattern is not constantly spaced

through the image, which means that there are differently sized intervals between the re-

occurring regions, it might as well happen that the extracted offsets contain combinations of

those different offsets. See the annotations of the histogram in figure 2.15 and the corre-

sponding annotations in figure 2.14 for examples of multiples in a facade image.

A simple but very efficient partial solution to this problem is to remove all offsets which are

close to integer multiples of the smallest offsets. The downside of this approach is, that in
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Figure 2.14.: Demonstration of a number of possible multiples of offsets A and B which might
obscur the results of the histogram extraction. Two, three and four times multiples of an
offset happen quite often and can be easily removed by postprocessing.

some cases relevant offsets have been removed because they were close to multiples of a

smaller offset. For the goals of this thesis, though, this solution proved to be feasible enough.

For future work, there might be room for potential improvements regarding this matter. For

instance, the fact that a highly similar match may not be the first recurrence of a pattern could

be incorporated into the sampling process by prioritizing samples which are repeated more

often with a high similarity in one direction.

Another option is to dramatically reduce the number of possible multiples by selecting only

images with strong perspective, as described in the next paragraph.

The effect of perspective distortion on correctness. Tests have shown that the offset

extraction works better on (rectified) facade images that have been taken from pictures with

stronger perspective. On images with strong perspective distortions the next adjacent repeti-

tive facade detail appears much more similar than any repetitive instance that is farther away.

Take a look at figure 2.16 for a visual explanation.

The reason is that when the perspective facade is unprojected to obtain an orthogonalized

view of the facade plane any other geometry that is not on the facade plane remains more

or less perspectively distorted depending on the direction and offset from the facade plane.

Thus the windows a and b from 2.16 are more similar than the windows a and c. This means
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Figure 2.15.: Histogram from 1000 random samples gathered using the best match criterion
for the facade image shown in 2.14. The multiples of the main offsets A and B can be
clearly observed as secondary peaks in the histogram.

that samples of the shortest repetitive instance yield a higher similarity value than samples

of any other recurrence. This means that pictures with strong perspective distortion ensure

better results due to significant reduction of multiples due to the preferrance of the shortest

recurrence of a repetitive pattern’s instance.

2.3. Segmentation of the Repetitive Instances

We now know which patterns (given by their representative offset) are the prevailing ones in

the image. We identified them by prioritizing patterns with offsets that occur significantly more

often than others and exhibit reasonably high multi-resolution similarity values. Now that we

have this information we would like to determine the location of each distinct repetitive pattern

and its extent in the image. This allows us to reach our goal which is to create a partition

of the image where every partition represents a repetitive tile of a single dominant pattern if

there are any repetitions in that area of the image at all. The end result should be a partition

of the facade image into floors where every floor is divided into the tiles of windows. This

partition then serves as input i.e. for more sophisticated 3d-reconstruction algorithms which

is beyond the scope of this thesis.
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a b c

Figure 2.16.: Geometry other than the unprojected and orthogonalized facade plane remains
distorted in the rectified image. This results in higher similarity values for the nearest
instances of a repetitive pattern. The illustration exaggerates the effect for clarity.

2.3.1. Localization of the Patterns

The basic idea of the following pattern localization procedure is to test for each of the dom-

inant patterns how they are distributed over the area of the image. Of course the decision

whether or not a pattern prevails in a specific image region is not always a binary choice. But

when compared to the other detected dominant patterns a decision can be made which of

the patterns is the best fit in a specific image location.

The Similarity Curve. Of course it would be too expensive to check every single pixel

in the image which of the identified patterns is most dominant so we again resort to an

estimation using random sampling. The same multi-resolution similarity measure as used in

the identification step serves as criterion for the relevance of a specific pattern in a specific

region. For every different offset the sampled data can be seen as a curve containing the

similarity values for every pixel row y or pixel column x in the image. This similarity curve

S(x,∆) for every dominant offset ∆ based on the similarity measure ς is formally described

as:

A horizontal similarity curve S(x,∆) for an offset ∆ is defined as follows: Using the multi-

resolution similarity measure ς the image is sampled at every pixel column x at N random

locations yi. The mean over every pixel row is the value of the similarity curve at pixel column

x:
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S (x,∆) =
1
N

N

∑
i

ς (p(x,yi), p∆(x,yi)) . (2.9)

The definition of the vertical similarity curve is analogous to the horizontal curve in that for

every image row y N samples xi are drawn.

The reader might notice, that this sampling process is gathering positional data that actually

(at least partially) could be recorded in the identification sampling process. It might even

be possible to integrate the localization step with the identification step to gain even more

performance. Such optimizations seem to be promising subjects for future work.

114 146 146 123 122

0

S121
S1461

Figure 2.17.: Shows the similarity curves for the two extracted major offsets. Note that the
similarity curve of the offset that is closer to the local underlying pattern is significantly
higher.

The resulting similarity curves for every relevant offset are shown in figure 2.17.

With help of the similarity curve for each identified relevant offset, localization of the patterns

is relatively simple. It can be done by comparing the similarity curves for each relevant offset

against each other. By setting the curves in relation to each other, a decision can be made

which image regions "belongs" to which pattern. Moreover, regions with very low similarity

response to all major offsets are considered to be non-repetitive image regions. But first we

need to divide the image into regions.
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2.3.2. Segmentation

The goal of this work is to divide a rectified image of a building facade into tiles of repetitive

facade elements. Using all the collected evidence, we can now carry out this segmentation

task and divide the image space into tiles. As mentioned before the idea is to compare the

similarity curves against each other.

Segmentation by Maximum-Projection of Similarity Curves. A simple approach would

be to assign every image column the offset for which the similarity curve is highest in that

specific row. Such a per-column maximum projection method has the drawback that the im-

age might be over-segmented in areas where two very similar offsets exhibit high alternating

similarity response. This method was the original segmentation approach but turned out to

be not robust enough. Therefor another method has been developed as described in the next

section.

Segmentation by Iterative Monte-Carlo Integration. Actually we would like to constrain

the resulting repetitive regions to a plausible minimum size. The offset of the prevalent repet-

itive pattern is a good minimum constraint. In other words, a region that contains an instance

of a repetitive image feature should be exactly the size of the offset of the feature to its next

instance.

This segmentation algorithm iteratively decides what is the most dominant offset in the local

image region and then divides the image accordingly. The decision criterion for finding the

most dominant offset of the next region is the accumulative similarity. In other words, the

segmentation algorithm integrates over the similarity curve of every offset from the current

position to the offset. This means, that we need to integrate over a different interval for every

offset. In order to be able to compare these accumulated similarity values against each other

they need to be normalized by the offset. The offset with the highest normalized accumulated

similarity wins and the size of the hereby segmented region is the offset. The current position

advances to the end of this region and the algorithm enters the next iteration.

The iterative segmentation is defined formally by the position of the next splitting line Li+1

based on the position of the current splitting line Li: ´

Li+1 = Li + argmax
∆

∑
Li+∆ j
x=Li

S(x,∆ j)
∆ j

 (2.10)
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Figure 2.18.: Illustration of the iterative segmentation algorithm. For each iteration and each
major offset an integral Fi of the similarity curve Si is calculated. Since the integration
is over a different range for every offset, the resulting areas are normalized to allow a
comparison. The offset with the higher normalized area wins the voting for this iteration. In
this example in the first iteration the offset 121 is chosen, in the second iteration the offset
146 is selected, and so on.
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where ∆ j are the relevant offsets that have been extracted from the image. L0 is initialized to

0 or to the first row / column that exhibits significant repetitive response on any of the relevant

similarity curves.

The highest value of the integral over the offset’s similarity curve normalized by dividing

through the offset is used to decide at which offset to set the next splitting line, so to say,

which offset represents the following region’s most dominant repetitive pattern best. As this

method cannot account for intervals of non-repetitive nature it is necessary to identify the

image regions where any of the offset’s similarity curve is below a certain threshold (i.e. 0.3)

and apply the iterative segmentation algorithm to the remaining repetitive regions.

A shortcoming of this segmentation method is the fact that an offset ∆ and its non-fractional

multiple N∆ with N = 2,3,4... are treated as if they would represent completely different

patterns, even if both offsets are occurring due to instances of a single pattern. This results

in systematic errors when offsets are fighting with their multiples and normally their similarity

is quite equal yielding unstable results depending on the random numbers used for sampling.

In a previous section a possible solution to this has been discussed, namely explicit removal

of "nearly non-fractional" multiples of smaller offsets. This is not the finest approach and it

may lead to other errors in certain situations. A much more elegant solution is to modify the

splitting function in order to slightly prioritize smaller offsets over larger ones with a weighting

factor.

ω(∆ j) = 1−
(

∆ j

min∆
ε

)
(2.11)

where ε is a small penalty factor such as 0.2. Then the iterative segmentation function is

given by

Li+1 = Li + argmax
∆

∑
Li+∆ j
x=Li

S(x,∆ j)
∆ j

ω(∆ j)

 (2.12)

The weighting function ω prioritizes the smaller offsets and hence effectively rules out un-

wanted multiples if their singular offset is present with a high similarity value. On the other

hand, in case that an offset is the multiple of a smaller offset by accident but the local im-

age area does not exhibit any smaller pattern then the larger one would still have a higher

similarity value.
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Chapter 3.

Results

In this chapter various aspects of the proposed facade segmentation method are examined

and presented. The given numbers and the discussion of the limitations of the approach

should allow to conduct an objective judgement with respect to quality, correctness, robust-

ness and performance of the method and its current reference implementation.

3.1. Performance

The performance of the method depends largely on the sampling criterion that is applied.

The performance of the best-match-criterion is directly proportional to the number of pixels in

the image, whereas the performance of the threshold criterion is quite constant considering

that the number of samples taken (i.e. the probe size) is constant (see figure 3.1).

3.1.1. Best-match vs. Treshold criterion

The following table summarizes horizontal segmemtation performance of a facade image with

different resolutions using threshold sampling criterion with a threshold of 0.8 and 50.000

samples. The performance of vertical segmentation is aequivalent to horizontal segmenta-

tion.
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Figure 3.1.: Performance comparison of the sampling criteria "best match" versus "thresh-
old". The graph displays the running time of each sampling strategy as a function of image
size.

Performance of best match criterion

megapixel time (s) correct segmentation

0,59 1,53 yes

1,19 3,41 yes

2,37 8,49 yes

4,75 18,15 yes

9,50 37,39 yes

Performance of threshold criterion

megapixel time (s) correct segmentation

0,59 4,32 yes

1,19 6,33 yes

2,37 8,33 yes

4,75 9,23 yes

9,50 9,50 yes
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The timings were recorded on a a Intel dual-core 2.4 GHz computer. The performance com-

parison shows the linear complexity of best-match sampling as opposed to the constant com-

plexity of threshold sampling with respect to image resolution. It suggests, that the best match

criterion is best to be applied for small images while the threshold criterion is best suited for

large images due to its constant complexity. On the other hand, the results of best-match

criterion are more precise, so best-match sampling is better if high precision is required i.e.

for images where the distance of different patterns which should be distinguished is relatively

low.

3.1.2. Impact of random sampling probe-size on performance

The performance of this segmentation method is not only dependent on the image size but

also depends on the number of samples taken.

The following table shows the horizontal segmemtation performance of a typical facade im-

age with a resolution of 0.4 megapixels and different numbers of samplings. For the threshold

sampling criterion a threshold of 0.8 was used.

Best match criterion Threshold criterion

samples time (s) correct samples time (s) correct

2 0,07 no 50 0,008 no

5 0,2 no 500 0,07 no

10 0,57 yes 1.000 0,12 no

20 0,81 yes 2.000 0,25 yes

40 1,64 yes 5.000 0,71 yes

60 2,19 yes 10.000 1,29 yes

80 3,15 yes 20.000 2,63 yes

100 3,99 yes 50.000 6,59 yes

200 7,01 yes 100.000 12,91 yes

500 18,87 yes

1000 36,67 yes

These timings where recorded on a Intel dual core 2.4 GHz machine. The above table

shows, that the execution time is directly proportional to the number of samples taken for any

of the applied sampling criteria. Most relevant for the algorithms performance, however, is
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the sampling criterion and the image size, because the number of samples does not need to

vary and hence is to be considered as a constant factor.

3.1.3. Complexity

The algorithmic complexity of this method depends on the sampling criterion. For best match

sampling the complexity of the method depends on the number of samples n and the resolu-

tion of the image m in pixels. The algorithmic complexity for best match sampling is therefor

limited by an upper bound of O(nm) while the complexity of the threshold criterion depends

solely from the number of samples taken. The size of the input image does not significantly

influence the performance of the threshold criterion method. The algorithmic complexity for

sampling with threshold criterion is therefor limited by an upper bound of O(n) where n is

the number of samples taken. If the number of samples is considered to be a fixed constant

(because the number of samples does not dynamically change once an appropriate number

has been chosen) then the complexity of "best match" is actually linear O(n) with respect to

image size n and the complexity of the threshold criterion is constant O(1) for increasingly

larger images.

3.1.4. Parallelization

The algorithm is easily parallelizable in many different ways to take full leverage of the com-

putation power of contemporary multi-core processor architectures. For instance, one could

dived up the workload of the sampling stage by the number of processors available p, so that

every thread takes N
p samples individually in order to get a complete number of N samples.

This approach does not require any synchronization between the independent processing

threads until the end when the histogram is evaluated. The individual histograms of each

thread can be merged for the extraction of the major offsets.

Another possible way to parallelize the computation load on multi-core or multi-processor

architectures is to distribute the multi-resolution Cross Correlation computations such that

the computation on each different pyramid layer is executed by another processing unit. This,

however, requires to sync the threads for each sample when the similarity values on different

scales are averaged. This approach makes more sense for a parallel pipeline architecture

such as a modern graphics GPU than for a multi-core CPU.
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Another way is to use an image-processing library that is highly optimized for parallel exe-

cution on multi-core systems. For instance, the reference implementation relies entirely on

the Intel Performance Primitives library for parallelization of the NCC operator. The follow-

ing table demonstrates the effect of dual core parallelization on the execution time of the

algorithm.

cores time (s)

1 13.6

2 6.6

The results show clearly that allowing the algorithm to run on two cores yields the expected

performance gain by reducing the execution time to a half of the time needed on a single

core. The above times where recorded while taking 100 best-match samples from a 0.7

megapixel image on a Intel dual core 2.4 GHz machine.

3.2. Quality

3.2.1. Precision

The precision of the segmentation method presented herein is given by the average devia-

tion from the exact solution on an appropriate number of test cases. For this purpose the

algorithm has been tested against a hand crafted image with exactly spaced instances of a

pattern. The following table lists the average deviation of 50 runs each for both sampling

criteria in percent of the exact solution.

best-match threshold

average error 1.67% 1.66%

standard deviation 0% 0.35%

The slight fuzziness of the segmentation results are due to the applied Monte Carlo random

sampling. For example, if the windows on a facade image are spaced by an offset of 300

pixels then a 2% deviation means that the resulting detected offsets are may be off by 5

pixels. The relative representation of the error as percent of the exact result has been chosen

because the absolute error is growing proportional to the absolute size of the patterns.
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3.2.2. Resolution independence

The current implementation is able to successfully segment facade images starting from a

lower limit resolution of 100 kilopixels up to extremely large images which are bound only

by the memory capacity of the machine. Due to the adaptive multi-resolution sampling the

segmentation results are very stable for an image under extremely different resolutions.

The method is parameterless with respect to image dimensions because all parameters can

be defined relative to image dimensions. The advantage of such an approach is that the

algorithm automatically adapts to the resolution of the input image and yields correct results

without tweeking any parameters. Also, parameters can be tweaked once and will work for

any input resolution.

Of course, results are always more precise on high-resolution images. It may happen, that on

low-resolution images not all offsets are measured correctly because they are either smaller

than the smallest correlation window in the image pyramid or they are too close to other

offsets and their peaks are merged during histogram smoothing. Anyway, for good results a

minimum resolution of one megapixel is suggested for use of this method, although in certain

cases it has been observed to work quite well with much lower resolution images.

3.2.3. Robustness

The presented facade segmentation algorithm is especially robust. The robustness with

respect to typical image damage is demonstrated by showing the results of tests against

incrementally more blurry and noisy versions of the same picture.

Robustnes against Gaussian blur. The following table compares the robustness of the

best-match sampling method against the threshold method with respect to blurriness.
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This image shows a detail of the test image under Gaussian blur with different radius.

radius best-match correct threshold correct

0 yes yes

1 yes yes

2 yes yes

5 yes no

10 no no

Under extreme blurring the importance sampling strategy fails and eventually too few samples

are drawn. This is due to the method’s focus on image discontinuities such as edges and

corners. With increasing blur such image features vanish. Nevertheless, the method can be

considered to be quite robust against blurriness.

Robustnes against random noise. The following table compares the robustness of the

best-match sampling method against the threshold method with respect to overlaid random

noise.
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This image shows a detail of the test image under increasing levels of random noise.

noise (%) best-match correct threshold correct

0 yes yes

50 yes yes

100 yes no

200 yes no

300 yes no

400 yes no

500 yes no

600 no no

Obviously the two different sampling methods behave completely different with random noise

applied to the input images. The best-match sampling criterion is extremely robust and is

even under heavy interferance with random noise able to find the regular pattern beneath.

Threshold sampling, on the other hand, is quite fragile with noisy images. This is due to

the fixed similarity threshold criterion which must be fullfilled for each sample in order to be

stored in the histogram. In order to perform well with degrading image quality and noise this

threshold would need to be adapted dynamically. This would be a possible subject of further

improvement.

Robustenss against real-world artifacts. The previous tests demonstrate the method’s

robustness using artificial measurable image damage. While such artificial settings are good

for quantifying the degree of robustness of the algorithm for objective comparison against
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other methods they do not give true evidence of the robustness under real-world circum-

stances with common artifacts and interferences on ground-based fotographed facade im-

ages.

The method presented herein has been tested against many images with common urban

artifacts disturbing the test facade images such as:

• Shadows of building silhouettes

• Hard reflections of sunlit windows

• Traffic signs and lights, cables, signs and advertisement

• Vegetation

• Blur from moving camera

• Transistor noise on underexposed shots

The following image should demonstrate the robustness of the segmentation algorithm on a

facade image that is both unsharp and heavily obscured by trees and other typical objects of

a urban environment.
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This segmentation has been calculated by drawing one hundred random samples using the

best-match sampling method. You can see that the algorithm reliably detects the repetitive

pattern even though it is heavily obscured by blur and irregular vegetation.
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3.3. Limitations

Although the presented methods have been shown to be quite robust and reliable on typical

facades they also have their limitations. Due to their non-hierarchic ortho-grid-based nature

the algorithms cannot detect patterns that are non-orthogonal or hierarchically structured. In

the following paragraphs the most important limitations are summarized and example images

are given.

Non-orthogonal grid-aligned features.

The algorithm’s search strategies are intelligent and efficient but they search only in horizon-

tal and vertical directions. Facade features that are not aligned orthogonally are therefore

not supported even though they may be aligned on a non-orthogonal grid. In this example

the method would split after the third window because there are two orthogonally aligned

instances of a group of three windows.

Randomly placed features.
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Facade features that are not structured on a grid and not aligned orthogonally are not sup-

ported by the presented method. In this example the method would not find any split lines at

all.

Regularly aligned but non-uniform sized features.

Facades sometimes feature different types of windows in different sizes. Even if these differ-

ently sized windows are orthogonally aligned on a grid the segmentation might return incor-

rect results, depending on the degree of difference between the different window styles.

Other than translational symmetries.

The method is based on efficient detection of translational symmetries. If features are

aligned, for example, in mirror symmetry the segmentation will return incorrect results. In

fact, the algorithm could be modified to also support other symmetries. This is a topic for

future work.
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Alternating translational symmetry or hierarchic grouping.

Alternating patterns are a special case of overlapping patterns which can not currently be

correctly handled by the method. Also more complicated hierarchical structures such as

recursive grouping of patterns are not supported. It is not easy or probably impossible to

extend these kind of search algorithms to detect recurisve hierarchic patterns.

Spatially overlapping patterns.

Overlapping patterns can possibly cause wrong segmentations when the pattern that is ac-

tually only decorative background is visually stronger, features more edges and measures

higher similarity values. In this case, the image would be correctly segmented because the

high-frequent pattern is filtered out in the higher pyramid levels of the multi-resolution similar-

ity sampler. Nevertheless, when two patterns are overlapping, only one is detected and the

segmentation may not give the desired result.
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Regular patterns that are placed on different facade planes.

Due to perspective distortions of all geometry that is off the chosen orthogonalization plane

during the rectification stage, where a perspectively distorted facade is warped into a recti-

linear image, facade patterns which could otherwise be sufficiently detected and segmented

may not be processable depending on the degree of distorion. This is a special case and/or

combination of some of the previously discussed limitations.
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Chapter 4.

Conclusions

4.1. Summary

The problem of building facade segmentation is very complex and expensive. The problem

is so difficult because the appearance and arrangement of windows in urban environments

varies widely, such that it is impossible to successfully apply typical image processing ap-

proaches such as model fitting or pixel-based segmentation methods for non-specific urban

facade images. Most of the methods that currently exist either require manual input or are

designed for a very specific set of facades. Currently, there are no generic fully automatic

approaches that work for a large number of different facades.

Striving for an automatic and totally appearance independent detection and segmentation

algorithm, this thesis is based on the simple idea of exploiting the inherently repetitive nature

of facade elements of typical buildings. The thesis presents methods to efficiently detect

the inherently regular repetitive patterns of typical urbane facades and to to segment such

images into facade tiles for further processing such as geometry extraction.

Starting from orthogonalized photographs of building facades the first step to solve the prob-

lem is the search for repetitive patterns in horizontal and vertical directions. Of course, the

number of possible patterns their offset of repetition, position and spatial extent is known to

be very large. In other words, the search space is high dimensional. To search this prob-

lem space for all possible solutions is not efficient and would not be feasible with respect

to computation time, especially for large input images. The efficient solution of the search

problem might be this thesis’ most significant scientific contribution in the field of urban recon-

struction: a Monte-Carlo based image sampling algorithm which reduces the computational
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complexity by a large degree (compared to exhaustive search) albeit the high dimensionality

of the problem space. Using intelligent importance sampling strategies the performance of

the Monte-Carlo approach is further improved.

The two sampling strategies presented in section 2.2.8, best match criterion and threshold

criterion provide different trade-offs between quality and efficiency. Basically the sampling

algorithm can be explained like this; pick any location in the image at random (a sample).

When using the threshold criterion, calculate the similarity to a point that is offset horizontally

or vertically by a random distance. If the similarity is higher than a certain threshold (i.e. 0.8

in a range of 0.0 to 1.0 where 1.0 means equal and 0.0 means totally different) the offset is

stored in a histogram for later analysis. When using the best match criterion check all points

horizontally or vertically for their similarity to the initially chosen random point. Select the

point with the highest similarity and store the offset in the histogram. Take N more random

samples and repeat the sampling process described above for each of them. The number of

samples required for similar results is different for the two sampling strategies but both have

their advantages. See the results in chapter 3 for a detailed comparison of the two.

Before we talk about the analysis of the gathered sampling results, I must say a few words

about the similarity measure on which the sampling process is based on. The method of

choice is Normalized Cross-Correlation of small image patches, which can be computed

very efficiently and provides a good measure. This approach for measuring the similarity of

image locations is state of the art in image processing and computer vision. However, for

our application simple Normalized Cross-Correlation was not robust enough. Therefor, the

similarity operator was improved by sampling in multiple image resolutions (i.e. on all layers

in an image pyramid). Section 2.2.5 describes this generalized multi-resolution image space

similarity operator which significantly boosts robustness and quality of the sampling stage.

Even better, sampling the multi-resolution image pyramid practically makes the sampling

process independent of the image size because the sampling operator can automatically

adapt to the size of the sampled image features.

Next, let us take a closer look at the analysis of the sampled data. The taken samples have

been sorted into a histogram of offsets. That means, in other words, we are simply counting

how often a specific distance of similar points has appeared during the random sampling

stage. Distances which have been recorded much more often than others are a strong hint

to a repetitive image pattern that repeats it’s instances with more or less exactly that offset.

Technically the extraction of such dominant offsets is done by extracting the dominant peaks

in the histogram. The peak identification is implemented by Mean-Shift clustering. These
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extracted major offsets, we assume, correspond to relevant patterns in the image.

We do not care about the location of the sampled offsets at all. The problem with that ap-

proach is that we now only know that there must be relevant patterns in the image and we

know their exact offset. However, we do not know their location and extent in the image area.

There might be better approaches to solve that problem based on the sample data we al-

ready gathered but in this thesis it is solved by doing another random sampling stage. It can

be explained like this: take each of the major offsets (which we already know that they must

correspond to a dominant image pattern) and take test samples with that offset at random all

over the image. We do that for each of the extracted offsets. A test sample simply measures

the similarity of a random location to a point located at a distance of the offset we are testing.

If the similarity is low we can assume that the pattern with that offset is not located here, if

it is higher than the similarity of other offsets we can assume that this pattern is the most

dominant at this location.

Based on the samples of the second sampling stage we can calculate a segmentation of

the image into facade detail tiles, such that on every tile there is one instance of a repetitive

facade element (generally speaking an instance of a repetitive image pattern). The seg-

mentation algorithm presented in section 2.3.2 is quite simple. It is inspired by Monte-Carlo

integration and works like this: we start at the border of the image and set our anchor. For

each offset we add up the similarity of all samples in the image strip with a width of offset

pixels. This sum of sampled similarities is weighted by the area of the image strip. We take

the offset with the highest weighted sum of similarity samples and move the anchor by this

offset. A splitting line is set. Then we repeat the integration and setting of anchor and split-

ting line until we reach the other border of the image. When you do this for both directions

(horizontal and vertical) you get a grid that segments the locally dominant repetitive image

pattern instances.

The idea of such an automatic segmentation method is to be able to base facade detail

reconstruction methods on it. It solves the difficult and expensive search problem quite effi-

ciently and, as the results show, is also very robust. We go into more detail about possible

further work in section 4.4.
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4.2. Implementation

The reference implementation for the WikiVienna project accompanying this thesis was con-

ducted using the language C# version 3.5. The algorithms were integrated into the VRVis’

internal computer vision and visualization toolkit. In the following sections a few interesting

details about the implementation are presented.

4.2.1. Image Processing

For the feature selection and the similarity operator a highly efficient implementation of image

processing routines was needed. As of time of this writing, there are no native C# image

processing libraries available. Therefore the two popular C++ image processing libraries

Intel Performance Primitives and OpenCV had to be prepared for use with C#.

OpenCV is a computer vision library originally developed by Intel. It is free for commercial

and research use under the open source BSD license. The library is cross-platform, and

runs on Windows, Mac OS X, Linux, PSP, VCRT (Real-Time OS on Smart camera) and

other embedded devices. It focuses mainly on real-time image processing.

Intel’s Integrated Performance Primitives (Intel IPP) is a threaded library of functions for mul-

timedia and data processing applications, produced by Intel. The library supports Intel and

compatible processors and is available for Windows, Linux and Mac OS X operating sys-

tems.

If OpenCV finds Intel’s Integrated Performance Primitives on the system, it will use these

commercial optimized routines to accelerate itself.

We wrote managed wrapper assemblies that expose all the major methods of Intel IPP and

OpenCV for use with managed .NET languages. We chose IPP and OpenCV because they

are both implemented most efficiently on Intel processor architectures by parallelizing cal-

culations as much as possible on single and multi-core processors heavily utilizing Single

Instruction Multiple Data (SIMD) extensions of recent CPUs.

In the following paragraphs some of the image processing problems that were solved using

external library functions are summarized.
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Calculating an Edge Image. The edge image is a very important ingredient to the Monte-

Carlo sampler described in section 2.2.6 because it allows Importance Sampling as de-

scribed in section 2.2.7. The presented importance sampling strategy increases the perfor-

mance of the Monte-Carlo sampling process (especially the best-match sampling method)

by selecting only important features from the image. In our case, edges and corners have

the most influence on the similarity of two image patches. Also, sampling directly on edges

allows the best possible precision in terms of results.

The edge image is obtained by combining the IPP Image Processing functions ippiFilter-

ScharrHorizBorder, ippiFilterScharrVertBorder and ippiCanny with appropriate image format

parameters.

The performance of the Monte-Carlo sampling algorithms can be boosted by using an edge

image. The trick is, to restrict the random samples to be drawn only from interesting image

locations. Interesting image locations in terms of facade feature detections are discontinuities

(i.e. borders of window elements). This way the sampling algorithm gives better results with

less samples. It is called Importance Sampling which is explained in detail in section 2.2.7.

The similarity operator. The Monte-Carlo sampler is based on a similarity operator which

is implemented as a special composition of Normalized Cross-Correlation (NCC) samples.

The definition of a similarity operator is to calculate the similarity of two image points with

respect to their environment (i.e a certain rectangular window around them). We tested quite

a few different similarity measures provided by IPP but in the end, the function ippiCrossCor-

rValid_NormLevel proved to be most efficient both with respect to precision and performance.

When using Cross-Correlation to measure similarity between certain image points it is essen-

tial to have an odd window size (where the term window is to be understood as defined in sec-

tion 2.2.4). Using ippiCrossCorrValid_NormLevel instead of ippiCrossCorrFull_NormLevel

or ippiCrossCorrSame_NormLevel makes a major difference with respect to performance.

Since we are only interested in the correlation coefficient of the pixel where both source

and target image region are exactly overlapping each other, ippiCrossCorrValid_NormLevel

calculates only that one nothing else.

The multi-resolution similarity operator presented in section 2.2.5 can be optimized for higher

overall sampling performance. The trick is to predict the similarity value with a cheap op-

eration to the complete image pyramid if one sample already tells us that the similarity is

expected to be low. In order to get a good prediction you should take that first sample from

the highest possible pyramid layer which covers the largest (down-sampled) image area of
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the original image. If this predictive similarity value is lower than a given threshold (i.e a cor-

relation value of <= 0.3) we can save valuable computation effort by instantly returning that

value without sampling and weighting all the other image-pyramid layers.

4.3. Conclusions

The work for this thesis was entirely based on the assumption that explicit analysis of the

image content could never lead to a generalized method and that measurement of repetitive

similarities is enough to identify and segment facade elements1. As the results show, this

approach was successful, both in a reliable and efficient manner. However, by using only

information on the translational symmetry of a set of random image locations it is not possible

to discriminate certain areas as background signal and identify others as foreground. In other

words, by not analyzing the content we are not able to identify any content in the image or

distinguish it from uninteresting background noise.

For example, the tile segmentation is completely unaware of the underlying signal. Instead

it uses the measured information on the offset of repetitive instances of a pattern to set

splitting lines. Anyway, from the signal itself, without a priori knowledge, it is not possible

to decide where a window begins and where it ends. Also, because of the vast variety

of window types, decoration elements and colorings it is almost impossible to distinguish

between facade background and facade elements in a generic way. Thus, the proposed

method has a huge advantage over all content based methods: it works for any underlying

signal, only if it is repetitive and orthogonally aligned.

Actually the algorithms can easily be reused for other applications that are not connected

to facade analysis at all. It could be generalized for any type of pattern with any type of

symmetry in any number of dimensions. The next section is going into detail about that.

The most important conclusion is that the initial idea to solely rely on translational symmetries

lead to impressive robustness of the algorithms in the end. The presented segmentation

method is incredibly robust with respect to obscuring noise, occlusion caused by vegetation

or traffic signs and other disturbing artifacts. Such real world image defects that are common

in our image material taken from Vienna would break any content-based methods (such as

pixel-based segmentation, etc.) for sure.

1Given that the pattern instances are aligned on a rectilinear grid.
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4.4. Application and Future Work

The segmentation method developed in this thesis is driven by the current development of an

urban reconstruction framework at the VRVis Company, namely the WikiVienna project. It is

applicable as a preprocessing step for geometric refinement and detail modeling of facade el-

ements which is needed to improve the visual appearance of close-up views of facades. The

automatic processing and high-quality geometric reconstruction of the facade tiles generated

by this method is still an active research topic which has not yet been solved completely in a

generic manner. At the moment, manual or semi-automatic methods are prevailing. In future

work of this thesis could be extended to general search directions, to perspective images or

into a recursive hierarchic method. The segmentation could be done more efficiently based

on the sample data of the first sampling stage.

4.4.1. Future Work

Generalize search directions and symmetry type. In future work the sampling technique

which is currently hard-coded to translational symmetries in orthogonal directions could be

generalized to any direction and to support other symmetries such as mirror symmetry. This

would open completely new applications for the algorithm such as texture segmentation.

Detection of recursive hierarchic symmetry groups. This would allow segmentation of

almost any facade architecture and type that contains repeating similar elements. To do that

the algorithm must be able to search locally not image global as it is implemented now. A

procedural model based on a grammar would need to be populated and verified basing on

the pattern detection algorithm.

Search in perspective images. By doing a hough transformation [Vui94] of the edges

found in perspective images and extracting the significant parameters one can extract parallel

lines in perspective images efficiently. The search algorithm could be extended to search in

perspectively distorted facades, which would also have the positive side effect that facades

of neighboring houses can be segmented easily if they do not share the same features.
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Optimizing the segmentation stage. Currently the segmentation stage is not reusing the

sample data from the first sampling stage, which means, the locations of the random samples

are completely discarded. The segmentation stage is recalculating this information by doing a

second random sampling stage. This second sampling stage might be avoided if the location

information of the first stage is saved and reused. The performance of the overall method

could be cut by roughly 50% or even more. Optimization was not the main focus of this thesis

so this was not implemented.

Texture homogenization. Certain image artifacts of facade images taken from a real urban

environment contain many unwanted debris such as distorted traffic signs, people, cars,

shadows and vegetation. In order to use the images as textures for a virtual rendering of a

city model automatic elimination of such artifacts is desired. The pattern detection method of

this thesis could be used to homogenize the repetitive parts of the texture.

Identification of repetitive elements in 3D models. The algorithms presented herein

could be extended to the third dimension in order to identify repetitive or otherwise sym-

metrical elements in 3D models such as building models that are created by a triangulation

scanner. An implementation for 3D models would highly profit from the Monte-carlo approach

which is even more efficient2 the higher the dimensionality of the search space.

2Note: more efficient is to be understood with respect to other approaches, not in relation to lower dimensional
problems.
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Appendix A.

Rectification using a 2D Homography

As this method requires orthogonalized images as input the following paragraphs explain the

mathematical background of rectification.

Photos taken by a standard consumer camera usually distort the depicted geometry by the

camera parameters and the perspective projection. For simplicity, we will assume that the

camera was calibrated and the images taken have been undistorted. This way we can easily

rectify images using a simple projection between arbitrary planes called homography.

A.1. Homography

Homography is a concept in projective geometry. A homography is an invertible transforma-

tion from one projective plane to another which is characterized by mapping straight lines

to straight lines. Homography is also termed collineation, linear projective transformation or

projectivity in the literature.

Any two images of the same planar surface (i.e. a flat building facade) are related by a

homography.

Given a point pa on surface a and a corresponding point pb on surface b and a homography

matrix H which represents a bijective projection between the planes a and b:

pa =

xa

ya

1

 ,p′b =

w′xb

w′yb

w′

 ,Hab =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (A.1)
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then either point on one of the surfaces can be expressed as the matrix product of the ho-

mography matrix H and its corresponding projected point on the other surface:

p′b = Habpa (A.2)

An important property of this transformation is its bijectivity. It means the projection can be

reversed by the inverse homography matrix.

Hba = H−1
ab (A.3)

Note, that matrix multiplication can not directly express a division. This is why the homogra-

phy can only be described as matrix operation in projective geometry where the points are

represented as homogeneous coordinates. The result of the matrix multiplication in equation

A.2 p′b in general consists of a homogeneous component other than 1. In the mathematical

concept of projective geometry p equals p′b. However, if we want values that are equal to

euclidean 2D coordinates we just need to divide through the homogeneous component w of

the vector and ignore the third coordinate which is 1.

pb = p′b/w′ =

xb

yb

1

 (A.4)

Using the homography we can project the perspective image into a corresponding orthogo-

nalized image. In computer vision this process is called rectification.

A.2. Calculating the Homography from Corresponding

Image Points

Provided that we know at least four corresponding pairs of points ai and bi = (xi,yi,zi) in the

images a and b, we can calculate the homography matrix relating the linear transformation

from plane a to plane b by means of solving the resulting linear equation. First we separate

the homography matrix H into its three basis vectors Pi:
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H =

PT
1

PT
2

PT
3

 (A.5)

From the four corresponding pairs of points we obtain eight equations such that:

xiP3ai− ziP1ai = 0,yiP3ai− ziP2ai = 0 (A.6)

By solving this linear equation system the components of the homography matrix can be

calculated.
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Appendix B.

Images
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