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Abstract

In this paper we address the problem of removing
unwanted image content in a single orthographic
facade image. We exploit the regular structure
present in building fagades and introduce a diffusion
process that is guided by the symmetry prevalent in
the image. It removes larger unwanted image ob-
jects such as traffic lights, street signs, or cables as
well as smaller noise, such as reflections in the win-
dows. The output is intended as source for textures
in urban reconstruction projects.

1 Introduction

This paper introduces a special image-processing
method based on symmetry propagation. The
proposed algorithm takes a single ortho-rectified
fagade image as input and tries to remove unwanted
content, such as wall impurities, cables, and street
signs (Figure 1). While this approach is similar to
image in-painting in some respects, our goal and
methodology are fairly different. First, we do not
want to manually mark the irregularities by hand
before removing them, but we would like to iden-
tify them automatically. Second, the focus of our
algorithm is not a smooth transition or texture prop-
agation from nearby regions, but structure propaga-
tion from detected symmetries. In principle, our al-
gorithm is general and removes irregularities over a
regular structure. While there are several potential
applications for such an approach, the main moti-
vation and probably most important use is the pro-
cessing of facade images. Facade images are a vital
component of three-dimensional urban reconstruc-
tion and we see applications in areas such as Inter-
net and car-based mapping technology, urban simu-
lation, and computer games.

Our contribution is twofold. First, we detect reg-
ular structures using a combination of Monte Carlo
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Figure 1: The input image on the left contains a traf-
fic light and several cables. To the right we show the
result of our algorithm with the unwanted objects
successfully removed.

sampling and user interaction. Second, we use a
diffusion-like process that tries to smooth across
symmetries. It is a novel image processing tech-
nique that utilizes spatial symmetry in order to min-
imize asymmetric variations inherit in the image.

1.1 Related Work

In this section we review fagcade reconstruction ap-
proaches, symmetry detection, image repair, and
in-painting methods. We limit our review to tech-
niques that act on a single image.

Alegre and Dellaert [1] introduce a hierarchical
context free grammar to obtain semantic description
of buildings which is obtained by MCMC. Han and
Zhu [9] detect regular rectangular structures in pho-
tographs of arbitrary scenes. Their approach com-
bines bottom-up and top-down image interpretation
by using an attribute grammar. Miiller et al. [21]
propose a hierarchical segmentation of fagades in-
spired by shape grammars. Korah and Rasmussen
[12] introduce a MCMC based technique to detect
regular grids of windows in a MRF network. Fur-
ther, they propose [13] a method to automatically
complete facade images based on PCA. Apart from
these highly specialized solutions there are more
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Figure 2: This figure shows an overview of the system. We take a single facade image as input /. For the
case that the image does contain strongly asymmetric parts, we allow the user to define a region of interest.
In this region we detect the dominant translational and reflective symmetries and propagate the symmetry

over the image automatically.

general methods for the detection of similarity and
symmetry in images. Bailey [3] shows that it is
possible to detect repetitive image patterns by self-
filtering in the frequency domain and Reisfeld et
al. [26] introduce continuous symmetry transform
for images. Liu er al. [15] detect crystallographic
groups in repetitive image patterns using a domi-
nant peak extraction method from the autocorrela-
tion surface. Further succeeding approaches spe-
cialize on detecting affine symmetry groups in 2d
[16, 18] or 3d [19, 25]. Recent follow-ups of these
approaches introduce data-driven modeling meth-
ods like symmetrization [20] and 3d lattice fitting
[23]. Further, recent image-processing approaches
tend to utilize the detected symmetry of regular [11]
and near-regular patterns [17, 14] in order to model
new images. One further branch of image repair
are in-painting algorithms. Example techniques in-
clude the use of PDEs [5, 22], fast matching dis-
tance maps [28] and MRFs [27]. In contrast to our
approach these algorithms do not use symmetry to
fill in the missing details.

1.2 Overview

The basic idea behind this paper is to exploit
the repetitive occurrence of fagade elements to re-
construct its clean and most plausible appearance.
In order to handle the repetitive nature we in-
troduce the concept of a global symmetry neigh-
borhood, which provides some basic information
about the actual image. While there is conceptually
no limitation on the topological complexity of the
neighborhood-graph, we currently assume that the
supplied image has strong translational and reflec-
tive repetitive elements as in the case of a building.

In section 2 we introduce a basic method to au-
tomatically determine the dominant symmetry in an

image. The method is based on a Monte Carlo im-
portance sampling strategy of image patch pairs and
histogram evaluation and it yields the translational
and reflective-translational symmetry in the recti-
fied image.

In section 3 we introduce a novel method that uti-
lizes the inherent symmetry in order to reconstruct
the facade image. Missing or occluded elements,
clutter and damage as well as small perspective dis-
tortion are dislodged and replaced by the informa-
tion that can be accessed over the symmetry neigh-
borhood in the entire image.

In section 4 we present and discuss restored
facade images and finally we conclude our work in
section 5.

2 Symmetry Detection

In our context, we define symmetry as a transfor-
mation T on an image. Given a pixel location x of
the input image I, we define T such that

I(z) = I(T(z)) M

where I(z) denotes the intensity or color vector at
z. As T we consider the 2-dimensional translations
and reflections along the x-axis.

The goal of this stage is to determine the param-
eters of dominant transformations in the image au-
tomatically. The proposed algorithm is a histogram
voting scheme and a similar approach has been pro-
posed by, e.g., Mitra et al. [19]. The peaks of the
histograms identify translational and reflective off-
sets in the image which occur most often and can be
considered dominant.

Similarity Measure. Our method is based on
comparison of image features from different spa-
tial regions. We resort to area-registration methods



Figure 3: Left: depending on the window size, fea-
tures can become ambiguous. Right: by comparing
with the same patch size on different resolutions,
the ambiguity can be resolved.

based on the local neighborhood of a point of in-
terest. The neighborhood of some image location ¢
is usually denoted as a window around a pixel with
the (maximum) radius r. It results in a square patch
of size w X w, where w = 2r + 1. It can also be
interpreted as a vector x; of dimension w?.

In the literature, a common comparison opera-
tor is cross correlation of image patches, which is
related to the dot-product between two given vec-
tors x and y : cc(x,y) = xTy. In order to com-
pare positions with varying intensities, we compute
the normalized cross correlation coefficient (NCC),
where we subtract the mean of the intensities X and
y of each patch x and y and normalize the vectors,
respectively:

T —
nce (x,y) = x=%) y-y) @
(x=%)*(y - ¥)*
Multiresolution.  Similarity between small win-

dows such as 3 x 3 or 5 x 5 pixels can be com-
puted very fast but the resulting measure is not very
robust. When measuring patterns, the size of the
pattern relative to the size of the measurement win-
dow is very important. If the pattern is too small
or too large compared to the measurement window
one will obtain ambiguous results (Fig. 3).

Rather than increasing the patch to improve ro-
bustness of the measure, a very efficient way is to
combine the results of measurements on different
scale levels of an image pyramid. This idea has
been successfully used in many texture synthesis
algorithms. It is computed by subsequently scal-
ing the image with the factor s (in our case we use
s = % and cubic down-sampling). The similarity ¢
results from all scale levels which have been taken

Figure 4: Symmetry Neighborhood. Blue circles
denote symmetry neighbors of the red one.

at the closest position to the original position in the
unscaled picture and are then combined into the fi-
nal result by taking the mean:

N,
1 s

§(X, y) = F E Nncce (Xa y) ’ (3)
Sk

where N is the number of scales and nccy, operates
on the k-th scale of the input image /. The win-
dow size is kept constant, as shown in Fig. 3 right
hand side. In our empirical tests we determined,
that a good trade-off between speed and robustness
is a size of 15 X 15 pixels on 3 pyramid levels. This
multiscale similarity measure is less error prone and
very robust with respect to real-world noise while
being relatively fast compared to using large simi-
larity windows on the original image. Moreover it
is practically independent of the size of the input
images and the size of the patterns.

Monte Carlo Sampling. A naive deterministic
approach to the problem of finding symmetry pa-
rameters would be to exhaustively search over all
possible configurations. However, searching every
possible combination is very computationally ex-
pensive, and time consuming for large images.

Using Monte Carlo sampling to obtain samples
of the same data allows for a low-cost approxima-
tion of the expensive deterministic computation. In-
stead of comparing every pair of different locations,
the Monte Carlo algorithm measures the similarity
at a small number of random samples. We compute
N similarity values ¢(x,x;) for all possible sym-
metry parameters, where ¢ is determined randomly
from the uniform distribution.

We improve the convergence and speed of the
sampling by limiting the random samples to es-
pecially interesting points. In our implementation



we use Harris corners [10]. This importance sam-
pling restricts the algorithm to comparing only pix-
els which are known to contain local information.

Maximum Similarity Function. The maximum
similarity function counts how many times a trans-
lation parameter ¢ is the best one such that its mul-
tiscale similarity is higher than that of any other off-
set at the sample location. A translation with a high
number of hits represents a symmetry that covers a
large image area and therefore is considered rele-
vant. We define the maximum similarity histogram
classification function for N random samples from
a uniform distribution as:

_ 1 if § = arg max; ¢ (xi, Xs)
h(8) = Z { 0 otherwise,

(C))
where § € D. The range D is defined as a subset of
all possible translations in the image.

The reflective symmetry detection can be accom-
plished using the same strategy, by mirroring the
entire image and by respectively adjusting the trans-
lational offsets.

The symmetry parameters can be obtained by ex-
tracting the maxima from the histograms. In many
cases the histograms include doubles, triples and
higher multiples as well as other combinations of
smaller offsets which are combined to one domi-
nant offset.

3 Symmetry Propagation

Motivation. The symmetry propagation stage
is the actual heart of our algorithm. Our idea be-
hind this approach is motivated by the classical non-
linear diffusion filter as presented by Perona and
Malik [24]. They presented a powerful method for
discontinuity-preserving smoothing and denoising
of images based on a divergence equation % =
div (g (||IVI||) VI) , where g (z) is a flux-stopping
function, which constrains the diffusion to pixels
which have respectively small difference in range.
exp (~ )
where = denotes the distance in the range. Later it
has been shown [4] that this solution is also equiv-
alent to the bilateral smoothing filter [29]. Hereby
the basic idea is to apply a constrained Gaussian fil-
tering to the image, such that steep range transitions

It is usually of the form g(z) =

become preserved. As a constraint an edge-penalty
function has been introduced, which acts in prin-
ciple the same way as the flux-stopping term men-
tioned above. The bilateral filter in a local neigh-
borhood N, of a pixel x in image I can be stated
as:

L= 3 gl —yl) g (L~ L)1,

YENz
5)
where W, =%, g;(lle—y|)gr(11=—1Iy]) is @ normaliza-
tion term. There are two Gaussian functions in this
equation: the usual g acting in the spatial domain
and g, applied on the range between the actually
pixels values I, and I,,. The subscripts s and r de-
note the standard deviations o, and o, of the re-
spective Gaussians. The result obtained is an image
smoothed only in regions where the range differ-
ence is small enough to be emphasized by G-
More recently, non-local means filtering has been
proposed as a new class of solutions to the image
denoising problem [6, 7, 8]. It is based on the ob-
servation that pixels with similar neighborhood usu-
ally appear quite often in an image. Non-local filter-
ing exploits this observation by computing a noise-
reduced image by weighted averaging of many sim-
ilar pixels:

L= w@y)l,. ©)
T oyer

The term W, = > ; w(x,y) is the normaliz-
ing constant, such that all w(z,y) € [0,1] and
>, w(i,j) = 1. The weights w are computed
according to the squared Euclidean norm of local
neighborhoods A, and N, respectively. Writing
the respective neighborhoods as vectors x and y,
the distance penalty function once again has the

form: ,
w (z,y) = exp (—7”"23"‘ ) .

The parameter h acts as a degree of filtering [7].

Iterative Symmetry Propagation. The ap-
proaches mentioned act (either locally or globally)
on pixel neighborhoods in order to approximate a
new image that is nearly noise-free, while a Gaus-
sian penalty function is a common ingredient of
these methods.

Our symmetry propagation algorithm is inspired
by both bilateral- as well as non-local filtering. The



Figure 5: Recursive rejection of outliers. From left to right, at each step the point with the biggest distance
to the mean (blue point) is removed and a new mean is computed, until the change is smaller than a given

threshold.

main difference is that methods mentioned above
aim at image repair by removing of noise that is
a consequence of deficiencies in signal processing.
We call it intrinsic noise. In contrast, our aim is the
removal of both the intrinsic image noise as well as
the extrinsic noise, e.g., traffic lights, cables, vege-
tation, missing elements and other interferences that
are inherent in real world data. It is evident, that the
second class of noise can be removed only under
certain circumstances: (1) there must be enough re-
peated content in the image and (2) there must be a
strategy how to localize that information. The first
one is a general assumption that for each location to
be repaired there is enough information in the im-
age which can be reused. For the second we resort
to the symmetry and expect that the feasible infor-
mation is arranged in a manner which can be ex-
pressed in terms of symmetry transformations T of
the form I(z) = I (T (x)).

In section 2 we have presented an elementary
symmetry detection scheme. Having determined
the global symmetry, each pixel = in the image cor-
responds to a number of other pixels which can be
addressed by the symmetry transformation T (see
Equation 1). We shall refer to those pixels as the
symmetry neighborhood S, of the image location
x. By the application of T, it is possible to collect
other neighbors and to obtain a set of points, which
all correspond to a similarity in the image. Depend-
ing on the collection scheme, either all or only a
subset of all possible symmetry neighbors can be
accessed (see Fig. 4).

Having this information at a pixel, we now com-
pute its actual consistency with its symmetry neigh-
bors. Here we use different local neighborhood N,
as in the symmetry sampling stage from section 2.
We have determined empirically, that sizes between
3 x 3 and 11 x 11 deliver reasonable results for
our input images. With N, as a vector x of inten-

sity values we can compute the mean vector for all
points x; € Sy withn = [Sy|as X = 2 > " x; .

If we would like to apply unconstrained symme-
try propagation to the image, the actual new color
value for the output pixel I, would be the middle
element in X, which also equals the simple average
color over all symmetry neighbors. But we are in-
terested in some constraints, which will allow us to
determine which of the pixels belong to the most
symmetric facade image and which are potentially
clutter. Following the first assumption that the ma-
jority of the pixels in S, contain valid values, we
introduce a scheme inspired by Expectation Maxi-
mization to reject outliers. It utilizes the fact that
if there are more valid pixels they will also be more
similar and thus lie denser to each other in the space
defined by the local neighborhood vectors x;. In
this case we define the outlier as the point which
has the biggest distance to the mean X:

x; = argmax K (||x; — >_<||2) , (7)
X;ESy

where K is a Gaussian kernel. Now we can remove
the i-th vector from S, and recompute the mean X.
We proceed iteratively until either the mean X does
not change more than a given threshold ¢ or only
one point is left in S;. Using a sufficiently small €
this procedure delivers the most dense cluster of the
symmetry neighborhood (see Fig. 5).

To determine the final color of the output pixel
we additionally apply bilateral filtering over the lo-
cal neighborhoods remained in S, after the opti-
mization, such that the output pixel value is:

Y s 2N gsUlz—ylDgr ([ 1a—1yl)L
I ==% W U1ty g
where W, is an appropriate weight according to
equation 5. We do this in order to smooth possi-
bly remaining variations caused by inaccuracy of
the symmetry transformation.




Image parts, which violate the detected symme-
try are replaced by pixels which become amplified
by strong symmetry. In case of strong asymmetries
some of them can still remain in the image after the
first iteration. In this case we apply further passes
of the algorithm until no more changes can be ob-
served in the image. This is usually already the case
after the second iteration, as shown in Figure 7.

4 Results

We have implemented the algorithm in a mixture
of C# and MATLAB and ran it on an Intel Core2
Quad Q6600 @ 2.4 GHz, 8 GB RAM and Vista64
computer. Refer to Figure 6 for visual response.

Image 1 2 3 4
resolution 1140x1420 1802x1160 990x1400 548x884
3x3 4.3 8.5 122 3.1
11 x 11 41.7 61.2 87.8 34.1

Table 1: Comparison of the running times (given in
seconds) for the first 4 images presented in Figure 6.
The images were computed with a local neighbor-
hood of 3 x 3 and 11 x 11 pixels over 5 iterations.

5 Discussion and Conclusion

Limitations. The optimization technique pre-
sented in section 3 does not always converge to an
optimum. While this is usually not a big prob-
lem, the bad situation occurs when the symme-
try neighborhood of a pixel contains two or more
(roughly) equally balanced clusters. In this case it
is not guaranteed, that the algorithm converges to
the right configuration. Furthermore, neighboring
pixels might converge at different clusters, which
yields strong artifacts in the image, as shown in Fig-
ure 6 on the bottom right (the upper story of the
building). We are currently working on an improved
optimization method for our algorithm as well as on
a more flexible symmetry detection strategy.

Conclusion. In this paper we presented a method
to remove irregularities in a single approximately
orthographic facade image using a symmetry prop-
agation process. The symmetry is first detected us-
ing Monte Carlo sampling and encoded in a sym-
metry neighborhood. The symmetry is then propa-
gated while performing edge-preserving smoothing

on the image. This method can remove unwanted
features, such as traffic lights, cables, signs and cars
that are typically present in a fagade image. It is not
necessary to manually segment the unwanted image
elements prior to running the algorithm, except for
providing a coarse region mask. The output is in-
tended to serve as input to rendering pipelines such
as, e.g., Ali ef al. [2]. We believe that our work is
a useful solution to an important image processing
step necessary in urban reconstruction projects.
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Figure 7: Left: An artificial test image with high symmetry (with a symmetry confidence map). Middle:
The distortion has been removed in two iterations. Right: The ground truth.
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