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ABSTRACT

We define a transfer function based on the first and second statistical
moments. We consider the evolution of the mean and variance with
respect to a growing neighborhood around a voxel. This evolution
defines a curve in 3D for which we identify important trends and
project it back to 2D. The resulting 2D projection can be brushed
for easy and robust classification of materials and material borders.
The transfer function is applied to both CT and MR data.

Index Terms: I.4.10 [Image Processing]: Image Representation—
Volumetric, I.4.10 [Image Processing]: Image Representation—
Statistical, I.4.6 [Image Processing]: Segmentation—Pixel classi-
fication, I.4.7 [Image Processing]: Feature Measurement—Feature
representation

1 INTRODUCTION

We present a novel transfer function specification that uses the first
and second statistical moments - the mean and variance. With these
basic measures we are able to classify materials based on nontriv-
ial properties, such as a material’s internal variance. The transfer
function is also robust to uniformly distributed noise and both iden-
tifies material boundaries and differentiates between them. The ro-
bustness of the method comes from the fact that it simultaneously
considers the data on multiple scales when calculating the first and
second statistical moments.

2 RELATED WORK

There have been many publications on transfer functions and on
simplifying their design. Early publications focus on 1D transfer
functions where color and opacity are assigned directly to the inten-
sity values of the volume. The design galleries by Marks et al. [8]
attempt to simplify the design of transfer functions by presenting
predefined transfer functions for the user to choose from. However
1D transfer functions have limited classification power. Levoy [6]
introduced 2D transfer functions by additionally considering gradi-
ent magnitude. This idea was taken further by the extensive work
of Kniss et al. [4]. In these works 2D transfer functions based on
scalar and gradient magnitude are used to identify material bound-
aries which are represented as arcs in the transfer function space.
Sereda et al. [11] design a transfer function for easier identifica-
tion of material boundaries using the LH histogram. The LH his-
tograms represent boundaries between materials as separable clus-
ters of points. The separability of both the arcs in 2D transfer func-
tions and the clusters of LH histograms require materials with low
internal variance. Our approach does not. In fact high and differ-
ing variances within materials can be used to discern them. This is
due to our statistical approach where we consider the properties of
variably sized groups of voxels instead of single voxels in isolation.
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Another difference is that we identify materials based on internal
material properties instead of material-material interfaces as the 2D
transfer function and the LH histograms do.

Other statistical approaches use ideas related to ours. The early
work by Laidlaw et al. [5] considers small neighborhoods around
each voxel for calculating statistical properties used for classifica-
tion. Sato et al. [10] calculate a set of derived features for identify-
ing local structures. Caban and Rheingans [1] divide the data into
blocks and calculate a wide range of textural properties for each
block. Similarly in the work of Lundström et al. [7], histograms
of blocks are considered to improve material classification in med-
ical data. All of these works use static neighborhoods and often
calculate complex neighborhood properties. We use a dynamically
changing neighborhood to better find an optimal set of voxels for
calculating properties on. This approach gives good results with
noncomplex neighborhood properties.

Both the works by Hadwiger et al. [3] and Correa and Ma [2]
deal with size transfer functions that classify regions based on their
sizes. Both methods require a preclassification of the data for defin-
ing the regions to apply the size transfer functions. For preclassi-
fication Hadwiger et al. perform region growing and calculate the
volumetric size of regions whereas Correa and Ma perform diffu-
sion by Gaussian smoothing to calculate region thicknesses. Correa
and Ma also include a good overview of earlier work in scale-space
analysis.

3 THE THEORY OF MOMENT CURVES

For each voxel in a volume we calculate a sequence of values based
on the voxels in its vicinity. We then assign optical properties to the
voxel based on this sequence of values. This results in a classifica-
tion of materials or material boundaries. To calculate the sequence
of values for a voxel v, we consider all its neighbor voxels that are
inside a sphere centered at v with radius r (see Figure 1). For each
sphere of radius r, we calculate the mean and the variance of the
voxels inside. With r increasing from zero to a predefined max-
imum value we get a sequence of (mean μ , standard deviation σ )
pairs for the voxel v. We depict this sequence of the first and second
moment parameterized by r, as a curve in 3D space. As seen to the
right in Figure 1 the axes of the 3D space are the mean value μ in
red, the standard deviation σ in green, and the radius r in blue. Each
voxel in the volume is thus represented as a curve in 3D. We call the
curves moment curves since they describe the evolution of the first
and second statistical moments as the neighborhood increases. By
selecting certain groups of curves we end up with a classification of
voxels. In the following paragraphs we describe how the shape of
these curves relate to material properties.

We demonstrate the properties of the moment curves by consid-
ering a simple dataset consisting of two materials planarly touching
(see Figure 2) and having infinite extent on their respective sides.
The intensity values of each material are normal distributed with
defined means and variances. The sequence of mean and standard
deviation pairs for voxels inside a material will estimate the mate-
rial’s mean and standard deviation with increasing accuracy as the
radius grows. We will now separately consider how the standard de-
viation and how the mean of a voxel evolves as the radius increases.
Figure 2 shows the two materials and voxels at different positions in
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Figure 1: Left: The neighbor voxels for different radii of a voxel v.
Right: A moment curve in 3D space as a function of radius r. The
gray lines are the projections of the curve into the r = 0 plane and the
σ = 0 plane.

the materials. For some voxels several circles are shown to indicate
varying radii.
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Figure 2: Two materials with different distributions touching each
other.

For voxel V1 we have plotted the evolution of the standard devi-
ation for increasing radii. This is the curve labeled V1 in Figure 3.
As soon as the neighborhood is large enough, the curve stabilizes
at the standard deviation of the material. We have colored the part
of the curve after stabilization in blue and the part before in gray. A
single sample has no standard deviation so all curves start at σ = 0
for r = 0. As the neighborhood increases, the standard deviation
increases until it stabilizes. At what radius the curve stabilizes de-
pends on the ’patchiness’ of the material. The patchier it is, the
higher radius it stabilizes at. A corresponding curve is plotted for
voxel V2 which is in material 2. Material 2 has lower variance than
material V1 therefore the curve stabilizes below the curve for V1.

In Figure 4 the curve for voxel V1 is drawn with its mean value as
a function of the radius. Also here, for large enough radii, the curve
stabilizes at the mean value for the material. However when the
radius is 0, the mean will be the intensity of the voxel itself which
can be any value from the material’s normal distribution. The range
of the values of material 1 is drawn as a thick vertical gray line
along the μ axis. The material’s distribution is drawn as well. The
curve for voxel V1 may thus start at any point along this range with
a probability corresponding to the material’s distribution. From the
starting point, the curve will move towards the mean of the material.
This is represented by a gray fan-in from the material range into the
blue stabilized curve. The μ curve for voxel V2 in material 2 is also
drawn. Material 2 has a higher mean value than material 1. The
distributions of the materials are overlapping. This is depicted in
the overlapping vertical lines along the μ axis. It is thus possible
that a curve for a voxel in material 1 intersects a curve for a voxel
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Figure 3: The standard deviation of the voxels in Figure 2 as a func-
tion of increasing radius.

in material 2 before the curves stabilize. This is represented by
intersecting lines from the fan-ins of the two curves.
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Figure 4: The mean values of the voxels in Figure 2 as a function of
increasing radius.

Considering the stabilized parts of the μ and σ curves, one can
separate materials with differing means or standard deviations. In
contrast 1D transfer functions cannot discern materials solely based
on variance and cannot binary discriminate materials with overlap-
ping intensity distributions. Note that our curves include the 1D
transfer function as a special case when assigning optical proper-
ties to voxels based on their mean values at zero radius.

Now we will consider the μ and σ curves of a voxel V1−2 situ-
ated exactly at the border between the two materials. As the radius
increases, an equal number of samples from each of the two ma-
terial distributions is included. Therefore the mean will stabilize
exactly between the mean for material 1 and material 2 as shown
in Figure 4. The distribution for the neighborhood of V1−2 will be
bimodal since it consists of the sum of the distributions from each
material. Therefore the fan of the V1−2 curve covers both the ma-
terial ranges. The standard deviation for curve V1−2 is seen in Fig-
ure 3. This curve will stabilize at a standard deviation which is less
intuitive to understand than the mean. We will give an analytical
expression for this further on.

In Figure 2 we have drawn voxels Va, Vb and Vc having differ-
ent distances to the border. Their corresponding σ and μ curves
are drawn in Figure 3 and Figure 4 respectively. Three circles with
different radii are drawn around each of the voxels and these cir-
cles are also marked along the radius axes in the two plots. From a
specific radius onward, the neighborhood will include voxels from
the neighboring material. The μ and σ curves will then move away



from the stable part and will asymptotically approach the respec-
tive mean and standard deviation of V1−2. This happens because
the number of samples from material 1 and material 2 will equalize
as the radius goes towards infinity. We will now present expressions
of the mean and of the variance as a function of the ratio κ of sam-
ples between material 1 and 2. Let the two materials have mean and
standard deviation (μ1,σ1) and (μ2,σ2) respectively. The deriva-
tion of these equations are given in the Appendix.

μκ (κ) = (1−κ)μ1 +κμ2 (1)

σ2
κ (κ) = −(μ1 −μ2)2κ2 +

(
(μ1 −μ2)

2 − (σ1
2 −σ2

2)
)

κ +σ1
2

(2)
The mean is a linear interpolation between the μ’s weighted by
κ , and the variance is a second degree polynomial in κ where the
coefficents are expressions of the σ ’s and μ’s.

We will now present the relation between a border voxel at dif-
ferent distances to the border of the two materials and the μ and σ
for the samples inside a fixed radius around that voxel. The materi-
als can then be represented as two points in a diagram with μ on the
horizontal and σ on the vertical axis. As the border voxel moves
from one side of the border to the other, the ratio of voxels inside
a neighborhood of fixed radius will go from material 1 (κ = 0) to
material 2 (κ = 1). By using the ratio as an argument into equation
1 and equation 2, the (μκ ,σ2

κ ) point for the border-voxel will move
on a parabolic arc from material 1 to material 2. The square root of
a second order polynomial with negative factor of the second order
term, as given in equation 2, is an ellipsoid. Therefore, the (μκ ,σκ )
point will move from material 1 to material 2 along an ellipsoid as
the ratio changes. Exactly at the border, the ratio κ equals 0.5 and
the mean and variance is here:

μ1−2 = μκ
( 1
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κ
( 1

2
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=
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2

)2
+ σ1
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2

2

(3)

When knowing the mean and variance of two bordering materials,
equations (3) allow to calculate the shape of the arc that appears for
voxels near the material’s border. One can then automatically cre-
ate a transfer function that performs a brushing which classifies this
border. We showed earlier that voxels inside materials have moment
curves that stabilize. We have now shown that voxels on the bound-
aries between two planarly touching materials also have stabilized
curves. For voxels close to boundaries the moment curves switch at
increasing radius from the material moment curve to the border mo-
ment curve. The radius where the transition happens indicates the
distance of the voxel to the boundary. By selecting voxels that have
stabilized curves which switch at a certain radius, we can identify
regions with specific distances to boundaries.

4 SYNTHETIC DATA

We will now demonstrate the properties of the moment curves on a
3D test dataset consisting of 6 cylinders, each with a radius of 32
voxels, a height of 40 voxels and noise added so as to get different
standard deviations. The cylinders are named cylσ where σ is the
standard deviation in the interior.

The top left image of Figure 5 shows a slice through the cylin-
ders. In Figure 6 we have plotted 25000 moment curves from the
interior of cyl2 and cyl20. The curves are projected onto the right
side and the bottom of the plot. The gray semitransparent rectan-
gle is a cutting plane at r = 1. Red points are drawn on the cutting
plane at positions where the moment curves intersect. One large
cluster of points can be seen on this plane for cyl20 and one small
cluster for cyl2. The green curve shows the curve for one particular
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Figure 5: To the left μ and to the right σ for voxels with increasing
radii are depicted. All cylinders have a μ = 0.5 and an increasing
σ = {0%,2%,4%,6%,8%,20%} from left to right.

voxel in cyl20. One cluster of curves for each material is generated
and each cluster converges to the mean and standard deviation of
the corresponding material. The curves for the materialin cyl2 with
the low standard deviation converge faster and voxels in cyl20 have
values from the whole intensity interval.
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Figure 6: Moment curves, projections and r = 1 intersections for cyl2
and cyl20 in Figure 5.

Now we will consider how moment curves of voxels close to
material borders behave in practice. In Figure 7b we have drawn 31
moment curves for voxels along a line from the interior of cyl8 to
the exterior (see Figure 7c). Figure 7a and 7d show the projection
of moment curves onto the r-μ and the r-σ plane. The green curve
represents the voxel closest to the border. Notice how curves jump
out of their stabilized path as soon as the neighborhood is large
enough to cross the border. The moment curve of the border voxel
is stabilizing fastest and the other curves, according to their distance
to the border, are asymptotically moving towards it. In Figure 7b)
we show a cutting plane at r = 16 with curve intersections marked
as red dots. Since we know the σ ’s and μ’s of each material, we
can get an expression for μ and σ for voxels moving from material
1 to material 2. By substituting μ1 = 0.5, σ1 = 0.08 for cyl8 and
μ2 = 0, σ2 = 0 for the exterior into equation 2 we get μκ = 0.5κ
and σ2

κ =−0.25κ2 +0.2564κ . The analytic (μκ , σκ ) path overlaid
on the intersection points at r = 16 is depicted in Figure 8. The
tight overlap demonstrates the expected correspondance between



the analytic formulas and the discrete samples of the test dataset.

Figure 7: Moment curves for voxels along a line from the inside to the
outside of cyl8. The green curves and point represent a voxel on the
boundary of the material.
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Figure 8: The curve intersections at r = 16 as red dots and an ana-
lytically plotted (μκ , σκ ) path overlaid to show correspondence.

We have now discussed the different types of moment curves that
occur in our dataset. In Figure 9a we plot moment curves represent-
ing voxels from the entire volume. One can clearly see clusters for
each cylinder and arcs from each material to their surrounding back-
ground values. We apply a transfer function on the moment curves
to classify the cylinders and their borders. First we try to classify
cyl8 by defining a blue rectangle on a cutting plane at r = 16. The
rectangle is located around the cluster for cyl8. Our transfer func-
tion is defined such that each voxel having a moment curve that
intersects the rectangle at r = 16 will be classified and colored. The
result can be seen at the bottom of Figure 9a.

The interior voxels of cyl8 which have a distance of more than
r=16 voxels to the border are now classified in blue. Voxels with
distance less than 16 to the border are not classified because their
curves will have ’jumped’ away from the stabilized path at earlier
radii. The transfer function also classifies circles inside each of
the cylinders of lower variance. The over-classified voxels are due
to moment curves which have ’jumped’ away from their stabilized
part and intersect the rectangle as they move toward the top of the
arcs between material and exterior. We can avoid classifying these

regions by only classifying curves that are stabilized as they inter-
sect the rectangle. The degree of stabilization of a moment curve
can be expressed by its partial derivative along r. We define the
derivative curve as having it’s μ’ value for a certain radius r equal
to the difference between the μ at r−1 and r. Similarly we find the
curve’s σ ’ value for a radius r to be the difference between the σ
at r-1 and r. These derivative curves can be visualized in the same
manner as the moment curves. In Figure 9b we are visualizing all
the derivative curves. This yields an interesting pattern where the
curves seem to move along a cylinder which has a decreasing thick-
ness along the r axis.

We can select moment curves with an arbitrary degree of sta-
bilization by brushing on the derivative curves. In Figure 9c the
(μ’,σ ’) pairs for each curve intersecting r = 16 can be seen. The
blue rectangle defines the curves we want to brush to select stabi-
lized moment curves.

In Figure 9d the moment curves corresponding to the points
brushed in the derivative space are shown in blue. Only stabilized
curves are in blue and these stabilized curves are found in the inte-
rior of each material, at the border between each material and back-
ground, and in the background itself. We now assign blue to any
voxel having a stabilized curve according to the brush in the deriva-
tive space in Figure 9d. The transfer function is seen as a rectangle
covering all moment curves of the data. By selecting all stabilized
curves we get the interiors and the borders of the materials as well
as the background (see bottom of Figure 9d). Close to the borders
safety margins of not-selected voxels appear. The width of these
margins depends on the chosen radius r.

Now we continue to refine the transfer function with different
colors for each easily separable cluster of stabilized curves. The
transfer function is defined as a set of coloured polygons in the
plane at r = 16 (top of Figure 9e). The corresponding classification
is seen at the bottom of Figure 9e.

After brushing the curves we are able to select for example only
cyl8. In the top row of Figure 10 we do a volume rendering of
the test dataset using a semitransparent 1D black-to-white transfer
function and with cyl8 classified as blue. Due to the safety margin
the classified cylinder is too small. To compensate for the shrink-
ing, we dilate the volume r voxels where r is the radius of the plane
the transfer function was defined on. In the bottom row of Fig-
ure 10 an image series of the dilation steps for the cylinder can be
seen. At the last step it almost covers its original space again. How-
ever the edges are rounded, so a perfect reconstruction has not been
made. By defining transfer functions at cutting planes with lower
radii one gets less rounding of edges. This has the disadvantage of
brushing less stabilized curves since the maximal radii considered
are smaller.

Figure 10: Top row shows volume rendering with cylinder cyl8 classi-
fied. The bottom row shows the dilation steps for the cylinder.

We propose the following workflow for the transfer function de-
sign. First select a radius where most materials have stabilized
curves (r = 16 in our example). Visualize the intersection of the
curves with a cutting plane at the selected radius. This reduces
the 3D space to a 2D plane where it is easier to define a transfer
function. Depending on the data, the 2D scatterplot can be clut-
tered and contain many arcs. Stabilized paths of the scatterplot can
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Figure 9: (a) The moment curve space of the cylinder test data with a blue brush rectangle and the corresponding classification below. (b)
Derivative curves from the moment curves. (c) The derivative scatterplot of the moment curves intersecting the plane r = 16. (d) The curve
space of the test dataset with stabilized curves shown in blue. A derivative brush as defined in c) selects all stabilized curves. The result is
a classification of all material interiors, material borders, and background. (e) A color transfer function on stabilized moment curves identifies
materials of different variances and their borders.

be identified by brushing the corresponding derivative scatterplot
(Figure 9c). Now one can assign colors to the different clusters of
stabilized curves. Figure 11a shows the projected moment curves in
red and the stabilized clusters in blue. Figure 11b shows only sta-
bilized curves yielding a clear view with easily identifiable regions.
The zoom-in corresponds to the material boundaries of cyl0,2,4,6,8.

5 IMPLEMENTATION

The classification procedure is performed in four steps. Firstly the
user selects an area on a slice positioned through the volume. The
moment curves for the voxels in that area are calculated on the CPU
and visualized. Curves for areas on other slices can be added. Sec-
ondly the user performs a brushing on the moment curves. A classi-
fication is then performed based on the brush on all samples on the
slice. By exploiting the parallelity of the GPU we are able to do this
in real time. The frame rate is sensitive to the maximum calculated
radius. The number of voxels being considered for each fragment
of the slice increases cubically as a function of the radius. Using
precomputed means and variances could considerably reduce the
classification time but at the expense of texture memory. Thirdly,

as soon as the user finds the slice classification satisfactory, a 3D
classification volume is built by iteratively classifying each slice in
the volume. On an Nvidia Geforce 8800 GTS graphics card this
can take from a few seconds on small datasets up to a minute on the
CT dataset of size 512× 512× 1112, as used in the results Chap-
ter. Finally, a distance transform up to a distance of r voxels on the
classified volume is performed. Afterwards we render in real-time
the classified regions and dilate them up to r voxels by changing the
isovalue of the region borders. The distance field from the dilation
step is additionally used in calculating normals for Phong shading
the classified regions. Our method is different from seeding and
growing approaches for data segmentation since all voxels are clas-
sified independently from each other. Also the method is global and
therefore does not require a specific seeding.

6 RESULTS

We have applied our transfer function successfully on a CT dataset
of a human with a resolution of 512x512x1112 and on an MR
dataset of a sheep heart with a resolution of 352x352x256. We
follow the same approach as suggested in Chapter 4 for the cylin-



Figure 11: (a A 2D projection of the 3D moment curve space with
identified stable regions in blue. (b Only stabilized curves are shown
with a zoom-in on the boundaries.

der test dataset. The steps for analyzing the CT torso can be seen
in Figure 12. The moment curves of 30000 evenly spaced sam-
ples taken on the leftmost slice in 12g are shown in 12a. To find
stabilized curves we calculate the derivative curves 12b and brush
(small blue rectangle) in the r=16 cutting plane in 12c. After brush-
ing the stabilized moment curves are visualized in blue in 12d. For
easy brushing we use the 2D projection of all curves in 12e. In
12f we define coloured brushes on easily identifiable regions. The
resulting classification for three different slices is shown in 12g.
Muscles are colored green, fat is colored blue, the liver is red, and
the spleen is bright cyan. Also some voxels in the lungs are classi-
fied separately as dark cyan. Finally the transition between fat and
muscles is pink. We dilate the spleen and liver and volume render
them in Figure 13. For the background material a semitransparent
1D black-to-white transfer function is used.

The second dataset we use is an MRI of a sheep heart. This
dataset is challenging to create meaningful classifications and has
therefore been used in transfer function papers as a benchmark. In
the paper by Pfister et al. [9] several 1D transfer function variants
as well as the 2D transfer function by Kniss et al. [4] (Figure 14a)
were tested on this dataset. Also the LH histogram has been applied
on this dataset by Sereda et al. [11](Figure 14b). From the compari-
son in Pfister et al. [9] and even by quickly experimenting with a 1D
transfer function it follows that a 1D transfer function only manages
to separate the background from the sheep heart but fails to clearly
separate interior materials in the heart. The LH histogram [11] at-
tempts to separate a higher valued area in the middle of the heart
from the rest. However by looking at the LH transfer function one
can see that the yellow and red part extend over almost the entire
FH domain and therefore basically define a 1D transfer function
which will fail to separate the middle part from the rest. Also the
2D transfer function by Kniss et al. [4] used in Pfister et al. [9]
has a continuous color gradient and thus does not clearly separate
the two regions. Our approach also failed to classify the middle re-
gion. This is partly due to the small size of the dataset with moment
curves that cannot achieve a big enough radius to stabilize before
they grow out of the region. It is also due to a lack of homogeneity
of the middle region. The darker colored middle region has bright
thin structures going through it. This disables curve stabilization.
To address these issues we apply a two level approach. First we de-
fine a simple 1D transfer function that classifies the middle region
but also over-classifies some areas outside it. Then we calculate the
moment curves by only considering voxels with values in the inter-
val defined by the 1D transfer function. We have defined the 1D
transfer function to exclude the thin structures that were inside the
region we try to classify. Then also the neighboring materials are
excluded. Now the moment curves have a better chance to stabilize.
With this technique we were able to classify the middle region as

can be seen in Figure 14c. The slices in Figure 14d-h show the clas-
sified areas in green and the areas within the 1D transfer function
interval in red. We believe we have comparable or better results
with our approach than earlier published results as can be seen in
the slices and the volume renderings.

Figure 13: Two classified and dilated regions in a human CT dataset.

7 CONCLUSION AND FUTURE WORK

We have introduced moment curves and showed how they behave
in different material arrangements. We have described a workflow
for applying a specific transfer function to classify materials and
material boundaries. The necessary transfer function editing is per-
formed in 2D on easily identifiable clusters. Finally we have ap-
plied our approach on a CT dataset of a human torso and classified
separate tissue types. We have also successfully applied a slightly
modified two-level version of the transfer function on MR data and
compared it with existing transfer functions. We believe moment
curves has potential on other types of data as well. By combining
our method with an automatic cluster-identification algorithm, one
can imagine a fully automatic transfer function specification. The
stabilized moment curves for a volume would be calculated. The
cluster-identification algorithm would segment each cluster. In the
successive rendering users could assign optical properties or tags to
each segmented object.
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APPENDIX

In this section equations (1) and (2) of Chapter 3 are derived.
The equations for calculating the mean and variation for a dis-

crete collection of samples {x1,x2, ..xn}, are given in (4) and (5):

μ =
1
n

n

∑
i=1

xi (4)

σ2 =
1
n

n

∑
i=1

(xi −μ)2 =
1
n

n

∑
i=1

x2
i −μ2 (5)

Assume a material 1 has n1 samples indexed ẋi where the mean
of the samples are μ1 and the variance is σ2

1 . Similarly, assume a
material 2 with n2 samples ẍi having mean μ2 and variance σ2

2 . We
want to find the mean μ3 and variance σ2

3 for a material 3 consist-
ing of the intensity values of material 1 and 2: {...x 1,

...x 2, ...,
...x n3} =

{ẋ1, ẋ2, ..., ẋn1 , ẍ1, ẍ2, ..., ẍn2}. We have:

n3 = n1 +n2 (6)

Since addition is associative we have:

n3

∑
i=1

...x i =
n1

∑
i=1

ẋi +
n2

∑
i=1

ẍi (7)

n3

∑
i=1

...x 2
i =

n1

∑
i=1

ẋ2
i +

n2

∑
i=1

ẍ2
i (8)

We now want to express μ3 and σ3 as a function of μ1, μ2, σ1,
σ2, n1 and n2. By rearranging (4) for material 1 and 2 we get:

n1

∑
i=1

ẋi = n1μ1

n2

∑
i=1

ẍi = n2μ2 (9)

Similarly by rearranging (5) we get:

n1

∑
i=1

ẋ2
i = n1(σ2

1 + μ2
1 )

n2

∑
i=1

ẍ2
i = n2(σ2

2 + μ2
2 ) (10)

For μ3, substituting (6) and (7) into (4), we get the expression in
the middle of (11). By applying (9) on the middle expression we
get the right side expression of (11):

μ3 =
1
n3

n3

∑
i=1

...x i =
1

n1 +n2
(

n1

∑
i=1

ẋi +
n2

∑
i=1

ẍi) =
1

n1 +n2
(n1μ1 +n2μ2)

(11)
For the variance σ3 we substitute (10) into (8) and apply the

result on (5) to get the right hand of the first line in (12). Then by
further substituting (6) and (11) we get the second line in (12):
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Figure 14: Comparison of (a) 2D transfer function, (b) LH histogram and (c) moment curve classification. Renderings to the right in (c) are
semitransparent. Unclassified and classified moment curve slice pairs are also shown.

σ2
3 = 1

n3
∑n3

i=1
...x 2

i −μ2
3 = 1

n3
(n1(σ2

1 + μ2
1 )+n2(σ2

2 + μ2
2 ))−μ2

3

= 1
n1+n2

(n1(σ2
1 + μ2

1 )+n2(σ2
2 + μ2

2 ))− ( 1
n1+n2

(n1μ1 +n2μ2))2

(12)
We do not want to specify both n1 and n2 but rather the ratio κ

between them. κ = 0 means only samples from material 1, κ =
0.5 means an equal number of samples from both materials and
κ = 1 means only samples from material 2 are taken. We therefore
express n1 and n2 as a function of κ and n3:

n1 = n3(1−κ), n2 = n3κ (13)

A material 3 with ratio κ between samples from material 1 and
samples from material 2 will thus have the mean μ3(κ) from insert-
ing (13) into the right hand expression of (11):

μ3(κ)=
1
n3

(n3(1−κ)μ1 +n3(1−κ)μ2) = (1−κ)μ1 +κμ2

(14)
This concludes the derivation of equation (1) in Chapter 3.
Similarly, a material 3 with ratio κ between samples from mate-

rial 1 and samples from material 2 will have the variance σ2
3 from

inserting (13) into (12) and using (14) for the mean:

σ2
3 (κ)=

1
n3

(
n3(1−κ)(σ2

1 + μ2
1 )+n3κ(σ2

2 + μ2
2 )

)
−((1−κ)μ1 +κμ2)2

(15)
We expand the parentheses in (15) and rearrange the terms so

that they form a second order polynomial in κ:

(σ1
2 + μ2

1 −κσ1
2 −κμ1

2)+(κσ2
2 +κμ2

2)−
(κ2μ2

1 +2κμ1μ2 −2κ2μ1μ2 + μ2
1 −2κμ2

1 +κ2μ2
2 ) =

(−μ1
2 +2 μ1μ2 −μ2

2)κ2

+
(−σ1

2 + μ1
2 +σ2

2 + μ2
2 −2 μ1μ2

)
κ

+σ1
2 =

−(
μ1

2 −2 μ1μ2 + μ2
2)κ2

+
((

μ1
2 −2 μ1μ2 + μ2

2)− (
σ1

2 −σ2
2))κ

+σ1
2 =

−(μ1 −μ2)
2 κ2 +

(
(μ1 −μ2)

2 − (σ2
1 −σ2

2)
)

κ +σ1
2

(16)

This concludes the derivation of equation (2) in Chapter 3.


