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Survey of the Visual Exploration and
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Abstract—Dynamic contrast-enhanced image data (perfusion data) are used to characterize regional tissue perfusion. Perfusion data
consist of a sequence of images, acquired after a contrast agent bolus is applied. Perfusion data are used for diagnostic purposes in
oncology, ischemic stroke assessment, or myocardial ischemia. The diagnostic evaluation of perfusion data is challenging, since the
data are complex and exhibit various artifacts, e.g., motion artifacts. We provide an overview on existing methods to analyze and

visualize CT and MR perfusion data. The integrated visualization of several 2D parameter maps, the 3D visualization of parameter
volumes, and exploration techniques are discussed. An essential aspect in the diagnosis of perfusion data is the correlation between
perfusion data and derived time-intensity curves as well as with other image data, in particular with high-resolution morphologic image
data. We discuss visualization support with respect to the three major application areas: ischemic stroke diagnosis, breast tumor

diagnosis, and the diagnosis of coronary heart disease.

Index Terms—Medical visualization, multiparameter visualization, volume rendering, perfusion data.

1 INTRODUCTION

COMPARED to static image data, where the morphology of
anatomic and pathological structures is represented
with high spatial resolution, dynamic image data character-
ize functional processes, such as metabolism and blood
flow, which are often essential to detect diseases at an early
stage or to discriminate pathologies with very similar
morphology.

Important examples of dynamic medical image data are
functional MRI, where activations of brain areas are
imaged; dynamic PET and SPECT, where the temporal
distribution of a radioactive tracer is measured to assess
metabolic processes; and perfusion imaging, where the
blood flow is measured. We focus on CT and MR perfusion
data, which are acquired to support essential diagnostic
tasks, e.g., ischemic stroke diagnosis, the assessment of
different types and stages of tumors, and the detection and
diagnosis of coronary heart disease (CHD).

With modern CT and MRI devices, the effects of perfusion
can be measured in high spatial and temporal resolution. In
perfusionimaging, the distribution of contrastagents (CAs) is
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registered to assess blood flow and tissue kinetics. Signal
intensities after the administration of a CA are recorded.
Whether or not a CA is delivered and subsequently absorbed
within a particular region, how long it takes until the
maximum amount of CA is delivered as well as other
perfusion parameters are determined for medical diagnosis.
These parameters are substitutes for physiological para-
meters such as tumor perfusion and vessel permeability,
which, e.g., characterize the malignancy of a tumor [1].

Visual exploration of perfusion data is particularly
challenging. It is primarily based on the derived perfusion
parameters, which represent features of time-intensity
curves (TICs). These parameters are derived for each voxel
of the perfusion data and represent a high-dimensional
space, usually of five to eight parameters. The correlation
between these parameters as well as the local distribution of
single perfusion parameters is essential. Since the time
dependency is not represented in the perfusion parameters,
often perfusion maps along with TICs have to be analyzed.
The comprehensible and simultaneous display of these
curves and perfusion maps poses considerable challenges
for the layout. The visual exploration is also challenging
due to the character and the quality of the data: they exhibit
various artifacts and thus the visualization also serves the
assessment of the reliability of the original data and also the
assessment of preprocessed data, where artifacts are
reduced. In contrast to static CT data, no absolute scale
for the intensity values exists. Therefore, simple visualiza-
tion techniques with predefined (absolute) settings are not
applicable. As a consequence of these difficulties, image
processing and visualization have to be tightly integrated
and a variety of visualization techniques is needed to detect
and characterize important features.

This paper is organized as follows: In Section 2, we give a
brief overview on the medical background in selected
application areas. In Section 3, we briefly describe the image
data processing, which enhances the expressiveness of
simple visualization techniques and is indispensable
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Fig. 1. (a) TICs for regions of gray matter in the brain (40 measure-
ments). The blue curve shows normal brain perfusion. The red curve
indicates no significant perfusion in the infarction core. The green curve
shows decreased and delayed perfusion around the core. (b) TICs of
different regions in breast tissue (five measurements). The enhance-
ment relative to the signal intensity at the first points in time is shown.
The red curve is especially suspicious because of its strong wash-out,
which is typical for malignant tumors.

“Time

for advanced visualization support. Basic visualization
techniques, which are widely available in commercial soft-
ware, are presented in Section 4. More advanced techniques
for the visual exploration, data analysis techniques as well as
the combination of both are discussed in Section 5. The
application of advanced techniques is described in separate
case studies on cerebral perfusion (Section 6), tumor perfu-
sion (Section 7), and myocardial perfusion (Section 8). In
Section 9, we propose guidelines for the use of the basic and
advanced visualization techniques.

2 MebpicAL BACKGROUND

In perfusion imaging, a certain amount of CA is injected
intravenously and its distribution is measured by a
repeated acquisition of subsequent images covering the
volume of interest [2]. The CA causes signal changes and
works as a tracer of perfusion, which means that the uptake
of the tracer is relative to the blood flow. The time-
dependent behavior of the signal depends on the type of
CA applied. The CA circulates through the body in several
passages until it gets completely excreted. In perfusion
imaging, normally only the first pass, which shows the most
significant signal changes, is evaluated. Perfusion imaging
differs strongly from static imaging, since greater care must
be exercised in injection rate and dose, image timing, and
image analysis. The diagnostic quality of perfusion data
and the derived perfusion parameters depends on the type
of CA, the amount of CA, and the speed of injection.
Currently, such imaging techniques are mainly performed
in a research context [1].

Depending on the physiological process, either the short-
term blood flow or the long-term (> 1 minute) diffusion
process of the tracer particles through the membranes of the
microvessels are represented in the varying signal of the
image voxels. Different imaging sequences are used for
perfusion imaging: T1-weighted MRI data are typically used
for breast cancer diagnosis, whereas T2-weighted MRI data
and CT images are employed for the diagnosis of ischemic
stroke. In T1-weighted imaging and CT imaging, a signal
enhancement is achieved in areas of CA accumulation. In
contrast, T2-weighted imaging leads to a decrease of signal
intensity where the CA accumulates. To facilitate a consistent
processing of the data from both sequencing modalities, the
signal intensities in T2-weighted data sets are often inverted
prior to any visualization task. This leads to the more intuitive

TABLE 1
Typical Parameters of Data Sets from MRI Perfusion Imaging
\ | matrix [ Rg [ Dg | # slices | Rt |
Cerebral 1282 2 7 10-15 1-2 (40-80)
Breast tumor 5122 0.7 2 60-80 60-90 (3-10)
Myocardial 1282 15 | 18 3-4 0.5-1 (>40)

The spatial resolution Rs and the slice distance Dg are given in
millimeters, whereas the temporal resolution Ry is measured in seconds
(the bracketed values represent the number of measurements).

mapping of CA accumulation to signal enhancement (rather
than attenuation). The T2-weighted cerebral perfusion data
sets used to generate Fig. 1a and Fig. 4 have been inverted.
Another MR imaging technique—which is not yet used in
clinical routine—is arterial spin labeling. With this noninva-
sive approach, a CA does not necessarily need to be injected.
The CA can be excited endogenous protons [3].

Perfusion data sets from different application areas
considerably differ in spatial and temporal resolutions.
Table 1 lists typical parameters for data from MR perfusion
imaging. In contrast to cerebral and breast tumor perfusion
data, which continuously cover the volume of interest,
myocardial perfusion data exhibit large gaps (e.g., slice
thickness: 6- and 12-mm gaps).

Perfusion parameters. For the diagnosis, regions of
interest in healthy and suspicious tissue are defined, and
TICs—averaged over all voxels in a selected region—are
analyzed. Typical TICs from cerebral and breast tumor
perfusions are presented in Fig. 1. The curves observed in
myocardial perfusion diagnosis are similar to those of
cerebral perfusion. In both application areas, regions exhibit-
ing no significant or a delayed and diminished enhancement
(red and green curves in Fig. 1a) are of interest. However, in
breast tumor perfusion, regions showing a high early
enhancement followed by rapid wash-out, i.e., a decrease of
signal intensity afterward, are especially suspicious (red
curve in Fig. 1b). To achieve a more quantitative description
of curve shape, perfusion parameters are derived from
the TICs. Depending on the application area, different sets
of perfusion parameters are relevant. However, some
parameters are of general interest for almost all application
areas (see Fig. 2). Before we describe these parameters, we
introduce three auxiliary variables necessary for a reliable
evaluation.

Intensity
A
Slope
DownSlope_
§~— PE
2nd Pass
CA arrival Integral
.-": Baseline
Baseg,, TTP Timeg,, Time

A

MTT

Fig. 2. A typical TIC in myocardial perfusion with a significant first pass
and an alleviated second pass of CA traversal annotated with the
essential parameters to evaluate the first pass.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 03:27 from IEEE Xplore. Restrictions apply.



PREIM ET AL.: SURVEY OF THE VISUAL EXPLORATION AND ANALYSIS OF PERFUSION DATA 207

The CA arrival represents the point in time when the
signal enhancement actually starts, whereas Timegyq refers
to the end of the first CA passage. The Baseline represents
the average intensity before CA arrival (see Fig. 2). These
auxiliary variables are determined to focus the evaluation of
the TIC on the relevant portion.

Assessing perfusion considering the actual CA arrival
(time), Timep,q, and the Baseline is essential to compare
perfusion analysis results from different scanning devices
and patients. Major diagnostically relevant perfusion
parameters are given as follows:

e  Peak Enhancement (PE). The maximum value normal-
ized by subtracting the baseline.

o Time To Peak (TTP). The point in time where PE
occurs, normalized by subtracting the CA arrival
time. This parameter allows assessing whether blood
supply is delayed in a particular region. If the peak
is not a significant maximum or the temporal
resolution is low, the TTP value is not expressive.
The signal change in the interval between CA arrival
and TTP is referred to as wash-in, whereas the signal
change in the time between TTP and Timepyq is
referred to as wash-out.

e Integral. For a certain time interval (often representing
one cycle, or pass, of blood flow), the area between the
curve and the baseline, which is the approximated
integral, is computed. Together, PE and Integral allow
one to assess whether the blood supply is reduced in a
particular region. Reduced and delayed blood supply
is a strong indicator for a damaged region, for
example, in ischemic stroke or CHD diagnosis.

e  Mean Transit Time (MTT). In the time interval used
for the integral calculation, MTT specifies the point
in time where the integral is bisected. It is normal-
ized by subtracting CA arrival.

e The Slope characterizes the steepness of the curve
during wash-in. Depending on the temporal resolu-
tion, different regression methods, such as the
Gamma-Variate and a linear fit, are used to char-
acterize the curve progression. The term Up-slope in
CHD diagnosis relates to the maximum slope
between two or three subsequent time steps between
CA arrival and TTP.

e The DownSlope characterizes the steepness of the
descending curve during wash-out and is computed
similar to the Slope.

Application areas. Throughout this paper, we focus on
ischemic stroke, breast tumor, and CHD diagnosis. How-
ever, perfusion analysis bears a great potential in other
diagnostic tasks as well. As an example, it has been shown
that renal perfusion [4] and lung perfusion [5] enhance
selected diagnostic processes, such as detecting disorders of
pulmonary vessels and acute pulmonary embolism.

Commercial perfusion software. The evaluation of perfu-
sion data is supported by a variety of specific tools dedicated
to a particular diagnostic question and to a particular
modality. Examples are the PERFUSION 3 SOFTWARE, as
package for the General Electric, Advantage Windows
workstation, the SIEMENS Syngo, Neuro Perfusion software,
and Philips CT perfusion software. The basic features, the

(a) (b)

Fig. 3. Subtraction volumes of dynamic contrast-enhanced MRI
mammography data rendered as Maximum Intensity Projection (MIP).
(a) Due to respiration, the data exhibit bright artifacts in regions that are
not aligned. (b) After aligning the data, the volume becomes more
transparent and reveals an enhancing tumor. (Image is courtesy of
Sven Kohle, MeVis Research, Bremen. Data are courtesy of
Jonathan Wiener, Boca Raton Community Hospital.)

ability to analyze TICs for selected pixels and regions as well
as the display of parameter maps are common to all
these systems. In nuclear medicine, the EMORY CARDIAC
TOOLBOX and Cedars-Sinai’s QUANTITATIVE GATED SPECT
SOFTWARE are the two most widely used packages for PET
and SPECT data analysis.

3 DATA PROCESSING

Data processing techniques are experimental, often subject
of active research and therefore not widely available.
Depending on the specifics of an application area, e.g., the
temporal resolution and the amount of motion, data
processing techniques have to be applied.

Motion correction. The analysis and visualization of
perfusion data relies on comparable image data. Otherwise,
subtraction images and TICs are misleading. Comparability
means that a voxel with coordinates (xz,y,z) at time ¢
corresponds to a voxel with the same coordinates at time ¢,.
Often, a motion correction has to be carried out to achieve
comparability. This is essential in assessing tumor and
myocardial perfusion where the intervoxel correspondence
is hampered due to breathing, patient movement, muscle
relaxation, or heartbeat (Fig. 3). Without motion correction,
the subtraction volume is filled with bright artifacts. Motion
artifacts might hide relevant signal changes but also
pretend signal changes that are actually not present.

In dynamic contrast-enhanced (DCE)-MRI mammogra-
phy, breathing and muscle relaxation result in considerable
soft tissue deformations. Here, rigid registration approaches
are not appropriate. Elastic registration that considers local
transformations enables a better registration quality. The
registration algorithm described by Rueckert et al. [6] is a
good basis, which employs normalized mutual information
[7] as similarity measure. Originally developed for motion
correction in DCE-MRI mammography, it is now also used
for motion correction in other application areas.

Calibration of signal intensities. While CT imaging
provides calibrated signal intensities in “Hounsfield” units,
MRI signals are dependent on the scanning sequence used.
Therefore, it is very important to calibrate the raw signal
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Fig. 4. Subtraction images to analyze cerebral perfusion. (a) Difference
between ¢; and t,. The low perfusion in a larger portion of the right
hemisphere (left part in the images) characterizes the infarction zone.
(b) Difference between ¢,7 and t,. The late enhancement in a part of the
right hemisphere represents the “tissue at risk.” It is characterized by a
high signal intensity. (Data are courtesy of Jonathan Wiener,
Boca Raton Community Hospital.)

intensities versus CA concentration. For gradient-echo MR
sequences, the calibration can be based on the assumption
of a linear correspondence between CA concentration and
signal intensity [1]. When user-individual vascular input
functions are used for the quantitative analysis instead of a
standardized assumption about the inflow of CA into the
region of interest (ROI), this calibration can be neglected [8].
In this case, input functions correspond to the intensity
curves of reference tissue with high vasculature.

Temporal denoising. Since TICs exhibit high-frequency
noise, smoothing in the temporal dimension is essential for
a reliable analysis. Lysaker et al. [9] introduced an
appropriate filter based on partial differential equations,
which simulate a diffusion process and applied it to DCE-
MRI mammography data. For the generation of parameter
maps, such as MTT and Integral, the “right” points in time
must be chosen (recall Section 2, auxiliary variables). The
smoothed visualization supports this selection.

4 BaAsic VISUALIZATION TECHNIQUES

Some straightforward techniques to visualize and analyze
perfusion data are given as follows:

e cine-movies, which step through all points in time
for a selected slice,

e subtraction images, depicting the intensity differ-
ence between two selected time points,

e color-coded parameter maps for a selected slice. A
parameter map depicts the value of a perfusion
parameter in a pixelwise manner.

Cine-movies. The cinematic depiction of grayscale
images in a movie loop is helpful to assess image noise
and artifacts [1] but especially for the assessment of
enhancement patterns. In CHD diagnosis, cine-movies are
not only applied for assessing myocardial perfusion but
also for evaluating the left ventricular wall motion in
functional MR data. This special type of data is acquired to
image the contraction of the myocardium.

Fig. 5. Parameter maps TTP, MTT, and the relative cerebral blood
volume (roughly corresponding to the general perfusion parameter
Integral) of a cerebral MRI perfusion data set are depicted. The delayed
blood flow in the right hemisphere (left part of the images) becomes
obvious. (Images are courtesy of Jonathan Wiener, Boca Raton
Community Hospital.)

Subtraction images. Subtraction images may also be used
for quality control; the injection of a CA leads to an increase
of signal intensity. If the subtraction for two early points in
time, ¢, and t; with ¢ > ¢;, leads to a negative value, it is
likely that the pixels do not correspond to each other due to
motion artifacts. If this occurs, motion correction is indis-
pensable for a meaningful analysis. In T2-weighted imaging,
where the intensity decreases after CA arrival, the quality

control must be adapted (recall Section 2).
In Fig. 4, two subtraction images are shown, which are

used for the diagnosis of an ischemic stroke. Both reveal a
dark area in the right hemisphere (left part of the images).
This is suspicious, since it does not occur in the correspond-
ing region of the left hemisphere. The region, which is dark
in both images, depicts the core of an ischemic stroke.
Around this region, a larger area appears dark in the early
subtraction image (Fig. 4a) but bright in the subtraction
image that refers to a later time (Fig. 4b). This region shows
the “tissue at risk” around a stroke core.

Subtraction images provide valuable information for the

diagnosis. However, there is no assistance in choosing the
“right” points in time for subtraction images. Moreover,
the 2D data are only used to visually detect abnormalities.
Subtraction images do not provide quantitative temporal
and spatial information, which could make the diagnostic

results more reproducible.
Parameter maps. Parameter maps are displayed as color-

coded images (see Fig. 5). Besides parameter images, it is
common to compute TICs for user-selected regions of
interest. Often, a parameter map is used first to detect
interesting or suspicious regions, whereas TICs in selected

regions are analyzed later.
Summary. Basic visualization techniques for exploring

perfusion data were described by Behrens et al. [10] and
Konig et al. [11]. Meanwhile, the techniques described
above have been integrated into commercial software
packages (recall Section 2). The diagnostic quality achieved
by using these techniques often depends on appropriate
data processing (recall Section 3).
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Fig. 6. Isolines corresponding to 10 different isovalues, evenly
distributed over the whole range of data, depict a dynamic parameter
derived from DCE-MRI mammography. The data and the resulting
isolines are smoothed. (Image is courtesy of Olaf Konrad, MeVis
Research, Bremen. Data are courtesy of Jonathan Wiener, Boca Raton
Community Hospital.)

5 ADVANCED VISUALIZATION AND ANALYSIS
TECHNIQUES

Advanced visualization techniques for exploring perfusion
data are motivated by three essential drawbacks of basic
visualization techniques. They do not support the integra-
tion of

e several parameter maps in one image,

e information derived from perfusion data with

morphologic information from another data set,

e extracted features.

Sections 5.1, 5.2, and 5.3 show how these problems may
be tackled. Data analysis techniques that support the visual
exploration by means of classifying tissue according to
perfusion characteristics are described in Section 5.4. The
combination of data analysis and advanced visualization
techniques is presented in Section 5.5.

5.1 Multiparameter Visualization

The integrated analysis of several perfusion parameters in a
suspicious region is essential for various diagnostic tasks
[12]. To support the analysis, we discuss the appropriate-
ness of integrated multiparameter visualizations. These
visualizations are based on precomputed parameter vo-
lumes, where the corresponding perfusion parameters are
represented for each voxel of the original data set.

In principle, color may be employed for two or three
parameters as well. Among the widespread color spaces,
the HSV space (describing a color by its Hue, Saturation,
and Value component) is the best choice since it is
perceptually roughly linearized [13]. To be compatible with
expectations of users, the most suspicious parameter
combinations may be mapped to a red color (Hue) with
high saturation and high intensity (Value), whereas normal
parameter values are mapped to lower saturation and
intensity values and a bluish hue component. With this

Fig. 7. Colored height field based on parameters PE (height) and Up-
slope (color). Small elevations (diminished perfusion) and dark colors
(delayed perfusion) represent ischemic territories (as pointed at by the
arrow) of the segmented myocardium. The corresponding original slice at
an adjustable point in time serves as context information. (Data are
courtesy of Stefan Miller, University Hospital, Tlibingen.)

approach, the viewer’s attention is directed to suspicious
regions. However, the simultaneous visualization of three
quantitative values relating to data with high spatial
frequency is in general very hard to interpret. The correct
interpretation of two or even three perfusion parameters by
means of one color cannot be achieved by preattentive
vision. Therefore, Oeltze et al. [14] investigated methods
where color (for one perfusion parameter) is combined with
another visualization technique for displaying a second
parameter. Isolines, height fields, or orientations of textures
might be employed to combine several parameters within a
single image [15]. In particular, the combination of isolines
and colors is effective and can be easily interpreted.
Oeltze et al. [14] also discussed the use of color icons [16].

Combining isolines and color coding. Isolines connect
regions where the investigated perfusion parameter has a
certain value. Isolines are easily computed by the Marching
squares algorithm [17]. Noise removal is important in order
to prevent that many irrelevant small and distracting
isolines or relevant but jaggy lines result (see Fig. 6). In
contrast to color coding, isolines are not interpreted at a
glance but allow a more quantitative interpretation.

Colored height fields. Colored height fields enable the
integrated visualization of two parameter maps. A 3D
elevation profile is generated based on the pixel values of
the first parameter map. In a next step, the resulting profile
is colored according to the pixel values of the second
parameter map and an arbitrary color lookup table. The
profile may be freely rotated such that initially occluded
parts become visible. The mapping to height is scalable. It is
initially adapted to the domain of the first parameter (see
Fig. 7). As a natural mapping, PE should be mapped to the
height parameter.

Exploration of multiple parameter images with lenses.
Lenses are used to explore conventional images. Digital
lenses—working as pixel magnifiers—are also required in
digital image exploration to analyze small-scale phenomena
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Fig. 8. Exploration of DCE-MRI mammography data with a lens.
Parameter DownSlope projected through the lens in the context of the
original perfusion data. A blue color indicates a continuous enhance-
ment for a later period in time, a green color indicates a plateau in the
TIC. A yellow color and, in particular, a red color indicate a strong wash-
out behavior. (Image is courtesy of Sven Kohle. Data are courtesy of
Jonathan Wiener, Boca Raton Community Hospital.)

within enlarged visualizations. The interaction with mova-
ble viewing lenses (Magic Lenses) is useful for exploring
multidimensional data [18], where lenses do not magnify
information but show different information in the lens
region. For parameter maps, lenses may show information
relating to one parameter either in the context of the original
perfusion data (see Fig. 8) or in the context of a map of
another parameter (see Fig. 12).

With this interaction style, the user starts by selecting a
foreground and a background parameter (for example, TTP
and MTT) and then moves a lens (a rectangle or an ellipse)
to select either of the parameter set. Inside the lens region,
displays of the foreground and background parameter are
combined by means of alpha blending (Fig. 12), thus
combining an opaque background and translucent fore-
ground to imitate transparency. With an alpha value equal
to 1, only the foreground parameter is represented (Fig. 8).

Glyph-based visualization of multiple parameters.
Glyphs represent a standard technique in the visualization
of multifield data. A glyph is a simple geometric primitive
that is positioned with respect to the original data points in
space and whose attributes, e.g., color, extension, size, and
orientation, are modified according to some represented
values. The integrated glyph-based visualization of multiple
perfusion parameters is presented by Oeltze et al. [19] with
a focus on an intuitive mapping of perfusion parameter
values to glyph shape. Intuitive mapping here refers to the
generation of an easy to learn glyph coding of TIC shape,
e.g., by mapping parameter Integral (area below the curve)
to size and Slope (steepness of the ascending curve) to
orientation. Several 2D glyph shapes, e.g., circular discs,
ellipses, rectangles, or toroids, with different visual attri-
butes besides color have been implemented in slice-based
visualizations. Inspired by the work of Doleisch et al. [20], a
feature definition component has been integrated to speed
up the evaluation of the complex multifield parameter data.

(a) (b)

Fig. 9. Glyph-based visual exploration of cerebral perfusion parameters.
The glyph display in all images has been restricted to suspicious regions
by means of smooth brushing. (a) One circular disc is placed per data
point. Changes in glyph size are hard to interpret. A magnification (inlet)
improves the readability but involves a loss of context information and
spatial orientation. (b) The application of a lower resolution layer solves
the problem. (Data are courtesy of Jonathan Wiener, Boca Raton
Community Hospital.)

It is based on the tight integration of the glyph display with
multiple statistical representations, connected by (smooth)
brushing facilities applied to scatterplot representations.
Initial tests showed that the placement of one glyph per data
point results in too small glyphs, which is due to the limited
screen space (see Fig. 9a). Hence, a multiresolution glyph
display has been proposed to improve the readability of the
glyph attributes (see Fig. 9b). The display incorporates
different resolution layers, which can be interactively
explored by the user.

Summary. Multiparameter visualizations enable the
simultaneous visualization of two or more perfusion
parameters. Height fields are visually attractive and might
be used to present diagnostic results, e.g., in educational
settings. However, the use of height fields poses interaction
problems due to occlusion and is probably not an optimal
choice for efficient routine diagnosis. The combination of
color and isolines is more promising to support the
integrated visualization of two parameters. The use of
lenses is based on ideas of clinical users and was considered
useful in informal discussions with a neuroradiologist and a
cardiologist from the medical faculty of the University of
Magdeburg. Both appreciated that they can explore two
parameter maps simultaneously instead of having to
mentally integrate the information from spatially separated
visualizations.

5.2 Integrating Dynamic Information and

Morphology
Relevant perfusion parameters are often only extracted and
visualized for a restricted region in the entire data set, e.g., a
tumor or the myocardium. However, other constituents such
as the bony structures might provide substantial information
for displaying the diagnostically relevant regions in their
anatomic environment. Also, other surrounding tissues that
are not enhancing can be of indispensable diagnostic value.
Therefore, it is useful to add spatial reference information in
the regions not containing relevant dynamic information. As
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Fig. 10. (a) Sketch of a Profile Flag. (b) DCE-MRI mammography data
with two regions annotated by Profile Flags: (a) a healthy region and
(b) a malignant region. The size and shape of the region is determined
by the range selector (red polytope). (Data are courtesy of the MR
Institut, Univ.-Klinik fir Radiodiagnostik Innsbruck, Austria.)

a simple example, the display of an original slice together
with the height field in Fig. 7 supports the spatial orientation,
which is hampered by the circular shape of the myocardium.
A reasonable strategy to add spatial reference information is
to color code dynamic information and to display the
reference data in the background using a grayscale.
Depending on the resolution of the image data, the
integration of dynamic and morphologic information should
be carried out in 2D slice visualizations or 3D renderings. For
DCE-MRI mammography data with more than 50 slices, 3D
renderings are appropriate, whereas cerebral and myocar-
dial perfusion data provide a too small number of slices.
The assessment of perfusion data might benefit from
segmentation information, for example, concerning suspi-
cious breast lesions. In this case, the visualization of dynamic
information might be restricted to the segmented region.

5.3 Probing and Annotating of Perfusion Data

Another way to depict temporal curves specified at every
position of the data is to render them outside of their spatial
location. The most common way is to show a set of time-
dependent graphs for a set of preselected spatial locations,
respectively. With this approach, one might loose the
correspondence between the spatial position of the mea-
sured data and the curve data itself.

Mlejnek et al. [21], [22] proposed the Profile Flag, an
intuitive tool for browsing and annotating of temporal data.
It enables the visualization of spatial or temporal curves
closely connected to the rendering of the anatomic structure
of the data without removing any parts thereof. The Profile
Flag looks like a board-pin-like glyph, which consists of a
banner, a marker, a range selector, and a set of needles (see
Fig. 10a). The Profile Flag can be positioned on and dragged
along the surface or inside of the inspected anatomical
object. For probing of the underlying data, the set of needles
is positioned beneath the surface of the probed structure at
locations of interest. Each needle defines the position of one
probed location or curve. The flagpole is a cylinder that
connects the banner with the range selector. The size of the
range selector can be changed by moving the marker along
the flagpole. The range selector defines the size of the ROIL,

i.e., it encloses the set of needles. For 3D dynamic perfusion
data, the probed information is taken along the time axis
(TICs). The temporal development is probed at a specific 3D
point location. In the simplest case, this probing position
and interesting nearby locations are specified by a spherical
range selector. In the more general case, the range selector
can be a general polytope including all emphasized TICs.
Another way of interaction with the range selectors deals
with the selection of TICs based on its properties. One can
define more general criteria (e.g., maximal deviation from a
predefined reference curve) for the selection of a set of
profiles. In this case, the shape of the range selector
determines the size and shape of the region, which includes
the selected curves (see [22] for details).

The probed curve data is visualized on the banner.
Several types of banners can be defined, e.g., a single-profile
banner only shows the probed values at the position of a
single needle. During the investigation, one or more Profile
Flags can be stuck into the inspected object. They can be
moved along the object’s surface, while showing the
underlying probed TICs. Multiple Profile Flags can be
placed to emphasize differences between areas from
different spatial locations, e.g., healthy versus suspicious
regions. For the visualization of dynamic data, the hor-
izontal axis usually corresponds to the time axis. Therefore,
for time-varying data, the banner visualizes the time steps
along the horizontal axis, while the vertical axis shows the
values for each measured time step. Additionally, for sparse
temporal data (i.e., just a few time steps), vertical lines are
included in order to facilitate reading off the values at
particular time steps. Fig. 10b shows an annotation of a
DCE-MRI visualization with four time steps by two Profile
Flags. The left Profile Flag is located at a healthy region (low
increase in the first postcontrast step), while the right Profile
Flag illustrates the size and the shape of a suspicious region.
The range selector encloses all spatial locations of profiles
with similar properties. In this case, the selected set of
profiles defines the shape of the range selector. In order to
avoid visual clutter, an averaged banner is applied, which
shows one curve computed by averaging all probed curves.

The basic concept of Profile Flags has been qualitatively
evaluated by the radiologists from Catharina Hospital in
Eindhoven [22]. An informative survey indicated that the
tool is a valuable add-on to the currently used examination
procedures. Furthermore, the complete diagnosis including
the anatomy as well as the annotated regions can be printed
on one sheet of paper. Thus, one of the essential aspects of
the Profile Flags is the efficiency of diagnosis communica-
tion between different hospital divisions.

5.4 Analysis of Perfusion Data

Another venue of analyzing perfusion data relates to a
statistical analysis as well as to mining and knowledge
discovery techniques. In particular, the classification of
DCE-MRI mammography data by means of artificial neural
networks and clustering techniques is an active research area
[23], [24], [25]. As an example, Twellmann et al. [25] applied
an artificial neural network architecture, which combines
unsupervised and supervised techniques for the voxel-by-
voxel classification of temporal kinetic signals derived from
DCE-MRI mammography data. Chen et al. [23] investigated
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Fig. 11. Analysis of DCE-MRI mammography data. Examination of the
trend represented by the first principal component (pc1, lower bar chart
in (a)). High scores in pc1 have been brushed (b) and the selection is
visualized within the context of the right mamma in (c). The selection has
been color coded according to Slope. Yellow and red regions indicate as
fast wash-in. The boundary of the tumor has been delineated. The
selection in (b) is transferred to a scatterplot (d) opposing Slope and
DownSlope. Zooming in on the plot reveals that regions exhibiting a fast
wash-in as well as a fast wash-out have been detected (red dots). (Data
are courtesy of Jonathan Wiener, Boca Raton Community Hospital.)

and developed a fuzzy c-means clustering-based technique
to automatically identify characteristic kinetic curves from
segmented breast lesions in DCE-MRI mammography data.
Nattkemper and Wismiiller [26] described the application of
self-organized maps to time curve features of DCE-MRI
mammography data and discussed how the results may be
visually represented as color-coded cross sections. Auto-
matic classification may be useful in a screening setting in
order to replace the opinion of a second radiologist or to
direct a radiologist to suspicious regions.

5.5 Combining Analysis and Visual Exploration

Recently, data analysis techniques and advanced informa-
tion visualization techniques have been combined in order
to efficiently explore the space of perfusion parameters [27].
In particular, a correlation analysis is carried out so as to
investigate which perfusion parameters strongly correlate.
The remaining parameters are processed by a Principal
Component Analysis in order to detect major trends.
Inspired by the work of Doleisch et al. [20], the trends as
well as the original perfusion parameters are displayed in
2D histograms and scatterplots and are used for (smooth)
brushing of relevant subsets of the data (see Fig. 11). This
overall strategy turned out to be useful to discriminate
different tissues in cerebral perfusion data, tumor perfu-
sion, and myocardial perfusion data.

The overall analysis pipeline is probably too complex for
routine diagnosis but may be essential for researchers
investigating the effects of CAs, magnetic field strength,

Fig. 12. Synchronized lenses in both hemispheres of the brain support
the comparison between the symmetric regions. PE is the foreground
parameter mapped to color and TTP is the background parameter. In the
lens region, the information from both parameters is integrated by means
of alpha blending. The core of the stroke in the right hemisphere
(appears left in the image) becomes obvious by comparing the regions
inside the synchronized lenses. (Image is courtesy of Christian Bendicks,
University of Magdeburg. Data are courtesy of Jonathan Wiener,
Boca Raton Community Hospital.)

and other imaging parameters on the diagnostic value of
certain perfusion parameter combinations. The pipeline has
been discussed with two experienced radiologists from the
medical faculty of the University of Magdeburg, both
familiar with perfusion imaging in the clinical routine,
though not in a research context. Both argued that the data
analysis is only applicable in the clinical routine-in parti-
cular, in emergency cases-if carried out in the background
leading to an initial suggestion for suspicious regions. Both
assessed brushing as valuable for exploring a nonstandar-
dized parameter domain. They appreciated the visualization
of perfusion data in 3D since it provides a good overview.

The combination of analysis techniques, linking, and
brushing for efficiently locating features in perfusion data
has been extended with a dense visualization of TICs for all
voxels of a perfusion data set. Special techniques are used to
reduce clutter in the visualization of a multitude of TICs
and dedicated brushes are employed to define TIC target
shapes, e.g., a sudden increase and a later decrease of the
signal intensity [28].

More specifically, the exploration of higher dimensional
histograms for discriminating tissue in ischemic stroke
diagnosis was described by Grzesik et al. [29]. They
incorporate MR perfusion data and diffusion-weighted
MR data in order to integrate the information from both
imaging data.

6 CASE StuDY: CEREBRAL PERFUSION

In contrast to highly permeable vessels in malignant tumors,
microvessels in normal brain tissue do not leak as a result of
the blood brain barrier. Consequently, there is no enhance-
ment in the extracellular volume. Instead, we observe the
first pass of the CA through the vessel components. About
10 seconds after the first pass of blood circulation, a
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broadened second pass can be seen. The volume of blood in
each voxel is diagnostically relevant. It is measured by the
Integral parameter of the TIC (see Fig. 2).

CT and MRI are primarily used to assess cerebral
perfusion in clinical routine. MRI studies suffer from a lower
spatial resolution compared to CT but allow scanning of the
entire brain and are thus better suited to detect an infarction, if
its location is not a priori known. CT and MRI have both been
proven to be useful in diagnosing the acute ischemic stroke
and in decision making for therapeutical interventions [30].
However, the feasibility of MRI studies is usually restricted
due to the low availability of emergency settings in most
clinical institutions, superior costs, and patient-specific
difficulties with obtaining MRI, e.g., claustrophobia [30].

Typical parameters for cerebral MRI perfusion data sets
are listed in Table 1. In single-slice perfusion CT, one slice
covering a brain area of typically 1 cm is acquired. With
multislice CT, an area of 2 cm may be covered by two or
four slices [31]. To reduce image noise, a large slice
thickness (one slice with 10-mm thickness or more recently,
two slices with 5-mm thickness) is used. The brain coverage
may be extended to 4-5 cm by using two successive bolus
administrations [32]. Multislice CT with greater arrays of
elements, e.g., 64/256-slice CT, will pave the way for whole
brain imaging in clinical routine.

Cerebral perfusion images are used for ischemic stroke
diagnosis, in particular to discriminate cerebral hemorrhage
and ischemic stroke. In case of an ischemic stroke, the
existence and the extent of “tissue at risk” surrounding the
core of the stroke has to be evaluated. While the core exhibits
no significant perfusion (red curve in Fig. 1a), “tissue at risk”
is characterized by a reduced and delayed perfusion (green
curve in Fig. 1a). Surgical and chemical interventions may
salvage at least parts of the “tissue at risk” [33].

The value of combining cerebral perfusion and diffusion
data for predicting stroke evolution is discussed in [34]. In
both types of data, areas of ischemic brain tissue can be
identified in acute stroke patients. The mismatch between
these areas has been reported to present the “tissue at
risk” [35]. Sorensen et al. [12] argue that MTT as well as
two specific parameters for cerebral perfusion, namely
relative cerebral blood volume (rCBV) as well as the relative
cerebral blood flow (rCBF), are essential to assess stroke.
Wintermark et al. [30] give an overview on seven brain
perfusion imaging techniques, including CT and MRI.

Preprocessing cerebral perfusion data is relatively
straightforward and primarily involves noise reduction.
Breathing and other severe motion artifacts do not occur.
The symmetry of the brain is the basis for a diagnostic
evaluation of static and dynamic images. Whether or not a
part of the brain appears to be pathologic is judged by
comparing it with the corresponding part of the other
hemisphere. To support symmetry considerations in the
exploration of CT and MRI perfusion images, cerebral
perfusion tools provide a feature to define an ROI in one
hemisphere and let the system define the corresponding
ROI in the other hemisphere. The simultaneous display of
both TICs (relating to the two regions) supports the
evaluation of a correlation between them. In cerebral
perfusion diagnosis, synchronized lenses may be used to

exploit the symmetry of the brain in axial views. A lens is
mirrored on a relocatable, vertical line of symmetry to
compare both regions (see Fig. 12 and [36]).

7 CASE StuDY: TUMOR PERFUSION

The process of CA enhancement in a tumor can be described
by the diffusion of tracer particles from the inside of blood
vessels into the extravascular space and vice versa before it
becomes excreted in the kidneys [37]. The permeability of the
vessel walls and the extracellular volume fraction determine
the amplitude and the shape of the TIC. TICs—which show a
high early enhancement followed by a rapid wash-out—are
especially suspicious (see red curve in Fig. 1b), because they
indicate strong perfusion and high permeability of vessels.
Strong perfusion often results from tumor-induced vessel
growth (neoangiogenesis). These newly formed vessels are
highly permeable, leading to a rapid wash-out [38]. Less
suspicious are curves showing a plateau later on (green
curve) or regions that continue to enhance (blue curve). This
is typically observed in benign tumors.

DCE-MRI mammography has been introduced by Kaiser
and Zeitler [39] in 1989. However, only recently the imaging
modality gained widespread acceptance, which is partially
due to the effective computer support [40]. The major
diagnostic task is to confirm or reject the hypothesis of a
tumor being malignant. Data processing, in particular
motion correction, is challenging (recall Section 3).

In DCE-MRI mammography, Tl-weighted images are
employed. Contrast enhancement lasts considerably longer
than in cerebral blood vessels. Therefore, longer acquisition
times are employed. DCE-MRI mammography data are
characterized by a high spatial resolution and a low temporal
resolution. Typical parameters for DCE-MRI mammography
data are listed in Table 1. For more details on tumor
perfusion, see [41], [42], and a recent multicenter study [43].

Substantial research to support the diagnosis of DCE-MRI
mammography data has been carried out at MeVis Research,
Bremen. In the work by Behrens et al. [10], the display of
parameter maps, the selection of ROISs, the calculation of TICs,
and the quantitative analysis of these curves were presented.
Meyer et al. [44] presented a software assistant adapted to the
needs of the clinical routine, in particular with respect to the
support of breast cancer diagnosis. This assistant has been
successfully applied in a clinical trial evaluating the DCE-
MRI data sets of 46 patients suspected of having breast cancer
[45]. With more advanced visualization options, a fast motion
correction, and the incorporation of parameters from a
pharmacokinetic model, a new research prototype, DynaVi-
sion, was presented by Alfke et al. [46]. The prototype was
tested in examining the perfusion of pancreatic carcinoma
xenografts in mice with severe combined immunodeficiency
disease. The findings from perfusion analysis were well
correlated with those from histopathological analysis and
could be achieved within a reasonably fast time (15 minutes).

A long-term effort on visualizing DCE-MRI mammogra-
phy data has also been accomplished by Hellwig et al. [47].
They investigated virtual reality input and output technol-
ogy for exploring stereoscopic 3D visualizations of the
original data and derived parameter volumes. They con-
clude that the stereoscopic display facilitates an improved
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Fig. 13. A grayscale MIP of the subtraction volume of two early points in
time is combined with a color-coded CVP. The color encodes the
dynamical behavior: bright voxels show a strong enhancement for an
early period, less intense voxels show less enhancement. A blue color
indicates a continuous enhancement for a later period in time, and a
green color indicates a plateau in the TIC. Yellow and red colors indicate
a rapid wash-out. (Image is courtesy of Sven Kohle, MeVis Research.
Data are courtesy of Jonathan Wiener, Boca Raton Community
Hospital.)

localization and differentiation of lesions in space. This is
further supported by virtual input devices to adjust, e.g.,
orientation and transparency of the display. Recently,
Coto et al. [48] explored advanced volume rendering
techniques for an efficient diagnosis. They have shown that
a novel workflow to analyze DCE-MRI mammography data
can reduce time needed for diagnosis by utilizing the
combination of interactive examination, segmentation, and
advanced visualization techniques. Moreover, their soft-
ware MAMMOEXPLORER allows one to indicate different
types of lesions based on both the shape of the lesion and
the temporal development of the TIC.

In the following, selected visualization techniques, which
have been used for computer support for breast tumor
analysis, are described.

Color coding. Two parameters describing the diagnos-
tically significant shape and amplitude of each pixel’s TIC
may be mapped to color [49]: 1) the slope of the early CA
enhancement to brightness and 2) the slope of the late wash-
out to the color value, encoding suspicious wash-out in red.
Using continuous color values creates a smooth transition
between slowly enhancing and depleting regions.

Projection methods. For the integration of morphologic
information and perfusion parameters, 3D visualization
techniques are useful. To avoid visual clutter, the
visualization of perfusion parameters should be restricted
to those voxels exhibiting a high dynamic range (significant
signal intensity changes). Projection techniques, such as
MIP and Closest Vessel Projection (CVP) [50], provide a
direct link between pixels and corresponding voxels with
the related TIC. Thus, with a colorized projection image,
morphological information can be visualized together with
physiological parameters [49] (see Fig. 13).

Kohle et al. [49] suggest to apply a colorized temporal MIP
(maximum value along the temporal scale). With this
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Fig. 14. (a) Enhancement scatterplot with a selected region for time
step t;. (b) Importance-driven volume rendering of areas defined by
brushing on a set of enhancement scatterplots. (Images are courtesy
of Ernesto Coto, Central University of Venezuela.)

approach, voxels characterized by a strong dynamics (either
in the wash-in or wash-out phase) are represented by a color
that incorporates the wash-in as well as the wash-out
behavior by mapping these values to Hue, Value, and
Saturation. As an improvement to MIP, CVP also known as
local MIP, was developed to add depth information to MIP
images [50]. The most intense voxel along the projection ray is
no longer selected; rather, the voxel that represents the first
local maximum above a certain threshold is taken. The
threshold has to be adjusted to display only the interesting
structures. A threshold of 20 percent relative enhancement is
appropriate for restricting the visualization to the interesting
structures of DCE-MRI mammography data. Fig. 13 shows a
colored CVP of DCE-MRI mammography data. Both MIP and
CVP are offered as whole-volume visualization techniques
and as slab rendering-restricted to a portion of the data
characterized by two parallel clipping planes.

Volume rendering and information visualization
techniques. The analysis of perfusion data with a large
number of slices, such as DCE-MRI mammography data, is
a tedious and time-consuming task. It involves browsing
through all slices and searching for suspicious areas.
Afterward, the procedure is repeated for the identified
areas. An effective examination requires the extraction and
visualization of diagnostically essential data.

Coto et al. [48] presented several investigation tools (e.g.,
scatterplots and volume rendering) for the classification and
visualization of DCE-MRI mammography data. The ap-
proach combines brushing and linking interaction with
effective visualization of the selected suspicious areas. For
the computation of the TICs, the precontrast scan (¢)) is
subtracted from all postcontrast scans (¢;). This step
emphasizes the gradient in the temporal dimension of the
analyzed curve and highlights suspicious areas. An en-
hancement scatterplot (see Fig. 14a) is calculated for each
postcontrast step. It shows the relative enhancement of the
precontrast step with respect to the postcontrast step ¢;. In the
interaction step, brushing is performed on one of the
scatterplots, while the selected set is emphasized on all
remaining scatterplots. If the brushing is performed on
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Fig. 15. (a) AHA conform acquisition of myocardial perfusion data in
short-axis views. Schematic representation of the left ventricle that is
imaged with three to four slices dissecting the left ventricle basally,
centrically, apically, and at the apex. (b) Bull's-Eye Plot and associated
AHA conform nomenclature. The plot is generated by projecting the
myocardial segments onto a plane. The segments are colored according
to the respective supplying coronary branch.

multiple scatterplots, the result of the selection is calculated
by a logical “and” operation. The selection set and the way of
interaction with the scatterplots depends on the specific
application. The result of the interaction can be displayed ina
2D view by highlighting the selected areas or in a 3D view
with importance-driven volume rendering (see Fig. 14b).

8 CASE StuDY: MYOCARDIAL PERFUSION

Perfusion data is also crucial in the diagnosis of CHD. At an
early stage, the CHD is characterized by a perfusion defect
caused by a stenosis (an abnormal vessel narrowing). The
localization of the perfusion defect with respect to the
myocardium combined with anatomical knowledge about
the supplying coronary arteries is essential in detecting
stenosis as well as in early CHD diagnosis [51]. In
particular, for assessing stenosed coronary arteries, imaging
modalities from nuclear medicine, such as dynamic PET
and SPECT are widespread. With these modalities, the
regional distribution of a radioactive isotope, such as Rb-82
chloride, nitrogen 13 (N-13) ammonia, or oxygen 15 (O-15)
water, is represented [52], [53], [54], [55].

PET is more specific than SPECT in discriminating vital
and irreversibly damaged tissue after an infarction [56].
However, both imaging modalities exhibit a lower spatial
resolution and more artifacts, compared to MR and CT
perfusion. Also, the amount of radiation for the patient is
significantly higher for PET and SPECT data acquisition.
Myocardial MR perfusion offers an especially attractive
alternative since measures of myocardial perfusion, viability,
and ventricular function can be integrated in a single
scanning protocol. It has shown to have at least a similar
sensitivity and specificity in comparison to PET and SPECT
without exposing the patient to radiation [57], [58]. However,
widespread use is still hampered by a variety of artifacts and
the strong experience necessary to perform the examination
and interpret the results. Recent technical advances in
hardware, CAs, and imaging sequences are described in [51].

The data acquisition is typically accomplished according
to the standards of the American Heart Association (AHA)
[59] (Fig. 15a). In MR perfusion imaging, the data acquisition
is accomplished during breathhold and it is electrocardio-
gram (ECG)-triggered over a period of at least 40 consecutive

heartbeats. The acquisition is often carried out at rest and
under drug-induced stress. The stress test may even reveal
marginal stenosis and is usually performed prior to the test at
rest using identical imaging parameters. Typical parameters
for myocardial perfusion data are listed in Table 1.

According to the AHA standard, the myocardium is
divided into 17 segments based on a correspondence between
those regions and the supplying coronary branch: ramus
circumflex (RCX), left anterior descending (LAD), and right
coronary artery (RCA). The perfusion parameters character-
izing the CA distribution for each segment are derived from
the corresponding averaged TIC. The latter is computed
based on the TICs of all voxels in the respective segment. The
perfusion parameters are visualized separately by polar
coordinates in a color-coded Bull’s-Eye Plot (BEP) (Fig. 15b).

For myocardial perfusion diagnosis, the parameters PE,
TTP, Up-slope, and MTT have been evaluated as especially
meaningful [60]. Based on the ratio of the Up-slope at rest
and under stress, an additional perfusion parameter, the so-
called myocardial perfusion reserve index (MPRI), is computed.
The coronary perfusion reserve is defined as the ability of
the coronary arteries to increase blood flow under stress by
vessel dilation. The MPRI facilitates a more reliable
detection of ischemic areas.

The detection and localization of a perfusion deficit as
well as the assessment of the severity are directly relevant
for treatment decisions. Major diagnostic tasks to be
performed are: to evaluate whether the patient suffers from
CHD, to evaluate the severity of the disease, and to assess
the vascular supply of less perfused tissue. For an overview
on MR-based diagnosis of the CHD, see Edelman [61].

The major preprocessing step for myocardial perfusion
analysis is motion correction. A combination of rigid and
elastic registrations employing mutual information as the
similarity measure works reasonably well for most data
sets [62]. For parameter computation, the user examines
the motion-corrected data set and selects an ROI in healthy
myocardial tissue. Utilizing these data, the parameters are
calculated for each voxel of the data set. Since the
diagnostic questions mostly relate to the myocardium of
the left ventricle, the visualization of perfusion parameters
is restricted to this structure. The following description is
based on the work by Oeltze et al. [14].

Multiparameter visualizations for myocardial perfu-
sion analysis. Multiparameter visualization techniques
(Section 5.1) are useful for evaluating myocardial perfusion
data (see Fig. 16). The visualization of perfusion parameters
by means of colored height fields should be restricted to the
segmented myocardium (see Fig. 7).

Refined BEP for rest/stress comparison. In a rest/stress
comparison, BEPs (or parameter maps) may be displayed
side by side to identify areas where perfusion defects first
appear or become worse with stress. In order to simplify a
mental integration of rest and stress perfusion in one area, a
refined BEP was introduced in [14]. Each segment ring is
bisected, thus, duplicating the number of segments. The
resulting outer and inner rings represent the stress and the
rest states, respectively (Fig. 17). This circular bisection
ensures that neighboring segments in the plot are adjacent
in the myocardium as well and that they show the same
state. Compared to the original variant [14], the segments
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Fig. 16. Parameter Up-slope is displayed for the myocardium in the
context of an original slice. Parameter Integral is projected through a
user-defined lens. Dark inferior and septal regions indicate a perfusion
defect. (Data are courtesy of Stefan Miller, University Hospital,
Tubingen.)

are visually separated by a gap (gray ring) for better
recognizability. The refined plot may also be used for
comparing two different perfusion parameters of one state.

The diagnosis of CHD benefits from a link to
morphologic image data, in particular MR/CT angiogra-
phy data. Oeltze et al. [14] provided a link between the
BEP and the 3D view of the coronaries and picking
facilities for both the plot and the 3D view. A segment of
the plot exhibiting a suspicious parameter value may be
selected by pointing—resulting in an animated emphasis
of the corresponding vessel branch in the 3D view (Fig. 18)
and vice versa, emphasizing the supplied segments.

The refined BEP and the linking to morphologic data
have been considered useful in informal discussions with a
cardiologist from the medical faculty of the University of
Magdeburg. He explained that supporting the simultaneous

Fig. 17. Integrated visualization of the parameter Up-slope for the rest
and stress states in a refined BEP. Dark regions mark the diminished
perfusion. An ischemic area is revealed, which spans all inferior
segments (lower encircled region). In the anterolateral segment of the
mid-cavity (upper encircled region), the perfusion defect may remain
unnoticed if perfusion is only examined at rest.
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Fig. 18. Anatomy and myocardial perfusion of a patient suffering from
atherosclerosis of the RCA and the LAD. (a) Apical slice of the original
perfusion data set and the AHA consistent segmentation of the
myocardium overlaid. (b) Apical slice of the parameter volume computed
for Up-slope. (c) Selection of two segments in the BEP, which color codes
the parameter Up-slope. Segment 17 is missing since no slice has been
acquired at the apex itself. (d) TICs corresponding to the selected
segments. (e) Coronary branch (RCA) supplying the selected segments.
The animated focusing is illustrated by a semitransparent overlay of a
previous point in time. (Data are courtesy of Stefan Achenbach,
University of Erlangen-Nirnberg.)

examination of rest and stress perfusions has been widely
neglected so far. He suggested that the 3D view would
benefit from mapping the perfusion analysis results to the
ventricular surface, hereby facilitating an exact assignment
of the perfused territories to the supplying coronary
branches. However, this requires the registration of the
morphologic and the perfusion data.

9 GUIDELINES FOR VISUAL EXPLORATION

Over the years, we collected feedback from our clinical
collaborators concerning the usefulness of the visual
exploration techniques presented in Sections 4 and 5. Based
on this feedback, we propose guidelines for the use of these
techniques. It turns out that some general guidelines are
valid independent of the application area. Before we define
the guidelines, we arrange the exploration techniques in
three different classes whose separating criterion is the type
of required input data:

Cl. Input data: the original signal intensities (4D),
techniques: cine-movies, subtraction images, and
profile flags;

C2. Input data: the perfusion parameters (3D), techniques:
parameter maps, multiparameter visualizations,
and BEP;

C3. Input data: the original signal intensities and perfu-
sion parameters, technique: MIP+CVP.
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The second class C2 may be further subdivided into two
subclasses: C2a (single parameter techniques: parameter
maps) and C2b (multiparameter techniques: multiparameter
visualizations). The original BEP fits into C2a, whereas the
refined version belongs to C2b. The MAMMOEXPLORER
(recall Section 7) and the exemplary implementation of the
analysis pipeline presented by Oeltze et al. [27] (recall
Section 5.5) do not fit in either of these classes. Both rather
represent a complex system comprising several techniques
and integrate a sophisticated solution to link them.

Techniques of C1 are useful for an initial inspection of the
original data. Tissue characterized by a very strong or by
(almost) no enhancement can be roughly identified. Cine-
movies require a mental tracking of signal intensity change
over time. Their application in breast tumor diagnosis is
limited by the low temporal resolution of the data. Profile
flags show the signal intensity development plotted in a
graph and embedded in a volume rendering, though only
for a restricted region. Their application in cerebral and
especially in myocardial perfusion is hampered due to the
low slice number, preventing a volume rendering. Subtrac-
tion images emphasize the highest differences in signal
intensity between two time points. However, care must be
taken to choose the “right” points. All of the before
mentioned techniques require no time-consuming computa-
tion or complex user interaction.

After the initial inspection, techniques of C2 may be used
for a more thorough analysis of the dynamic behavior in the
suspicious tissue. Depending on the number of parameters
that are interesting for the clinician, either techniques of
class C2a or C2b should be used. The choice of a technique
from C2b may be influenced by the number of parameters
that can be simultaneously displayed, differences in the
required computational effort, and the complexity of the
required interaction.

Class C3 contains techniques that exploit the original
signal intensities as well as the perfusion parameters. The
combined analysis of both has already been proven to be
useful in a clinical trial for assessing breast tumor
perfusion by Wiener et al. [45]. They could show that an
analysis based on MIPs of subtraction volumes and
parameter maps detected many occult cancers and thereby
altered and allowed more confident treatment planning.
Kohle et al. [49] proposed an integration of MIP and CVP
for the combined analysis. However, this method is not
applicable in cerebral and myocardial perfusions due to the
low number of slices.

10 CONCLUDING REMARKS

This paper has discussed general techniques for exploring
perfusion data. However, many aspects of the exploration
are relevant for other dynamic medical volume data. As an
example, the analysis of dynamic Single Photon Emission
Computed Tomography (dSPECT) data is also based on the
selection of regions and the investigation of curves
depicting changes over time in these regions [63]. The
analysis of functional MRI data also involves the analysis of
time series [64]. The concept of application profile flags,
which enable an integrated view of the TICs and the
underlying dynamic image data, is also a general approach
for exploring a variety of dynamic medical image data [22].

The basic principles of deriving, filtering, and analyz-
ing TICs were developed for the analysis of scintigramms
in the 1970s and refined for the analysis of X-ray image
sequences [65].

We described a variety of advanced visual analysis
techniques that are motivated by discussions with medical
doctors and observations of their work that revealed
problems with simple visualization techniques. As an
obvious drawback, we could not cite any substantial user
study related to the superiority of the advanced visualiza-
tion techniques with respect to specific diagnostic ques-
tions. To date, no such user studies exist. Therefore, we
conclude that a systematic evaluation of techniques and
their parameters as well as combinations is the most
important task left open for future work. We also reviewed
recent work on data analysis techniques, such as cluster
analysis, feature detection, and correlation analysis. Sig-
nificantly more research is necessary to investigate whether
these analysis techniques actually lead to a faster and more
accurate interpretation of perfusion data.
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