n _lj FAKULTAT FUR !NFORMATIK

Classification and Visualization of
Volume Data Using Clustering

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Computergraphik & Digitale Bildverarbeitung
eingereicht von

Andreas Opitz
Matrikelnummer 0226294

an der
Fakultat fur Informatik der Technischen Universitat Wien

Betreuung:
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gréller
Mitwirkung: Dipl.-Inf. Dr.techn. Peter Kohlmann

Wien, 18.11. 2009

(Unterschrift VVerfasser/in) (Unterschrift Betreuer/in)

Technische Universitat Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1 /588010 http: / /www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Andreas Opitz
Gugitzgasse 6/12/3, 1190 Wien

,Hiermit erklédre ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen
der Arbeit — einschlieBlich Tabellen, Karten und Abbildungen —, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall
unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.*

(Ort, Datum) (Unterschrift)

Abstract

The increasing prevalence and improvement of imaging techniques like computed to-
mography or magnetic resonance imaging enhances the resolution and thereby the amount
of the acquired data. This development leads to a rising demand for means which are
efficient and easy to use in order to evaluate the desired information. As a volumetric
data set may contain various objects and materials, a transfer function is used to steer
visibility and coloring of the different structures based on certain properties. Standard
transfer functions which rely on scalar values only, rapidly come up against limiting
factors because of their coarse selectivity and liability to noise. The usage of more com-
plex methods leads to increased demands concerning the user’s knowledge and requires
some practice in order to obtain good results. This thesis provides an overview of vol-
ume visualization and techniques for the creation of transfer functions. It also deals
with various approaches to clustering and presents an intuitive method for the design of

transfer functions based on Mean Shift Clustering and LH histograms.

Zusammenfassung

Mit der zunehmenden Verbreitung und Weiterentwicklung von bildgebenden Verfahren,
wie zum Beispiel der Computertomographie oder der Magnetresonanztomographie in
den Gebieten der Medizin und der Industrie, steigen nicht nur die Auflésung und somit
die Datenmenge, sondern auch die Anforderungen an eine moglichst effiziente Auswer-
tung der gesuchten Informationen. Da in einem Volumendatensatz verschiedenste Ob-
jekte und Materialien enthalten sein konnen, wird eine sogenannte Transferfunktion ver-
wendet um Sichtbarkeit und Farbe der verschiedenen Strukturen zu kontrollieren. Eine
einfache, nur auf Skalarwerten basierende Transferfunktion stoft aufgrund ihrer groben
Selektivitit und Anfilligkeit gegeniiber fehlerhaften Messwerten schnell an ihre Gren-
zen. Bei ausgefeilteren und komplexeren Methoden steigen jedoch die Anforderungen
an den Benutzer, erfordern zumindest Grundkenntnisse der Thematik und einiges an
Ubung um gute Ergebnisse erzielen zu konnen. Diese Arbeit gibt einen Uberblick iiber
die Materie der Volumenvisualisierung und der Transferfunktionen. Ebenso werden
verschiedene Ansitze von Clustering betrachtet und ein moglichst intuitive Methode
zum Entwurf von Transferfunktionen basierend auf Mean Shift Clustering und LH-

Histogrammen prisentiert.

Acknowledgments

I want thank Dr. Peter Kohlmann and Prof. Eduard Gréller for their help, advice, and
the supervision of my thesis as well as Dr. Markus Hadwiger and Dr. Petr Sereda for

their hints and ideas.

I want to thank my friends and especially my family for their support and encourage-

ment throughout my work.

Contents

Erklarung zur Verfassung der Arbeit

Abstract

Zusammenfassung

Acknowledgments

1

Introduction

1.1 VolumeData

1.2 Interaction of Volume and Light

1.3 Volume Rendering
1.3.1 Splatting
1.3.2 Texture Slicing
1.3.3 Shear-Warp Volume Rendering
1.34 RayCasting
1.3.5 GPU-based Volume Rendering

Transfer Functions

2.1 Transfer Functions Based on Statistical Properties
2.2 Curvature-Based Transfer Functions
2.3 Size-Based Transfer Functions
2.4 Transfer Functions Based on Semantic Models
2.5 Transfer Functions Based on Derivatives

2.6 Transfer Functions Based on Clustering

11
12
13
14

Contents Contents

3 Clustering 33
3.1 Hierarchical Clustering 34

3.2 Partitional Clustering, 36

3.3 Density-Based Clustering 38

4 Methods & Implementation 45
4.1 Derivativeso e e e 46
4.1.1 First Partial Derivatives 46

4.1.2 Second Directional Derivatives 50

42 LHHistogram e 50
4.2.1 Integration 51

422 LHWValues. e 52

43 Mean ShiftClustering 53
4.4 Implementation 56
441 LHHistogram, 57

442 Mirrored LH Histogram 58

443 Transfer Function Setup 59

444 ManualDesign oL 59

445 Cluster-Based Approach 60

4.5 Volume Rendering 61
45.1 Texture Setup 62

4.5.2 Calculation of the ViewingRays 62

4.5.3 Shading and Compositing 63

5 Results 65
5.1 Visualizations Lo 66
5.2 Benchmarks 77

6 Conclusion 81
7 Bibliography 82

1 Introduction

This thesis deals with the classification and visualization of different objects or mate-
rials contained in a volumetric data set. Such a data set can be created using imaging
techniques like computed tomography (CT) or magnetic resonance imaging (MRI). Es-
pecially for complex structures it is desirable to have a three-dimensional representation
which can be analyzed and interacted with more intuitively than by simply looking at

individual slice images.

The following section gives an overview of volume rendering in general and presents
different volume rendering techniques. Chapter 2 deals with various approaches to
transfer function design whereas Chapter 3 focuses on clustering techniques which can
be used to automate this process. Chapter 4 explains the implementation of the auto-
matic classification and visualization of the data. In Chapter 5 visualizations created
with the new technique are shown, and the performance of the algorithm is evaluated.

Chapter 6 summarizes this thesis.

1.1 Volume Data

In general, a volume is considered as a continuous, three-dimensional field of data val-
ues. However, for the practical implementation of volume rendering techniques, a dis-
crete representation is used. Analogous to raster images where a picture element (pixel)
stores the color for a specific raster position, a volume element (voxel) stands for the
scalar value in a discrete volumetric data set. There are two possible interpretations of
such a voxel concerning its basic structure. Either it can be seen as a single point or

as a cube. In the first case, the scalar value is only defined at the grid points, and the

Chapter 1. Introduction 1.2. Interaction of Volume and Light

region between two voxels is considered to be empty. Values in between are obtained
by using interpolation methods. In the second case a voxel is treated as a cube which
contains a single data value. The decision which of the two interpretations should be
used, depends on the chosen rendering technique. Other considerations about the access
of the data concern which kind of grid type is used. It is possible to store the values in
uniform grids where the cuboid cells are aligned parallel to the coordinate axes or in
unstructured grids, like tetrahedral grids [SML97]. Unstructured grids are commonly
used, for example in computational fluid dynamics (CFD) or computed electromagnetic
fields. Although this approach provides more flexibility, uniform grids allow an easier
and more efficient access to the data in computer memory for volume rendering applica-
tions. As a consequence it is not uncommon that simulation data is mapped to a uniform

grid for visualization purposes only.

Basically, there are three sources for the data. The first one is the measurement of
physical phenomena using different scanning methods, such as CT [Bus00]. It has its
origins in medical imaging and has been adapted for the usage in industrial applications
of non-destructive testing (NDT). The acquisition is based on X-rays which are emitted
onto the object of interest. The radiation interacts with the different materials, leaves the
object and is measured by a sensor on the opposite side of the emitter. By repeating this
procedure from various angles, a slice image of the object can be reconstructed. When
shifting the object through the scanner at small steps, a series of those images can be
combined to form a volumetric data set. Another medical imaging technique, MRI, uses
a strong magnetic field to align the spins of atomic nuclei, as described by Markisz and
Aquilia [MA96]. This alignment is modified by a radio frequency pulse, and when the
spins return to their previous orientation they emit energy which is measured and used

for reconstruction of the volume.

1.2 Interaction of Volume and Light

Volume rendering is based on the modeling of the interaction of light with the media
it passes through, and the radiance that reaches a virtual camera is used for the visual-

ization. When traversing the volume, light can be emitted, absorbed, or scattered. As a

Chapter 1. Introduction 1.2. Interaction of Volume and Light

consequence, an equation for the transfer of light can be created which represents this
physical model. The complete equation is not applicable for practical purposes because
the solution would not be possible in reasonable time. Therefore, simplified variants
which consider only parts of the model have been introduced. The most common one is
the emission-absorption model which does not take scattering or indirect illumination

into account. This leads to the volume rendering integral

D D D

= [x(t)dt — [k(t)dt
I(D) = Ipe *0 +/q(s)e s ds (1.1)

as described by Engel et al. [EHKT06]. The initial radiance Iy at entry position s is at-
tenuated by the volume during traversal using the absorption coefficient k. Additionally,
the emission is represented by ¢(s) and contributes to the radiance (D) at exit position
D for the remaining distance along the ray. Due to the computational complexity of
an analytical solution, which is possible only under certain circumstances, a discretized
variant of the equation is used instead. A numerical solution can be achieved by splitting
the integration domain into a finite number of intervals and evaluating it as a series of
summations and multiplications. To simplify this procedure even further, compositing
schemes such as front-to-back (FTB) compositing are introduced where accumulated

color ¢; and opacity o; are expressed as

Ci:Ci71+(1_ai*1)a(xi)c(xl’) (12)
0 =01+ (1 —o_1)o(x;)

with ¢;_1 being the accumulated color and ¢;_; the accumulated opacity of the previous
step. The final values are obtained by stepping along the ray starting at the position
closest to the camera until the end of the volume has been reached. At each step the
color ¢(x;) and the opacity a(x;) for the current position, which have been defined in
a transfer function, are weighted and incorporated into the result. Basically, a transfer
function is a mapping which assigns optical attributes to each position in the volume.
A common method is the definition of a lookup table where these attributes are stored
for each scalar value. There are also other compositing schemes such as back-to-front

(BTF) compositing where the ray is traversed from the back, instead of starting at the

Chapter 1. Introduction 1.3. Volume Rendering

side of the volume facing the camera. As a consequence it is not necessary to accumulate

the opacity in a separate variable:
Cci = (1 —Oc(x,-))c(x,-fl)-i—a(x,-)c(xi) (1.3)

When using maximum intensity projection (MIP) [WMLKS89] the final color is obtained

using the maximum of all values encountered when stepping along the ray.
ci= max(ci,l , c(xi)) (1.4)

This method is independent of the direction of traversal and is frequently used, for ex-
ample, for the analysis of magnetic resonance angiography (MRA) or the visualization

of positron emission tomography (PET).

1.3 Volume Rendering

Volume rendering techniques can be categorized based on the method which is used
for the traversal of the data and are assigned to either image-order or object-order algo-
rithms. Object-order techniques operate in object space and project the voxels onto the
image plane where the compositing is performed. As a consequence, one voxel influ-
ences several pixels around its center of projection. Image-order algorithms start from

a single pixel and find the voxels which contribute its color and opacity values.

1.3.1 Splatting

Splatting is a representative of the object-order algorithms and was developed by West-
over [Wes89]. It is based on the assumption that the volume consists of basis functions
where each point of the grid modulates the kernel by its value, as described by Hansen
and Johnson [HJ04]. When picking an arbitrary position in the volume, the correspond-

ing result can be determined by finding the modulated kernels which contribute to the

Chapter 1. Introduction 1.3. Volume Rendering

@JA

image plane at 30° Switch compositing
axis at 45°

volume slices note: only relevant point must be projected
= convenient culling of non-object voxels

slicing slab

Popping occurs:

44.7° 45.2°
sheet buffer
\\/

compositing buffer

(a) Axis-aligned sheet buffer (b) Image-aligned sheet buffer

Figure 1.1: Splatting using different compositing techniques [Mue05].

sample due to their overlap. They are then combined by evaluating the sum of their con-
tributions. The integration of the basis function is independent of the viewing direction
when assuming a radially symmetric kernel. As a consequence, it can be pre-integrated,
and the result is stored as a so-called footprint in a lookup table. The footprints are splat-
ted onto the screen and thereby cover a certain area. If the kernel itself is a Gaussian,
then its footprint is a Gaussian too, and it can be calculated analytically. When using
orthographic views, it is necessary to calculate the footprint function only once for a
single view because it stays the same for each sample apart from an image space offset.
Hansen and Johnson differentiate three different types of splatting. The composite-only
method [Wes89] traverses the voxels in a front-to-back or back-to-front order and as-
signs colors and opacities according to the specified transfer function. After splatting
the voxels onto the image plane, they are composited with the existing ones. Since
the kernels have been pre-integrated, artifacts like sparkling or color bleeding may be

visible in animated visualizations.

The second technique, the axis-aligned sheet-buffered method [Wes90], uses the slices
of the volume which are most parallel to the image plane, as can be seen in Figure 1.1a.
Instead of compositing them directly, the values are simply added to color and opacity
buffers. The subsequent buffers are then composited which helps to avoid the color

bleeding artifacts from the previous technique. Instead, popping artifacts may occur

10

Chapter 1. Introduction 1.3. Volume Rendering

when the view direction changes the order of compositing at certain angles.

The third method, the image-aligned sheet-buffered splatting approach [MC98], uses a
compositing sheet which is parallel to the image plane, shown in Figure 1.1b. It shifts
a slab through the volume and uses its intersections with the kernels for the projection.
This has the consequence that a single voxel is visited more than only once. On the one
hand, it is the most accurate method amongst the three presented techniques and avoids
the bleeding and popping artifacts. On the other hand, it has the highest computational
complexity because a single voxel is considered multiple times.

1.3.2 Texture Slicing

Texture slicing is an object-order technique and uses two-dimensional slices which are
placed in the volume in order to apply a sampling of the data, as described in [EHK T 06].
In the axis-aligned version of this algorithm (also referred to as object-aligned texture
slicing) three stacks of slices are created which sample the volume along the the object’s
main coordinate axes (see Figure 1.2). It is necessary to use three stacks in order to avoid
artifacts which would occur if the angle between the slice normal and the viewing direc-
tion converged toward 90 degrees. As a consequence, the observer would see through
the gaps between the slices. Instead, the stacks are switched when the angle reaches 45
degrees. The advantages of texture slicing are its simplicity and rendering speed when
implemented on graphics hardware. The drawbacks, however, are the correlation be-
tween sampling rate and the number of slices. The image quality can be improved by

using a two-dimensional multitexture-based approach. Here, a trilinear interpolation is

Polygon Slices 2D Textures Final Image

Figure 1.2: Texture slicing using axis-aligned slices [EHKT04].

11

Chapter 1. Introduction 1.3. Volume Rendering

achieved by using a combination of the standard bilinear interpolation of two neighbor-
ing slices and a linear interpolation between these two values. The trilinear interpolation
could also be performed directly on a 3D texture. The undesired property that the sam-
pling rate depends on the viewing angle can be compensated by making the distance
between two textures dependent on the angle. Another improvement is the usage of
slices which are parallel to the viewport instead of aligning them with the object’s main
axes. This helps to prevent the flickering artifacts which occur when switching between

two different stacks.

1.3.3 Shear-Warp Volume Rendering

eye

(b) perspective projection

Figure 1.3: Shear warp volume rendering [EHK " 04].

Shear-Warp volume rendering, developed by Lacrout and Levoy [LL94], is another
object-order technique. It is similar to texture slicing where each slice is transformed
(warped) individually at first and the compositing performed afterwards. The shear-
warp technique reverses this order of traversal [EHK™06]. For an orthographic projec-

tion (Figure 1.3a) it applies a shearing to the slices in the beginning and additionally

12

Chapter 1. Introduction 1.3. Volume Rendering

a scaling if perspective projection (Figure 1.3b) is used. An intermediate base plane
is introduced additionally to the final image plane and is aligned parallel to two of the
object’s main axes. The slices are sheared and can be projected directly onto this base
plane. This projection corresponds to the resampling of a two-dimensional image be-
cause the slices and the base plane are parallel. When the compositing of the slices has
been finished, the image is transformed accordingly. The advantage of this algorithm is
its performance when implemented on a CPU using run-length encoding and early ray
termination. Due to the non-uniform access patterns it is not the first choice when an

implementation on a GPU is required.

1.3.4 Ray Casting

Image-order techniques, like ray casting introduced by Levoy [Lev88], use the pixels of
the image plane as starting position for sampling the volume (see Figure 1.4). During
ray traversal the volume rendering integral is repeatedly evaluated for each sampling
position using equations 1.2. As Weiskopf [Wei(07] states, it is common to use uniform
Cartesian grids which are sampled at equidistant steps using trilinear interpolation, typi-
cally in a front-to-back compositing scheme. At the beginning of the traversal, the initial
sampling position has to be determined. This is done by calculating the first intersection
of the viewing ray with the volume boundary. Additionally, the direction of the ray is
needed for the subsequent sampling steps. The second intersection of the ray with the

volume boundary marks the stopping position of the traversal.

rays

view plane

Figure 1.4: Ray casting [EHK104].

13

Chapter 1. Introduction 1.3. Volume Rendering

There are several optimization techniques for speeding up this process, for example
early ray termination. Additionally to the inside/outside test, the traversal can also be
stopped when the opacity has reached its maximum. Subsequent sampling positions
would no longer contribute to the result when using front-to-back compositing and are
therefore ignored. Another method called empty-space skipping or empty-space leaping
by Kriiger and Westermann [KWO03] completely leaves out empty regions. The authors
use an octree structure to store information about the child nodes like the minimum
and maximum scalar values. Additionally, a two-dimensional texture which is accessed
using pairs of minimum and maximum values is created. It indicates the existence of at
least one entry in the subvolume corresponding to the octree cell that will be assigned
an opaque color value after the application of the transfer function. The ray is traversed
using a coarse resolution as long as the two-dimensional texture, which is accessed
using pairs of min/max values, indicates empty space. When a non-empty region is
detected, the step size is decreased. Apart from these two optimization techniques,
there are several other strategies for increasing the rendering speed which are described
by Engel et al. [EHK 1 06)].

The inherent parallelism of the ray casting algorithm due to its independent viewing rays
makes it the ideal candidate for the implementation on a GPU. This is done by assigning
the operations of a single ray to one of the multiple, parallel processing pipelines of the
graphics card. Additionally to the speed gained by parallelizing the ray traversal, the
access time of the data is decreased by making use of the fast graphics memory for

storing the volume.

1.3.5 GPU-based Volume Rendering

The progress in the development of consumer graphics hardware enabled high quality
volume visualizations at interactive frame rates. The advantage of the execution on the
graphics card is the high degree of parallelization which cannot be achieved even with
today’s multi-core CPUs. In 3D graphics polygonal models are used for the visualiza-
tion of virtual objects and scenes. The sequence of individual steps required for the
conversion from polygons to a displayable raster image is called the graphics pipeline.

Initially, the graphics cards were based on a fixed-function pipeline which could not be

14

Chapter 1. Introduction 1.3. Volume Rendering

altered, but over time they became more flexible, configurable and programmable. The
pipeline consists of several stages but can be reduced to three stages for explanatory
purposes [EHK " 04]:

Geometry Stage

e operations like translation, rotation or scaling are performed on the individual
vertices in the local object coordinate system and in world space

e per-vertex lighting is calculated based on the specified light sources and material
properties

e the scene is transformed from world space to view space of the specified camera

e the projection from view space into the two-dimensional screen space is per-

formed

Rasterization Stage

e geometric primitives like points, lines and polygons are disassembled into a raster
image representation where each resulting fragment corresponds to a single pixel

e colors and texture coordinates are interpolated for each fragment

Fragment Stage

e the information of each fragment like color, transparency or depth information is

used for the calculation of the final pixel color

With the introduction of programmable shaders in 2001 [LKMO1], there are at least two
types of programs which can be executed on the graphics card: Vertex programs apply
transformations described in the geometry stage, whereas fragment programs process
the rasterized result. Volume rendering techniques operate directly on the scalar values
without creating intermediate geometric representations of the data as done in surface
rendering algorithms. Although there is no polygonal model, the vertex program is

required for the setup of a proxy geometry. It is used for the transformation of the data

15

Chapter 1. Introduction 1.3. Volume Rendering

set and serves as a basis for the compositing stage which is performed in the fragment

program.

According to Engel et al. [EHK " 04] there are several reasons for the success of slice-
based volume rendering techniques implemented on a GPU: The graphics card’s high
rasterization performance, the fast transfer of data from the texture memory to the ras-
terization unit, the built-in interpolation methods for the sampling of the data, and the
simplicity of the implementation. The authors also state that output sensitivity should
be the most important aspect for algorithms in the field of computer graphics. There-
fore, the main disadvantage of slice-based techniques is the direct relationship between
the number of slices and the complexity of the volume data. According to Kriiger and
Westermann [KWO03], only a few percent of all fragments of the examined data sets
contribute to the final image. Since many volume rendering techniques focus on the
visualization of borders, the majority of the voxels is set to transparent and therefore not
required for the generation of the final image. Further disadvantages of slice-based al-
gorithms are their dependency on the rasterization performance, their inflexibility, and
their limited suitability for acceleration techniques. As a consequence, ray casting is
the preferred volume visualization technique in this thesis because of its flexibility and

performance.

16

2 Transfer Functions

A volumetric data set, for example obtained from a CT scan, contains density values
only, but it does not store information about the materials contained within, let alone
their colors and opacities. For the visualization it is essential though to have a mapping
from intensities to optical attributes. As a consequence, it is up to the user to perform the
classification which means the identification of certain features. As transfer functions
evolved, this process is no longer limited to the specification of certain density values.
The transfer function design has moved from the one-dimensional domain of density
values to more abstract, multi-dimensional representations of the data. As a result,
structures of interest within a data set can be visualized in a higher quality. In most cases,
the process still requires the user to have knowledge about the data and the structures
contained within, as well as experience with the setup of a transfer function in general.
The following sections will give an overview of the different approaches and also shows

some example visualizations.

2.1 Transfer Functions Based on Statistical

Properties

Caban and Rheingans [CRO8] introduce a technique which is based on texture analysis
by combining first-, second- and high-order statistics. This helps to discriminate struc-
tures even when they have similar density values. The authors capture structural and
geometrical properties by using histogram statistics, co-occurrence and run-length ma-

trices. First, a data set is divided into overlapping subvolumes which are then analyzed

17

Chapter 2. Transfer Functions 2.1. Transfer Functions Based on Statistical Properties

(a) density-based

(c) opacity- & gradient-based.

(d) size-based (e) size-based (p =20 =4k=3) (f)size-based (p =20 =4k=3)

Figure 2.1: Comparison of visualizations created with traditional methods (top row) and
with texture based transfer functions (bottom row) [CRO8].

separately. These partitions have to be large enough to capture textural statistical prop-
erties and small enough to include only local features of the surrounding voxels. There
exist several properties which can be analyzed, for example, the probability of the oc-
currence of a certain intensity value inside one of these subvolumes. Other local features
which can be extracted by first-order statistics are mean, variance, kurtosis, skewness
and deviations. Second-order statistics capture the likelihood of observing two different
intensity values at a certain distance and are calculated by using co-occurrence matrices.
These matrices are created for different angles and are then averaged in order to provide
rotation-invariant properties such as energy, inertia, entropy, etc. Regions with similar
properties are determined by using run-length matrices of high-order statistics. Such a
matrix holds the frequency of a certain number of points with a specific intensity in one
direction. It offers the possibility of analyzing the amount of short runs, long runs and
the uniformity of a run. All in all, there are 20 textural metrics which get pre-computed

and combined into a multi-dimensional vector.

The transfer function is set up by specifying the number of different structures within

18

Chapter 2. Transfer Functions 2.2. Curvature-Based Transfer Functions

the data set. With this input an inequality-based fast k-means algorithm is used to detect
clusters which are then used for setting up the transfer function. It is also possible to
manually define thresholds for individual metrics. Another way for rendering certain
structures is to select parts of them with the help of a three-dimensional widget. The
descriptors contained within this region are then combined and averaged to form a new
descriptor. The distance between the textural properties of the voxel and the new de-
scriptor are examined during the rendering phase. If the value is below a certain thresh-
old, then a different color and opacity is assigned to the voxel under consideration. In
order to separate two different structures, parts of them have to be selected with a three-
dimensional widget. If the corresponding metrics are similar, then they are assigned
lower weights. Otherwise, they are emphasized by using higher weights. For a 1283
data set with a region size p = 2 voxels and an overlap o = 4 voxels the pre-processing
part of the algorithm takes about 30 seconds and the clustering approximately 6 sec-
onds. Figure 2.1 shows some examples in comparison to traditional methods. The very
recent approach of moment curves by Patel et al. [PHBGO09] is also based on statisti-
cal properties of a data set for visualizing distinct features with similar density values.
Instead of dividing the data set into static subvolumes, they use dynamically changing
neighborhoods. By doing so, they try to find optimal sets of voxels for the statistical
analysis. For each voxel the neighboring density values inside a sphere with an initial
radius r are used for calculating statistical properties, and the procedure is repeated for
increasing radii. The resulting triples of radius, mean and variance can be interpreted
as coordinates of a three-dimensional feature space and combined to form a curve, the
moment curve. After evaluating this procedure for every voxel of the data set, materi-
als can be classified by using specific groups of moment curves. These groups can be

obtained through brushing in the visualization of the curves, as shown in Figure 2.2.

2.2 Curvature-Based Transfer Functions

Kindlmann et al. [KWTMO3] use the curvature of structures contained in a volumetric
data set as a criterion for the transfer function design and thereby continue the work of

Hladtivka et al. [HKGOO]. They use an algebraic framework of differential invariants

19

Chapter 2. Transfer Functions 2.2. Curvature-Based Transfer Functions

Figure 2.2: Transfer function setup and visualizations using moment curves [PHBGO09].

Figure 2.3: Visualizations using curvature-based transfer functions for emphasizing the
silhouette and smoothing of the surface [KWTMO3].

20

Chapter 2. Transfer Functions 2.3. Size-Based Transfer Functions

for calculating the curvature. One difficulty they are facing is the increasing amount of
noise when using higher order derivatives. A convolution based measurement scheme
enables them to determine the ideal tradeoff between accuracy, continuity, and filter
size. The curvature information is then used for creating non-photorealistic renderings.
The disadvantage of previous approaches for the emphasis of the silhouette of an object
was that the visible width of the contour was not constant. The authors solved this prob-
lem by incorporating curvature into the transfer function. Isotropic surface smoothing
is achieved through the minimization of the surface integral of total curvature. This
technique is similar to the blurring of an image with a Gaussian filter. Noise can be
removed with a variant of this energy function while preserving important features. A

visualization created with these techniques is shown in Figure 2.3.

2.3 Size-Based Transfer Functions

Another approach for separating structures which have similar or the same intensity
values is to use a transfer function which is based on the relative size of a feature. Correa
and Ma [CMO8] have developed a technique that uses scale fields. In such a field every
voxel represents the local scale or size of the feature which contains this voxel. Scale-
space theory has its origins in computer vision but it is also used for diffusion-based
smoothing of three-dimensional volumes. Previous approaches to multi-scale analysis
have used pyramid representations to enhance the classification which leads to discrete
and disperse representations of scale. Another drawback is that they are hardly capable
of finding small variations in size. These disadvantages can be avoided when computing
scale fields which are based on continuous scale-space theory in combination with a set

of scale detection filters.

The first step of the procedure is the computation of the scale field. This could be
achieved by using a convolution, which is quite expensive from a computational com-
plexity point of view. Instead, the approach of forward Euler integration of the diffusion
equation is the preferred technique. The minimum and maximum detectable sizes can
be specified by the user as parameters for the diffusion process. The scale space can

then be used, for example, to detect blobs at multiple scales by searching for maxima of

21

Chapter 2. Transfer Functions 2.3. Size-Based Transfer Functions

(a) 1D based on intensity: (b) 2D based on intensity and (c) Size-based:
scalar value — color gradient. size — color
scalar value — opacity scalar value & size — opacity

Figure 2.4: Comparison of traditional and size-based transfer functions for an unseg-
mented hand data set [CMO8].

the normalized second derivative. It can happen that two distinct objects merge into a
single blob in the diffusion process before they can be separated into different objects.
Therefore, the signed forward differences are used as an approximation of the gradient.
By doing so, a filter can be created which focuses on regions of a certain homogeneity
and prevents diffusion over edges. Similar results could be achieved by a progressive
application of smoothing and erosion filters. The result of the scale detection procedure
is a set of discrete points which represent the most salient scales of the volume. In order
to create a smooth transfer function, it is necessary to find a continuous representation
for these points. Therefore it is assumed that all voxels within a certain radius ¢ of
an extremum in both space and scale can be described with a size . The continuous
representation can then be achieved with the help of scattered data interpolation using
Shepard’s interpolation. Since the scale-space is based on diffusion, it is inherently ro-
bust to noise. Features that have different intensities but similar sizes are represented

similarly due to the usage of the Laplacian.

The scale field can now be used to create a transfer function by combining it with the
original data. A comparison of traditional methods and the size-based approach can be
seen in Figure 2.4. Vessels and bones cannot be separated very well with a transfer func-
tion based on density values only. The results slightly improve when a two-dimensional
transfer function based on densities and gradients is used. With the help of the size
based transfer functions, thin structures such as veins can be emphasized while hiding

other structures like skin.

22

Chapter 2. Transfer Functions 2.4. Transfer Functions Based on Semantic Models

2.4 Transfer Functions Based on Semantic Models

With the increasing complexity of the transfer function itself, it gets more difficult to
create good visualizations in a short time. Even for experienced users the result of modi-
fying certain parameters is not always predictable, and the transfer function setup corre-
sponds to a trial and error process. In order to provide an interface which can be used in a
more direct way to visualize certain features of a volume, Rezk-Salama et al. [RSKKO06]
introduced a layer of abstraction into this process. Figure 2.5 shows an example using
a single slider for the adjustment of the visibility of the vessels and the effect its change
has on the visualization. This approach allows the creation of a semantic model which
maps semantic parameters to instances of transfer functions based on the requirements
of the user. Therefore, the structures of interest in the volumetric data sets, called enti-
ties, have to be defined in advance. As the implementation is designed for a specific field
of application, e.g. medicine, the number of entities, such as skin or bone, is limited.
The first step is the adjustment of a transfer function template for a certain number of
training data sets. The parameter vector of each individual transfer function is then used
as input for a principal component analysis (PCA). The result of this operation, a set of
semantic parameters, is adapted according to the individual requirements of the visual-
ization. The authors state that in practice the first principal component is dominant and
can be used for editing the transfer function with only one parameter. It is also possible
to introduce additional semantics which do not control the selection of the entities but
properties like the contrast between them or their visibility. This is done by adapting
the training data sets using the basic parameter. The first principal component from the

difference of the parameter vectors is used as a semantic parameter for the contrast.

Figure 2.5: The visibility of blood vessels is controlled by a single parameter using a
transfer function based on semantic models [RSKKO06].

23

Chapter 2. Transfer Functions 2.5. Transfer Functions Based on Derivatives

2.5 Transfer Functions Based on Derivatives

Instead of using a one-dimensional transfer function space that is based on the density
values only, Kindlmann [Kin99] creates a two-dimensional space which incorporates
the gradient magnitude as the second dimension. By doing so, material boundaries in
a data set can be interpreted as arches in a new transfer function domain, as can be
seen in Figure 2.6. Both ends of an arch correspond to homogeneous regions of two
different materials within a data set that have a gradient magnitude of zero. As one
ascends an arch on the left side, the corresponding position inside the data set is moved
along the gradient direction. The top of the arch corresponds to the border between the
two materials where the gradient magnitude is at its maximum. The descent of the arch
stops on the other side in the homogeneous region of the second material because its
gradient magnitude has become zero. A selection of specific materials and boundaries
in this transfer function domain can be made using certain transfer function widgets.
Basically these widgets are polygonal shapes which can be modified in order to fit to

the arches, especially the regions on top with a high gradient magnitude.

An inherent problem of transfer functions based on density values and gradient mag-
nitudes is that arches can overlap, as can be seen in Figure 2.8a. A possible approach
for circumventing this effect is to incorporate the second directional derivative along
the gradient direction as a third dimension into the transfer function design, as done by
Kniss et al. [KKHO1].

Data Value ' o

Figure 2.6: The rendering of the Chapel Hill CT Head data set is the result of a transfer
function based on a 2D histogram of density values and gradient magnitudes [KKHO2].

24

Chapter 2. Transfer Functions 2.5. Transfer Functions Based on Derivatives

(b)

Figure 2.7: Instead of using the standard histogram consisting of values obtained from
sampling the positive and negative gradient direction (a), parallel axes (b) serve as the
domain for the transfer function design to create visualizations (c) [LMO04].

The technique of using the two-dimensional transfer function domain of density values
and gradient magnitudes still does not solve the problems of noise, partial volume effect
and bias along the boundary. These influence factors result in a blurred histogram with
multiple shifted or scaled copies of a single arch. An approach inspired by the technique
of the arches was developed by Lum and Ma [LMO04]. They pick the two density values
on both sides of the border by using the gradient for taking the samples. The basic
idea is that these two values will stay constant for a single border and therefore can be
used to set up a transfer function. The distance between those two sample positions
has to be defined individually for each data set because the width of the border varies
with the amount of blur of the data. Lum and Ma state that a distance of one voxel in
each direction would be sufficient. The setup of a transfer function is not as intuitive
as for the two-dimensional space consisting of density values and gradient magnitudes.
Plotting the density on two separate axes produces a histogram shown in Figure 2.7a.
Therefore, a different representation was created which uses two parallel axes for the
density values. The intensities obtained from sampling the positive gradient direction
are plotted on the bottom axis whereas the ones that originate from the other side of the

material boundary are plotted on the top axis. The value pairs are then connected by a

25

Chapter 2. Transfer Functions 2.5. Transfer Functions Based on Derivatives

line where the brightness corresponds to the number of pairs with the same combination
of scalar values, as can be seen in Figure 2.7b. The diagonals correspond to boundary
regions whereas vertical lines represent the homogeneous regions of the data set. A

transfer function can be created by simply brushing the diagonals.

Sereda et al. [SBSGO06] also aimed at finding the materials located at both ends of the
arches. They have developed a new transfer function space based on LH histograms
which have been introduced by Serlie et al. [STF"03]. Instead of trying to find the
density values of the two materials which form the border by taking samples at a fixed
width, they integrate the gradient field in both the positive and the negative gradient
direction. The integration continues as long as the gradient magnitude is above zero.
This procedure is executed for every voxel of the data set, and the resulting low (F7)
and high (Fy) density values are used for constructing the two-dimensional histogram.
By definition, Fy will always be greater than or equal to Fz. This has the consequence
that only the region above the diagonal of the histogram will be populated with values.
For voxels with a gradient magnitude of zero, the values for F; and Fg can be set to the
voxel’s intensity because it is then inside a homogeneous material. In this case the value
projects onto the diagonal of the LH histogram. When comparing this type of transfer
function to those based on density values and gradient magnitudes, it turns out that the
different boundary regions can be separated more clearly. There are less ambiguous

regions due to the overlapping of the arches, as can be seen in Figure 2.8.

(b)

Figure 2.8: Boundaries highlighted in the slice view project onto the marked positions
in the two-dimensional histogram based on density values and gradient magnitudes (a).
A visualization using LH histograms is shown in (b) [SBSGO06].

26

Chapter 2. Transfer Functions 2.5. Transfer Functions Based on Derivatives

(b) (d)

Figure 2.9: Visualizations of an artificial data set using standard LH histograms (a) and
(b) and mirrored LH histograms (c) and (d) [SVGO06b].

It is possible that different objects in a volumetric data set which are separated in space
have similar properties and therefore cannot be distinguished by a transfer function. In
such a case, the technique of region growing is a good means for discriminating these
materials. Starting at a seed position, the current voxel is labeled, and the neighbors
are examined. According to a certain cost function, the most similar one is selected,
labeled, and then the procedure is repeated for the other unlabeled, neighboring voxels.
This cost function is designed not to grow outside the current boundary, into another
boundary, into areas of constant intensities or into small noisy boundaries. Therefore,
several measures are incorporated into the calculation. The first criterion is the object
distance which represents the similarity to those voxels which have already been la-
beled. It is calculated by using the Euclidean distance in the LH space. The neighbor
distance is used as the second criterion and comes into play when dealing with biased
or thinning boundaries. The third criterion is the neighbor coherence. It evaluates the
directional coherence of the gradients and is scaled by the average strength of the neigh-
bors. The boundary strength, which is used as the last criterion, facilitates the growth of
strong boundaries with higher values for the distance between Fy and Fy. After calcu-
lating these measures, they are combined by using certain coefficients which need to be

adapted accordingly for each data set.

One difficulty which arises with LH histograms is that two neighboring materials share
the same boundary. Therefore, an unambiguous selection is not possible. Figure 2.9b
shows a visualization where it can be seen that part of the green material boundary is
missing because it belongs to the red, translucent material too. Based on their previous

work, Sereda et al. have developed a modification of their LH histograms: the mirrored

27

Chapter 2. Transfer Functions 2.6. Transfer Functions Based on Clustering

LH histograms [SVGO06b]. The boundary is divided into two separate parts by esti-
mating the exact position of the edge during the integration of the gradient field. This
can be done with the help of the second derivative by assuming that it is located at the
zero crossings. The histogram is then created as follows: If the intensity of the voxel
is greater than the one of the voxel which is located at the edge, then it projects above
the diagonal as it is done in the standard LH histogram. If the voxel’s intensity is lower,
then it projects below the diagonal which is done by exchanging F; and Fy. The his-
togram region below the boundary looks like a mirroring of the standard LH histogram
because it contains approximately the same number of voxels as the region above the
diagonal. Partial boundaries which belong to the same material are horizontally aligned
and can be selected more easily. It is also possible to project the histogram values onto
the Fy axis to create a one-dimensional histogram. This makes it easier to select the
homogeneous regions and the boundary regions of a specific material at once. In the
visualization shown in Figure 2.9d the hole in the boundary of the green material has

disappeared.

2.6 Transfer Functions Based on Clustering

Tzeng and Ma [TMO04] present a method for creating a transfer function based on mate-
rial classes which are automatically extracted using the Iterative Self-Organizing Data
Analysis Technique (ISODATA). Instead of applying the algorithm to the entire vol-
ume, only a subset of randomly chosen voxels is used as input to reduce the required
processing time. Features used for the clustering are intensity, gradient magnitude, sec-
ond directional derivative and neighboring values. The algorithm itself is an adapted
version of the k-means clustering where the user has to specify the number of clusters
in advance. ISODATA additionally merges clusters when the number of classes grows
too large or when the clusters are too close to each other. Splitting is performed when
there are too few clusters or when the samples contained within a cluster are very dis-
similar. Because only a part of the entire data set has been classified, the remaining
voxels have to be processed based on the classified ones. This is done by using the min-

imal distance between the feature vector of a voxel and the mean vectors of the clusters.

28

Chapter 2. Transfer Functions 2.6. Transfer Functions Based on Clustering

Contributions

grouped
using s

grouped
using s’

2D histogram
position

()

Figure 2.10: The contributions of a single row of an example LH histogram can be seen
in (a). The initial clusters (colored regions) are determined through local extrema. In
(b) a dendogram is shown which visualizes the interactive clustering procedure using
different similarity measures. [SVG06a]

The result is then mapped to a two-dimensional transfer function based on density val-
ues and gradient magnitudes. This visualization is created to provide an interface for the
refinement of the clustering and the manipulation of the colors and opacities assigned

to the different material classes.

Based on their previous work about LH histograms, Sereda et al. [SVG06a] aimed at
automatically creating transfer functions with the help of clustering techniques. They
have developed an approach which consists of two similarity measures: The first one
is supposed to group similar boundaries by detecting clusters in the LH feature space,
whereas the second one evaluates the spatial connectivity of these clusters. It is nec-
essary to downsample the histogram data before the clustering due to the complexity
of the generation of the hierarchy, which is 0(%) where n is the number of clusters.
Another preprocessing step applied to the histogram, is the blurring of the data with
a two-dimensional Gaussian kernel. The value for ¢ needs to be as small as the size
of a histogram bin. This eliminates small clusters which exist, for example, due to the
presence of noise in the data. Another effect of the filtering is the establishment of a
direct neighborhood relation between separated peaks. The initial clustering can now
be calculated by detecting local peaks, as can be seen in Figure 2.10a. The detected
peaks correspond to the material boundaries inside the volumetric data set. With this
information at hand, several similarity criteria for joining the clusters are established.
The first one is simply the distance between two clusters. It is based on the assumption

that elements which are close to each other in the LH histogram, represent boundaries

29

Chapter 2. Transfer Functions 2.6. Transfer Functions Based on Clustering

Figure 2.11: Visualizations of the engine and the carp data set based on the clustering
of the LH histograms [SVGO06a].

between similar tissues. Using the separation as a second criterion, helps to determine
if two peaks correspond to different boundaries. This is done by looking at the depth
of the valley between these peaks. The direction of elongation is used as the last cri-
terion. It originates from the fact that clusters in the LH histogram are not necessarily
compact and round. Instead, it is possible that the tissues which form the boundaries

have varying density values and therefore lead to asymmetric clusters.

Now that the criteria have been determined, they are combined by using a technique
which is based on the Bayesian decision theory. As a prerequisite the clusters are in-
terpreted as bivariate two-dimensional probability density functions (PDF). When using
a Bayesian classifier, the upper bound of the probability of a wrong decision can be
estimated using the Bhattacharyya bound. This technique can also be used for inter-

preting this probability as the overlap of the PDFs and thereby as the similarity of the

30

Chapter 2. Transfer Functions 2.6. Transfer Functions Based on Clustering

M

(b)

(d) (e) ()

Figure 2.12: Visualizations of the tooth data set based on the clustering of the LH his-
tograms [SVGO06a]. The selection of the hierarchy level is indicated by a red line in the
dendogram in (a). The corresponding selection of the clusters is shown in (b), whereas
(c) is rendered with the resulting transfer function. It has been adapted manually in order
to remove the cylindrical boundary and to fix the (yellow) dentine-air border. The visu-
alization (d) is created by making the outside boundaries of the tooth semi-transparent.
The grouping of several clusters in (e) leads to the rendering shown in (f).

clusters. The second similarity measure is supposed to agglomerate clusters correspond-
ing to boundaries which are connected in the volumetric data set. This is achieved by
calculating the number of direct neighborhood relations between the clusters. For a
33 neighborhood the relations between the voxels are weighted using the directional

coherence [SBSGO06] and normalized to make it independent of the cluster size.

The authors state their framework enables a real-time interaction with the cluster hi-
erarchy and offers the possibility of selecting objects at different hierarchy levels, as
shown in Figure 2.10b. In this example the clusters e; and e; are fixed at level 2, taken

out of the hierarchy and are therefore no longer split or joined with other clusters when

31

Chapter 2. Transfer Functions 2.6. Transfer Functions Based on Clustering

changing the hierarchy level. The other clusters are grouped using a similarity measure
s at the initial level. At level 3 this measure is modified and the grouping of the clusters
is performed with the new measure s’. Figure 2.11 and Figure 2.12 show visualizations

using the described technique.

32

3 Clustering

Kogan et al. define the task of clustering as follows: “Clustering techniques are used to
discover natural groups in data sets and to identify abstract structures that might reside
there, without having any background knowledge of the characteristics of the data.”
([KNTO6, p. VII]) or as Das et al. describe it: “Cluster analysis means the organization
of an unlabeled collection of objects (or patterns) into separate groups based on their
similarity. Each valid group, called a “cluster”, should consist of objects that are similar

among themselves and dissimilar to objects of other groups.” ([DAKO09, p. VII])

From the point of view of machine learning, clustering could be interpreted as the pro-
cess of unsupervised learning of a hidden data concept. A huge number of algorithms
have been developed in the past which approach the task form different domains such
as graph theory [Zah71], statistics [For65], fuzzy set theory [JaiO0], evolutionary com-
puting [Bon03] [Fal98] or neural networks [Koh95] [MJ95] [PBT93].

According to Kogan et al. [KNTO06], it depends on the field of application which char-

acteristics of the algorithms are the most important ones:

e type of attributes

e scalability to large data sets

e ability to work with high-dimensional data
e ability to find clusters of irregular shape

e handling of outliers

e time complexity

e data order dependency

e type of labeling (strict/fuzzy)

e dependence on user-defined parameters and a priori knowledge

33

Chapter 3. Clustering 3.1. Hierarchical Clustering

The following sections will give an overview of different classical approaches to the

task of clustering and analyze some of the above mentioned properties.

3.1 Hierarchical Clustering

In general, there are two types of hierarchical clustering algorithms: agglomerative and
divisive. The agglomerative variant starts at the lowest hierarchy level where each clus-
ter contains only a single object. When ascending the hierarchy, the number of clusters
decreases at each step by fusing them. The divisive variant starts at the highest level
where there is only one clusters which contains all objects and subsequently splits these
clusters into smaller groups. This procedure can be visualized with a special kind of

tree diagram, a so called dendogram, which can be seen in Figure 2.10b.

There are three linkage or distance metrics used to determine which clusters are fused:

o Single-Link uses the shortest distance between any member of the first and the
second cluster, also referred to as connectedness or minimum method (e.g. SLINK
[Sib73]) and produces elongated clusters.

e Complete-Link uses the greatest distance between any member of the first and
the second cluster, also referred to as diameter or maximum method (e.g. CLINK
[Def77]) and creates compact clusters.

e Average-Link uses the average distance between any member of the first and
the second cluster (e.g. Voorhees’ method [Voo86]) and results in cluster shapes

somewhere between the single-link and the complete-link method.

One of the most popular hierarchical clustering algorithms is the “Balanced Iterative
Reducing and Clustering using Hierarchies” (BIRCH) [ZRL96] [ZRL97]. It is based
on a height-balanced tree, called Cluster Feature tree (CF-tree). This representation of
the data is created by accumulating its zero, first, and second moments. When a new
data point is added, it contributes to the closest CF leaf if the maximum number of
elements for this leaf has not been reached. The statistics for the leaf and all its parent
nodes up to the root are updated. If there is no space left, then a new CF is created.

There are two important variables which determine the output of the clustering: The

34

Chapter 3. Clustering 3.1. Hierarchical Clustering

& :%s‘w

)

(a) (b)

Figure 3.1: Comparison of the CURE (a) and the CHAMELEON (b) algorithm applied
to a data set with 8000 points [KHK99].

branching factor limits the number of allowed children per node, whereas a dynamically
updated threshold controls whether a point is assigned to an existing leaf or to a new
one. The algorithm can be executed several times in order to improve the results of the
previous runs. BIRCH is the first algorithm which can handle noise effectively and has
a complexity of O(N). Since the number of points a node is able to store is limited,
the result does not always correspond to the actual clusters. Another drawback is that

different orders of the input data lead to different clusters.

Linkage metrics tend to produce clusters with convex shapes since they are based on
the Euclidean distance. Therefore, Guha et al. [GRS98] have developed an algorithm,
“Clustering Using REpresentatives” (CURE), that has several advantages. It is an ap-
proach positioned somewhere between graph methods, which use all points and geomet-
ric methods, which use a single centroid. A cluster is represented by a certain number of
points in its surroundings, and the single- and average-link metrics are replaced by the
representatives’ aggregate closeness. As a consequence, non-spherical shapes can be
created and the impact of outliers is reduced. Although the complexity remains O(N?),

the performance increases because N now refers to the number of samples.

There are also other hierarchical algorithms such as “RObust Clustering using linKs”
(ROCK) by Guha et al. [GRS00] which is not used for numerical attributes such as
CURE but for categorical attributes. A different technique from Karypis et al. [KHK99]

35

Chapter 3. Clustering 3.2. Partitional Clustering

()

=] - ®

s, & f (2 & %
et te & % 4
. : N

(a) (b) () (d)

Figure 3.2: Example of the k-means clustering algorithm [Wik09]. The colored circles
in (a) indicate the initial, randomly chosen centroids. In the first iteration shown in (b)
each point is assigned to the nearest centroid. In (c) the mean values are updated and
the centroid updated accordingly. Executing (b) and (c) until convergence results in the
final clustering shown in (d).

called CHAMELEON uses a sparse-graph representation of the items and is based
on the k-nearest-neighbor graph approach. Edges exist between two vertices only if
they are both amongst their k£ most similar points. The clustering process consists of
two stages. The output of the first stage are small partitions which are subsequently
merged in the agglomerative process using relative interconnectivity and relative close-
ness as similarity measures. A comparison of the results obtained from CURE and
CHAMELEON can be seen in Figure 3.1.

3.2 Partitional Clustering

Partitional clustering algorithms start with an initial partitioning of the data set and it-
eratively refine the classification by minimizing a certain dissimilarity measure within
these clusters. The procedure stops when the position of the centroid no longer sig-
nificantly changes, the quantization error is small enough, or the maximum number of

iterations has been reached.

One of the most popular partitional clustering techniques is the k-means clustering algo-
rithm [Mac67] [Har75] which is based on the calculation of the means. The first step is
to specify the number of clusters which are supposed to be detected. Then the represen-

tatives of the clusters, the centroids, are initialized randomly or based on some a-priori

36

Chapter 3. Clustering 3.2. Partitional Clustering

information. Each point is then assigned to its nearest centroid which are then recalcu-
lated. The two previous steps are repeated until a certain stopping criterion, €.g. no more
changes, is met. This version of the algorithm, also known as Forgy’s algorithm [For65],
enables parallelization and does not depend on data ordering. A variation of the tech-
nique, the classic variant in iterative optimization, determines the impact of assigning a
point to another cluster on the objective function in advance. Experiments have shown
that the classic version produces better results than Forgy’s version [LA99] [SKKOO].
Another variant, the Iterative Self-Organizing Data Analysis (ISODATA), additionally
applies a series of splitting and merging operations depending on the number of clusters.
The advantages of k-means clustering in general are its simplicity and the complexity
of O(N) which enables its operation on large data sets. However, there are also some
disadvantages: The number of classes has to be specified in advance, the performance
is data-dependent, it is sensitive to outliers and the resulting clusters strongly depend on

the initial configuration.

Algorithms based on k-medoids [TK03], where each cluster is represented by one of
its points, are more robust to noise and outliers than k-means clustering. A medoid
is a representative point of a cluster with its average dissimilarity to all other points
being minimal. Clusters are therefore considered as groups of points which are close
to those medoids. The implementation “Partitioning Around Medoids” (PAM) [NH94]
randomly selects non-medoids and evaluates a cost function using a distance metric like
the Euclidean distance. If the costs for the new candidate are sufficiently low, then it
is exchanged with the current medoid. The procedure is iteratively repeated with new
candidates until the medoids no longer change. Another variant of this algorithm “Clus-
tering LARge Applications” (CLARA) [KR90] applies PAM to several subsets of the
data and takes the best of these results. “Clustering Large Applications based on Ran-
domized Search” (CLARANS) [NH94] goes even further. It interprets the search as
a graph where every node corresponds to a possible solution (set of medoids) and an
edge connects two neighbors if they differ by a single medoid. The algorithm iteratively
compares a node to its neighbors and searches for a local minimum. If the correspond-
ing node has been found, then CLARANS uses it as starting point for a new iteration.
Otherwise, it restarts the search with a randomly selected node until a certain number
of local minima has been found. The advantage of CLARANS, which has a complex-

37

Chapter 3. Clustering 3.3. Density-Based Clustering

ity of O(N?), over CLARA is that it uses a random search for finding the neighbors.
In contrast, CLARA compares only few neighbors which correspond to a fixed, small

sample.

For data sets with overlapping clusters, a fuzzy technique can be used to determine the
membership degree of the data points in the clusters. An example for this method is
the fuzzy c-means (FCM) algorithm [Bez81] by Bezdek which is based on the fuzzy
extensions of the least-square error criterion. Similar to the k-means clustering, the
number of classes which are supposed to be found have to be specified in advance.
Jain et al. [JMF99] state that the algorithm is better than k-means clustering at avoiding
local minima, but the convergence to local minima of the squared error criterion does

still exist.

Expectation Maximization (EM) algorithms [MK96] are used for finding maximum
likelihood estimates of parameters in probabilistic models which depend on unobserved
latent variables. The clustering is performed using Gaussian probability density func-
tions (PDF). The algorithm is an iterative optimization technique consisting of an expec-
tation and a maximization step. The first step determines the membership probability
of a point in each cluster (fuzzy classification), whereas the maximization step uses the
known and the expected values for generating a new estimate of the parameters. These

two steps are repeated until convergence.

3.3 Density-Based Clustering

The idea behind density-based clustering is that clusters can be interpreted as dense
regions of data which are separated by regions of lower densities. When it is seen as a
connected dense component it can grow in any direction where the density leads. This
approach enables the detection of clusters with other than the typical blob-like shapes
known from k-means clustering by dividing the feature space into density-based grid

units.

The algorithm “Density Based Spatial Clustering of Applications with Noise” (DB-
SCAN) developed by Ester et al. [EKSX96] is based on the conditions of (direct)

38

Chapter 3. Clustering 3.3. Density-Based Clustering

() (b) (©

Figure 3.3: Assuming that MinPts equals 2, the border point p in (a) is directly density-
reachable from ¢ but not vice versa. In (b) p is density-reachable from ¢ but not vice
versa. In (c) p and g are density-connected to each other by o. [EKSX96]

density-reachability and connectivity. A few definitions have to be given before ad-

vancing to the algorithm:

e The g-neighborhood of a point p from a data set D is defined by
Ne(p) ={q € D|pq < €}.

e [f the number of points contained within an £-neighborhood of a point p reaches at
least a certain minimum value |Ng(p)| > MinPts, then p is a core point, otherwise

it is a border point.

e A point p is directly density-reachable from a point ¢ if p is in the €-neighborhood
of ¢ and if ¢ is a core point. This criterion is symmetric for pairs of core points

but not for a combination of core and border points, as shown in Figure 3.3a.

e A point p is density-reachable from a point g if there is a series of points p;...p,
with p; = ¢q, p, = p and p;; | being directly density-reachable from p;. As for the
directly density-reachable points, this criterion is not symmetric for a pair of core

and border points, as shown in Figure 3.3b.

e A point p is density-connected to a point ¢ if there is a point o such that both, p

and q are density-reachable from o (Figure 3.3c).

e A cluster C is a set of all points p and g which satisfy the following conditions:

39

Chapter 3. Clustering 3.3. Density-Based Clustering

(a) (b) (©

(d) (e) ®
Figure 3.4: Clusters which have been found by CLARANS are shown in (a) - (c)
whereas (d) - (f) haven been detected by DBSCAN [EKSX96].

— maximality: p € C and q is density-reachable from p
— connectivity: p is density-reachable from ¢

e All points which do not belong to any cluster are interpreted as noise.

The clustering process is started by checking the €-neighborhood of an arbitrarily se-
lected point p. If p is a core point, then a new cluster with all points g from Ng(p) is
created. Each of these points is then processed by analyzing its €-neighborhood. If it
contains at least MinPts, then the neighboring points of ¢ are a added to the cluster, and
the procedure is executed for them too. Additionally, the algorithm may merge two clus-
ters if they are close enough. The authors state that their algorithm has a computational
complexity of O(nlogn) when using spatial access methods such as R*-trees [BKSS90].
A direct comparison of the results obtained with DBSCAN and CLARANS based on
the SEQUOIA 2000 benchmark data [SFGM93] can be seen in Figure 3.4. DBSCAN
correctly classifies the clusters in each data set as well as the noise. The drawback
of DBSCAN is that it is very sensitive to the definition of € and MinPts. In contrast,
CLARANS splits “natural” clusters apart, merges others over regions of low density

and simply assigns noise to the nearest cluster centers.

40

Chapter 3. Clustering 3.3. Density-Based Clustering

MinPts =3

(a) (b)

Figure 3.5: Algorithms which use global density parameters (a) fail to simultaneously
detect clusters with different densities. Varying the €-value in the OPTICS algorithm
(b) solves this problem and finds clusters with different densities. [ABKS99]

A disadvantage of DBSCAN and other similar clustering algorithms is that they use
global density parameters. This makes it impossible to simultaneously detect clusters
with different densities in a data set, as can be seen in Figure 3.5a. Either the clusters
A — C or the clusters C; — C3 but not A, B, C; — C3 are found. The structures of the
clusters simply cannot be represented by a single, fixed value for the density param-
eter. Hierarchical clustering algorithms address this issue, but the single-link method
presented in Section 3.1 has two disadvantages. It does not split clusters apart which
are connected by only few points having a small inter-object distance, and the resulting
dendograms can be difficult to interpret when they consist of several hundred clusters.
Alternatively, partitioning algorithms which are based on densities could be used with
varying parameter settings. The difficulty with this approach is the infinite number of
possible values for the parameters. Even when trying to cover a large range of values,
the problem of analyzing the result still remains apart from the enormous amount of

required secondary memory.

These difficulties were the motivation for Ankerst et al. [ABKS99] to develop the al-
gorithm “Ordering Points To Identify the Clustering Structure” (OPTICS), which can
be seen as an improved version of DBSCAN. It is based on the usage of a varying &’
with €' < ¢ for fixed values of € and MinPts. Using a lower value for &£ may result

in a higher number of denser clusters as can be seen in Figure 3.5b. The idea behind

41

Chapter 3. Clustering 3.3. Density-Based Clustering

Figure 3.6: Example for a reachability plot used in the OPTICS clustering algo-
rithm [ABKS99].

OPITCS is to use these €' values in parallel which requires a certain processing order
for these runs to ensure the consistency of the results. Instead of storing memberships
to the clusters, only the processing order of the objects and two distance parameters, the
core- and the reachability-distance, are kept. The core-distance €' of an object p is de-
fined as the smallest distance between p and an object from its e-neighborhood that still
qualifies p as a core object. The reachability-distance is the smallest distance between a
core object o and another object p with p being directly reachable from o. By defining
a fixed €’ < g, the resulting ordering can be used to generate a density-based clustering.
This is done by using the core- and reachability-distance for assigning every point to a
cluster or declaring it as noise. The ordering can also be visualized in a reachability plot
which is a histogram with the ordered objects plotted on the first and the reachability-
distances plotted on the second axis. For the resulting diagram, the exact values of the
input parameters € and MinPts only have a small influence as long as they are high
enough. Figure 3.6 shows the relationship between clusters of a two-dimensional data
set and their correspondences in the reachability plot. Instead of manually defining &-
thresholds, a hierarchical clustering can be automatically obtained by introducing the

following definitions:

e steep upward point: a point which is % lower than its successor

steep downward point: analog to steep upward point

steep upward area: interval [s,e] of two steep upward points s and e with each
point in between being at least as high as its predecessor and which does not

contain more than MinPts in a row that are not steep upward points

steep downward area: analog to steep upward area

42

Chapter 3. Clustering 3.3. Density-Based Clustering

Based on these definitions, a set of points is considered as a cluster if it satisfies the

following conditions:

the starting point is inside a steep downward area

the ending point is inside a steep upward area

it consists of at least MinPts points (core condition of OPTICS algorithm)

the reachability values of all points are at least &% lower than those of the first

point of the downward area and the successor of the last point of the upward area

The result of the clustering can be controlled with the parameter &. A high value detects
few but significant clusters whereas a lower value is the right choice if the result is
too coarse. The authors state that their algorithm has a computational complexity of

O(nlogn) which is the same as for DBSCAN due to its structural similarity.

Hinneburg and Keim [HK98] have developed a clustering method “DENsity-based CLUs-
tEring” (DENCLUE) which generalizes other clustering techniques like partitional, hi-
erarchical or density-based methods. It uses an influence function, for example the
parabolic, the square wave or the Gaussian function, which describes the impact of a
data point on its neighborhood. This influence function is evaluated for each data point
and the density of the whole data space is determined by creating the sum of the in-
fluence functions of every point. The clusters can then be identified by introducing so
called density attractors which are local maxima of the general density function. They
can be calculated by using hill-climbing techniques which are supported by the gradient
of the general density function. The algorithm is capable of detecting arbitrarily shaped
clusters and handling high amount of noise but depends on a good selection of the den-
sity parameter and the noise threshold. In order to improve the computational efficiency
of the algorithm, the data set can be split into d-dimensional hypercubes where only
those are stored in a tree structure which actually contain data. Using this optimization

technique the complexity can be reduced to O(nlogn).

The mean shift algorithm introduced by Fukunaga and Hostetler [FH75] and further
adapted for various image processing applications by Comaniciu and Meer [CMO02] is
based on a gradient ascent approach. The neighbors of a point within a certain search

window are used for the calculation of the mean either with a flat or a truncated Gaussian

43

Chapter 3. Clustering 3.3. Density-Based Clustering

Figure 3.7: Example for the iterations of the mean shift clustering procedure. Starting
at position xp (blue point) the search window is moved in the direction of strongest
increase in density (red points) until convergence (green point).

kernel, as shown in Figure 3.7. For the next iteration this mean shift vector moves the
kernel window in the direction of the highest increase in density, i.e. in the direction
of the gradient. This sequence of calculating the mean and window shifting is repeated
until the procedure converges towards a certain mode, the cluster center. In regions of
low density the steps of the algorithms are big and decrease as the window is moved
towards local maxima. The result of the algorithm mainly depends on one parameter,
the bandwidth. It controls the size of the search window for the calculation of the
local mean. If a small value is chosen, the algorithm will detect many small clusters,
which may actually belong to the same bigger cluster. The worst case would be a
bandwidth of the size of a single element. This would lead to every element being a
cluster. In contrast, the result will contain only few clusters if the chosen value for the
bandwidth is too high. If this is the case, then the algorithm will merge clusters, which
in fact should stay separated. The extreme case in this scenario would be a single cluster
which contains all elements of the data set. The algorithm is explained in more detail in
Section 4.3.

44

4 Methods & Implementation

In the following sections the steps for the classification and visualization of a volumetric
data set are explained. Figure 4.1 gives an overview of the individual stages. First, the
preprocessing of the data is performed which is required for the generation of the LH
histogram. This includes the calculation of the first partial and the second directional
derivatives. The combination of the first partial derivatives leads to the gradient of the
data which is used for both, the calculation of the LH values and the application of
the lighting model during the volume rendering stage. Based on the preprocessed data,
the LH values are obtained through the integration of the gradient and are used for the
creation of the LH histogram. Afterwards, the mean shift clustering algorithm is applied
to this histogram. The next step is the choice and construction of a transfer function.
This can be done using different types which require more or less input. Finally, the
setup and steps of the ray casting procedure for rendering the volumetric data set based

on the selected transfer function are explained.

Preprocessing: LH Values: Clustering:
e 1st partial derivatives »| calculate for each voxel | ° caluclate cluster center
* 2nd directional derivatives e create LH histogram for each histogram bin —‘
Transfer Function Setup: Rendering:

* pick point in slice view * calculate intersection of viewing

* determine corresponding cluster |—p»| rays with volume

* set color & opacity of all other * composit while stepping along ray

points from cluster using the transfer function

Figure 4.1: Processing pipeline for the classification and visualization of a data set.

45

Chapter 4. Methods & Implementation 4.1. Derivatives

4.1 Derivatives

The calculation of the LH histograms involves a number of preprocessing steps, i.e.
the determination of the first partial derivatives, the gradients, and the gradient magni-
tudes. The generation of the mirrored LH histogram additionally requires the second

directional derivatives.

4.1.1 First Partial Derivatives

The first partial derivatives need to be calculated for the generation of the gradients.
By integrating the resulting gradient field in both, the negative and positive gradient
direction, the procedure will converge to the L and H values respectively. There are
several methods for estimating the derivatives which will be presented below. They are
obtained by convolving the data set with certain derivative kernels. The process of the
convolution of a volume with a one-dimensional kernel is illustrated in Figure 4.2. For
each voxel the kernel (colored cubes) is aligned parallel to one of the coordinate axes
with its center (red) being positioned over the current voxel. Then each element of the
kernel is multiplied by the underlying value of the volumetric data set. The final result
for this voxel is the sum of these multiplications. Due to the size of the kernel the voxels
at the border of the data set have to be treated separately. The derivatives in this region

are assumed to be zero.

Central Difference Method

The first kernel presented in this work uses the central difference:

%[1 0 —1] 4.1)

The first partial derivate with respect to x, (g—f), for the density value at position (x,y, z)
is calculated by multiplying the density values at position (x — 1,y,z), (x,y,z) and (x+

1,y,z) by % 0 and —%, respectively and by adding up these values. This process is

46

Chapter 4. Methods & Implementation 4.1. Derivatives

NN N N

AN
NN N

Z

Figure 4.2: Example for a convolution of a 3D data set with a 1D kernel (colored cubes).

repeated for each voxel by subsequently shifting the filter through the volume. The
derivatives 3—5 and ‘?9—]; are calculated in the same way. Amongst the presented methods
the central difference is the computationally most effective one: it has a complexity of
O(m) for each voxel where m is the size of the kernel (m = 3 in this case). Despite
its high performance, the central difference method should only be used when the sam-
pling rate of density values is well below the Nyquist limit [JHG99]. This is due to
the Nyquist—Shannon sampling theorem which states that a signal can be reconstructed
without the loss of information if the sampling rate is at least two times the highest

frequency in the data.

Sobel Operator

This kernel combines the central difference method with a smoothing of the data:

2 0 -2 4.2)

It is considerably slower than the central difference method since it has a computational

complexity of O(m?) for each voxel. The number of calculations for the convolution can

47

Chapter 4. Methods & Implementation 4.1. Derivatives

be reduced by using the separable version of the kernel [Hla0O1]. A kernel is separable

if it can be composed of two multiplications:

NI o
512 ®Z[1 0 —1}:§ 20 -2 4.3)
1 10 —1

For the two-dimensional case the computational complexity can be reduced from O(m?)
to O(2m). For a three-dimensional kernel the usage of the separability has an even

bigger impact because the complexity can be lowered from O(m?) to O(3m).

The procedure for obtaining the derivatives of the three-dimensional data set using the
Sobel operator is similar to the central difference method. The derivative g_{: is calcu-

lated as follows:

1. convolve the data set with the kernel }1 [12 1] in the z direction
2. apply the same kernel to the result of step 1 in the y direction

3. convolve the result from step 2 with the kernel % [10—1]in the x direction

The derivatives for the other directions are obtained in the same way.

Gaussian Derivative Kernels

Gaussian derivative kernels exhibit even better differentiation properties than simple
differences [JHG99]. Only the one-dimensional version of the Gaussian function needs

to be sampled because the function itself and its derivatives are separable.

1 2
flxo)=— Nk 207 (4.4)
fx0)= — — (4.5)

48

Chapter 4. Methods & Implementation 4.1. Derivatives

The authors suggest that the width of the kernel should be proportional to the standard
deviation o to avoid the early truncation of the Gaussian function, i.e. the radius of the
kernel should be at least 40.

The separability has an increasing effect on the performance when bigger kernels are
used: for a 3x3x3 kernel the saving is about 67% (3 * 3 multiplications instead of 33),
for a 5x5x5 kernel about 88% and for a 7x7x7 kernel about 94%. A comparison of
the results which have been obtained by applying the presented methods are shown in
Figure 4.3.

(c) Sobel (d) Gausian

Figure 4.3: The consequence of choosing different derivative kernels can be visualized
by applying lighting using the gradient as normal vector for the Phong shading model.

49

Chapter 4. Methods & Implementation 4.2. LH Histogram

4.1.2 Second Directional Derivatives

Two different methods for the calculation of the second directional derivatives, de-
scribed by Kindlmann [Kin99], have been implemented in this work. The first one

uses the gradient of the gradient:

1
2 _

The second algorithm involves the calculation of the Hessian matrix for each voxel:

5 1

= VITHfVf=
VI VAl
o ap @] [or
dx2 dxdy dxdz dx 4.7
_ [8_1‘ of 8_f] o o | |ar
HVfHZ Jdx dy Jz dxdy dxdy dydz dy
o ap 2r | |ar
dxdz dydz 9%z Jz

4.2 LH Histogram

The following sections describe the techniques which are required for the calculation of
the LH values. Different integration methods are introduced as well as the choice of the

optimal stopping criterion.

Gradient The first partial derivatives which have been described in the previous sec-

tion are now combined to the gradient:

_(df df df

50

Chapter 4. Methods & Implementation 4.2. LH Histogram

Gradient Magnitude The gradient magnitude is not only used for the calculation of

the LH histogram but also during the rendering phase for enhancing the borders in the

IF\2 [df\? [af\?
||ny|:\/(8—§> +<a—]yp) +(a—§) (4.9)

4.2.1 Integration

final visualization.

The choice of the integration method which is used for stepping along the gradient has a
significant effect on the quality of the LH histograms and the renderings. Three different
iterative methods for the approximation of solutions of ordinary differential equations

have been implemented. The Euler method

Yir1 =Yi+hVf(yi) (4.10)

calculates the subsequent position y;;; based on the gradient of the current position
f(yi) using a certain step size h. It is the fastest but also least accurate amongst the
presented techniques. It suffices for the development of the LH histograms but when it
comes to applying the clustering in a subsequent step it is advisable to use more accurate

algorithms like the two-stage explicit Runge-Kutta method
it =yt h(§V00) + 3V i+ 3091 (0)) (.10

or Heun’s method which is a two-stage second-order Runge-Kutta method.

it =it 3h(VFO) + VF (i RV () (4.12)

It is important to normalize the gradient before using it for the integration. It turned out
that using a step size of one voxel is a good balance between performance and accuracy.
A smaller value did not noticeably change the LH histogram or improve the separation
of objects in the renderings of the tested data sets. A comparison of the results using

different integration methods and step sizes is presented in Chapter 5.

51

Chapter 4. Methods & Implementation 4.2. LH Histogram

4.2.2 LH Values

After calculating the derivatives the algorithm for finding the LH values can be executed.
For each voxel it tracks the gradient by using one of the integration methods described in
the previous section. The H values are determined by following the path in the direction
of the gradient whereas the negative gradient is used for finding the L. values. The
positions along the path do not necessarily correspond to a single voxel but can also lie
in between voxels. Therefore, the volumes are accessed by using trilinear interpolation.

The integration stops when one of the following stopping criteria is met:

e The density values are not strictly increasing (H values) or decreasing (L values).
Alternatively it can be checked if the gradient magnitude is equal to zero. When
noisy data is used it may be necessary to introduce a certain threshold in order to

avoid an early and incorrect termination of the integration.

e The gradient magnitude starts to increase after it has been decreasing during pre-
vious steps along the gradient. This means that either a saddle point or an ex-
tremum has been passed. The case of the extremum should be covered by the

previous stopping criterion if it is checked first.

Yy

f(@s) / — f()
f(zL) é — [[Vf(@)|

— ()

Figure 4.4: Density value profile f(x) (black) while stepping along the gradient, the
corresponding gradient magnitude ||V f(x)|| (red) and the second directional derivative
7" (x) (blue). The positions (x; and xg) of the LH values (f(xz) and f(xz)) for an ex-
ample starting position (xs) are shown. Illustration inspired by [Kin99] and [SBSGO6].

52

Chapter 4. Methods & Implementation 4.3. Mean Shift Clustering

In the example shown in Figure 4.4 the integration starts at xg. For finding the H value
the algorithm continues to follow the gradient as long as the density values f(x) are
strictly increasing. At position xg this is no longer the case because the profile has

become constant. Therefore, the integration stops and the H value has been found.

If only the first stopping criterion would be used for finding the L value, then the algo-
rithm would not stop at the position marked by x;. Instead, it would continue until the
density value profile becomes constant or when the boundary of the volume has been
reached. This is the case because the absolute difference between the density values of
two successive steps along the (inverse) gradient in Figure 4.4 is not zero around xz.
To avoid such long paths the second stopping criterion is used: At the starting position
of the path (xg) a flag which indicates if the gradient magnitude has been decreasing
during previous steps is set to false. As soon as the maximum of the gradient magnitude
|V £(x)| to the left of xg has been passed, the flag is set to true and the second stopping
criterion is checked. The integration stops at x; because at this point the second stop-
ping criterion is met. The number of the different combinations of LH values are stored

in a two-dimensional histogram, the LH histogram.

By persistently storing the LH values and the second directional derivatives for each
dataset, they need to be calculated only once. It is advisable to do the same for the first
partial derivatives because they are also required for the Blinn-Phong shading model

which is used in the rendering procedure.

4.3 Mean Shift Clustering

For a single point of the LH histogram its corresponding cluster center is determined as

follows:

1. find the neighbors x; of the current point x within a search window having the
radius % (also denoted as bandwidth)

2. calculate the mean shift vector by evaluating Equation 4.13

3. shift the kernel window by the mean shift vector

53

Chapter 4. Methods & Implementation 4.3. Mean Shift Clustering

These steps are repeated until convergence.

The mean shift vector is calculated as follows:

?:1%'8’(“% 2)

e () o

where
g(x) = —K'(x) (4.14)

Possible kernel profiles k(x) and their derivatives are the Epanechnikov kernel profile

kp(x)=1—x (4.15)
ki (x) = —1 (4.16)
and the normal kernel profile
1
kyn(x) =exp (—Ex) 4.17)
ki (x) 1ex ! (4.18)
X)=—= — =X .
N 2P\ 72

These steps are executed for every element of the LH histogram. Apart from storing
the resulting cluster center for all points, it is also important to create a list of distinct
clusters and points which belong to them. This needs to be done in order to be able to
select an entire cluster for the automatic creation of the cluster-based transfer function,
as described in Section 4.4.3. Additionally, a distinct color is assigned to every cluster. It
is also advisable to use a downsampled version of the LH histogram instead of applying
the mean shift clustering to the original data. Because of the computational complexity
of the algorithm the resolution should therefore be lower than 256 x 256. Apart from the
size of the data itself the bandwidth is another factor which influences the duration of
the procedure. Increasing the radius of the search window has two effects: On the one

hand it reduces the number of resulting clusters because the probability that a second,

54

Chapter 4. Methods & Implementation 4.3. Mean Shift Clustering

I A~ A

¥

(a) LH Histogram (b) Initial clustering (c) Higher bandwidth (d) Merging thin clusters

Figure 4.5: The downsampled LH histogram (128 x 128) of the tooth data set is shown
in (a). The result of the clustering exhibits some undesirable thin clusters (b). Increasing
the bandwidth is not the ideal solution because this merges larger clusters too (c). The
problem is solved by explicitly merging only thin clusters.

larger cluster exists in the surrounding of the current search window is higher. On the
other hand the procedure takes more time to finish because more elements have to be

included into the calculation at each step.

The performance of the algorithm also depends on how the elements of a single bin of
the histogram are treated. Especially for data sets which have only few non-empty bins
with a high number of contributing voxels the procedure will finish considerably faster
if weights are used for these points. Instead of evaluating the function g(x) for the same
position m times, where m is the number of contributing voxels for the current bin of
the histogram, the expression is evaluated only once and then multiplied by m. Another
technique for speeding up the calculation is to create a separate two-dimensional array
with the same size as the histogram. A list of visited positions is maintained while
stepping along the mean shift vector. After the cluster center has been determined, a
reference is stored in the array for every position of the path. As soon as the path of
a subsequent pass intersects one of these positions the iteration can be stopped pre-
maturely as the mean shift vector would converge towards the same, existing cluster

center.

Depending on the data set and the chosen bandwidth it can happen that thin clusters are
detected, as shown in Figure 4.5b. A possible solution for this problem would be to
simply increase the bandwidth parameter. However, this approach does not necessarily

merge the thin clusters only, but also some of those which should stay separate as they

55

Chapter 4. Methods & Implementation 4.4. Implementation

correspond to different material boundaries (Figure 4.5c). Another way of addressing
this problem is to check the bounding box of the clusters. If the length of the shortest
side falls below a certain threshold, i.e. the minimum desired cluster size and if the
nearest neighboring cluster is within a search window having the radius equal to the

bandwidth parameter, then they can be merged (4.5d).

4.4 Implementation

The project has been implemented in C# and for rendering DirectX in combination with
the High Level Shading Language (HLSL) has been used. During the development
and the evaluation of the algorithm it proved to be very useful to persistently store the
preprocessed data like the first partial and the second directional derivatives separately
for each data set. By doing so, a lot of redundant computation time can be saved. It
also comes in handy when comparing different integration methods or when varying the

parameters for the calculation of the LH histogram.

The data sets which have been used for testing and evaluating the algorithm mainly orig-
inate from the volume library of the University of Erlangen [UENQ9]. In the subsequent
chapters some of the volumes have also been used in order to visualize the individual
steps of the applied techniques. Table 4.1 shows some properties of the data sets like the
resolution, the number of bytes per voxel, and whether the volume has been included in
the benchmarks of Section 5.2

Some data sets which are stored using a 16bit/voxel accuracy nearly use the full range
of possible values [0 65535]. These data sets have been scaled down to the interval
[0 4095]. Due to memory limitations it is not possible to create a histogram as large
as 65536 x 65536. Data sets with a resolution higher than 512 x 512 x 256 have been
scaled down as well. For the density values and the LH values unsigned integer accuracy
is sufficient because the values are always greater than or equal to zero whereas the

gradients do have a sign.

56

Chapter 4. Methods & Implementation 4.4. Implementation

Data Set XY Z | Bytes/Voxel | Benchmark
Carp 256 | 256 | 512 2 (&)
CT-Head 256 | 256 | 113 2 ©
Engine 256 | 256 | 256 1 V)
Hand 244 | 124 | 257 2 ©
Piggy Bank | 512 | 512 | 134 2 ©
Sheep Heart | 352 | 352 | 256 1 ©
Skewed Head | 184 | 256 | 170 2 (V)
Tooth 256 | 256 | 161 2 o

Table 4.1: Properties of the data sets which have been used in this thesis.
4.4.1 LH Histogram

Before creating the LH histogram, the minima and maxima of the LH values need to
be calculated. They are used to determine the size of the histogram and for being able
to access the transfer function texture during the rendering phase later on. The LH

histogram is stored in a two-dimensional array which has the size

s = (max(fi(x)) —min(f(x)) +1) x (max(fu(x)) — min(fu(x)) +1)

Data sets which use the full range of possible values of the 16 bit per voxel accuracy
need to be downsampled at the beginning, as described in Chapter 4, due to memory
limitations. The histogram is then constructed by determining the correct bin for each
pair of corresponding LH values. Bins are equally sized sections of the histogram and

contain an integer value which represents the number of the associated values.

LH Histogram Image

In order to judge the quality of the LH histogram or to manually create a transfer func-
tion by selecting parts of the LH histogram, a visual representation needs to be gener-
ated. A logarithmic scale is used to get a meaningful histogram image. If the values

would be directly mapped to a range of grayscale values [255 0], then there would be

57

Chapter 4. Methods & Implementation 4.4. Implementation

only few regions showing bins that are not empty. After the application of logarithm the
result is normalized and the values are mapped to gray levels to produce the final image.
Instead of using only gray levels for visualizing the underlying number of contributing
voxels a color gradient as shown in Figure 4.6 can be used. Even after applying the
logarithmic scale there are only few elements of the histogram image with the highest
possible value. This is due to the fact that the histogram bins with the highest number of
contributing voxels are the ones around the diagonal of the LH histogram representing
the homogeneous regions of the data set. Depending on the ratio of the actual size of
the histogram data and the desired histogram image size either upsampling or down-
sampling needs to be performed. Upsampling is applied to the histogram image after
the operations mentioned above whereas downsampling is applied directly to the data

before these operations by merging the bins of the histograms.

Figure 4.6: Examples of different color mappings for the LH histogram (sheep heart data
set). The distribution is easier ratable when using colors instead of only gray values.

4.4.2 Mirrored LH Histogram

The mirrored LH histogram can be calculated as follows: For each voxel the second
directional derivative described in Section 4.1.2 is examined. If it is greater than zero
then the LH values of the volumetric data sets are exchanged, otherwise the algorithm
proceeds to the next voxel. As a result the histogram based on these altered LH values

is also populated below the diagonal as can be seen in Figure 4.7.

58

Chapter 4. Methods & Implementation 4.4. Implementation

Figure 4.7: Example for a mirrored LH histogram using the engine data set.

4.4.3 Transfer Function Setup

The generation of the transfer function is a crucial part of the volume rendering proce-
dure because small changes at this point result in big differences in the final rendering.
Here the user decides which parts of the volume are going to be displayed and which
parts will be hidden. Both, the automatic cluster-based approach and other manual trans-
fer function design methods which require more user input and basic understanding of
the underlying techniques have been implemented. For data sets where the automatic
approach does not perform well the user can switch back to the manual design mode and
modify the transfer function. It is also possible to combine the cluster-based with the
manual technique to make changes only where necessary avoiding a complete manual

setup of the entire transfer function.

4.4.4 Manual Design

The interaction widget for creating a one-dimensional transfer function which is based
on the histogram of the density values is shown in Figure 4.8a. Control points are
created at any position by clicking onto the desired location. The horizontal position

corresponds to the density value whereas the vertical position determines the opacity. A

59

Chapter 4. Methods & Implementation 4.4. Implementation

(a) 1D: based on density values (b) 2D: based on density values and gradient mag-
nitudes

Figure 4.8: Transfer function types and interaction widgets.

color can be assigned by using a standard color selection dialog. Colors for the density

values which lie between two control points are interpolated.

For the design of a two-dimensional transfer function similar tools are available, as
shown in Figure 4.8b. This kind of histogram is based on density values (x-axis) and
gradient magnitudes (y-axis). Polygons can be defined by generating control points
like for the one-dimensional transfer function. In the two-dimensional case both color
and opacity are selected in separate dialogs and the setup of appropriate shapes is more

demanding.

4.4.5 Cluster-Based Approach

The interaction required by the cluster-based technique is a single click onto the (border)
region of interest in the slice view. The following operations are then executed automat-
ically by the application: First, the algorithm for finding the LH values described in
Section 4.2.2 is applied for the selected voxel only. As the procedure is evaluated only
for a single entry of the volumetric data set the operation takes only a fraction of a
second. The LH values are then used as input parameters for the clustering algorithm.
The mean shift procedure also terminates instantly because it is evaluated for a single
point only. The result of the operation is the cluster center in the LH histogram which
is then used to retrieve the list of points which belong to this cluster. For each point the
corresponding position in the two-dimensional transfer function is highlighted using the

cluster-specific color. The final result is a colored blob in the transfer function which has

60

Chapter 4. Methods & Implementation 4.5. Volume Rendering

the same shape and size as the selected cluster. As for the manual design of the transfer
function the automatically assigned color and opacity can be replaced by custom values.
The manual adaptation of the opacity is useful when the feature in the final rendering
has a low contrast. This can happen when there is only a small number of voxels with a

high gradient magnitude which are widely scattered.

Some points of the original LH histogram which lie close to the edge of the colored
region may not be covered by the blob due to the downsampling of the histogram data
described in Section 4.2.2. As a result cracks and holes can appear in the final visu-
alization based on this transfer function as can be seen in Figure 4.9a. With the help
of dilation [Pra0O1], a morphological operation used in image processing, these artifacts
can be removed. Figure 4.9b shows an example based on artificial data (blue) using a
3 x 3 structuring element. The result of this operation is that the data highlighted in red
is being added. So, instead of coloring only the current point of the LH histogram, its
neighborhood which is defined by a structuring element gets covered by this color too.

A visualization based on this dilated version of the transfer is shown in Figure 4.9c.

EE

(a) Dentine-enamel boundary (b) Example of a dilation. (c) Dilation applied using a
of the tooth data set without 3 x 3 structuring element.
dilation.

Figure 4.9: Dilating the transfer function removes holes in the visualization.

4.5 Volume Rendering

Having prepared the required data, the last step for generating the visualization is the

rendering. In order to provide interactive frame rates the ray casting is done on the

61

Chapter 4. Methods & Implementation 4.5. Volume Rendering

graphics card as described by Kriiger and Westermann [KWO03]. The following sections
show which data structures are used for the volumetric data and the transfer functions,
how the viewing rays for the ray casting procedure are calculated, and finally which

steps need to be performed during the shading and compositing stage.

4.5.1 Texture Setup

In order to access the volumetric data, i.e. density values, gradients, gradient mag-
nitudes, and LH values, it needs to be sent to the graphics card using textures. The
volumetric data sets that have been used in this work contain density values requiring
more than 8bit/voxel which is the typical accuracy for a single channel in typical 4-
channel RGBA texture. Therefore 16bit unsigned single-channel textures formats (e.g.
for the gradient) and 32bit signed single-channel floating point formats (e.g. for the
derivatives) have been used to store the data. These textures have to be created only

once during startup of the application.

For transfer functions that are only based on the density values a one-dimensional 32bit
RGBA texture can be used. It stores the color and opacity values defined by the user and
is accessed by using the normalized density value. Transfer functions which are based
on density values and gradient magnitudes or LH values are stored in two-dimensional
32bit RGBA textures. The values obtained from the volumetric data sets need to be
mapped to the interval [0, 1] too in order to be able to access the textures at the correct

positions.

4.5.2 Calculation of the Viewing Rays

In the first two render passes of the ray casting procedure the entry and exit coordinates
of the viewing rays which are cast through the volume are determined. They yield
the starting positions and direction vectors used in the third rendering pass. In order
to calculate these coordinates a proxy geometry representing the bounding box of the
volumetric data set needs to be generated. This proxy geometry is then rendered with

activated back face culling to determine the entry positions of the rays. In the vertex

62

Chapter 4. Methods & Implementation 4.5. Volume Rendering

shader the position of the current vertex is stored as a texture coordinate which is then
passed to the pixel shader. The texture coordinates are interpolated for every pixel
which is then shaded using the X, y and z values of the texture coordinates as r, g and b
values. The result of this shader pass is not rendered directly to the screen but stored in
a texture in order to be able to access it in the third rendering pass. The same procedure
is repeated for the second render pass but this time front face culling is using instead of
back face culling for obtaining the rays’ exit coordinates from the volume. Again, the

result is stored in a separate texture.

4.5.3 Shading and Compositing

The third rendering pass uses the entry and exit positions of the viewing rays to calculate
the direction vectors of the viewing rays. They are used for sampling the volume using
trilinear interpolation which is already implemented on the graphics card. Depending
on the transfer function type one of the following texture lookups and calculations is

performed:

1D based on density values: The normalized density value of the current voxel is
used to access the one-dimensional density transfer function texture to obtain color and

opacity for the current position.

2D based on density values and gradient magnitudes: Both, the density value
and the gradient magnitude are normalized and then used for the texture lookup in the

corresponding two-dimensional transfer function texture.

2D based on LH values: The procedure is the same as for the previous transfer
function. Additionally, the gradient magnitude is used to scale the opacity of the result
from the texture lookup. By doing so the border regions of the data set are enhanced as

can be seen in Figure 4.10.

63

Chapter 4. Methods & Implementation 4.5. Volume Rendering

(a) Weights disabled (b) Weights enabled

Figure 4.10: Impact of the gradient magnitude used as weight for the opacity values.

After the application of the transfer function, the voxel is shaded using the Blinn-Phong
reflection model [B1i77]. This algorithm requires the gradient as it is interpreted as the
surface normal vector. There are two possibilities for obtaining the gradient: Either it is
passed as a texture to the graphics card as described in Section 4.5.1, or it is calculated
on the fly for every frame in the pixel shader. The first method requires less mathe-
matical operations which improves the rendering performance. It also produces better
renderings when more accurate derivative kernels have been used for the preprocessing.
The second method on the other hand requires less texture memory. Finally the opacity
is additionally scaled by the step size to avoid the occurrence of further artifacts when

using lower sampling rates.

These operations need to be performed for every step along the ray. The final color of the
pixel on the screen that corresponds to this ray is then calculated by using front-to-back

compositing from Equation 1.2.

64

5 Results

In this section renderings are presented as well as the transfer functions and parameters
which haven been used for creating them. Another important part is the performance
of the technique which consists of a time-consuming preprocessing. This needs to be
done only once for a data set which can then be displayed at interactive frame rates.
The measurements and renderings have been created on a system consisting of an AMD
Athlon64 X2 dual core CPU with 2GB of main memory using a Nvidia GeForce 9800
GT with 1GB of graphics memory.

The evaluation of the algorithm was done using several data sets from the volume library
of the University of Erlangen [UEN09]. It turned out that mostly CT data sets were
suitable for the design of transfer functions based on LH histograms. The histograms
obtained from MRI scans did not exhibit unambiguously distinguishable regions in the
LH histogram due to various image artifacts. The optimal value for the clustering band-
width is about 20% of the histogram size and was obtained through experiments. When
using lower values, the algorithm tends to converge towards local maxima of the his-
togram data. As a result, clusters which actually represent the same material are split
apart. In contrast, higher values result in neighboring clusters being merged with the
most dominant ones. This has the consequence that different materials which are close

to each other in the LH histogram are assigned to the same class.

The visualizations in Section 5.1 are presented in combination with LH histograms
which serve three purposes: First, they show the logarithmically scaled number of ele-
ments contributing to each of the histogram bins. This is done by varying the brightness
of the corresponding pixel with white corresponding to the highest and black to the
lowest number. Second, different colors are assigned to the clusters to distinguish them

from each other in the histogram. Third, these colors are used directly for the transfer

65

Chapter 5. Results 5.1. Visualizations

function setup. The LH values for all data sets were calculated using Heun’s method
described in Chapter 4.2.1 with a step size of one voxel in combination with mean shift
clustering using 20% of the histogram size as bandwidth parameter, unless denoted oth-

Eerwise.

Section 5.2 shows the resulting visualizations using methods of different accuracy for
the classification. Additionally, the performance is analyzed using benchmarks which

compare the time required for the corresponding computations.

5.1 Visualizations

Figure 5.1 shows the tooth data set rendered with transfer functions based on the clus-
tering of the LH histogram using different values for the bandwidth parameter. For each
configuration two LH histograms are displayed. One which shows the clusters that have
been used for the transfer function setup (Figure 5.1d - Figure 5.1f) and another one
which shows all detected clusters (Figure 5.1g - Figure 5.11). The additional histogram
of all clusters is presented due to the ambiguous meaning of the color white (gray lev-
els). The gray cluster shown in Figure 5.1g - Figure 5.1i was actually assigned this gray
value for the transfer function setup. The clusters and the bottom (yellow, blue, orange,
and red) were not assigned any color and did not contribute to the transfer function. In
Figure 5.1a the bandwidth is too low, and as a result the pulp region is split apart, intro-
ducing a new, artificial material. In contrast, the consequence of choosing a bandwidth
that is too high (Figure 5.1c¢) is that pulp and dentine are merged into a single material.
The best result is obtained using the above mentioned value of 20% (Figure 5.1b). There
is still a gap in the pulp region, but this effect cannot be avoided with the LH transfer
function only, because it is the consequence of artifacts in the data set. As one follows
the pulp from top to bottom, the L value of the corresponding pulp-enamel boundary
increases until it reaches the level of the L value of the air-enamel boundary. For this
region of the volume data set both boundaries project onto the same area in the LH
histogram and therefore cannot be distinguished, neither by a manual, nor by an auto-

matic clustering technique which is based on the LH histogram only. This is the reason

66

Chapter 5. Results 5.1. Visualizations

why both regions were assigned the same color (green) because they belong to the same

boundary although they are separate clusters.

For the calculation of the LH values in Figure 5.2 different step sizes have been used. It
can be seen that the influence of the artifacts which are responsible for the gaps in the
pulp region decreases with lower step sizes. A drawback of the higher accuracy is the

increased duration of the calculation of the LH values.

The clustering of the LH histogram of the hand data set shown in Figure 5.3 was also
executed with different values for the bandwidth parameter. Similar to the tooth data set,
the clusters are not compact but elongated. Using only 10% (a) splits the bone into 3
artificial materials, whereas 50% (c) is too much and merges the cluster on the diagonal
(homogeneous tissue) with the cluster above (bone). A value of 20% (b) is the best
choice although the extent of the yellow cluster does not reach far enough to the bottom

of the region that corresponds to bone.

The LH histogram of the engine data set shown in Figure 5.4a exhibits compact clusters
which can be easily detected by the mean shift algorithm. Varying the clustering param-
eter within the range of 20% - 50% does not significantly influence the result. For some
data sets, including this one, it may occur that a material is surrounded by two other
materials. The two separate clusters at the top actually represent the border region of
the cylinders. They are bounded by air on one side and by the housing on the other side.
Therefore, the integration of the gradient field leads to two different L values: the in-
tensity of air and the intensity of the housing. In order to avoid this artificial separation,
the two clusters were assigned the same color as can be seen in Figure 5.4c. Figure 5.4e
shows the data set with the rendering based on the mirrored LH histogram. On the one
hand the borders appear more crisp than in the standard LH histogram but on the other
hand sampling artifacts start to appear because the ray caster only crosses few opaque
border voxels.

The LH histogram of the carp data set shown in Figure 5.5 contains two dominant
clusters which have been used for the visualization: the air-tissue and tissue-skeleton
boundary. The impact on the rendering of using a higher step size for the calculation
of the LH values can be seen in Figure 5.5c. The thin regions of the tailfin disappear

because the integration converges to the density of the surrounding air on both sides.

67

Chapter 5. Results 5.1. Visualizations

(b) (©

(d)

(@ () ®

Figure 5.1: Mean shift clustering applied to the LH histogram of the tooth CT data set
(256 x 256 x 161). The renderings in the first row are based on the transfer functions
shown in the second row whereas the third row shows all detected clusters. The val-
ues for the bandwidth used in the columns 1, 2, and 3 are 10%, 20% and 50% of the
histogram size, respectively.

68

Chapter 5. Results 5.1. Visualizations

(a) Step size: 0.25 (b) Step size: 2.0 (c) Step size: 1.0 (d) Step size: 0.25

Figure 5.2: Comparison of different integration step sizes for calculating the LH values
of the tooth data set.

Therefore, the LH values are the same and do not contribute to the voxels’ opacities

during rendering.

The LH histograms of the previous CT data sets contained clusters which could be
visually distinguished easily. For the MRI data set of a sheep heart shown in Figure 5.6
this is no longer as obvious because of the presence of noise. Especially the tissue
with the lower intensity (dark blue) is not separated very well. When using a lower
bandwidth, parts of this tissue get classified correctly but additional artificial materials
are introduced too. The manual setup of the transfer function through trial and error

slightly improves the quality of the classification.

The piggy bank CT data set shown in Figure 5.7 can be clearly visualized using the
automatically created transfer functions. Using 20% for the bandwidth parameter (Fig-
ure 5.7a) introduces some additional clusters especially at the border between the pig-
gybank and the socket it is mounted on as well as in the middle of the hull. When a
higher bandwidth of 30% is used (Figure 5.7b), some of these artificial materials are
merged as well as the clusters which represent the coins and the socket because they are
quite close in the LH histogram. By manually editing the transfer function (Figure 5.7¢)

these wrong misclassifications can be corrected.

69

Chapter 5. Results 5.1. Visualizations

(b) (©)

(d)

(& (h) ®

Figure 5.3: Mean shift clustering applied to the LH histogram of the hand CT data set
(244 x 124 x 257). The renderings in the first row are based on the transfer functions
shown in the second row whereas all detected clusters are highlighted in the third row.
The values for the bandwidth used in the columns 1, 2 and 3 are 10%, 20% and 30% of
the histogram size, respectively.

70

Chapter 5. Results 5.1. Visualizations

() (b)

(©) (d

© ®

Figure 5.4: Mean shift clustering applied to the LH histogram of the engine CT data set
(256 x 256 x 256). The separated red and blue clusters at the top (b) actually belong
to the same object in the data set, they were assigned the same colors in (c¢) and (d). A
rendering based on the clustering of the mirrored LH histogram (f) is shown in (e).

71

Chapter 5. Results 5.1. Visualizations

(a)

(b) Bandwidth: 30% (c) Step size: 2 (d) Step size: 1

Figure 5.5: Mean shift clustering applied to the LH histogram (b) of the carp CT data
set (a) (256 x 256 x 512). The images (c) and (d) show detail views of the tailfin based
on LH values calculated with Heun’s method using different step sizes.

For the skewed head CT data set shown in Figure 5.8 the automatic classification detects
the important structures (bone, skin, and teeth) within the data set. The cheekbone close

to the nose is not completely contained within the bone cluster though.

Similar results as for the skewed head are obtained for the Chapel Hill CT data set
shown in Figure 5.9. The difficulty especially with this data set is the similar intensity
of bone and teeth which compromises the clustering because both materials project into

the same region in the LH histogram.

72

Chapter 5. Results 5.1. Visualizations

(m) () (0) ()

Figure 5.6: The renderings of the sheep heart MRI data set (352 x 352 x 256) in the
columns one, two, and three have been created using the values 15%, 20%, and 30% for
the clustering bandwidth parameter respectively, whereas the fourth column is based on
a manual creation of the transfer function.

73

Chapter 5. Results 5.1. Visualizations

(b)

(d)

(® (h)

()] k))

Figure 5.7: The renderings of the piggy bank CT data set (512 x 512 x 134) in the first
two columns have been created using the values 20% and 30% for the clustering band-
width parameter respectively, whereas the third column is based on a manual creation
of the transfer function.

74

Chapter 5. Results 5.1. Visualizations

() (b)

(c) (d)

Figure 5.8: Mean shift clustering applied to the LH histogram (b) of the skewed head
CT data set (a) (184 x 256 x 170) with (c) and (d) being slice views of the classified
data.

75

Chapter 5. Results 5.1. Visualizations

(®)

(c) ()

Figure 5.9: Mean shift clustering applied to the LH histogram (b) of the Chapel Hill CT
head data set (a) (256 x 256 x 113) with (c) and (d) being slice views of the classified
data.

76

Chapter 5. Results 5.2. Benchmarks

5.2 Benchmarks

The data sets used in the previous sections have completely different resolutions, as
mentioned in the caption below the figures. In order to obtain comparable results for
these data sets the runtime of the algorithms was scaled with the number of voxels and
mapped to a theoretical standard size of 1283. Although the data sets contain different
relative amounts of empty space, the numbers still give an impression of the required
processing time. It is important to note that these calculations are only executed once

for each data set. They are then stored persistently and are reused at a later time.

On average, the calculation of the gradients, i.e. the three first partial derivatives, takes
0.4 seconds for the central difference method and up to 2.5 seconds for a Gaussian
derivative kernel of size 7. The duration of the procedure is shown in Figure 5.10. The
small variations of the durations between the datasets can most likely be explained by

the varying, relative number of scalar values being zero which speeds up the calcula-

tions.
3
2.5 B Central Diffe-
7 rence
é s B Sobel
§ | D GauB 5
%) B GauB3 7
0.5
0

Carp Engine Skewed Piggy Tooth
Head Bank

Figure 5.10: Calculation of the gradients using different convolution kernels for the first
partial derivatives.

The duration for the integration of the gradient field, in contrast, is hardly influenced

by the chosen derivative method but depends on the characteristics of the data set itself.

77

Chapter 5. Results 5.2. Benchmarks

On average, the engine finishes fastest in only 18 seconds whereas the integration of the

piggybank takes up to 40 seconds, as shown in Figure 5.11.

45
40

35 B Central Diffe-
30 rence

25 M Sobel

%2 I]] GauB3 5

10 [I M GauB3 7

Carp Engine Skewed Piggy Tooth
Head Bank

Seconds

S D

Figure 5.11: Calculation of the LH values based on the gradients which have been ob-
tained using different convolution kernels for the first partial derivatives using Heun’s
method with a step size of one voxel.

Another important factor for the duration of the procedure is the chosen integration
technique. The choice for a specific method is a tradeoff between accuracy and compu-
tational effort. Euler’s method finishes on average in about 20 seconds whereas Runge-

Kutta and Heun take 30 seconds, as can be seen in Figure 5.12.

Even more important for the quality of rendering especially for thin structures and also
for the duration of the integration is the chosen integration step size. The most accurate
tested value of 0.25 voxels takes about 56 seconds on average whereas a step size of 1

voxel takes about 30 seconds, as shown in Figure 5.13.

The clustering procedure heavily depends on the bandwidth parameter as it defines the
size of the neighborhood which is checked for each element of the histogram at each
step of the gradient ascent iteration. For a value of 10% the average duration is about
0.7 seconds whereas for 30% it takes 2.6 seconds on average. The reason why the com-
putation time for the skewed head data set significantly differs from the other data sets
becomes obvious when looking at the LH histogram shown in Figure 5.8b in compari-

son to the histograms of the other data sets. The gradient ascent procedure for the mean

78

Chapter 5. Results 5.2. Benchmarks

45
40
35
30
25
20
15
10

B Euler
B Runge-Kutta
] Heun

Seconds

Carp Engine Skewed Piggy Tooth
Head Bank

Figure 5.12: Calculation of the LH values using different integration techniques with a
step size of one voxel.

90

80
70
gg M 1.00
20 M 0.50
30 77025
20

1 ™

0

Carp Engine Skewed Piggy Tooth
Head Bank

Seconds

Figure 5.13: Calculation of the LH values using different integration step sizes for
Heun’s method.

79

Chapter 5. Results 5.2. Benchmarks

shift clustering is only applied to non-empty histogram bins. One of the characteristic
features of the skewed head data set is that nearly every bin of its LH histogram is oc-
cupied. Therefore the gradient ascent procedure has to be executed more often than for
the other data sets which is the reason for the increased runtime for this data set. The

corresponding diagram can be seen in Figure 5.14.

7

6

5
=] 0
s B 20%
é) 130%

1

0

ol o |

Carp Engine Skewed Piggy Tooth
Head Bank

Figure 5.14: Duration of the mean shift clustering applied to the downsampled LH his-
togram (128 x 128) using different bandwidths.

80

6 Conclusion

This thesis has shown various approaches to the design of transfer functions. Several
techniques have been developed which produce good results concerning the accuracy
of the classification. However, the drawback of these methods is the complexity of the
parameter adjustment which is required in order to obtain the desired result. Therefore
LH histograms and mean shift clustering have been the ideal candidates for the automa-
tion of this process. When implementing this technique it is important to pay attention
to the correct usage of the stopping criteria for the integration of the gradient field. It
proved to be very useful to create a debugging tool in order to check the integration
paths of some of the voxels. This enables the detection of possible mistakes and helps
to improve the quality and the performance of the algorithm. The easier the clusters
are visually distinguishable in the LH histogram, the better is the visualization using a
transfer function which is based on the automatic clustering. The algorithm performs
well on (industrial) CT data sets with precise material borders in contrast to (medical)
MRI which often lead to blurred clusters due to the unclear tissue transitions and noise.
Although the presented technique does not outperform other methods concerning the
quality of the visualizations, it does simplify the design of a transfer function. This is
because the user can create a three-dimensional visualization of an object by simply se-
lecting it in the slice view. Additionally, there is only a single configuration parameter
to control the output of the clustering algorithm. If the users are not satisfied with the
result, they have the possibility of either varying this parameter or to modify the trans-
fer function directly using certain interaction widgets. Objects with the same LH values
which are separated in space currently cannot be distinguished by the algorithm and are
therefore assigned to the same cluster in the LH histogram. A possible improvement

could therefore be the introduction of region growing.

81

[/ Bibliography

[ABKS99]

[Bez81]

[BKSS90]

[Bli77]

[Bon03]

[Bus00]

[CMO2]

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jorg Sander.
OPTICS: Ordering points to identify the clustering structure. In SIGMOD
'99: Proceedings of the 1999 ACM SIGMOD International Conference on
Management of Data, volume 28, pages 49—60, 1999.

James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Al-
gorithms. Kluwer Academic Publishers, Norwell, Massachusetts, USA,
1981.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The r*-tree: An efficient and robust access method for points
and rectangles. In SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, volume 19, pages 322—
331, 1990.

James F. Blinn. Models of light reflection for computer synthesized pic-
tures. In SIGGRAPH ’77: Proceedings of the 4th Annual Conference on
Computer Graphics and Interactive Techniques, pages 192—-198, 1977.

Andrea Bonarini. Soft Computing Applications (Advances in Soft Comput-
ing). Physica-Verlag, Heidelberg, Germany, 2003.

Stewart C. Bushong. Computed Tomography (Essentials of Medical Imag-
ing). McGraw-Hill Medical, USA, first edition, 2000.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24:603-619, 2002.

82

7 Bibliography 7 Bibliography

[CMO8]

[CRO8]

[DAKO09]

[Def77]

[EHK*04]

[EHK06]

[EKSX96]

[Fal9g]

[FH75]

[For65]

Carlos D. Correa and Kwan-Liu Ma. Size-based transfer functions: A new

volume exploration technique. IEEE Transactions on Visualization and
Computer Graphics, 14:1380-1387, 2008.

Jesus J. Caban and Penny Rheingans. Texture-based transfer functions for
direct volume rendering. IEEE Transactions on Visualization and Com-
puter Graphics, 14:1364—-1371, 2008.

Swagatam Das, Ajith Abraham, and Amit Konar. Metaheuristic Cluster-
ing, volume 178 of Studies in Computational Intelligence. Springer, Berlin
Heidelberg, 2009.

D. Defays. An efficient algorithm for a complete link method. The Com-
puter Journal, 20:364-366, 1977.

Klaus Engel, Markus Hadwiger, Joe Kniss, Aaron Lefohn, Christof Rezk-
Salama, and Daniel Weiskopf. Real-time volume graphics. In SIGGRAPH
'04: ACM SIGGRAPH 2004 Course Notes. ACM Press, 2004.

Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, and
Daniel Weiskopf. Real-time Volume Graphics. A K Peters, Wellesley,
Massachusetts, USA, 2006.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In Proceedings of the 2nd International Conference on Knowl-
edge Discovery and Data Mining (KDD’96), pages 226-231, 1996.

Emanuel Falkenauer. Genetic Algorithms and Grouping Problems. John
Wiley & Sons, Chichester, United Kingdom, 1998.

Keinosuke Fukunaga and Larry Hostetler. The estimation of the gradi-
ent of a density function, with applications in pattern recognition. /EEE
Transactions on Information Theory, 21(1):32-40, 1975.

Edward W. Forgy. Cluster analysis of multivariate data: Efficiency versus

interpretability of classifications. Biometrics, 21:768-780, 1965.

83

7 Bibliography 7 Bibliography

[GRS98]

[GRSO00]

[Har75]

[HJO4]

[HKO98]

[HKGOO0]

[HIaO1]

[Jai00]

[JHG99]

[JMF99]

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An efficient
clustering algorithm for large databases. In SIGMOD 1998, Proceedings
ACM SIGMOD International Conference on Management of Data, pages
2-4. ACM Press, 1998.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A robust clus-
tering algorithm for categorical attributes. In Proceedings of the 15th In-

ternational Conference on Data Engineering, pages 345-366, 2000.

John A. Hartigan. Clustering Algorithms. John Wiley & Sons, New York,
USA, 1975.

Charles D. Hansen and Chris R. Johnson. The Visualization Handbook.
Academic Press, Oxford, United Kingdom, 2004.

Alexander Hinneburg and Daniel A. Keim. An efficient approach to clus-
tering in large multimedia databases with noise. In Knowledge Discovery
and Data Mining, pages 58—65. AAAI Press, 1998.

Jifi Hladdvka, Andreas Konig, and Eduard M. Groller. Curvature-based
transfer functions for direct volume rendering. In Proceedings of Spring
Conference on Computer Graphics 2000, pages 58—65, 2000.

Jifi HladGvka. Derivatives and Eigensystems for Volume-Data Analysis
and Visualization. PhD thesis, Institute of Computer Graphics and Algo-
rithms, Vienna University of Technology, 2001.

Lakhmi C. Jain. Fuzzy Sets & Their Application to Clustering & Train-
ing. CRC Press International Series on Computational Intelligence, Boca
Raton, Florida, USA, 2000.

Bernd Jihne, Horst HauBBecker, and Peter GeiBBler. Handbook of Computer

Vision and Applications, volume 2. Academic Press, San Diego, Califor-
nia, USA, 1999.

Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data clustering:
A review. ACM Computing Surveys, 31(3):264-323, 1999.

84

7 Bibliography 7 Bibliography

[KHK99]

[Kin99]

[KKHO1]

[KKHO2]

[KNTO6]

[Koh95]

[KR90]

[KWO03]

[KWTMO3]

George Karypis, Eui-Hong Han, and Vipin Kumar. CHAMELEON: Hier-
archical clustering using dynamic modeling. IEEE Computer, 32(8):68—
75, 1999.

Gordon Kindlmann. Semi-automatic generation of transfer functions for
direct volume rendering. Master’s thesis, Cornell University, Ithaca, NY,
1999.

Joe Kniss, Gordon Kindlmann, and Charles Hansen. Interactive volume
rendering using multi-dimensional transfer functions and direct manipula-
tion widgets. In Proceedings of the Conference on Visualization *01, pages
255-262. IEEE Computer Society, 2001.

Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimensional
transfer functions for interactive volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 8:270-285, 2002.

Jacob Kogan, Charles Nicholas, and Marc Teboulle. Grouping Multidi-
mensional Data. Recent Advances in Clustering. Springer, Berlin Heidel-
berg, first edition, 2006.

Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in
Information Sciences. Springer, Berlin Heidelberg, 1995.

Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, New York, USA,
1990.

J. Kriiger and R. Westermann. Acceleration techniques for GPU-based
volume rendering. In Proceedings of the Conference on Visualization *03),
2003.

Gordon Kindlmann, Ross Whitaker, Tolga Tasdizen, and Torsten Moller.
Curvature-based transfer functions for direct volume rendering: Methods
and applications. In Proceedings of the Conference on Visualization '03,
pages 513-520, 2003.

85

7 Bibliography 7 Bibliography

[LA99]

[Lev88]

[LKMO1]

[LL94]

[LMO4]

[MA96]

[Mac67]

[MC98]

[MJ95]

Bjornar Larsen and Chinatsu Aone. Fast and effective text mining us-
ing linear-time document clustering. In KDD ’99: Proceedings of the
Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 16-22. ACM Press, 1999.

Marc Levoy. Display of surfaces from volume data. Computer Graphics
and Applications, IEEE, 8:29-37, 1988.

Erik Lindholm, Mark J. Kligard, and Henry Moreton. A user-
programmable vertex engine. In SIGGRAPH ’01: Proceedings of the 28th

Annual Conference on Computer Graphics and Interactive Techniques,
pages 149-158. ACM, 2001.

Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-
warp factorization of the viewing transformation. In SIGGRAPH ’94:
Proceedings of the 21st Annual Conference on Computer Graphics and
Interactive Techniques, pages 451-458. ACM, 1994.

Eric Lum and Kwan-Liu Ma. Lighting transfer functions using gradient
aligned sampling. In Proceedings of the Conference on Visualization *04,
pages 289-296, 2004.

John A. Markisz and Michael G. Aquilia. Technical Magnetic Resonance
Imaging. Appleton & Lange, Stamford, Connecticut, USA, 1996.

James B. MacQueen. Some methods for classification and analysis of
multivariate observations. In Proceedings of the Fifth Symposium on Math,
Statistics, and Probability, volume 1, pages 281-297, 1967.

Klaus Mueller and Roger Crawfis. Eliminating popping artifacts in sheet
buffer-based splatting. IEEE Visualization, pages 239-246, 1998.

Jianchang Mao and Anil K. Jain. Artificial neural networks for feature
extraction and multivariate data projection. IEEE Transactions on Neural
Networks, 6(2):296-317, 1995.

86

7 Bibliography 7 Bibliography

[MK96]

[Mue05]

[NH94]

[PBT93]

[PHBGO9]

[Pra0O1]

[RSKKO06]

[SBSGO6]

[SFGMO93]

Geoffrey J. McLachan and Thriyambakam Krishnan. The EM Algorithm
and Extensions. John Wiley & Sons, USA, 1996.

Klaus Mueller. Splatting and its applications on the body-centered carte-
sian (BCC) lattice. Point Lattices in Computer Graphics and Visualization

- Tutorial at the Conference on Visualization *03, 2005.

Raymond T. Ng and Jiawei Han. Efficient and effective clustering meth-
ods for spatial data mining. In Proceedings of the Twentieth International
Conference on Very Large Databases, pages 144—155, 1994.

Nikhil R. Pal, James C. Bezdek, and Erik C. K. Tsao. Generalized cluster-
ing networks and Kohonen’s self-organizing scheme. IEEE Transactions
on Neural Networks, 4(4):549-557, 1993.

Daniel Patel, Martin Haidacher, Jean-Paul Balabanian, and Eduard M.
Groller. Moment curves. In Proceedings of the IEEE Pacific Visualiza-
tion Symposium 2009, pages 201-208, 2009.

William K. Pratt. Digital Image Processing. John Wiley & Sons, New
York, USA, 2001.

Christof Rezk-Salama, Maik Keller, and Peter Kohlmann. High-level user
interfaces for transfer function design with semantics. IEEE Transactions
on Visualization and Computer Graphics, 12(5):1021-1028, 2006.

Petr Sereda, Anna Vilanova Bartroli, Iwo W. O. Serlie, and Frans A. Ger-
ritsen. Visualization of boundaries in volumetric data sets using LH his-

tograms. [EEE Transactions on Visualization and Computer Graphics,
12:208-218, 2006.

Michael Stonebraker, Jim Frew, Kenn Gardels, and Jeff Meredith. The
SEQUOIA 2000 storage benchmark. In SIGMOD ’93: Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data,
volume 22, pages 2—11, 1993.

87

7 Bibliography 7 Bibliography

[Sib73]

[SKKO00]

[SML97]

[STF103]

[SVGO06a]

[SVGO6b]

[TKO3]

[TMO04]

Robin Sibson. SLINK: An optimally efficient algorithm for the single link
cluster method. The Computer Journal, 16:30-34, 1973.

Michael Steinbach, George Karypis, and Vipin Kumar. A comparison
of document clustering techniques. In Proceedings of Workshop on Text
Mining at the ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD 2000), pages 109-110, 2000.

William Schroeder, Ken Martin, and Bill Lorensen. The Visualization
Toolkit: An Object-Oriented Approach to 3-D Graphics. Prentice Hall,
New Jersey, USA, second edition, 1997.

Iwo Serlie, Roel Truyen, Jasper Florie, Frits H. Post, Lucas J. van Vliet,
and Frans Vos. Computed cleansing for virtual colonoscopy using a three-
material transition model. In MICCAI 2003: Proceedings of the 6th Inter-
national Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 175-183, 2003.

Petr Sereda, Anna Vilanova, and Frans A. Gerritsen. Automating transfer
function design for volume rendering using hierarchical clustering of ma-
terial boundaries. In Proceedings of the Eurographics/IEEE VGTC Sym-
posium on Visualization 2006, pages 243-250, 2006.

Petr Sereda, Anna Vilanova, and Frans A. Gerritsen. Mirrored LH his-
tograms for the visualization of material boundaries. Vision Modeling and
Visualization (VMYV), pages 237-244, 2006.

Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition.
Academic Press, San Diego, USA, 2003.

Fan-Yin Tzeng and Kwan-Liu Ma. A cluster-space visual interface for
arbitrary dimensional classification of volume data. In Proceedings of the
Eurographics/IEEE VGTC Symposium on Visualization 2004, pages 17—
24, 2004.

88

7 Bibliography 7 Bibliography

[UENO9]

[Voo86]

[Wei07]

[Wes89]

[Wes90]

[Wik09]

[WMLKS89]

[Zah71]

[ZRL96]

[ZRL97]

Department of Computer Science Universitdt Erlangen-Niirnberg.
The volume library. http://www9.informatik.uni-erlangen.de/
External/vollib/, 2009. last accessed: 10.11.2009.

E. Voorhees. Implementing agglomerative hierarchic clustering algorithms
for use in document retrieval. Information Processing & Management,
22:465-476, 1986.

Daniel Weiskopf. GPU-Based Interactive Visualization Techniques.
Springer, Berlin Heidelberg, 2007.

Lee Westover. Interactive volume rendering. In Proceedings of the 1989
Chapel Hill Workshop on Volume Visualization, pages 9-16. ACM, 19809.

Lee Westover. Footprint evaluation for volume rendering. In SIGGRAPH
'90: Proceedings of the 17th Annual Conference on Computer Graphics
and Interactive Techniques, pages 367-376. ACM, 1990.

Wikipedia. K-means clustering. http://en.wikipedia.org/wiki/
K-means, 2009. last accessed: 10.11.2009.

Jerold Wallis, Tom Miller, Charles Lerner, and Eric Kleerup. Three-
dimensional display in nuclear medicine. IEEE Transactions on Medical
Imaging, 8(4):297-230, 1989.

Charles T. Zahn. Graph-theoretical methods for detecting and describing
gestalt clusters. IEEE Transactions on Computers, C-20(1):68-86, 1971.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient
data clustering method for very large databases. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, pages
103-114, 1996.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: A new data
clustering algorithm and its applications. Data Mining and Knowledge
Discovery, 1(2):141-182, 1997.

89

http://www9.informatik.uni-erlangen.de/External/vollib/
http://www9.informatik.uni-erlangen.de/External/vollib/
http://en.wikipedia.org/wiki/K-means
http://en.wikipedia.org/wiki/K-means

	Erklärung zur Verfassung der Arbeit
	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Volume Data
	Interaction of Volume and Light
	Volume Rendering
	Splatting
	Texture Slicing
	Shear-Warp Volume Rendering
	Ray Casting
	GPU-based Volume Rendering

	Transfer Functions
	Transfer Functions Based on Statistical Properties
	Curvature-Based Transfer Functions
	Size-Based Transfer Functions
	Transfer Functions Based on Semantic Models
	Transfer Functions Based on Derivatives
	Transfer Functions Based on Clustering

	Clustering
	Hierarchical Clustering
	Partitional Clustering
	Density-Based Clustering

	Methods & Implementation
	Derivatives
	First Partial Derivatives
	Second Directional Derivatives

	LH Histogram
	Integration
	LH Values

	Mean Shift Clustering
	Implementation
	LH Histogram
	Mirrored LH Histogram
	Transfer Function Setup
	Manual Design
	Cluster-Based Approach

	Volume Rendering
	Texture Setup
	Calculation of the Viewing Rays
	Shading and Compositing

	Results
	Visualizations
	Benchmarks

	Conclusion
	Bibliography

