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Abstract

The goal of this thesis is to produce plausible global illumination in real time us-
ing temporal coherence. While direct illumination combined with precomputed
static global illumination is widely used in today’s computer games and 3D appli-
cations, real-time global illumination that supports arbitrary dynamic scenes and
light setups is still an active area of research.

This master thesis gives an introduction to global illumination and discusses
various methods that have been developed. However, since most of the existing
methods need some kind of precomputation to calculate global illumination in real
time, they also introduce limitations like static light, scenes or view points. Fur-
thermore other algorithms are not suitable for the capabilities of current graphics
hardware or are simply fake approaches.

The core of this thesis is an improved version of the instant radiosity and im-
perfect shadow maps algorithm that reuses illumination information from previous
frames. The previous approaches needed a high number of so called virtual point
lights to get convincing results, whereas our method achieves visually pleasing
results with only a few virtual point lights. As a second extension to the base
algorithms we introduce a new method to compute multiple light bounces. In this
method the fill rate is drastically reduced and therefore computation time is much
lower than in previous aproaches.
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Kurzfassung

Das Ziel dieser Diplomarbeit ist es, glaubwürdige globale Beleuchtung, mit Hilfe
von temporaler Kohärenz, in Echtzeit zu berechnen. Direkte Beleuchtung verbun-
den mit vorausberechneter globaler Beleuchtung wird bereits häufig in Compu-
terspielen oder anderen 3D Programmen eingesetzt. Die Echtzeitberechnung von
globaler Beleuchtung für dynamische Szenen und dynamischem Licht stellt da-
bei aber immer noch eine große Herausforderung dar und ist deshalb ein aktives
Forschungsfeld.

Diese Diplomarbeit gibt eine Einführung in die globale Beleuchtung und be-
schreibt einige Methoden die bereits dafür entwickelt wurden. Da aber die meisten
Methoden Vorberechnungen benötigen, unterliegen sie bestimmten Einschränkungen
wie statischen Szenen oder statischer Licht- beziehungsweise Kameraposition.
Des weiteren, sind manche Algorithmen nicht auf heutige Graphikhardware an-
gepasst oder globale Beleuchtung wird nur vorgetäuscht.

Der Kern dieser Diplomarbeit ist eine verbesserte Version der Instant Radio-
sity und Imperfect Shadow Maps Algorithmen, welche die Beleuchtungsinforma-
tionen aus dem letzten Bild wiederverwendet. Die vorher genannten Methoden
benötigen eine hohe Anzahl an sogenannte virtuellen Lichtquellen um anspre-
chende Resultate zu erzielen. Unsere Methode hingegen, erreicht bereits mit we-
nigen virtuellen Lichtquellen ansprechende Ergebnisse. In einer zweiten Erweite-
rung zu den Algorithmen präsentieren wir einen neuen Algorithmus um mehrere
Lichtreflexionen auf der Oberfläche zu berechnen. Unsere Methode reduziert die
Anzahl der zu zeichnenden Pixel, wodurch die Berechnungszeit im Vergleich zu
den vorhergehenden Methoden kleiner ist.
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Chapter 1

Introduction

In the right light, at the right
time, everything is
extraordinary.

Aaron Rose

The human visual system is the most important sensory device, as the perception
of the surrounding world heavily relies on it. With its help we are able to recognize
the world in a very astonishing way. We can see how objects are positioned to
each other, have an impression of depth, color, shape and surface of objects and
we can also see where the light comes from. All this information is extracted
from the incoming light, hitting the retina of the eyes, which is nothing more than
a bunch of electromagnetic energy. Beside the very interesting question on how
the brain manages to extract these kinds of information about the world, it is also
very interesting how the incoming light has to be set up, so that the visual system
can extract as much information as possible out of it.

Thousands of years ago, cavemen already started to paint at walls of caves
and so produced the first images. Although the images had only two-dimensional
representations of the objects, they could still be recognized. But only a fraction
of visual information was available for the human brain. For example, perspective
and depth information was completely missing. In the renaissance epoch painters
discovered how to draw perspectively correct images and so they were able to give
an impression of the depth in the scenes.

In computer science the process of producing images is called image synthe-
sis. The history of realistic image synthesis is somehow similar. The first pro-
duced images were only two dimensional and later on, when the computer had
more performance, three-dimensional scenes could be rendered. But in opposite
to painted images, computer generated images still did not look realistic. They
did not contain correctly shaded surfaces or shadows and therefore, some infor-
mation for the human visual system was still missing. Further development made
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it finally possible to render images that look almost realistic, by using global il-
lumination methods (see Chapter 1.1). Global illumination describes how light
propagates in a scene and since light can bounce off from several surfaces, it is a
mathematically complex task. However, to calculate absolutely realistic looking
images, it still takes time from a couple of hours up to several days.

The image synthesis process described in the previous paragraph is called of-
fline rendering. Offline rendering means that the position of objects, light or the
view point cannot be changed interactively, as the rendering time is way too long.
With the increase of computation power and the introduction of graphics hardware
it is possible to render several images (called frames) per second. This way, we
are able to create interactive applications that synthesize images at a rate of 20
to 60 or more Hertz. However, these images are far away from looking realistic.
There are several reasons for non-realistic looking images, but a main reason is
that the illumination calculation is only a local process instead of a global one.
Figure 1.1 shows the difference between a locally and globally illuminated scene.

Fig. 1.1: Image on the left is rendered with local illumination. Image on the right is
rendered using a global illumination approach. Note the color bleeding and caustics as
well as the more natural look of the image. (Image courtesy of Guerrero [Gue07])

In the last few years, researchers started to develop algorithms that are able to
perform global illumination in real time. However, most of these methods have
some restrictions or limitations. Sometimes only static scenes are allowed or the
view or light has to be fixed. In other methods a huge precomputation step is
needed to achieve interactive frame rates. In 1997 Alexander Keller introduced
Instant Radiosity [Kel97], the method our thesis is based on (see Section 2.6).
It achieves global illumination by placing so called virtual point lights (VPL) in
a scene. However, visibility calculation for each VPL was a very time consum-
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ing task and therefore not usable for real time, until Ritschel et al. introduced
the concept of imperfect shadow maps [RGK+08] (see Section 2.6.5). Imperfect
shadow maps enable fast visibility calculation and therefore are suitable for real
time global illumination. This concept is the main basis of this thesis and we will
extend it by exploiting temporal coherence.

1.1 Global Illumination

Global Illumination describes how light propagates in a scene. Light starts from
one or several light sources and gets reflected, scattered or transmitted at surface
points. It is important to know how light hitting the surface gets reflected, and this
behavior is described by the bidirectional scattering distribution function (BSDF)
(see Section 1.1.3). After several possible surface hits the light finally reaches the
eye/view point. Actually, there are an infinite number of possible paths that light
can take from the light source to the view point. Thus, illumination computation
for a given pixel on the screen is a global, complex and time consuming task that
has to be solved as fast as possible for real-time applications.

1.1.1 The Light Transport Notation

Fig. 1.2: Image rendered using global illumination. Some possible light paths are shown
with its corresponding light transport notation. (Image courtesy of Guerrero [Gue07])

As mentioned before, light can take various paths from the light source to the
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eye. In 1990 Heckbert [Hec90] therefore introduced the so called light transport
notation. It allows describing a light path using the type of surfaces (diffuse or
specular) that were hit. But it also gives us a tool to describe the capabilities of
rendering methods. The notation consists of the elements L, S, D and E.

L - is used for a ray starting from a light source

S - describes a specular light bounce

D - describes a diffuse light bounce

E - is used for the eye/view point

Figure 1.2 shows several ray paths starting from the light source and ending at the
eye/view point. Furthermore, regular expressions can be used to describe groups
of paths. S* describes zero or more -, S+ one or more - and S? zero or one specular
reflections. (S|D) stands for a specular or diffuse reflection.

A global illumination renderer that supports all possible light paths must be
able to calculate paths with notation L(S|D)*E. As pointed out by Heckbert [Hec90],
classic raytracing can only handle LD?S*E paths and classic radiosity supports
only diffuse bounces and therefore only calculates LD*E paths.

1.1.2 The Rendering Equation
The rendering equation was introduced by James Kajiya [Kaj86] in 1986. It com-
pletely describes the global illumination process. The original form looked as
follows:

I(x, x′) = g(x, x′)[ε(x, x′) +
∫

Ω
ρ(x, x′, x′′)I(x′, x′′)dx′′] (1.1)

where

I(x, x′) is the light intensity that passes from point x′ to x.

g(x, x′) is the geometry term that describes how the layout of the geometry in-
fluences the light transfer.

ε(x, x′) is the emitted light from x′ to x.

ρ(x, x′, x′′) is the BRDF function. It describes the amount of light that gets
transferred from point x′′, which illuminates point x′, to point x.
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Note that in this form of the rendering equation, point locations are used in-
stead of ray directions that are used in the alternative form. In the remainder of
this thesis we will use the alternative representation because it is more common
today.

Lo(p, ωo) = Le(p, ωo) +
∫

Ω
ρ(p, ωi, ωo)Li(p, ωi)cosθdωi (1.2)

where p is the point at which incoming light gets scattered in direction ωo.
Le(p, ωo) is the light emitted from point p in direction ωo. The integral samples
over the upper hemisphere Ω or the whole sphere, but then a BSDF has to be used.
The BRDF ρ(p, ωi, ωo) takes directions instead of point locations and Li(p, ωi) is
the light, that arrives point p from direction ωi. θ represents the angle between
the incoming direction ωi and the normal at point p. Thus cosθ forms the geom-
etry term in this form of the rendering equation. A geometric explanation of the
rendering equation is shown in Figure 1.3

Li(p, ωi) = Lo(h(p, ωi),−ωi)

p′

p

Lo(p, ωo)

θ

Ω

Fig. 1.3: Graphical illustration of the rendering equation.

It is very hard to solve the rendering equation analytically because it is a recur-
sive equation. The incoming light Li from direction ωi is the outgoing light from
a point p′ (p′ is the first intersection point when a ray is shot from p in direction
ωi). We can introduce an integral operator T as

(TLo)(p, ωo) =
∫

Ω
ρ(p, ωi, ωo)Lo(h(p, ωi),−ωi)cosθdωi (1.3)
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where h(p, ωi) is a function that returns the first ray intersection starting from
point p into direction ωi, the previously mentioned intersection point p′, and thus
the short form of the rendering equation looks like

Lo = Le + TLo (1.4)

It is easy to see that the rendering equation is recursive and that it can be
expanded to

Lo = Le + T (Le + T (Le + T (... (1.5)

Note that for physically based BRDFs the reflected amount of energy is always
smaller or equal to the incoming radiant energy. Thus only the first terms really
influence the final result of Lo and are therefore more important.

1.1.3 BRDFs
A bidirectional reflectance distribution function (BRDF) describes how incident
light is scattered at a surface point over a hemisphere that is oriented with respect
to its normal. It was first specified by Nicodemus [Nic70] in 1970. The function
returns the reflected amount of light Li(ωi) for a given incoming direction ωi and
an outgoing light Lo(ωo) in direction ωo. The BRDF is a four-dimensional func-
tion, with two angular values for incoming and outgoing direction. Furthermore
we can add dependence to the surface location. Thus, if the surface is parameter-
ized using a two dimensional function a BRDF is a six-dimensional function.

A BRDF only describes the behavior of a surface on the upper hemisphere
with respect to the surface normal. The bidirectional transmittance distribution
function (BTDF) on the other hand describes transmittance of light through ma-
terials. For a BRDF the incoming direction ωi and the outgoing direction ωo are
in the same hemisphere. For a BTDF they are on opposite hemispheres. With
BTDFs translucent materials can be supported in rendering systems. The com-
bination of a BRDF and BTDF is called the bidirectional scattering distribution
function (BSDF).

BRDFs can be represented through measured data or through analytical mod-
els. The problem with measured BRDFs is, that they provide a huge amount of
data because of its multidimensionality. Furthermore for off line physically based
rendering the wavelength of the light is also taken into account, thus the BRDF
becomes a seven-dimensional function.

To omit huge storage costs for BRDFs, several analytical models have been
developed [Pho75, CT81, ON94].

BRDFs or their corresponding materials have a couple of properties that will
be described here [PH04].
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1. Diffuse, glossy specular, perfect specular and retro-reflective: Surface ma-
terials can be categorized into four main groups: Diffuse, glossy specular,
perfect specular and retro-reflective surfaces. Diffuse materials have the
characteristic that the outgoing radiance is independent of the outgoing di-
rection ωo and therefore the BRDF is only a four-dimensional function. Fig-
ure 1.4 shows polar plots for all four types of surfaces. Note that most of
the incoming light is scattered in direction of the reflection vector for spec-
ular surfaces. A perfect mirror or glass has no diffuse part and only reflects
incident light in direction of the reflection vector. The moon is an example
for a retro-reflective surface, as it reflects most of the incident light back in
the same direction.

Fig. 1.4: Graphical illustration of the different material types. The red ray illustrates ωi,
while the green ray shows ωo. From left to right: diffuse, glossy specular, perfect specular
and retro-reflective surfaces.

2. Helmholtz reciprocity: Physically based BRDFs are reciprocal. That means
that the BRDF function returns the same result, if the incoming and outgo-
ing directions are interchanged.

ρ(p, ωi, ωo) = ρ(p, ωo, ωi)

3. Energy conservation: Physically based BRDFs are energy conserving. The
reflected amount of energy is always less or equal to the incoming amount
of energy and thus ∫

Ω
ρ(p, ωi, ωo)cosθdωi ≤ 1 (1.6)

4. Isotropic or Anisotropic: Isotropic surfaces do not change the amount of re-
flected light, if they are rotated around their normals. In opposite, anisotropic
materials, like compact discs, do change under different rotations.

1.2 Goals of this Thesis

In this thesis we will first give an overview on real-time global illumination meth-
ods that are related to this work in Chapter 2. Note that the instant radiosity
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algorithm is also explained in this chapter, along with the imperfect shadow maps
method.

In Chapter 3 we will present our new method to achieve global illumination
in real-time. We introduce two main extensions to the imperfect shadow maps
approach. The first extension reduces time for shading, while maintaining good
quality global illumination. The idea is to exploit temporal coherence between
consecutive frames and reuse as much information from the previous frame as pos-
sible. The second extension introduces a new method to calculate multiple light
bounces. The new method reduces fill-rate drastically in contrast to the method
proposed by Ritschel et al. [RGK+08].

Chapter 4 will outline details of the implementation and Chapter 5 will present
the results of our work. Finally, Chapter 6 gives a conclusion to the thesis.



Chapter 2

State of the Art

In the beginning there was
nothing. God said, “Let there be
light!” And there was light.
There was still nothing, but you
could see it a whole lot better.

Ellen DeGeneres

2.1 Introduction

Several methods and algorithms exist to simulate or approximate global illumi-
nation in real-time environments. This chapter is a collection of some of these
approaches. Section 2.2 describes the lightmaps approach and Section 2.3 will
explain the Precomputed Radiance Transfer method [SKS02]. In Section 2.4 we
describe a method for approximating global illumination called ambient occlu-
sion. Section 2.5 introduces a method that avoids explicit visibility queries by
reformulating the rendering equation. Section 2.6 explains the idea of Instant Ra-
diosity, the technique on which our proposed method is based on. Section 2.7
introduces real-time approaches that exploit temporal coherence to get better re-
sults.

2.2 Lightmaps

Lightmaps are a quite old but still useful technique to get global illumination ef-
fects in real-time environments. The basic idea is to map so called lightmaps
onto the scene geometry as it is done with standard texture maps. With the dif-
ference that texture maps store surface color information whereas lightmaps store
surface illumination information. A similar method was first introduced by Segal
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et al. [SKvW+92] where they used projective texture mapping to render images
with a spotlight where the area of illumination by the spotlight was defined with
a lightmap.

Lightmaps have values between 0.0 and 1.0 corresponding to the illumination
at a given surface point. The resulting color c for a pixel with a texture color tc is
calculated with the trivial equation

c = tc ∗ l (2.1)

where l is the illumination read out from the lightmap. Figure 2.1 shows an
example with a simple lightmap. Although the concept of lightmaps is pretty
simple, there are some issues which will be addressed in the next paragraphs.

Fig. 2.1: The images illustrate the light map technique. A texture gets multiplied by a
light map to get the final illuminated surface.

Lightmap precalculation In a precalculation step all the lightmaps for every
polygon in the scene are calculated. This is done by performing a light simulation
on the scene and storing the illumination in the lightmaps. Since this can result in
a huge amount of data, lightmaps have normally only low resolutions. This saves
memory but also reduces the possibility to include high frequency lighting effects
such as caustics or sharp shadow edges.

Another problem is the mapping of lightmaps. If the alignment of the lightmaps
for two adjacent polygons does not match exactly, visible artifacts will appear at
the shared edge because of the very low resolution of the lightmaps. Planar map-
ping helps to overcome this issue.

Precomputed lightmaps work only with static scenes, however it is still possi-
ble to combine lightmaps with dynamic lighting methods. Therefore they can be
used to get a coarse global illumination approximation which works properly for
all static objects and all dynamic objects can be shaded using standard real-time
lighting.

Lightmap baking As there is one lightmap for every polygon it is impractical
to load and create thousands of lightmaps into video memory. A more common
method is to bake several lightmaps into one big map.
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2.3 Precomputed Radiance Transfer

Fig. 2.2: Head rendered using precomputed radiance transfer with self-shadowing and
self-interreflection. (Image courtesy of Sloan et al. [SKS02])

Precomputed Radiance Transfer was first introduced by Sloan et al. [SKS02]
in 2002. It is an elegant approach which associates a set of transfer functions be-
tween incident lighting and outgoing radiance to scene geometry. In other words,
the transfer functions describe how an object will look like, for a given incident
lighting situation.

They use low-order spherical harmonics to represent the transfer functions
and the incident lighting (there also exist similar methods that use for example
wavelets as representation [NRH04, NRH03]). Low-order spherical harmonics
are an adequate representation method because they avoid aliasing and can be ef-
ficiently evaluated on the graphics hardware. With the proposed method the com-
plexity of light interaction/transport can be split into two steps. The calculation of
the transfer functions and the calculation of the outgoing radiance at runtime.

In the first precomputation step a global transport simulator creates these trans-
fer functions for a static scene. The simulator is able to bake self-shadowing and
self-interreflections into these functions.

The second step performs the mapping from incident lighting to outgoing ra-
diance. It is important to distinguish between objects with diffuse BRDFs and
objects with glossy BRDFs. When rendering objects with diffuse BRDFs, the
shading integral gets reduced to a simple dot product of 9 to 25 elements between
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the incident lighting and the transfer functions. For glossy BRDFs matrices are
used instead of vectors. Figure 2.2 shows a head rendered with the proposed
method.

Definition Assuming the light source Lenv to be infinitely distant, the incident
light Li for a given point p can be described as a product of the radiance from the
light source and the local transfer function Tp

Li(p, ωo) = Lenv(ωi)Tp(ωi) (2.2)

The local transfer function Tp at point p can be further split into the following
form:

Tp(ωi) = Vp(ωi) +Rp(ωi) (2.3)

where Vp(ωi) is the visibility function. The visibility function returns 1 if there
is no geometry intersection between p and the infinitely distant light source in
direction ωi and 0 otherwise. Figure 2.3 shows how the visibility function looks
like for a given point p. The reflection term Rp(ωi) describes how much light
from direction ωi arrives at point p through light reflections on the objects surface.
Using this this kind of light transport representation the rendering equation (see
Section 1.1.2) can be written as follows:

Lo(p, ωo) =
∫

Ω
ρ(p, ωi, ωo)Lenv(ωi)Tp(ωi)cosθ (2.4)

where ρ(p, ωi, ωo) is the BRDF and θ the angle between incoming direction ωi
and the normal of point p.

Fig. 2.3: Result of the visibility function Vp for a given point p. (Image courtesy of
Guerrero [Gue07])

Equation 2.4 has no emittance term since it is assumed that the only light
emitting source is the infinitely distant light Lenv. For a given point p the next
step would be to sample over the whole sphere (although the BRDF will zero out
samples that are on the lower hemisphere) and store the results. Doing this over
the entire surface of an object results in an huge amount of data. This is the point
were Spherical Harmonics come into play because they allow a very compact way
to represent these transfer functions.
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2.3.1 Spherical Harmonics
Spherical Harmonics (SH) are a set of functions defined over a sphere S. They are
very similar to the Fourier transformation. The basis functions of Spherical Har-
monics are ordered into bands, indexed by parameter l, which group the functions
by their frequency. Figure 2.4 shows the basis functions for the first four bands.
Each band has two more basis functions in the group than the former one. The
basis functions in one band are indexed through m. As we will see later there is
also a representation where only one index variable is necessary to access all the
basis functions.

Fig. 2.4: This figure shows the first four bands of the SH basis functions. (Images courtesy
of Guerrero [Gue07])

The SH basis functions can furthermore be classified by the way the surface
of the sphere gets divided into zones. Figure 2.5 shows the three possible spher-
ical SH function types. Basis functions that have latitudinal divisions are called
zonal harmonics. Sectoral harmonics are basis functions that divide the sphere
along its meridians and all the remaining basis functions are called tesseral har-
monics [Gue07].

Definition Spherical harmonics define an orthonormal basis over the sphere S
[SKS02]. Using the parameterization

s = (x, y, z) = (sinθcosφ, sinθsinφ, cosθ),
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Fig. 2.5: This figure shows the three different basis function types. (Images courtesy of
Guerrero [Gue07])

the basis functions are defined as

Y m
l (θ, φ) = Km

l expimφ P
|m|
l cosθ, l ∈ N,−l ≤ m ≤ l (2.5)

where l is the index of the SH band, m the index in band l, Pm
l are the associated

Legendre polynomials and Km
l are the normalization constants

Km
l =

√√√√(2l + 1)(l − |m|)!
4π(l + |m|)!

(2.6)

The next paragraphs introduce some important properties of Spherical Har-
monics but we will not go into further details.

Projection and Reconstruction Because Spherical Harmonics are an orthonor-
mal basis over S, a function f defined over S can be projected into its coefficients
by the following integral:

fml =
∫
S
f(s)yml (s)ds (2.7)

The n-th order reconstruction function is represented via

f̄(s) =
n−1∑
l=0

l∑
m=−l

fml y
m
l (s) (2.8)

If function f is a low-frequency signal only a few spherical harmonic bands are
necessary to approximate f correctly. If it is a high-frequency signal, the SH
projection acts like a low pass filter and f̄ will be a band limited projection. To
have an n-th order representation n2 coefficients are necessary [SKS02].

A different representation which uses a single-indexed coefficient vector looks
as followed

f̄(s) =
n2∑
i=1

fiyi(s) (2.9)
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where i = l(l+1)+m+1. Sloan et al. [SKS02] use Equation 2.9 to calculate the
transferred radiance, where fi is the n2-component coefficient vector describing
the objects radiance transfer function. Figure 2.6 shows three spherical functions
that are projected and reconstructed with increasing order of approximation.

Fig. 2.6: Reconstruction of three spherical functions with increasing order of approxima-
tion. (Images courtesy of Green [Gre03])

Rotational invariance Spherical Harmonics are rotational invariant, which is
an important property because it ensures that there are no noticeable artifacts like
light intensity fluctuations when objects are rotated [Gre03].

Product of coefficients Due to orthonormality of Spherical Harmonics the
projections of two functions f and g over S satisfy

∫
S
f̄(s)ḡ(s)ds =

n2∑
i=1

figi (2.10)

where f̄ and ḡ are the reconstructed functions of f and g and fi and gi the corre-
sponding SH coefficients vectors.

This is of special interest when using diffuse BRDFs because the outgoing
radiance can be calculated using a single dot product between the incident lighting
and the transfer functions [Gue07].

SH products and the triple product tensor SH products and the triple prod-
uct tensor are useful for visibility calculation in the SH basis when multiple block-
ers have to be taken into account [Gue07].

2.3.2 Diffuse BRDFs
The characteristic of diffuse BRDFs is that the exiting radiance is independent
from the outgoing direction ωo. Therefore diffuse BRDFs can be included in the
precomputed transfer function coefficient vectors. To speed up calculation of the



Chapter 2. State of the Art 21

outgoing radiance at runtime it is also useful to represent the infinitely distant light
source as a set of Spherical Harmonics. This way the runtime calculation reduces
to a simple dot product between the incident light SH coefficients vector l and the
transfer function SH coefficients vector fp including the diffuse BRDF

l =
∫

Ω
Lenv(ωi)y(ωi)dωi (2.11)

fp =
∫

Ω
ρp(ωi)Tp(ωi)y(ωi)dωi (2.12)

Lo(p) = l · fp (2.13)

Note that Equations 2.11 and 2.12 represent the first step in the precomputed
radiance transfer approach, the precomputation of the coefficient vectors for the
incident light and the transfer functions of the geometry in the scene. Equation
2.13 shows the second step, the simple dot product calculated every frame (see
Figure 2.7 for the calculation pipeline).

Fig. 2.7: Figure showing the process of outgoing radiance calculation for objects with
diffuse BRDFs (Images courtesy of Sloan et al. [SKS02])

2.3.3 Glossy BRDFs
Glossy BRDFs change their incident light transfer behavior dependent on the out-
going direction ωo. Therefore calculation using Spherical Harmonics is not as
trivial as it was for diffuse BRDFs. Sloan et al. [SKS02] were only able to calcu-
late radiance for isotropic BRDFs. This restriction was first eliminated by Kautz
et al. [KSS02] in 2002. Later Sloan et al. [SHHS03] added clustering methods
to minimize error and calculation time. The main idea behind the approach from
Kautz et al. [KSS02] is to store an arbitrary BRDF using a table of SH coefficient
vectors for all view directions. Hence every coefficient vector corresponds to one
view direction. A second SH projection can now be performed for every single
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component over the coefficient vectors. This results in a n2 x n2 matrix for glossy
BRDFs, where n is the number of SH bands.

Bij =
∫
ωo

∫
ωi

yi(ωo)yj(ωj)ρ(ωi, ωo)dωidωo (2.14)

where ρ is an arbitrary glossy BRDF, ωi the incident and ωo the outgoing light
direction.

The outgoing radiance for an object with glossy BRDF can then be calculated
as followed

Lo(p, ωo) = y(ωo)(BRpTp)l (2.15)
where l is the SH coefficients vector for the incident distant light source. Tp is the
transfer matrix that transforms the distant light to incident light at point p. The
incident light at point p is rotated into the BRDF’s local coordinate system using
the SH rotation Rp. B is the matrix that represents the glossy BRDF and y are the
SH basis functions [Gue07].

Since evaluation of Equation 2.15 is time consuming Kautz et al. [KSS02]
suppose to either fix the view- or the light position. With fixed light the incident
light at point p can be precalculated. Using a fixed viewpoint allows precalcula-
tion of BRDF coefficients rotated to the lights coordinate system. Therefore no
rotation of the incident light is necessary anymore.

Sloan et al. [SHHS03] propose a clustered principal component analysis
(CPCA) to get higher frame rates. The idea is to partition per-point transfer ma-
trices into fewer clusters that approximate the transfer matrices. Therefore the
per-point matrix/vector multiplications are converted into a weighted combina-
tion of a few precomputed vectors resulting in a more flexible approach where
the restrictions of fixed light- or fixed view position are not necessary anymore to
achieve real time frame rates.

2.4 Ambient Occlusion

Ambient Occlusion (AO) is a shading method that takes occlusion by geometry
into account. It is an approximation to Global Illumination but normally does
not support indirect illumination. However, some of these methods can be easily
extended to support indirect illumination.

Definition Ambient Occlusion was introduced by Zhukov et al. [ZIK98] in
1998. It uses the inverted principal as surface exposure and is defined as the
percentage of light blocked by geometry close to point p

ao(p, n) =
1

π

∫
Ω

Vp(ω) max(n · ω, 0)dω (2.16)
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where n is the normal of point p and Vp(ω) is the visibility function at point
p, which returns 0 if no geometry is visible in direction ω and 1 otherwise. The
importance of a particular direction is weighted by the cosine between the normal
n and direction ω.

∫
Ω

refers to the integration over the entire hemisphere with

respect to n.
Over the last years several AO methods, usable for real time applications, have

been introduced. They can be categorized by their way they calculate AO:

1. Object Based Methods These methods calculate ambient occlusion on the
level of objects. Normally this is done by attaching a texture to each ob-
ject in the scene. For further reading we refer to the publications Ambient
Occlusion Fields by Kontkanen and Laine [KL05] and Fast Precomputed
Ambient Occlusion for Proximity Shadows by Malmer et al. [MMAH06].

2. Vertex Based Methods The second group of AO techniques works on ver-
tex level. The methods in this group calculate AO for each vertex and
therefore have the problem that they normally need a very high tessella-
tion. The method introduced by Bunnell [Bun05], Dynamic Ambient Occlu-
sion and Indirect Lighting, will be described in more detail in Section 2.4.1
as it supports indirect illumination. Hemispherical Rasterization for Self-
Shadowing of Dynamic Objects was developed by Kautz et al. [KLA04]
and uses a rasterizer to calculate AO. Hardware-accelerated Ambient Oc-
clusion computation [SSZK04] uses hardware occlusion queries to perform
AO computation.

3. Image Based Methods The last group are image based methods. Here am-
bient occlusion is performed in screen space. This way, AO calculation is
completely independent from scene complexity, which is a very important
feature. The first screen space method was presented by Shanmugam and
Arikan [SA07] in 2007. However, it separates AO into low- and high fre-
quency ambient occlusion and is therefore not completely independent of
the scene complexity. The screen space method introduced by Ritschel et
al. [RGS09], Approximating Dynamic Global Illumination in Image Space,
will be explained in further details in Section 2.4.2 as it also supports indi-
rect illumination handling.

2.4.1 Dynamic Ambient Occlusion and Indirect Lighting
The presented algorithm was introduced by Bunnell [Bun05] and is able to cal-
culate AO nearly on the fly. Furthermore, it is also possible to use deformable
meshes. The idea is to convert vertices into surface elements. With a simple ex-
tension it is also possible to calculate bounces of indirect light. Figure 2.8 shows
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a scene with and without this ambient occlusion approach and also with indirect
lighting.

Fig. 2.8: The left image uses only environment lighting without any ambient occlusion.
Adding AO (middle) enhances realism but now looks partly too dark. In the image on the
right side indirect illumination is also taken into account, which increases realism even
more. (Images courtesy of Bunnell [Bun05])

The basic idea behind this method is to treat a geometric mesh as a bunch of
surface elements. Surface elements are oriented discs having a position, a nor-
mal and an area size. For each vertex of the mesh, a surface element is created
by calculating the size of the polygons surrounding it, taking the position and the
average normal of the surrounding polygons. A surface element is an approx-
imation of the surface, making it easier to calculate illumination or how much
they occlude each other. Figure 2.9 shows the conversion from a mesh to surface
element representation.

Fig. 2.9: For every vertex a surface element is calculated. (Images courtesy of Bun-
nell [Bun05])

In order to allow animated meshes the surface elements have to be stored in
a texture map, enabling us to update them very fast. The main part of the algo-
rithm is just calculating the accessibility from one surface (the emitter) element
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to the other (the receiver). So the receiver’s luminance is defined as one minus
all other surface elements shadowing the receiver. Bunnell [Bun05] approximates
the amount of shadow by an equation, which depends on the area size A of the
emitter and the angles between the surface elements:

1− r cos ΘE max(1, 4 cos ΘR)√
A
π

+ r2
(2.17)

As shown in Figure 2.10 ΘE and ΘR are the angles between the correspond-
ing disc normals (emitter, receiver) and the connecting line between the surface
elements.

Fig. 2.10: Illustration of radiance transfer between two surface elements. (Image courtesy
of Bunnell [Bun05])

Precomputation

The precomputation effort for this method is quite small. As we will show later,
each surface element is applied to each other. So we have a complexity of O(n2),
which scales very bad. To work against this circumstances we can build up a hier-
archic representation of surface elements. This is done by clustering neighboring
surface elements to a single new one. When rendering we traverse this hierarchy
and if the emitter surface element is far away, we can stop earlier in the hierarchy
thus, enabling better scaling with a complexity of O(n log n). However, when
using animated meshes these surface elements have to be recalculated.

Algorithm outline

The algorithm is executed in two passes. In the first pass, for a receiving surface
element, the occlusion of every other surface element is summed and the result is
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Fig. 2.11: Left: Occlusion calculation is correct. Middle: Occlusion calculation gets
too dark. Right: After the second pass, darkening is reduced. (Images courtesy of Bun-
nell [Bun05])

subtracted from one. This pass gives a first approximation on AO, but since some
surface elements cast shadows but are themselves shadowed, receiving surface
elements will get too dark. See Figure 2.11 for illustration. In the second pass
occlusion is calculated again for a given receiver, but this time the occlusion value
for each surface element is multiplied by its own accessibility value from the first
pass. With this step any double shadowed surface is corrected. However, tripled
shadowed surfaces will still be too dark. Additionally to the accessibility values,
the bend normal is calculated and stored. Since all of the previously described
calculations are done in a fragment shader and the surface elements are stored in
a texture, we have to draw a quad with a size that correlates to the number of
vertices/surface elements in the scene.

Indirect Illumination

With some modifications this algorithm can also be used for calculating bounces
of indirect light. This is done by replacing the solid angle function 2.17 with a
disc-to-disc radiance transfer function. Figure 2.12 shows how the additional
bounce improves image quality.

Artifacts

Note that this method suffers from the problem that only vertices are used for
calculation. Therefore a scene needs a high tessellation to get convincing results.
Otherwise under-sampling will occur as seen in Figure 2.13.

2.4.2 Approximating Dynamic Global Illumination in
Image Space

This method introduced by Ritschel et al. [RGS09] belongs to the image based
methods. It extends the screen spaced ambient occlusion (SSAO) approach to
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Fig. 2.12: In the top row, the scene is shown with a varying number of indirect light
bounces. From left to right: zero, one and two indirect bounces. The bottom row shows
the corresponding indirect illumination only. (Images courtesy of Bunnell [Bun05])

Fig. 2.13: Artifacts due to a coarse mesh. (Image courtesy of Kautz et al. [KLA04])

the so called screen spaced directional occlusion (SSDO) technique which allows
one bounce of indirect illumination. Figure 2.14 shows images rendered with this
method. Note that everything is done in screen space so the scene and the lighting
can be completely dynamic.

The idea behind this approach is to take additional information during AO cal-
culation into account. Ritschel et al. added two extensions to the SSAO approach.
The first performs direct lighting using directional occlusion and the second indi-
rect lighting. So the proposed technique needs two passes to calculate SSDO.
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Fig. 2.14: Images rendered with the SSDO method. The scene and the lighting can be
completely dynamic. (Images courtesy of Ritschel et al. [RGS09])

Direct Lighting

Standard ambient occlusion calculates a visibility value and performs lighting af-
terwards by multiplying the outgoing radiance with the AO value. In this case they
sample around a 3D point p in screen space and calculate direct lighting only for
those samples that do not occlude the current point p. Figure 2.15 (left) illustrates
this process. Here sample points A, B and D lie below the surface and therefore
they occlude incoming light and are not taken into lighting calculation. Instead,
sample point C lies above the screen spaced depth value and the direction from
point p to sample point C can be used for lighting calculation. The equation for
calculation direct lighting looks as follows:

Lo(p) =
N∑
i=1

ρ

π
Lenv(ωi)V (ωi)max(0, nP · ωi)4 ω (2.18)

where N is the number of sample points, Lenv is the incoming light and V (ωi)
is the visibility function, which is calculated using the described sampling method
above. ρ

π
is the diffuse BRDF of the surface and4ω = 2π

N
the solid angle covered

by each sample.

Indirect Bounces

The calculation of indirect light bounces is somehow the opposite operation to
directional light. Here the interesting sample points are A, B and D instead of C.
Their position, normal and the calculated direct light from the previous pass can
be used to calculate one light bounce with the following equation

Lind(P ) =
N∑
i=1

ρ

π
Locci(1− V (ωi))

Ascosθsi
cosθri

d2
i

(2.19)
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Fig. 2.15: The left graphic illustrates directional occlusion and the right indirect light
calculation. (Images courtesy of Ritschel et al. [RGS09])

where di is the distance between point P and occluder i and Locci is the radi-
ance of occluder i. θsi

and θri are the angles between the sender/receiver normal
and the transmittance direction. As represents the patch size of occluder i and is
set to As = πr2

max/N with rmax being the maximal sampling distance. Figure
2.15 (right) illustrates the process of indirect light bounce calculation.

2.5 Implicit Visibility and Antiradiance for Interactive
Global Illumination

Implicit Visibility and Antiradiance for Interactive Global Illumination was intro-
duced by Dachsbacher et al. [DSDD07] in 2007. The basic idea is to avoid explicit
visibility queries by introducing the concept of Antiradiance. Antiradiance can be
understood as negative light, that is shining behind the surface of an object that
occludes light. Normally visibility queries determine if an object blocks light or
not. However, in this approach there are no radiance blocking objects. Instead
Antiradiance is used to remove radiance that should not reach areas that are in
shadow. Figure 2.16 shows an oriental room scene, which was rendered using
Antiradiance.
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Fig. 2.16: Oriental room scene rendered with Antiradiance and implicit visibility. (Image
courtesy of Dachsbacher et al. [DSDD07])

2.5.1 Reformulation of the Rendering Equation
The rendering equation (see Section 1.1.2) has to be reformulated to get a form
where visibility can be calculated implicitly. For better understanding we will
revisit the rendering equation here. Dachsbacher et al. introduced several new
operators. The first one is called the reflection operator K. This operator returns
the outgoing radiance L at point x by computing the shading integral:

(KLi)(x, ωo) =
∫

Ω
ρ(x, ωi, ωo)Li(x, ωi)(nx · ωi) (2.20)

where x is the point to be shaded, ωi the direction of the incoming light Li, ωo
the outgoing direction and ρ(x, ωi, ωo) is the BRDF at point p.

The incoming light Li is described through a geometry operator G which uses
an explicit visibility query ray(x, ω) that returns the first hit point. The ray starts
from x in direction −ω. The incoming light can then be written as

Li(x, ωi) = (GL)(x, ωi) = L(ray(x, ωi), ωi) (2.21)

After these steps, the rendering equation becomes

L(x, ωo) = E(x, ωo) + (KGL)(x, ωi) (2.22)
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where E(x, ωo) is the self-emission at point x.
Up to now, there is still an explicit visibility query in the G operator. The

goal of Dachsbacher et al. [DSDD07] was to eliminate this by introducing Anti-
radiance. Therefore they introduced another operator U, that uses a modified ray
function called RAY . Instead of returning the first hit point the RAY function
returns a set of all hits and the new illumination is calculated as follows:

Lunocci (x, ω) = (UL)(x, ω) =
∑

y∈RAY (x,ω)

L(y, ω) (2.23)

This results in an illumination from all intersection points into direction −ω,
thus occlusion is not taken into account. To avoid this overillumination, Antiradi-
ance is created with exactly the same amount of incident light at an object.

To connect the operators G and K, Dachsbacher et al. introduced a new oper-
ator J. J is a simple go-through operator that forwards incident light.

(JLi)(x, ω) = Li(x, ω) (2.24)

Figure 2.17 shows the function of all introduced operators. Note that operator
J just forwards incident light and it can be used to describe UL by summing up
all combinations of G and J.

Fig. 2.17: The illustrations show the different formulations of the rendering equation. (a)
Shows the traditional rendering equation using operator G and K. (b) Shows the new for-
mulation using U, K and J operators. (Images courtesy of Dachsbacher et al. [DSDD07])
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UL = GL+ GJGL+ GJGJGL+ ... (2.25)

This leads to the equation that relates G and U:

A = J(UL− UJGL) (2.26)
= JU(L− A) (2.27)

where A = JGL is the Antiradiance. Note that Antiradiance is defined in a
recursive way, so it can be calculated step wise using the previous result. Antira-
diance can now be placed in the final reformulated rendering equation:

L = E + KU(L− A) (2.28)
A = JU(L− A) (2.29)

2.5.2 Hierarchical Radiosity
For fast rendering, Dachsbacher et al. [DSDD07] use Hierarchical Radiosity with
clustering (HRC) similar to Smits et al. [SAG94]. To setup the hierarchy they
used the CPU, whereas for everything else the GPU is used. For each iteration
four main steps have to be performed:

1. Global Pass In the global pass light is transferred from sender elements to
receiver elements. Note that there is no visibility calculation used, thus this
pass corresponds to the operator U.

2. Push Operation The hierarchy has to stay consistent and therefore two
operations exist. The first is the push operation, where energy is pushed
down the hierarchy. The second step is the pull operation.

3. Local Pass In the local pass reflected radiance and antiradiance is calcu-
lated, which corresponds to the operators K and J.

4. Pull Operation As mentioned before the pull operation ensures a consistent
hierarchy. In this operation energy is pulled from the leaves to its parents.
After this step, the hierarchy is in a consistent state again and the next iter-
ation can be performed.

Note that this was a rather short outline of their algorithm. For implementation
details we refer to the according publication [DSDD07].
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2.6 Instant Radiosity

Instant Radiosity (IR) was first introduced by Alexander Keller [Kel97] in 1997.
It is a excellent technique to calculate global illumination for diffuse or not-too-
shiny materials directly from the rendering equation (see Section 1.1.2). The main
idea is to place so called Virtual Point Lights (VPL) in the scene, which are then
used to compute the overall illumination for a given screen pixel.

2.6.1 Introduction
Instant Radiosity splits each path x̄ = {x0, x1, ..., xn} that light can take from the
light source to the camera into three main parts [Seg07]:

• The first element of this path x̄c = {x0, x1} corresponds to a sensor element
in the camera x0 and a surface point x1 seen by this sensor. In other words
the way from the screen pixel (x0) to its corresponding 3D point (x1) in the
scene.

• After x1 follows xv, which is a point that illuminates x1 - the location of the
virtual point light.

• The rest of the path called x̄s beginning with xv is the path to a light source.
It can have an arbitrary length. However, note that a length of 0 is also
possible and then xv is located at the light source.

If we want to have N VPLs placed in the scene we generate N random paths
{xv, x̄s} beginning at the light sources. These sub paths are then reused for every
path that starts from the cameras screen pixel (x0) to the surface point (x1). Figure
2.18 illustrates this process, where first (a) the paths from the light sources are
build and afterwards (b) the surface point is illuminated by all the light sources
plus the placed Virtual Point Lights.

Overmodulation Problem

Instant Radiosity is a very easy method to get fast global illumination. However, it
suffers from a serious overmodulation problem, which means that the variance is
not bound. The visibility term decreases with 1/r2 and the problem gets obvious
when r gets close to 0. A common solution to this is to clamp the radius. Note
that this introduces a bias.
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Fig. 2.18: (a) First, the light paths from the light sources are created. Each light bounce
is stored as a VPL. (b) Then, the illumination for a given surface point is calculated by
taking all the Virtual Point Lights and the directional light into account. (Images courtesy
of Segovia [Seg07])

Variance Reduction Techniques

Instant Radiosity can be used in real-time applications. However, to get high
enough frame rates it is important to use as less virtual point lights as possible
to reduce shading computation costs. But at the same time the image quality
should be as high as possible with the given amount of virtual point lights. This
is the point, where optimal sampling gets important. Keller [Kel97] proposed to
use a quasi-random walk [Kel96] on the method of quasi-Monte Carlo integra-
tion. Therefore he generates samples from Halton sequences, which have a good
distribution while having low discrepancy instead of pure random samples. The
problem here is, that these paths are generated regardless of the position of the
camera or the properties of the surfaces. A location for a VPL is useless if it is not
able to illuminate surface points, that can be seen by the camera. So what is really
needed are “importance driven” methods that have sampling strategies suitable for
the camera, light and scene setup.

There exist some methods that address this problem. Wald et al. [WSB01]
proposed to calculate the power brought from each physical light source to the
camera. The VPLs are then assigned to the physical light sources according to
their contribution on the screen. Segovia et al. introduced Bidirectional Instant
Radiosity [SIP06], where samples are also started from the camera to find good lo-
cations for virtual point lights. Metropolis Instant Radiosity [SIP07] is a method,
which uses a Multiple-try Metropolis Hastings algorithm. The point of metropo-
lis sampling is, to find good paths by altering existing good paths. An interest-
ing property of Metropolis Instant Radiosity is, that each VPL provides the same
amount of power to the camera. For more information we refer to the Ph. D.
Thesis of Benjamin Segovia [Seg07].
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Instant Radiosity in Real-Time Applications

When using Instant Radiosity in real-time applications two tasks are very time-
consuming. The visibility function, that determines if a given VPL is visible from
a certain surface point and the shading for all virtual point lights. The two tech-
niques introduced in the next sections address these challenges. Section 2.6.2
addresses the problem of visibility calculation and Section 2.6.3 tries to minimize
shading costs.

2.6.2 Incremental Instant Radiosity
Incremental Instant Radiosity is a technique introduced by Laine et al. [LSK+07]
in 2007. It addresses the visibility problem in Instant Radiosity by trying to cache
virtual point lights over several frames and thus, calculating visibility only once
in the “lifetime“ of a VPL. Laine et al. proposed a stable and fast algorithm to
cache VPLs while keeping a good distribution over time to the price of dynamic
scenes. Dynamic objects will not contribute to indirect illumination calculation
although they can be illuminated by it. Figure 2.19 shows an image rendered with
the proposed method.

Fig. 2.19: Image rendered using the incremental instant radiosity method introduced by
Laine et al. (Image courtesy of Laine et al. [LSK+07])

The first step is to shoot rays from the light source and place VPLs at the
hit points. Note that only static geometry is used for ray intersection computation.
Then the scene is rendered illuminated with the primary light source and the VPLs.
In the next frame a visibility test is performed, that finds out, which virtual point
lights are not visible from the primary light source any more. This could happen
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due to orientation/position change of the light source. Figure 2.20 illustrates this
process.

Fig. 2.20: (a) Rays are shot from the primary light source. At the hit points virtual point
lights are placed. (b) The scene is rendered by using the VPLs to illuminate all the visible
surface points. (c) For each VPL a visibility test is performed to delete invalid VPLs
(Images courtesy of Laine et al. [LSK+07])

Distribution domains

The implementation presented by Laine et al. supports two types of light sources.
180◦ spot lights with a cosine falloff and omnidirectional point lights. Their key to
a good VPL distribution for spot lights is to map the VPLs seen by the spot light
onto the unit disc by flattening the z-coordinate of the hemisphere pointing at the
spot direction. See Figure 2.21 for illustration. Note that the size of the projected
areas corresponds with the cosine weighted energy distribution of the spot light
(see Nusselt analog [CWH93]). For omnidirectional lights Laine et al. operate on
the unit sphere.

All computations for redistributing VPLs are then performed in those 2D do-
mains. An often used operation is the Delaunay triangulation and the associated
Voronoi diagram. For those calculations they used the CGAL computational ge-
ometry library [Boa08]. For calculation of the Delaunay triangulation on the unit
sphere they proposed to use a 3D tetrahedalization on the VPL sampling points.
However, in their presentation slides to the publication they mention that a 3D
tetrahedralization is nothing else than the convex hull, which can be calculated
much faster. In the algorithm outline we will describe how these computations
can be useful for VPL caching.

Quality control

To get good quality images over a longer period of time it is necessary to introduce
recalcMin and recalcMax. These two values bound the maximum and minimum



Chapter 2. State of the Art 37

Fig. 2.21: These images show the different domains for the light sources. a) Shows the
unit disc with the projected VPL directions. In this 2D space the redistribution and cre-
ation/deletion of VPLs is performed and afterwards backprojected to the hemisphere as
seen in figure b). Figure c) shows the Delauney Triangulation on the unit sphere for an
omnidirectional point light source. (Images courtesy of Laine et al. [LSK+07])

amount of recalculated VPLs per frame. Another value maxV PLs defines the
maximum number of virtual point lights in the scene. We will show in the next
section how they influence quality.

Algorithm outline

The following steps are executed for each frame:

1. Determine validity of each VPL The first step is to determine if a VPL is
visible. Laine et al. used a conventional CPU ray tracer. Note, that it is also
possible to use the shadow map from the primary light source to determine
visibility for a VPL.

2. Remove invalid VPLs All VPLs that are flagged to be invalid get deleted.
It can also happen that maxV PLs − numberOfV PLs < recalcMin.
That means, that it is not possible to recalculate recalcMin VPLs because
the maximum amount of VPLs has been reached. In this case also valid
VPLs have to be deleted. Laine et al. used the Delauney triangulation to
find the optimal VPL so that a more uniform distribution is reached because
VPLs are deleted in areas with high densities. The first step is to find the
shortest Delauney edge. For the two adjacent vertices they find the second
closest neighbors of them. The vertex/VPL with the smaller distance to the
second closest neighbor gets deleted. This is repeated until there is room
for recalcMin new VPLs. Note that after each deletion recalculation of the
Delauney triangulation is necessary.
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3. Create new VPLs For creating new VPLs again the Delauney triangulation
and the corresponding Voronoi diagram is used. Dispersion, introduced by
Niederreiter [Nie92], is a metric for quality measurement of point sets and
is computed as the largest empty circle in the domain

δ(P ) = sup
x∈X

min
p∈P

d(x, p) (2.30)

where P is a point set in the metric space (X, d). Since we want to place
new virtual point lights in regions that have low density we have to find
point p where the largest empty circle could be placed.

Aurenhammer et al. [AK99] pointed out, that there are three possible cases
for the position of the largest empty circle in a 2D point set. Note that the
point set has to be bounded with a convex polygon.

(a) In the first case the center of the circle lies on a vertex of the Voronoi
diagram, that touches three points.

(b) In the second case the circle is positioned at the intersection of an
infinite Voronoi edge with the bounding convex polygon. It also has
to touch two points.

(c) The last case is, where the circle touches two points and the center of
it lies on a vertex of the convex polygon.

For the unit sphere only case a) is important, whereas for the unit disc the
bounding circle is seen as an infinite tessellated convex polygon and there-
fore all 3 cases may occur. With this 3 cases and the Delauney triangulation
as well as the Voronoi diagram, finding the right point requires only enu-
merating Voronoi vertices and edges.

Once the point was found it will be added and the Delauney triangulation
is performed again. A ray corresponding to the new sample point is then
cast into the scene. If there is no hit point there will be no VPL created.
Otherwise the VPL will be placed. The VPL color depends on the light
source- and the surface color. Note that for textured surfaces it is useful
to take a heavily blurred version for color lookup. For every new VPL a
paraboloid shadow map is rendered [OBM06]. This step is repeated until
recalcMax VPLs got created or the number of VPLs reaches maxLights.

4. Compute intensities Since the light source moves from frame to frame
but the bigger part of VPLs will stay at the same location their intensities
have to be recalculated to guarantee high quality illumination. Since we
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are working in the 2D domain the Voronoi diagram can be used again to
perform this computation. As mentioned before the area where a sample
point is located in directly corresponds to the light contribution from the
light source. The intensity of a virtual point light can therefore be calculated
by

IV PL =
AV PL
Ā

Ilight (2.31)

where IV PL is the intensity of the VPL, AV PL is the area of the Voronoi
diagram where the sample point lies, Ā is the overall area and Ilight is the
primary light source intensity.

5. Render G-Buffer A deferred rendering system is used to display the scene.
The G-Buffer is an off-screen frame buffer that stores the world positions,
normals and colors of the visible pixels.

6. Split G-Buffer Since illumination computation for each pixel is expensive
due to the massive amount of virtual point lights it is important to shade
only as few pixels as necessary. One approach therefore is to only calculate
illumination by a VPL on a subset of pixels in the G-Buffer. Interleaved
Sampling introduced by Keller et al. [WKH01] is a suitable method here.
The G-Buffer gets splitted into n×m tiles and each tile represents the whole
G-Buffer image, but uses a different subset of pixels. Thus pixel (a, b) in
tile (i, j), with i ∈ [0, ..., n− 1] and j ∈ 0, ...,m− 1 is read from position
(an+ i, bm+ j) in the G-Buffer.

Segovia et al. [SIMP06] mentioned to do interleaved sampling in a mul-
tiple pass approach to get better cache coherency. However, Laine et al.
[LSK+07] found out that current graphics hardware performs better using a
single render pass.

7. Accumulate illumination In the illumination accumulation phase each vir-
tual point light gets assigned to one tile. The shading is then performed
using the paraboloid shadow map of the VPL on the assigned tile. To omit
artifacts that may occur when the distance from the VPL to the current sur-
face point is near zero, the maximal contribution of each VPL is clamped
(see Section 2.6.1). The result of each shading process for a VPL is addi-
tively added to an accumulation buffer.

8. Combine illumination Once the illumination for every Virtual Point Light
was calculated the n ×m tiles have to be combined again. In this step the
inverse operation to the splitting step is performed.
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9. Smooth illumination Since the illumination of the VPLs was only applied
on a subset of pixels the combined accumulation buffer has to be filtered to
get good visual results. Therefore Laine et al. [LSK+07] used a geometry
aware box filter. They introduce two new threshold values α and β where α
is the threshold for the maximum spatial distance and β for the maximum
difference between the normals. Figure 2.22 shows the combined accumu-
lation buffer and the filtered final result.

Fig. 2.22: Image on the left shows the unfiltered combined accumulation buffer. On
the right the final accumulation buffer after the geometry aware box filter was applied.
(Images courtesy of Laine et al. [LSK+07])

2.6.3 Splatting Indirect Illumination
As outlined in Section 2.6.1 the two computational expensive operations in the In-
stant Radiosity approach for real time applications is the visibility determination
and the shading. The Incremental Instant Radiosity approach (see Section 2.6.2)
addresses the problem of the expensive visibility function by caching the virtual
point lights over several frames. The method Splatting Indirect Illumination in-
troduced in this section addresses the problem of expensive shading. The method
was developed by Dachsbacher et al. [DS06] and is also based on the Instant
Radiosity approach.

The main idea in this approach is to reduce the number of illumination com-
putations per pixel by decreasing the influence area of a virtual point light. In the
Incremental Instant Radiosity method, each virtual point light illuminates one tile
of the split G-Buffer. However, it is often a waste of computation power since the
influence of the virtual point light is negligible at some areas of the scene. There-
fore, Dachsbacher et al. use a sphere mesh geometry that is splatted on screen
space, covering the influence area of a VPL. This way they minimize the number
of pixels that are illuminated by a VPL. Figure 2.23 illustrates the splatting of the
sphere mesh (left). Note that diffuse as well as glossy virtual point lights are sup-
ported in this approach and thus caustics can be rendered (right). To get proper
caustics the number of virtual point lights has to be quite high, but at the same
time the covered area of each VPL is reduced because of the high specular term.
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Fig. 2.23: Image on the left shows the splatted geometry for VPLs placed on the rings
surface. Image on the right shows the resulting image with fine caustic effects. (Images
courtesy of Dachsbacher and Stamminger [DS06])

Algorithm outline

The following section gives an overview of the method. The presented algorithm
makes use of the so called Reflective Shadow Maps (RSM), which have been
introduced by Dachsbacher and Stamminger in 2005 [DS05]. Reflective Shadow
Maps extend a standard shadow map by additionally storing the surface normal,
world space position and the reflected flux using multiple render targets.

1. Reflective Shadow Maps Each pixel of a Reflective Shadow Map can be
considered as a secondary light source - in the RSM publication they are
called pixel lights but we will refer to them as virtual point lights. The
emitted radiant intensity for a VPL can be calculated as followed

Ip(ω) = φp max(0, np · ω) (2.32)

where p is the given VPL, φp is the reflected flux, np the normal at p and ω
the emittance direction. To calculate the irradiance at point x through VPL
p they suppose the following equation

Ep(x, n) = Ip(
x− xp
‖x− xp‖

)
max(0, n · (xp − x))

‖xp − x‖3
(2.33)

where xp is the position of VPL p.

2. Importance Sampling In the publication, where Dachsbacher and Stam-
minger introduced Reflective Shadow Maps they sampled the RSM to gather
the incident light for a given point pg. But this method is quite inconvenient
since is too expensive. Therefore they propose to sample the RSM and place
VPLs at the according positions.
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Since some areas in the scene, which are illuminated by the light source
have a bigger influence because of a higher reflected flux it makes sense
to place more VPLs in those parts. Furthermore, if there are objects with
glossy surfaces, the VPLs will illuminate a smaller area but with higher
intensity. Therefore it is important to place many VPLs in those areas to
omit artifacts. Importance sampling is the right method to redistribute a
uniform sample set accordingly. The buffer which stores the flux in the
RSM gets replaced by a so called importance buffer. The importance of a
given pixel in the RSM can be calculated as followed:

pφ = φ(1−O)P (2.34)

where φ is the flux at a given RSM pixel. P is the phong exponent thus
the more glossy a surface is, the higher its importance. O is the ambient
occlusion term (see Section 2.4). The ambient occlusion term ensures that
VPLs are not placed at edges or corners where the occlusion is very high,
because those VPLs would have only less contribution to the scene.

Clarberg et al. [CJAMJ05] introduced a elegant method to efficiently build
importance driven sample sets. Their approach is called Hierarchical Warp-
ing which performs a hierarchical recursive redistribution of a uniform sam-
ple set to get the importance driven distribution. Importance Sampling by
Clarberg et al. will be discussed in more detail in Section 3.3.

3. Splatting Indirect Illumination After the sample set was redistributed ac-
cording to the importance map indirect illumination is calculated in screen
space. As mentioned before a sphere geometry mesh gets splatted onto
the screen, which covers the illumination zone of a given VPL. Figure 2.24
shows the emission for a diffuse and glossy VPL whereas Figure 2.25 shows
the according adapted bounding geometry that will be used for indirect il-
lumination calculation.

Fig. 2.24: The illustration shows emission for diffuse (left) and glossy VPLs (right) (Im-
ages courtesy of Dachsbacher and Stamminger [DS06])
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Fig. 2.25: Illustration that shows the bounding geometry for a given VPL (diffuse and
glossy).(Images courtesy of Dachsbacher and Stamminger [DS06])

To calculate the correct bounding geometry each sphere mesh gets a virtual
point light id attached. With that id the information (position, normal etc.)
for a given VPL can be looked up from a texture in the vertex shader. The
resulting bounding geometry is then the iso-surface of illumination and only
covers those pixels where the illumination is higher than a given threshold.

By splatting the bounding geometry the shading calculations can be reduced
to a minimum. However, note that Dachsbacher et al. did not perform any
visibility calculations for the indirect illumination.

2.6.4 Interactive Global Illumination Based on Coherent
Surface Shadow Maps

The method presented in this section was introduced by Ritschel et al. [RGKS08]
in 2008. It is a novel method to calculate global illumination by precomputing
visibility. The technique used for visibility queries is based on Coherent Shadow
Maps [Rit07]. Figure 2.26 shows three scenes, rendered using coherent surface
shadow maps.

Fig. 2.26: Images rendered with coherent surface shadow maps. (Images courtesy of
Ritschel et al. [RGKS08])

Coherent shadow maps are an excellent method to compress visibility data.
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The idea is to take several coherent depth maps and use a lossless compression
scheme to reduce memory cost. Figure 2.27 shows the Standford dragon rendered
from several points of view. The resulting depth maps are then stored in a list, so
that their coherence to each other is very high.

Fig. 2.27: Left: Standford dragon rendered from multiple views. Right: List of coherent
depth maps. (Images courtesy of Ritschel et al. [Rit07])

Compression The compression is performed on a per pixel basis of the depth
maps. This means that the following compression steps are performed on a fixed
pixel location (x, y) in an arbitrary depth map i. The depth value of depth map i
at pixel position (x, y) will be denoted as z(i).

Weiskopf and Ertl [WE03] introduced the concept of dual depth layer shadow
maps. Figure 2.28 shows an object and the resulting depth map. Note that the
z values of this depth map lie between the front and the back faces of the object
from the point of view of the light source. As long as the depth values stay inside
the interval of the front and the back faces any depth value can be used to perform
visibility tests. This fact is exploited by the compression algorithm and the idea is
to find a depth value that is convenient for several coherent shadow maps.

Figure 2.29 shows multiple z values for the Standford dragon. If we now
take several coherent shadow maps into account, shooting a ray always from pixel
position (x, y), we get several depth values for the first (z1) and the second (z2)
intersection.

For a high compression rate it is important to find a zavg value that works for as
much coherent shadow maps as possible. Mathematically speaking the following
inequation has to be true:
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Fig. 2.28: Illustration shows the depth values of a shadow map with depth values between
the front and the back faces of an object. (Image courtesy of Weiskopf and Ertl [WE03])

Fig. 2.29: Depth value zavg which lies between z1 and z2 is sufficient to get correct
visibility results. (Images courtesy of Ritschel et al. [Rit07])

max{z1(1), z1(2), ..., z1(iend)} < min{z2(1), z2(2), ..., z2(iend)} (2.35)

where iend is the largest depth map index for that the inequation is true. zavg
is then the average between the min and max values. With this method we end
up with a list of segments for each pixel. Each segment therefore stores zavg and
its corresponding end index iend. This process is repeated for every pixel in the
shadow map, ending up with M ×M segment lists, where M is the shadow map
dimension.

Depth comparison Depth tests are quite similar performed as it is done for
normal shadow mapping. If we want to do a shadow test for shadow map i we
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have to transform point p into the shadow map space, perform the projection and
afterwards do the perspective division. We end up with point q(i) in the projected
shadow map space. qxy(i) gives us the segment list and all that has to be done, is
to find the right segment in the list:

iend(j − 1) < i ≤ iend(j) (2.36)

where j is the index of the segment that contains the zavg, which has to be used
for the shadow test.

Coherent Surface Shadow Maps Coherent Surface Shadow Maps (CSSM)
are an extension to the coherent shadow maps. While coherent shadow maps were
used from an outside in perspective (see Figure 2.27) coherent surface shadow
maps are placed on the surface of an object and therefore using an inside out per-
spective. The main challenges here are to get a good coherence and to place
the CSSMs in a way, that high frequency visibility queries are possible. As
the CSSMs are located on the surface they record depth values in all directions
through using cube maps.

Precomputation

In the preprocessing step the Coherent Surface Shadow Maps have to be created
for the complete surface of the scene. Ritschel et al. [RGKS08] therefore used a
texture atlas that contained the position, normal, area, radiance and BRDF param-
eters. The atlas is divided into so-called charts. Each chart contains information
about a connected area in the scene. See Figure 2.30 which shows a texture atlas
for a Cornell Box scene.

The texture atlas can be used to get locations on the surface for the CSSMs.
Ritschel et al. [RGKS08] propose two methods to place the CSSMs to get good
coherency. The first is a Zig-Zag strategy, where the texels of each chart are
traversed line by line - every texel is used to render a cube depth map. If a chart
was finished, the chart with the nearest 3d position is used to continue.

The second strategy is the Spiral one. Here the border of a chart is traversed
and each texel in a chart is only visited once. The traversal path ends up in a spiral.
Figure 2.31 shows both traversal strategies with three charts.

Coherent Surface Shadow Maps allow for self occlusion tests, since they are
working in an inside out perspective. However, when there are moving objects
in the scene, CSSMs are not a suitable structure to do visibility tests. Therefore
each object in the scene contains an additional Coherent Shadow Map. CSMs are
suitable to test if a given object occludes a ray between two points. A visibility
test in a scene with moving objects between the points pi and pj is calculated as
follows: First each object tests with its CSSM if there is self occlusion. If one or
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Fig. 2.30: Texture atlas with several charts from a Cornell Box scene. (Images courtesy
of Ritschel et al. [RGKS08])

both tests return occlusion, then there is occlusion. If both tests turn out to have
no occlusion the CSMs of all the other objects are used to test if they do intersect
the ray between the points pi and pj . Note that this test only turns out correct as
long the objects do not intersect with their convex hulls.

Algorithm outline

The following section will give an overview of the steps needed to compute global
illumination based on Coherent Surface Shadow Maps.

1. Hierarchical Radiosity Ritschel et al. [RGKS08] used a modified ver-
sion of the Hierarchical Radiosity (HR) [HSA91] with clustering (HRC)
[SAG94]. Normally three steps are necessary for Hierarchical Radiosity
using clustering:

• Refine In the Refine step the link of the root node is subdivided re-
cursively. A so called oracle function decides if a given node is suffi-
ciently subdivided or not.

• Gather The gather step gathers all incoming light from other links and
sums up their contribution.

• PushPull In the Push phase the radiosities are added from higher level
nodes to lower level nodes according to their hierarchy. In the Pull
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Fig. 2.31: The image shows the Zig-Zag traversal strategy on the left and on the right, the
Spiral strategy. (Images courtesy of Ritschel et al. [RGKS08])

phase the area weighted averages are computed from bottom to top.
This way the hierarchy gets consistent again.

Since the GPU implementation of the Refine function is non-trivial because
their are two tree traversal simultaneously for the sender- and receiver node
the refinement is only performed with the sender node. Hence when per-
forming HRC the first step is to compute a cut through the scene. This cut
defines, which nodes will be used as sender nodes. The receiver nodes are
always the leaf nodes of the tree. The second step performs the gathering
according to the cut and the third step performs the push and pull. Since
Ritschel et al. [RGKS08] modified the first step, the third step reduces to
a pull phase without the push step. Figure 2.32 illustrates the three steps
showing one iteration.

Fig. 2.32: Illustration of the three necessary steps to perform HRC. First a cut through
the hierarchy is calculated in the Refine step. Then the gathering is performed. To
get a consistent hierarchy a Pull step is done afterwards (Images courtesy of Ritschel
et al. [RGKS08])

Global illumination calculation is performed in the texture atlas. To build
up a consistent hierarchy they used bounding spheres.
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2. Traversal To traverse the tree in a GPU friendly way, it was stored as a
stackless version, where every node had two pointers. The first pointer
points to the left child. The second pointer is called the skip-pointer. It
points to the next node that has to be used, when the oracle function de-
cides that there is no need for further refinement. Note, the tree is traversed
in a depth first order. Since the refinement is only done for sender nodes
the hierarchical cut and the gathering step can be performed at once. The
tree is traversed downwards until the oracle function decides that no further
refinement is necessary for a given sender- and receiver node. Then the con-
tribution of the sender node is added to the receiver node and the process is
repeated until all sender nodes contributed to the given receiver node.

3. Final Gathering The final gathering step is done after several diffuse bounces
were calculated. The current illumination is stored in the texture atlas
and then used to calculate the last bounce, which in opposite to the other
bounces, also allows glossy surfaces.

Walter et al. [WFA+05] introduced the so called Lightcuts. Their technique
is a fast method to perform final gathering. It is based on a hierarchical
representation of virtual point lights. The idea is to place cuts through the
hierarchy. A cut defines, like it was done in the HRC, which virtual point
lights are used for shading. But before shading is performed the error for
each VPL inside the cut is calculated. The node with the biggest error is
chosen and if it is over a perceiveable threshold for the human eye (2 percent
due to Weber’s law) it gets replaced by its children. This way a minimal set
of VPLs is used to illuminate the scene. Lightcuts reduce the amount of
VPLs to use for shading but is not well suited for a GPU implementation.
Ritschel et al. [RGKS08] therefore use a slightly modified version of their
HRC method. Instead of having a receiver node in the radiosity hierarchy
they now have a receiver pixel on the screen and the oracle function decides
whether to subdivide or not by calculating an upper bound of the Phong
BRDF. This way they can achieve very good visual results while using an
adaptively amount of virtual point lights.

Their Coherent Surface Shadow Map method was mainly used with hierar-
chical radiosity clustering but can be used with any other technique that needs
visibility queries like Monte Carlo rendering. Hence they wanted to support very
glossy surfaces, they also exploited temporal coherence by jittering the positions
of the VPLs slightly to omit single highlights. However, with their approach the
images need 20 seconds to converge.
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2.6.5 Imperfect Shadow Maps
Imperfect Shadow Maps were introduced by Ritschel et al. [RGK+08] in 2008.
They are a novel new approach to generate hundreds of imperfect shadow maps
at once every frame. This enables them to use imperfect shadow maps for virtual
point light sources. Hence there is no need to cache the shadow maps as proposed
by Laine et al. [LSK+07] (see Section 2.6.2) since it is possible to rebuild them
for each virtual point light on the fly and enabling us to have completely dynamic
scenes.

The basic idea behind imperfect shadow maps is to use a different representa-
tion of the scene geometry to enable faster rendering of the shadow maps. This can
be achieved by using a point cloud for the whole scene instead of polygons. With
this approach the representation of the scene is not perfect, but it is sufficient to
produce adequate imperfect shadow maps for indirect illumination computation.

Scene Preprocessing

As mentioned in the Introduction the whole scene is represented by a point cloud.
The computation of this point cloud representation is done in a preprocessing step.
Ritschel et al. [RGK+08] propose a method, where random triangles are selected
with a probability according to their size. In the triangle, they pick a random
sample point and store its location in barycentric coordinates. This enables them
to have dynamic scenes without recalculating the point cloud. Furthermore it
is possible to calculate the normal and reflectance for each sample point using
barycentric coordinates.

ISM Creation

Rendering the point cloud The point cloud is used to create the imperfect
shadow maps by splatting them into a depth map. Each point is therefore repre-
sented by a box splatting kernel and its size depends on the squared distance to
the view point, in our case a VPL. To be able to render hundreds of imperfect
shadow maps at once they are all written into one big depth map. For example,
to render 1024 imperfect shadow maps with a dimension of 128x128 pixels for
all the virtual point lights, it is useful to use one large depth map with a dimen-
sion of 4096x4096 pixels. During rendering, in the vertex shader each incoming
point sample gets assigned to one shadow map in the depth map. Since virtual
point lights distribute their light over the whole hemisphere, projective shadow
maps are not sufficient and parabolic maps introduced by Brabec et al. [BAS02]
are used. Figure 2.33 shows such a depth map that consists of 4 small imperfect
shadow maps.
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Fig. 2.33: This figure shows the use of the imperfect shadow maps in combination with
virtual point lights. The left image shows the four ISMs without any pull/push method (see
Section 2.6.5). There are a lot of holes in it. The quality of the ISM can be improved by
performing pull/push as proposed by Ritschel et al.[RGK+08] as seen on the left image.
Most holes of the ISM are be filled on the right image. Note that the images were made
brighter for better illustration.

Improving ISM quality To enable fast calculation of the imperfect shadow
maps the amount of sample points is limited. But this introduces holes in the
depth map. To overcome this issue, a pull/push approach from Marroquim et al.
and Grossman et al. [GD98, MKC08] is used to fill them. This method performs
on a data structure similar to an image pyramid. To build it, in the pull phase the
image is down-sampled by a factor of two. Only the valid pixels, those who have
valid depth values in the finer level, are used to calculate the average depth in the
coarser level. In the second step, the push phase, the holes in the finer levels are
filled by interpolating the pixels of the coarser level. To get even better results,
they used two thresholds to reject outliers in the pull and push phase. In the pull
phase only those depth values are averaged that are close to each other and in the
push phase only those depth values are replaced, that are far from the lower level
depth value. These thresholds get scaled by 2l according to the mip map level l,
where 0 is the fines level. Both thresholds were set to 5% of the scene extent.
To keep up high frame rates only the first two levels were calculated [RGK+08].
Figure 2.34 shows a comparison between classic and imperfect shadow maps and
the quality improvement by performing the pull-push method on the ISM.

Imperfect shadow maps are a fast way to calculate hundreds of shadow maps
on the fly. Although they are not perfect, they can be used for virtual point lights
to calculate indirect illumination. The precomputation step creates a point cloud
representation of the scene and can be calculated very fast. The ISMs are created
by splatting the point samples with a box kernel into the depth map. An additional
pull/push method fills the holes in the depth map to improve quality.
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Fig. 2.34: The left image shows classic the result with a classic shadow map. The middle
uses am imperfect shadow map, where no pull-push was applied. The right image shows
the result after pull-push was performed on the imperfect shadow map. The result is
similar to the classic shadow map but can be produces much faster (Image courtesy of
Ritschel et al. [RGK+08]).

2.7 Temporal Coherence

Temporal coherence can be described as similarity between consecutive frames.
Since the camera or objects only move slightly between two frames, a lot of infor-
mation rendered in the previous frame keeps the same as in the current one. This
coherence between two consecutive frames can be exploited to reduce computa-
tion costs per frame by reusing already calculated information.

Temporal coherence has already been exploited in off line ray casting algo-
rithms. Havran et al. [HBS03] was able to increase frame rates up to 47%.

Furthermore Michael Schwärzler [Sch09] introduced a temporal coherence-
based method to calculate physically correct soft shadows in real time and Ritschel
et al. [RGKS08] used temporal coherence and quasi random VPL positions to
avoid artifacts, when rendering images with glossy surfaces (see Section 2.6.4). In
this section we will introduce two real-time approaches that both exploit temporal
coherence to achieve better performance or results.

2.7.1 The Real-Time Reprojection Cache
The idea of a real time reprojection cache was introduced by Nehab et a.l [NSI06].
It is the basis for several techniques that use temporal coherence, because it uses
reprojection to get information from the last frame.

While rendering, a vertex v does not only get transformed with the current
world- Mw, view- Mv and projection Mp matrix, it also gets transformed with the
matrices of the last frame (Mwprev,Mvprev,Mpprev).
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v′ = Mp ∗Mv ∗Mw ∗ v (2.37)
v′prev = Mpprev ∗Mvprev ∗Mwprev ∗ v (2.38)

Here, v′ and v′prev are the transformed vertices, once for the current frame
and once with the transformation of the previous frame. In the pixel shader the
transformed coordinates of the last frame must be divided through (vprev)w. These
coordinates then can be used to get information from the last frame. However,
since pixels may appear or disappear through motion of the camera or the objects
itself, a test has to be performed if the looked up information is valid or not. This is
done by storing the depth buffer of the previous frame, which then gets compared
with the calculated depth of the current frame. If the difference exceeds a given
threshold then the lookup is set to cache miss, otherwise to cache hit. Figure 2.35
shows an image and the corresponding cache hits and misses.

Fig. 2.35: This image shows the rendered scene on the left and the corresponding cache
hits (green) and misses (red) on the left. (Image courtesy of Nehab et al. [NSI06]).

Nehab et al. [NSI06] proposed, that for cache hits a cheap shader could be
executed, while for misses a more complex one could be used. They observed
that hit ratios about 90% are common and furthermore gained speed ups of 30 to
100% when using depth of field or motion blur with stereoscopic rendering.

2.7.2 Pixel-Correct Shadow Maps with Temporal
Reprojection and Shadow Test Confidence

Scherzer et al. [SJW07] introduced this shadow mapping technique that makes it
possible to have pixel correct shadow maps with only very small overhead costs.
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Shadows calculated with the normal shadow mapping method suffer from two
types of artifacts. The first one is undersampling since the shadow map normally
does not have a high enough resolution. In this case one texel of a shadow map
covers several pixels in screen space and spatial aliasing occurs. The second arti-
facts are the temporal aliasing ones that occur when the light source is moving.

The basic idea is to use a so-called history buffer that accumulates shadow map
test results of the previous frames. To have low memory consumption they use
so called exponential smoothing. The equation to calculate a new exponentially
smoothed shadow result looks as followed

sx,y(n) = w ∗ fx,y(n) + (1− w) ∗ sx,y(n− 1) (2.39)

where n corresponds to the frame number and fx,y is the shadow map test re-
sult for the current fragment at position (x, y). It returns 0 if the fragment is in
shadow and 1 otherwise. sx,y(n − 1) is the shadow result of the previous frame.
w is a weighting value, that defines how much the new shadow test should influ-
ence the overall result. Note that a simple lookup in the previous buffer with the
same screen space coordinates is not sufficient, since the camera may has moved.
Instead a reprojection into the screen spaced coordinates from the last frame has
to be performed. This is similar done like described in Section 2.7.1. The frag-
ments are reprojected into the screen space position of the last frame and then the
lookup is performed. Normally these coordinates are not exactly in the center of
a texel and therefore filtering of the history buffer is necessary. Scherzer et al.
observed that bilinear filtering leads to good results. In Equation 2.39 values will
be read and written into the history buffer at once. Since current hardware does
not support read and write in the same buffer at once, it must be double buffered.

With the reprojection it may happen that fragments lie outside of the history
buffer. Furthermore, due to camera movement it happens that fragments get oc-
cluded or disoccluded on the screen. These fragments have to be identified and
therefore the history buffer not only contains the smoothed shadow result but also
the depth of each fragment. If the difference between the current depth and the
depth stored in the history buffer exceeds a given threshold, then only the current
shadow test result is written into the history buffer.

Confidence The former described temporal smoothing reduces temporal alias-
ing. However, it does not reduce spacial aliasing artifacts. Therefore Scherzer et
al. combined the weighting value w from Equation 2.39 with the confidence of a
lookup in the shadow map. To calculate the confidence for a shadow map lookup,
they used the following equation

confx,y = 1−max |x− centerx|, |y − centery|) ∗ 2 (2.40)
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where (x, y) are the lookup coordinates in the shadow map and (centerx, centery)
are the center coordinates of the nearest texel in the shadow map. If the lookup
coordinates are exactly at (centerx, centery), then the confidence is 1 otherwise it
decreases in relation to the maximum distance to the texel center. With this con-
fidence calculation, the shadow converges to a pixel correct shadow. However, it
only converges when different rasterizations are used and therefore they perform
sub-pixel jittering using Halton sequences. It turned out that simple translational
jittering was not sufficient, hence they have also added rotational jittering.

The final weight value w is the confidence applied with a power function.

wx,y = confmx,y (2.41)

where m is a parameter that was chosen by Scherzer et al. between 3 to 15. If m
is low, then the history buffer confidence is high for the current shadow test result
and thus, temporal flickering is visible. If m is high, then the history buffer shows
no temporal flickering artifacts but adapts slowly to the exact shadow. Scherzer
et al. made m dependent on whether there is camera movement or not. This
way, when the camera is moving, m is set to a low value. Then the history buffer
adapts the new shadow test results very fast. Furthermore Scherzer et al. ob-
served that temporal aliasing is not visible. When the camera stops moving, m
will be increased to reduce temporal aliasing. Figure 2.36 shows the results and
improvement of this approach

Fig. 2.36: The left image shows a scene rendered with the light space perspective shadow
maps method [WSP04]. The right image shows the pixel-correct shadows with the method
proposed by Scherzer et al. [SJW07]. (Images courtesy of Scherzer et al. [SJW07]).

The temporal coherence method introduced by Scherzer et al. makes it possi-
ble to have pixel correct shadows with only little overhead. The idea to combine
the influence weight with the confidence of the shadow map lookup leads to pixel-
correct shadow results.



Chapter 3

Real-Time Global Illumination Using
Temporal Coherence

Darkness cannot drive out
darkness only light can do that.
Hate cannot drive out hate only
love can do that.

Martin Luther King, Jr.

3.1 Introduction

In Section 2.6.5 we introduced the concept of imperfect shadow maps developed
by Ritschel et al. [RGK+08]. With ISMs it is possible to generate hundreds of
shadow maps per frame. Thus it is possible to calculate global illumination using
instant radiosity (see Section 2.6). The method even allows for arbitrary dynamic
scenes, camera and light movement. However, since objects move in the vicinity
of the light source, the VPLs will abruptly change their position and orientation.
This will lead to unwanted sudden illumination changes, called temporal aliasing.

In this chapter we are going to describe our contribution to the real-time
global illumination challenge. We introduce two main extensions to the imper-
fect shadow maps approach that improve the visual quality and the performance.

The first extension deals with illumination computation from the virtual point
lights. When performing global illumination calculation using the instant radios-
ity approach, visibility and illumination calculation for the VPLs are very time
consuming. The problem with expensive visibility calculation was solved by
Ritschel et al. [RGK+08] with the introduction of imperfect shadow maps. How-
ever, high illumination computation costs are still a challenge and our new method
targets this problem, while still maintaining good quality global illumination. The
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idea is to reduce the number of virtual point lights which illuminate the scene.
However, if we just reduce the amount of VPLs, temporal aliasing will occur and
this is certainly not desired. To reach both goals, low illumination computation
costs and low temporal aliasing, our idea was to exploit temporal coherence be-
tween consecutive frames. This way, we can reuse information from previous
frames and furthermore are able to smooth the illumination over time. We get
better visual quality and better performance since only a low number of VPLs is
used for shading every frame. The concept and methods used to exploit temporal
coherence will be described in Section 3.5.

In the instant radiosity approach rays are shot from the main light source
into the scene and at their hit points VPLs are created. To get multiple light
bounces, new rays starting from the VPLs must be shot recursively. Ritschel et
al. [RGK+08] were able to calculate multiple light bounces by extending the im-
perfect shadow maps to so-called imperfect reflective shadow maps. The problem
here is that a huge texture map must be computed first and afterwards only a very
small subset of the information is really used. Thus the fill-rate of this method is
quite high and our idea was to calculate multiple light bounces without the need to
render a complete imperfect reflective shadow map. Our solution to this problem
is described in Section 3.6.

To give a better understanding on how all the steps and methods work together,
we will give a short description of our rendering framework in Section 3.2. Fur-
thermore we will focus on the generation of appropriate sample sets used for the
generation of new VPL sets in Section 3.3. Our framework also supports glossy
indirect illumination and we will outline our concept to calculate illumination
from a glossy VPL in Section 3.4.

3.2 The Rendering Framework

Our rendering framework is similar to the one from Ritschel et al. [RGK+08]. It is
basically a deferred rendering system, i.e. it decouples geometry rendering from
shading computation. The benefit is that only visible pixels are shaded (in a 2D
post process) and thus, shading is independent of scene complexity. The rendering
system makes use of a so called G-Buffer, which stores surface/material, normal
and depth information in world space from the point of view of the camera. When
rendering the geometry, the G-Buffer is set to be the render target. In the 2D post
process the information in it is used to calculate the final fragment color.

With a deferred rendering system the amount of pixels that have to be shaded
can be drastically reduced. However, since illumination computation for all vir-
tual point lights is still computationally expensive, so-called interleaved sam-
pling [WKH01] is used (see Section 3.4.1). With interleaved sampling, shading
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for a given virtual point light is only performed on a subset of pixels.
To calculate the virtual point light set for the first bounce the framework also

maintains a light G-Buffer. This buffer is similar to the main G-Buffer but stores
the information rendered from the point of view of the light source. After creating
this buffer, the first bounce VPL set is created out of it (see Section 3.3).

After all VPLs were used to illuminate the scene, some merging and filtering
operations must be performed due to interleaved sampling. Here our framework
slightly differs, because in the merging operation, temporal coherence is exploited
to calculate the final indirect illumination.

3.3 Generating Virtual Point Lights

To create a new set of VPLs for the first light bounce, an appropriate sample
set has to be generated for sampling the light G-Buffer. Similar to Ritschel et
al. [RGK+08], we also use importance sampling to generate a sample set that has
a distribution according to an importance buffer stored in the light G-Buffer. They
generated a new VPL set in a two pass manner. First they warped the complete
initial sample set and afterwards they created the VPL set according to the sam-
ples. In our approach we combined importance sampling and VPL set creation
to one pass performed on the graphics hardware. The base method used here is
called hierarchical warping and was introduced by Clarberg et al. [CJAMJ05].

To perform importance sampling, we first create sample points that have uni-
form distribution. Standard random functions return sample sets that have very
high discrepancy and would introduce unwanted artifacts. As an alternative, we
have implemented a Halton sample generator [Hal64], which has low discrepancy.

The idea behind hierarchical warping is to warp an existing sample set ac-
cording to the distribution of the importance buffer. This is done in a hierarchical
manner and alternating in horizontal and vertical order. Figure 3.1 shows the pro-
cess of warping an initial sample set. First the sample set is divided according
to the upper and lower summed importance/probability. Then the sample set is
vertically warped, so that both areas have the same size again. Afterwards two
horizontal warps are performed, one on the upper and one on the lower half of the
quad. After the warp, the sample set has a distribution that matches the impor-
tance of the importance map. The quad can be split into four sub quads and the
warping steps can be repeated in each of it recursively.

Our single pass solution creates a new VPL set as follows: We first create
a vertex buffer that contains a Halton sequence of sample points. The sample
points are in the interval from -1 to 1. The render targets are one-dimensional
textures that can store a set of VPLs (see Section 4.4.1 for more details). Each
sample has a unique id, corresponding to one fragment in the render target data
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Fig. 3.1: These images show the process of hierarchical warping for one iteration. (a)
shows an initial sample set. (b) is an importance distribution that can be derived from
according mipmap levels of the importance map. In (c) the sample set is divided into two
areas. The size of the areas correspond to the vertical importance distribution. The upper
summed importance distribution is 80%, the lower 20%. Figure (d) shows the first warp
of the sample set. Now, about 80% of the sample points are in the upper half and about
20% in the lower half of the quad. The first part was to do a vertical warp, the second step
is to do two horizontal warps on the upper and lower half of the quad. According to the
importance distribution, the area is divided into two areas (e). After the horizontal warps
the sample set shows a distribution (f) that corresponds to the importance map. (Images
courtesy of Clarberg et al. [CJAMJ05])

textures. Instead of redistributing the complete sample set at once, we perform the
warping steps consecutively on a single sample point. In Shader Model version
3.0 recursions are not allowed, however, the proposed method can be implemented
without any recursion. We start at a coarse mipmap level, with importance map
dimension (2 × 2) and read out the four importance values. The vertical and
horizontal borders in the first iteration step are set to be between [−1, 1]. We
then perform vertical and horizontal warping on the sample point. Depending
on the initial position of the sample point and the importance values, it now lies
in one of the four quads and the border intervals are adapted accordingly to the
quad. For example, if the sample point is in the bottom left quad, the vertical and
horizontal borders would be set to [−1, 0]. In the second iteration step we change
the mipmap level to the next finer one (4 × 4). But this time we only read out
the four importance values from the bottom left quad and again do the vertical
and horizontal warping steps with respect to the border intervals. These steps are
repeated until we reach the finest mipmap level of the importance map.

After the warping steps of the current sample, its position is used to lookup
the surface information in the light G-Buffer. From this information a new VPL
will be created.
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3.4 Virtual Point Light Shading

In this section we will explain our method to illuminate the scene with virtual
point lights. Similar to Ritschel et al. [RGK+08] or Laine et al. [LSK+07], we use
interleaved sampling (discussed in Section 3.4.1) to reduce shading costs. Fur-
thermore we are able to calculate illumination for all VPLs at once using only
one single render call (see Section 3.4.2). Finally we introduce our method to
calculate glossy indirect illumination in Section 3.4.3.

3.4.1 Interleaved Sampling
In the instant radiosity method (see Section 2.6), there are two computationally
expensive parts. The first one is to query the visibility for virtual point lights, and
the second one is to shade each screen pixel with the VPLs. The first problem, fast
visibility queries for the VPLs, was solved by Ritschel et al. [RGK+08] with the
introduction of so-called imperfect shadow maps (see Section 2.6.5). Expensive
shading costs can be avoided, or at least reduced, with a method called interleaved
sampling, introduced by Keller and Heidrich [WKH01].

Interleaved sampling is a very good method to reduce shading costs. The idea
behind it is to only shade a subset of all screen pixels with a given virtual point
light. This is done by splitting the camera G-Buffer into n × n tiles. Each tile
of this split G-Buffer shows the complete scene, but each tile is a subset of the
camera G-Buffer pixels, with a different offset. A pixel in the split G-Buffer with
indices (a, b) in tile (i, j) corresponds to the pixel (an + i, bn + j). Figure 3.2
shows the original camera G-Buffer on the left and the resulting split G-Buffer on
the right side.

Fig. 3.2: Left image shows the color channel of the camera G-Buffer. On the right side,
the split G-Buffer.

Each VPL gets assigned to one of the tiles in the split G-Buffer and shading is
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then performed only on the pixels of one tile (see Section 3.4.2).
After all shading computations are finished, an accumulation buffer, which

stores the indirect illumination of all VPLs, has to be merged. In this merging
step we exploit temporal coherence. We look up the illumination and surface
information from the last frame and calculate the final indirect illumination value
accordingly (see Section 3.5).

After this step, the results must be filtered to smooth out the different illumi-
nation values from the tiles. However, since the geometry of the scene introduces
discontinuities in the buffer, the filter has to be geometry aware. This prevents that
values for filtering are taken into account that actually do not correspond to the
same surface element. The filtering is done with a box filter of the size (n × n).
While Segovia et al. [SIMP06] proposed to compute a discontinuity buffer, Laine
et al. [LSK+07] calculated discontinuity on the fly, while filtering. We also follow
this approach and set the thresholds for a maximum depth difference and maxi-
mum normal difference to α = 0.01 (depth threshold) and β = 0.8 (threshold for
the minimal dot product of the two normal vectors). For more details on geometry
aware filtering we refer to the work of Laine et al. [LSK+07].

3.4.2 Tiled Mesh Geometry
In our deferred rendering system the illumination for all pixels is calculated in a
2D post process. However, to compute illumination from all VPLs at once, a sin-
gle screen space quad is not adequate. We need an appropriate mesh geometry that
is adapted to the tiles in the split G-Buffer and furthermore contains information
about the VPL that should be used for shading. For every VPL, a single quad with
the size of a tile is created. These single quads are placed at the assigned tile posi-
tion in screen space. The vertices for a single quad store the screen space position
mapped to texture lookup coordinates and also the id of the assigned VPL. This
way, the vertex shader is able to read out the needed information from the virtual
point light data structures (see Section 4.4). Usually it happens, that several VPLs
are assigned to one tile. Then we just create several quads at the according tile
position. Note that we have to disable the depth buffer to get correct results. All
these quads are stored in one so-called tiled mesh geometry. This way we can per-
form the complete illumination computation for all VPLs with one single render
call.

3.4.3 Glossy Surfaces
Ritschel et al. [RGK+08] pointed out, that they were able to handle diffuse and
glossy indirect illumination. However they do not state wether they also support
multiple glossy light bounces.
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We wanted to support global illumination for diffuse and glossy surfaces even
with multiple glossy light bounces. Therefore the G-Buffer always stores specular
intensity and specular power for each surface point. At shading time, glossy light
bounces are quite easy to calculate. There is a light source, the virtual point light,
a camera and a surface point to shade. Figure 3.3 illustrates this setup. However,
a VPL only stores the diffuse light that it emits. The emitted specular part into
direction of the surface point has to be calculated related to the previous light
source. Therefore, we have to calculate the outgoing light from a VPL with respect
to the surface parameters at the point where the VPL is placed. The important
parameter here is the reflection vector (shown in red), because it is dependent on
the incident light direction. The incident light comes from the main light source if
the VPL created simulates the first light bounce. In this case we can store the light
source position in a uniform shader variable. However, when we have multiple
light bounces, all other VPLs need an additional lookup to get the position of the
VPL from the previous bounce that illuminates it.

VPL

Light/VPL

Camera

Surface Point

Ii Io

Fig. 3.3: This figure illustrates our method to calculate glossy indirect illumination.

The same effect also appears when a set of new virtual point lights is calcu-
lated. Here, the illumination of a new VPL also depends on the current set of
VPLs and its incident light direction. In the first case, this is again the main light
source, and in all other cases, the previous virtual point lights. This additional
texture lookup may lead to problems when vertex animations are used that need
several texture lookups in the vertex shader because there are only four texture
stages available in Shader Model 3.0. However, we have implemented a simple
mesh animation that uses one extra texture lookup and did not notice any prob-
lems.
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After shading is performed with all virtual point lights, the accumulation buffer
looks as shown in Figure 3.4

Fig. 3.4: This figure shows the accumulation buffer after shading with all VPLs. To get
the final illumination the accumulation buffer must be merged, so that it does not contain
any tiles anymore. Afterwards a geometry aware box filter is used to smooth indirect
illumination over n× n pixels.

3.5 Temporal Coherence

Temporal coherence may be described as similarity between consecutive frames.
This similarity allows information from previous frames to be reused in the new
frame and thus, computation costs to be reduced (see Section 2.7).

The problem with indirect illumination computation is that many VPLs are
needed to get visually pleasing results. This leads to very high illumination com-
putation costs although we are already using interleaved sampling. However, if
we just reduce the number of VPLs, temporal aliasing will occur and the visual
quality will suffer. Our idea is to use temporal coherence to target these issues.
First we are able to reduce shading costs because we reuse information from the



Chapter 3. Real-Time Global Illumination Using Temporal Coherence 64

last frame and second we reduce temporal aliasing, because indirect illumination
gets smoothed over time.

However, since we have a deferred rendering system, we cannot just perform
a reprojection while rendering the geometry because we need the information in
the later 2D post process. In Section 3.5.1, we therefore introduce the movement
buffer that allows us to efficiently perform the reprojection. Section 3.5.2 will
explain how we calculate a so-called confidence value that defines how confident
information from the last frame is.

3.5.1 The Movement Buffer
In the original reprojection cache paper [NSI06], the reprojection was performed
by multiplying a vertex in the vertex shader with the current matrices and the
matrices from the last frame. In the pixel shader the screen space coordinates of
the last frame were available and could be used to gather information from the
previous frame. However, in our deferred rendering system we must cache these
reprojected coordinates, because they are needed later and not during geometry
rendering.

A solution to this problem is a so-called movement buffer, which stores the po-
sition difference from the previous to the current rendered frame on a per screen-
pixel basis. We calculate the movement of each pixel by using reprojection as
proposed by Nehab et al. [NSI06] and perform the transformation once with the
current matrices and once with the ones from the last frame. In screen space we
then subtract the positions from each other and write (4x,4y) into the movement
buffer. We want to have the difference and not the absolute position because later
this information can be used for confidence calculation (see Section 3.5.2).

Since the movement of each pixel is compared in screen space, we can use the
movement buffer like a distortion buffer to get the right lookup coordinates. To
get the illumination Iprev, depth depthprev and normals nprev from the previous
frame, we just have to look up the movement buffer mbuf at the position of the
current screen-pixel (xs, ys). The returned values from the movement buffer are
the lookup offset values (4x,4y). The indirect illumination from the previous
frame can be easily found at Ipref (xs + 4x, ys + 4y). The depth and normals
are looked up in the same way. However, having the old indirect illumination,
depth and normals is only half of the work. We have to calculate how confident
the indirect illumination value from the previous frame really is. This will be
explained in the next section.
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3.5.2 Confidence Computation
We can get the previous indirect illumination per screen-pixel with the previously
described movement buffer. However, since the objects are moving, and the il-
lumination and the camera may change, we have to calculate how confident an
indirect illumination value from the previous frame is. We therefore take three
different parameters into account.

1. The relative position change from one frame to the other. For performance
reasons we divide the position change in two parts. The difference in depth
per screen-pixel and the screen-space difference in the movement buffer.

2. The difference between the pixel’s normal. If the normal changes, illumi-
nation will also change and hence, the previous values are not as confident
as the new ones. We calculate the difference using the dot product between
the normals.

3. Global illumination is a global process. So it may happen that a pixel does
not move (no change in position and normal) but the confidence should still
be low because, due to other moving objects, the illumination changes a
lot. Therefore the difference of the previously calculated illumination and
the current illumination also reduces the confidence. We use an exponen-
tial growing of the difference, so that low differences have low impact and
higher differences more.

The confidence for each pixel is calculated as followed:

4pos = ||(xs − xprev, ys − yprev, ds − dprev)wpos|| (3.1)
4normal = (1− (n · nprev))wnormal (3.2)

4illumination = saturate(||Inew − Iprev||3)willumination (3.3)
confidence = cBasesaturate[1− (3.4)

max (4pos,4normal,4illumination)] (3.5)

where [∗]prev always directs to values from the previous frame, (xs, ys) is the
screen position, ds the screen depth, n the normal of the screen pixel and cBase
is the base confidence. Inew is the indirect illumination calculated in this frame.
The normals are double-buffered in the G-Buffer similar to the front and back
buffer. The depth from the previous frame is stored in the fourth channel of the
old indirect illumination buffer. The final indirect illumination for the current
frame is:

I = Iprevconfidence+ (1− confidence)Inew (3.6)
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In Figure 3.5 we show the confidence for an arbitrary scene. We have to note
here that we do not store the confidence in a dedicated buffer but calculate it on
the fly, when the split G-Buffer gets merged again (see Section 3.4.1).

Fig. 3.5: Image illustrating the confidence for a given arbitrary scene. The brighter the
pixels, the more confident a previous pixel is. Note how the confidence is low around
sharp corners.

3.6 Multiple Light Bounces

In this section we are going to describe how multiple light bounces can be per-
formed. We first show the method proposed by Ritschel et al. [RGK+08] and then
introduce our new approach.

In the original imperfect shadow map method, Ritschel et al. [RGK+08]
performed multiple light bounces by extending the ISMs to imperfect reflective
shadow maps (IRSM) as it was done for standard shadow maps by Dachsbacher
et al. [DS05]. In Section 2.6.3 we presented a method that made also use of
reflective shadow maps. IRSMs store the position, normal and an illumination
value and they are created similar to the ISMs. So the point cloud representation
of the scene is also used to get high frame rates and the illumination depends on
the corresponding VPL. Figure 3.6 shows the illumination of an IRSM. Ritschel
et al. [RGK+08] then performed importance sampling (see Section 3.3) on the
IRSM to get new VPLs. This method works well to calculate new sets of virtual
point lights. However, as importance sampling is used to find interesting VPL po-
sitions, a lot of information is rendered into the IRSM but never used. Therefore
it would be more interesting to have a method that needs less fill rate. The next
section will introduce our new multiple bounce algorithm that is able to calculate
new VPL sets faster than the previous method.
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Fig. 3.6: Image shows the illumination map of the imperfect reflective shadow map.

3.6.1 Algorithm outline
Similar to Ritschel et al. [RGK+08] we also use the point cloud representation as
a possible set of new VPL locations. Our idea is to assign each sample point to an
existing VPL. Then for all assigned sample points we want to find the one that a)
receives the most illumination from the assigned VPL and b) actually is visible to
the assigned VPL.

To find the new VPL set we only need one single render pass, compared to
the two pass method proposed by Ritschel et al. [RGK+08]. Therefore our render
targets are one-dimensional floating point textures that can store a new VPL set.
Each VPL set has a position, a normal and a color map and each fragment of these
maps corresponds to a new VPL with a given id (see Section 4.4 for more details).

Figure 3.7 gives an overview of the algorithm. In the first step, each sam-
ple point is assigned to one VPL. The next step is to calculate the illumination
from the assigned VPL. Like proposed in Section 3.4.3 we calculate a glossy light
bounce. The specular intensity of a new VPL is calculated from the specular
intensity of the surface at the sample point position multiplied with the specu-
lar intensity of the assigned VPL. This is necessary to get correct specular light
bounces.

After illumination computation we have to find out if the sample point is vis-
ible to the existing VPL or not. This can be done with a simple shadow test with
the ISM from the assigned VPL. The result of the shadow test is multiplied with
the illumination. Thus the illumination is zero if the point sample is not visible to
the assigned VPL.

In the last step we use the depth buffer to find the most important sample point.
This is simply done by writing out a depth value for each sample point that is re-
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lated to the computed illumination from the assigned VPL. The compare function
of the depth buffer must be switched to ≥ and the final VPL set will contain only
those new VPLs that have the highest contribution to the scene. However, this
method to select new VPLs is not the best because weaker VPLs never contribute
to the illumination. It would be better to select them according to a probability
that depends on their illumination.

0 1 2 Point Samples
3 4 5
6 7 8
9 10 11
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Fig. 3.7: This figure illustrates our method to calculate a new set of VPLs.

Note that with this approach we always get one new VPL for an existing one.
In the approach from Ritschel et al. this is not the case.. Furthermore we are
able to take specularity of the material into account, allowing for specular light
bounces (see Section 3.4.3).
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3.7 Summary

In this chapter we have introduced our new real-time global illumination method
using temporal coherence. It reuses the information from the last frame to cal-
culate the new illumination based on a so-called confidence value. Furthermore
we have introduced a new method to calculate multiple glossy light bounces that
reduces fill rate and therefore computes multiple light bounces faster than the
method developed by Ritschel et al. [RGK+08].
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Implementation

No matter how fast light travels
it finds the darkness has always
got there first, and is waiting for
it.

Terry Pratchett

4.1 Introduction

In this chapter we go into more details on the implementation. As we imple-
mented several rendering methods, different light sources and sample generators,
the software architecture had to be as flexible as possible. We first want to outline
the needed steps for global illumination calculation using a renderer that supports
multiple bounces. Figure 4.1 shows a screen shot of our implementation.

1. Create G-Buffer The G-Buffer will be explained in further detail in Sec-
tion 4.2. It is basically a buffer that contains additional information per
screen-pixel.

2. Create G-Buffer of light For the light source we also create a G-Buffer.
Note that the light G-Buffer is slightly different to the screen space G-Buffer
(see Section 4.3 for more details).

3. Create samples The so-called sampler computes all new VPLs at once for
a given sample set. Therefore, we have to setup appropriate samples first.
We use a Halton sequence generator for good sample distribution.

4. Create VPLs The sampler alters the samples accordingly and calculates
new VPLs using the previously generated light G-Buffer.
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5. Create imperfect shadow maps For the created VPLs we have to create
imperfect shadow maps, so that the indirect illumination can be calculated.

6. Split G-Buffer To reduce shading cost, not every pixel gets shaded by
each VPL. The screen space G-Buffer gets split into n × n tiles (see Sec-
tion 3.4.1).

7. Accumulate indirect illumination As we now have the split G-Buffer, the
VPL set and its corresponding imperfect shadow maps, we can calculate
first bounce indirect illumination in an accumulation buffer.

8. Calculate new VPL set If the renderer should support multiple light bounces,
a new set of VPLs has to be created. Section 3.6 introduced our new method
and outlined the suggested method by Ritschel et al. [RGK+08].

9. Create imperfect shadow map For the new VPL set new imperfect shadow
maps have to be calculated

10. Accumulate indirect illumination The illumination from the new VPLs is
additively written into the accumulation buffer. Steps 8 to 10 are repeated
for further light bounces.

11. Merge indirect illumination The results in the accumulation buffer are
still divided into n × n tiles and have to be merged again. Afterwards we
have one big indirect illumination buffer. Note that in this step the illu-
mination from the previous frame is taken into account. While merging,
the confidence is calculated and the last frame’s illumination as well as the
current illumination stored in the accumulation buffer are combined (see
Section 3.5).

12. Filter indirect illumination As only a subset of VPLs was used for a frag-
ment, the indirect illumination buffer has to be filtered, to get smooth indi-
rect illumination.

13. Calculate direct illumination In this step we perform standard illumination
according to the type of light source in a 2D post process.

14. Perform Tonemapping In the last step we sum up direct and indirect illu-
mination. To take the dynamic range of the display into account we perform
tone mapping with the method proposed by Reinhard et al. [RSSF02].
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Fig. 4.1: Screenshot of our application.

4.2 Camera G-Buffer

The G-Buffer has to store enough information to allow for fast shading calcula-
tion, but at the same time should be as small as possible, because then the memory
usage and memory bandwidth will be small. Since we have to transform the data
into several different coordinate frames, the best basis is the world space coordi-
nate system. In our case we set up the G-Buffer with four render targets where
each of these has 32 bits:

1. Render target 0 The render target with id zero stores the redR, greenG and
blue B color information in 8 bits per channel. The remaining 8 bits store
the diffuse intensity DI of the surface. Render target setup: (R,G,B,DI)

2. Render target 1 This render target is a little bit more complex. It stores the
normal n of each fragment, the specular intensity SI as well as the specular
power SP . To get everything to fit into 32 bits we have to “compress“ the
normal representation. As normals should always have a length of 1, we
can calculate one coordinate from the other two. However, this is only true
if we store the normals in screen space, as we know that the sign of the third
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axis always has to be positive or negative (depends on whether we use left
handed or right handed coordinate systems). As we store the G-Buffer data
in world space, this assumption is not true anymore and the sign of the third
axis has to be stored somehow. For this reason we multiply the specular
intensity SI with ±0.5 depending on the sign of nz and shift the result by
0.5. Thus, if nz ≥ 0 the value stored in the render target will be in the
interval from 0.5 ≤ SI ≤ 1.0, otherwise 0.5 > SI ≥ 0.0. The calculation
looks as follows:

SImodified = SI(step(0, nz)− 0.5) + 0.5 (4.1)

As we have only unsigned numbers, nx and ny also have to be mapped
between 0 and 1. The render target finally looks as: (0.5nx + 0.5, 0.5ny +
0.5, SImodified, SP )

3. Render target 2 In the third render target the linear depth is stored in all 32
bits. This way, linear depth values are still accurate enough. Linear depth
gets calculated as follows:

depthlinear =
(Mproj ∗Mview ∗Mworld ∗ p)z

zFar − zNear
(4.2)

where p is a vertex,Mproj is the projection matrix andMview the view matrix
of the camera. Mworld corresponds to the world matrix of the current object.
zFar and zNear is the distance to the far- and respectively the near plane of
the camera. The depth values are in the interval from zero to one and stored
as one single float component in the render target: (depthlinear).

4. Render target 3 The fourth render target stores the movement of a pixel
with respect to the previous frame. This buffer is the before mentioned
movement buffermbuf from Section 3.5.1 and it is the only buffer that works
in screen space. The render target looks as follows: (xs− xprev, ys− yprev),
where (xs, ys) are the current screen space coordinates and (xprev, yprev) are
the screen spaced coordinates from the previous frame.

4.3 Light G-Buffer

As a sampler will create new VPLs from the light G-Buffer, we have to add more
data to the shadow map. The light G-Buffer is similar to the reflective shadow
maps introduced by Dachsbacher and Stamminger [DS05] but does not contain
emitted flux per shadow map texel. The light G-Buffer has to store enough data
so that new virtual point lights can be setup up from it. As the camera’s G-Buffer,
it contains four render targets with a size of 32 bits:



Chapter 4. Implementation 74

1. Render target 0 This render target stores the surface color and its diffuse
intensity (R,G,B,DI). However, as VPLs should be created out of this
data, the color information is heavily blurred. Thus, when we render the
light G-Buffer we set the mipmap level to a predefined value.

2. Render target 1 As in the camera G-Buffer the normals are compressed.
See Equation 4.1 for the calculation of SImodified. The render target is set
up as (0.5nx + 0.5, 0.5ny + 0.5, SImodified, SP ).

3. Render target 2 This render target stores the linear depth from the point of
view of the light source (depthlinear) (see Equation 4.2).

4. Render target 3 The fourth render target stores a so called importance value
per texel. The importance value defines the probability that a VPL should
be placed at this texel. Thus VPLs are set more likely at texels with high
importance. The importance of a texel is calculated as follows

importance = lightIntensity(surfaceColor · lightColor)(0.5 + SP )
(4.3)

where lightIntensity is a value that corresponds to the amount of light that
arrives at this fragment. For a spot light source, it depends on the size of
the cone and the distance. surfaceColor is the mipmapped color of the
surface and lightColor is the color of the emitted light. As a VPL that is
placed on a surface with high specular power will produce high frequency
illumination, it is a good idea to place a lot of VPLs on glossy surfaces.
Therefore Dachsbacher and Stamminger in [DS06] suggested to multiply
the importance value with the specular power SP . However, a completly
diffuse surface would have zero importance and therefore we biased it with
0.5.

4.4 Light G-Buffer Sampling

A sampler object uses the light G-Buffer to find new positions for virtual point
lights. As a sampler has to work different for a point light or a spot light, it is
tightly coupled to the currently active light source. To be more precise, each in-
stant radiosity renderer instance receives the sampler object from the light source
instance. Each sampler generates a complete data set for new VPLs, includeing
position, normal, average surface color and surface properties. Note that the sam-
pler can only generate new VPLs at points that are visible to the main light source.
For multiple light bounces see Section 3.6.



Chapter 4. Implementation 75

4.4.1 Virtual Point Light Data Structure
Virtual point lights are placed on surface points in the scene. They have to imi-
tate the local material properties, including diffuse and specular properties. Thus
the data structures necessary to represent a VPL set are stored in three one di-
mensional floating point texture maps where each of the maps has a size of 128
bits.

1. position Simply stores the position of the VPL, the fourth value is not used.
Map setup: (x, y, z,−).

2. normalSISP The setup of this buffer is the same as for the G-Buffers in
Section 4.2, except that the normal values nx and ny are not mapped to be
between 0 and 1 anymore. Map setup: (nx, ny, SImodified, SP )

3. colorDI In this map we store the emittance color (Re, Ge, Be) of the VPL.
This value depends on the heavily blurred surface color and the incoming
light of the light source. The diffuse intensity is simply copied from the
material properties of the surface. Map setup: (Re, Ge, Be, DI).

4.4.2 Spotlight Sampler
A spotlight normally has a sampler that is able to handle rays that are in the frus-
tum of the spot. So normally rays are projected with the spot light’s projection
matrix to get the lookup coordinates in the light G-Buffer. But since we want to
perform importance sampling, this is not necessary anymore. In Section 3.3 we
described how hierarchical warping developed by [CJAMJ05] is working. In this
approach, all the samples are already in the projected screen space, because the
importance map is already in projected screen space. So the importance sampler
for a spot light first alters a sample in screen space according to the importance
map and then looks up the data in the light G-Buffer.

4.4.3 Pointlight Sampler
In contrast to the spotlight sampler, the pointlight sampler has to process rays into
arbitrary directions. We have not implemented any importance sampling func-
tionality into this type of sampler. In this case, the light G-Buffer consists of cube
maps that are used to generate new VPLs.
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4.5 Virtual Point Light Shading

All the shading computation itself is done entirely on the graphics hardware.
Shading computation is shared within the vertex- and the pixel shader. We per-
formed as much computation as possible in the vertex shader to increase perfor-
mance. Furthermore the computation costs in the pixel shader were reduced with
efficient data layout. The following enumeration will give an outline of the neces-
sary steps to shade a tile with an assigned virtual point light source.

1. Additional data One of the first steps in the vertex shader is to calculate the
screen space position of the quad corners. This way we know which screen
space position each pixel had before the G-Buffer was split. Additionally
the column and row ids are also stored for further usage.

2. VPL color Then the illumination color of the virtual point light is looked
up, according to the VPL id stored in the tiled mesh geometry. The diffuse
intensity of the VPL is also stored for later use.

3. VPL matrix Next, the coordinate system of the virtual point light will be
created. Therefore the VPL data texture maps position and normalSISP
are used. Later we also need the specular intensity and specular power, so
we store them already at VPL matrix creation time.

4. Calculate pixel position When shading the G-Buffer with a given VPL
we have two important spaces: the world space and the space of the VPL.
The world space is used to calculate information that deals with the main
light source and the camera positions to handle glossy surfaces (see Sec-
tion 3.4.3) and the shading itself is performed in VPL space. At this point,
the reason why we store the depth as a linear value becomes obvious. We
can use the inverted view-projection matrix to calculate the near and far
plane positions at a defined screen spaced pixel. The actual world position
of this pixel is then a linear blend between the far plane and the near plane
position:

pfar =


xs
ys
1
1

 ·M−1
V P (4.4)

pnear =


xs
ys
0
1

 ·M−1
V P (4.5)

pworld = (1− depth)pnear + (depth)pfar (4.6)
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where depth is the depth value stored in the G-Buffer. Furthermore we
can multiply the inverted view-projection matrix with the virtual point light
matrix and then also use linear interpolation to calculate the position pV PL
with respect to the VPL coordinate system. As the depth changes from pixel
to pixel in the G-Buffer, the linear blend is performed in the pixel shader.

5. Reflection vector To support glossy light bounces, we calculate a reflection
vector that defines the direction in which the VPL sends most of the light.
Note that depending on the number of light bounces, the incident light di-
rection, used for the calculation, either depends on the main light source or
on the previous light bounce VPL.

6. Depth lookup The first step in the pixel shader is to lookup the current
depth value. Then the before mentioned positions in world and VPL space
are calculated.

7. Visibility query To find out if the current pixel is visible to the virtual
point light, a shadow test using the ISM must be performed. We first do
a parabolic transformation of the VPL space position pV PL according to the
upper hemisphere of the VPL and afterwards map the lookup coordinates
to the corresponding tile in the ISM. Then we can compare the looked up
distance with the z-component of pV PL. Depending on the result the current
pixel will be visible to the VPL or not.

8. Additional surface information If the current pixel is visible, the color,
normal, diffuse intensity, specular intensity and specular power are looked
up from the split G-Buffer.

9. Geometry factor Depending on the relative position of the current pixel to
the VPL used for shading, a geometry factor η will be calculated as follows:

η =
max(0, cos Θs) max(0, cos Θr)

max(1, ||d||2)
(4.7)

where Θs is the angle between the normal of the VPL and the direction
vector to the current pixels position. Θr is the angle between the normal of
the surface of the current pixel and the incident direction vector. d is the
distance between the VPL and the surface point. Note, at this point, we
bias the global illumination computation, because we clamp the minimum
distance to 1 (see Section 2.6.1).

10. Incoming light The incoming light from the VPL depends on the diffuse in-
tensityDIV PL, the specular power SPV PL and the specular intensity SIV PL.
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Note that the specular intensity of the VPL depends on the surface point
where the VPL is located, multiplied with the amount of specular light that
reaches the VPL from the main light source. This is important when mul-
tiple light bounces are calculated. Then the specular intensity gets recalcu-
lated every time a new VPL set is calculated (see Section 3.6). The equation
for the incoming light at point p looks as followed

Ii = η[IV PLDIV PL + cLightSIV PL max(0, ref · dir)SPV PL ] (4.8)

where IV PL is the illumination color of the VPL. ref is the reflection vector
calculated in the vertex shader and dir is the direction vector from the VPL
to the surface point p. cLight is the color of the main light source.

11. Outgoing light The amount of outgoing light at point p in the direction of
the camera is the last step that has to be performed. It looks similar to the
incoming light equation.

Io = Ii[cpDIp + SIp max(0, np · halfV ec)SPp ] (4.9)

where DIp, SIp, SPp are the surface parameters. cp is the color, np is the
normal at point p and halfV ec is the normalized sum of the incoming and
outgoing light direction.

4.6 Final Composition

When the shading with the virtual point lights is finished, the accumulation buffer
gets merged and filtered as previously described. The last step that has to be
performed afterwards is to combine direct and indirect light and calculate the final
result using a tonemapper developed by Reinhard et al. [RSSF02]. Figure 4.2
shows the final result after composition and tone mapping. Note that the scene
was captured at a different time step than Figure 3.4.

4.7 Summary

In this chapter we went into details of our implementation. We have outlined the
main steps to get real-time global illumination using temporal coherence. Fur-
thermore we introduced the necessary steps to compute illumination from a given
VPL and explained the used buffers in our system. Finally we outlined, how the
composition of direct and indirect illumination is performed.
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Fig. 4.2: This figure shows the final results after composition of indirect with direct illu-
mination and the tonemapper. It was rendered using our method with 256 virtual point
lights and one light bounce at 73 fps.
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Results

It is impossible to travel faster
than the speed of light, and
certainly not desirable, as one’s
hat keeps blowing off.

Woody Allen

5.1 Introduction

The new approach was implemented and tested using our own software frame-
work developed by Wolfgang Knecht and myself. It uses DirectX 9c as rendering
API and PhysX for physics simulation. The test device was an Intel Quad Core i7
920 running at 2.66GHz with 6GB of RAM and two NVIDIA GeForce 295GTX
in SLI mode with 1768MB of video memory. The operating system was a Win-
dows Vista 64-Bit. To compare our results with other methods we implemented
instant radiosity using standard shadow maps and also the imperfect shadow maps
method developed by Ritschel et al. [RGK+08].

Since we need several texture buffers, the memory consumption with our
method is pretty high. On the other hand we have to mention that for multiple
light bounces our new algorithm needs far less memory than the method proposed
by Ritschel et al. However, similar to the ISM approach we have quite large data
buffers in our system, namely the G-Buffer, the split G-Buffer and the light G-
Buffer. Furthermore we have the large imperfect shadow map that has at least two
mip map levels. To perform pull/push on the ISM we must double buffer the ISM.
Additionally we have buffers for merging and filtering. The VPL sets also need
memory on the graphics hardware, but since we have a maximum of 1024 VPLs
per set the memory consumption is low. Depending on the number of sample
points in the scene, there are additional vertex buffers that store all the necessary
information (position, normal, uv’s, sample id).
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The final visual result and the frame rates heavily depend on the selected pa-
rameters. Therefore it is normally best to select appropriate values manually. In
this thesis we have not focused on heuristics to find optimal parameter values,
however we have implemented the possibility to support weights for sampling the
objects. Since the sample points are distributed over all triangles with respect to
their size, we simply multiply the size of each triangle with the assigned weight.
Note that we assign weights on a per-object basis. For example, the Sibenik Cathe-
dral has a higher weight on the pillars and therefore more sample points are placed
on them. The possibility to assign weights gives an artist the freedom to control
the behavior of indirect illumination and focusing sampling on visually important
parts.

The following results were all rendered with a screen resolution of 1024x768
pixels and unless otherwise mentioned with 32k sample points. We will first inves-
tigate the behavior of our method compared to the approach proposed by Ritschel
et al. [RGK+08] with respect to temporal coherence. Then the results with multi-
ple light bounces are presented.

5.2 Temporal Coherence

In this section different parameter setups will be used to show how the visual
quality and performance of the algorithm changes. The used scene is a simple
Cornell Box with four objects in it. As there is an object with a higher polygon
count than the cubes have, the total number of triangles is 3,372 and the number
of vertices is 10,116. Figure 5.1 shows a sequence of images of the Cornell Box
rendered with 4, 16, 64, 256 and 1024 virtual point lights. The base confidence
for temporal coherence is set to 0.9 and each single imperfect shadow map has a
resolution of 128× 128.

The performance behavior with a different number of virtual point lights is
shown in Table 5.1 and Table 5.2 shows the behavior with different resolutions for
the imperfect shadow maps. Due to the temporal coherence our method is always
slightly slower than the one proposed by Ritschel et al. [RGK+08]. However, the
visual quality of our method is much better.
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# VPLs fps time (ms) our method - fps our method - time (ms)
4 233 4,3 169 5,9

16 159 6,3 151 6,6
64 134 7,5 125 8,0
256 81 12,3 73 13,7

1024 30 33,3 27 37,0

Tab. 5.1: This table shows the influence of the number of VPLs that are placed in the
scene. The frames per second and times in the first two columns belong to our implemen-
tation of the imperfect shadow maps approach by Ritschel et al. [RGK+08]. The last two
columns show the results of our new temporal coherence rendering system. The frame
rates are lower because of the overhead due to temporal coherence, but the visual results
are better with the same amount of VPLs.
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4 VPLs 16 VPLs

64 VPLs 256 VPLs

1024 VPLs

Fig. 5.1: This figure shows the Cornell Box rendered with a different numbers of virtual
point lights. The visual artifacts are visible on the right wall. They decrease the more
VPLs are used. Note that with 1024 VPLs there are nearly no indirect shadows anymore.
This comes from a too low number of sample points. Furthermore, due to resampling
of the VPL positions the images suffer from temporal artifacts when using less than 256
VPLs.
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ISM Res. fps time (ms) our method - fps our method - time (ms)
64 90 11,1 79 12,7

128 81 12,3 73 13,7
256 57 17,5 54 18,5
512 2,3 429,2 2,2 450,5

Tab. 5.2: This table shows the influence of different imperfect shadow map resolutions.
The frames per second and times in the first two columns belong to our implementation of
the imperfect shadow maps approach by Ritschel et al. [RGK+08]. The last two columns
show the results of our new temporal coherence rendering system.

The average overhead due to temporal coherence is approximately 1.51ms.
This value was calculated by averaging the difference of the rendering times with
4, 16, 64, 256 and 1024 VPLs. The overhead mainly comes from rendering the
movement buffer and the confidence calculation.

Our measurements furthermore showed that the time needed for rendering lin-
early depends on the number of virtual point lights used. However, this linearity
is not true for different resolutions of the imperfect shadow maps. There is a huge
performance impact when we have a setup with 256 VPLs and an ISM resolution
of 512× 512 pixels. Actually this is not really surprising as we then have a large
texture map containing all ISMs with a resolution of 8192× 8192 pixels.

Figure 5.2 shows a comparison of the two methods (our method is shown on
the right column), once with 64 (upper row) and once with 256 VPLs (lower row).
All the other parameters are kept equal.

Figure 5.3 shows a comparison of the imperfect shadow maps approach and
our new method to a reference image, rendered with 1024 VPLs using standard
shadow maps.

Note how the images in the left column suffer from hard edges/artifacts whereas
the images in the right column are much smoother. Furthermore temporal alias-
ing artifacts occur, when the scene is dynamic. In this scene the stack of cubes
collapses and the VPLs will change their position from one frame to the other.
In our approach we change every VPL position each frame, but because of the
temporal smoothing dynamic scenes do not suffer from aliasing artifacts as much.
However, when using only 64 VPLs some temporal aliasing is also visible with
our approach. In this test scene, our method with 256 virtual point lights gives
the visually most pleasing results. It has no sharp edges and renders temporally
smooth frames without any aliasing artifacts.
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Fig. 5.2: This figure shows a comparison to the method proposed by Ritschel et al. shown
on the left column. Our method is shown in the right column. The images in the top row
are rendered using only 64 VPLs and therefore suffer from visible artifacts. The lower
row is rendered using 256 VPLs. Here the images are visually more pleasing. However,
when the cube stack collapses our method keeps up smooth rendering without flickering
artifacts, while the other method does not.
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Method by Ritschel et al. rendered in 11,7ms

Our new method rendered in 13,9ms

Reference image rendered with standard shadow maps in 6,25sec

Fig. 5.3: This figure shows a comparison between the imperfect shadow maps method,
our new method and a reference rendering, using standard shadow maps. For the refer-
ence rendering we have used 1024 virtual light sources, whereas we used 256 VPLs for
the other two methods. In the method proposed by Ritschel et al. [RGK+08] the alias-
ing artifacts are clearly visible. In our method they are not visible due to the temporal
smoothing over time.
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5.3 Multiple Light Bounces

This section gives a performance analysis of our multiple light bounce method
compared to the imperfect reflective shadow maps approach. Table 5.3 shows the
measured results with different numbers of light bounces.

# bounces calc. time (ms) our method-calc. time (ms) speed up
2 3,54 0,39 9,2
3 10,69 0,79 13,5
4 14,08 1,23 11,5
5 18,56 1,45 12,8
6 22,02 2,17 10,1

Tab. 5.3: This table shows the behavior of our multiple bounce calculation method com-
pared to the imperfect reflective shadow maps approach. The measured timings include
only the calculation time for the light bounces. ISM creation and shading was disabled
for the measurements. In average our method actually performs 11 times faster than the
other one. Note that we start with two light bounces, as the first bounce is calculated with
the light G-Buffer sampler. Furthermore note that the timing results are rounded and that
the speed up calculation is based on the accurate timings.

The more light bounces made, the faster our method is compared to the IRSM
approach. Figure 5.4 visualizes, how more than one light bounce may enhance
the image.

Fig. 5.4: The image on the left is rendered using our method with only one light bounce.
As all the VPLs are placed on the small illuminated spot, the rest of the Cornell Box is not
visible. One additional light bounce is already sufficient to illuminate the whole scene.

To get correct timings we disabled shading and ISM creation for multiple light
bounces. We then recorded the rendering times for 1 to 6 light bounces and sub-
tracted the time needed for rendering without any multiple bounces. We got the
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final speed up factors by dividing the IRSM timings through the timings of our
method. It turned out that our method is more than 11 times faster then the im-
perfect reflective shadow map approach. While the time needed with the IRSM
method is approximately 4.52 milliseconds for one light bounce, our method is
able to calculate a new set of VPLs in 0.40 milliseconds.

Note that our new temporal coherence method combined with the new multi-
ple bounce method outperforms the previous method in visual quality as well as
in rendering speed. Our method renders the Cornell Box with 256 VPLs and two
light bounces at 46 frames per second, whereas the method proposed by Ritschel
et al. has 43 frames per second.

5.4 Limitations

Our approach is able to handle fully dynamic scenes including moving light, cam-
era, objects, deformable meshes and dynamic materials. The only thing that we
have to pay attention to, is that the number of texture lookups in the vertex shader
is limited in DirectX 9c to four lookups. Therefore, deformable geometries may
run into this limit for the ISM shaders.

Furthermore temporal coherence needs the vertex position of the previous
frame, which means, that every geometry animation needs to be performed twice,
to get the right lookup offsets in the movement buffer. Here the previously men-
tioned texture lookup could also be a limitation.

With the implementation of temporal coherence we were successfully able to
reduce temporal flickering and therefore enhancing the visual quality of the im-
ages. However, temporal coherence also introduces temporal artifacts that could
be described with the word afterglowing. This normally happens when objects are
moving very fast or the overall light in the scene suddenly decreases due to oc-
clusion of the light source. We have developed a small stress test scene where the
objects and the light source are moving very fast. Figure 5.5 shows a screenshot
from this test. The artifacts are clearly visible, however they are less disturbing
than temporal flickering.

Our presented method to calculate multiple light bounces is more than 11
times faster than the method using imperfect reflective shadow maps. Because
Ritschel et al. use importance sampling to find new VPL sets, it is also possi-
ble that two or more VPLs have the same source VPL, while our method only
produces one new VPL for one source VPL. This may lead to a bad distribution,
because weaker VPLs have no chance to contribute to the illumination. However,
with simple modifications this would also be possible.
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Fig. 5.5: This figure shows a stress test scene where the main light source and the objects
are moving very fast. Here the temporal artifacts are clearly visible. However, they are
less disturbing than temporal flickering, because they change more smoothly.

5.5 Summary

In this chapter we have compared our results with the method developed by Ritschel
et al. [RGK+08] using several different parameter setups. The tests showed that
our method generates visually pleasing results with less required light sources,
and provides good quality global illumination in real time.



Chapter 6

Conclusion

Always remember, sir, that light
and shadow never stand still.

Benjamin West

This thesis gave a detailed overview on the field of global illumination in real-
time environments. Chapter 1 was an introduction to the questions: “What is
global illumination?“ and “Why is global illumination so important?“. Global
illumination describes how light propagates in the environment. Light, emitted by
a light source, gets reflected at surface points several times until it finally hits the
eye. This process introduces a lot of features that allow the human visual system
to extract an impressive amount of information about our environment. Therefore
the more realistic the computer generated images are, the more information can
be extracted from them.

In Chapter 2 we gave an overview on the state of the art in real-time global il-
lumination and temporal coherence. We furthermore introduced the two methods
Instant Radiosity (2.6) and Imperfect Shadow Maps (2.6.5) on which this thesis is
based on. In the instant radiosity approach, rays are shot from the light sources
into the scene. The idea is to place so-called virtual point lights at hit points of
those rays. For further light bounces, rays, starting from an existing virtual point
light, can be shot recursively to place new virtual point lights. When shading
the surface, all the virtual point lights will contribute to the final illumination.
However, instant radiosity introduces two time-consuming tasks. First we have to
check, if a surface point is visible to the virtual point light and second we have
to calculate the illumination for all virtual point lights. This is the point where
imperfect shadow maps become important. Imperfect shadow maps are an ap-
proximation to standard shadow maps. However they can be created much faster
compared to standard shadow maps. It is actually possible to create hundreds of
imperfect shadow maps every frame. Thus arbitrary dynamic scenes can be sup-
ported. The idea behind this method is to use a point cloud representation of the
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scene. These points are then splatted into the shadow map and some additional
methods are used to improve the quality of the imperfect shadow map.

Our new method (see Figure 6.1) introduced in Chapter 3 targets at the other
time-consuming task: Virtual point light shading. The main idea is to exploit tem-
poral coherence between consecutive frames and reuse as much information from
the previous frame as possible. This way, it is possible to reduce the time needed
for shading as less virtual point lights are placed every frame. However, since we
wanted to support arbitrary dynamic scenes, it is important, that the confidence of
the information from the last frame is calculated and weighted appropriately. In
our approach we use three different indicators, that reduce the confidence of the
information from the last frame. The first one is the position change, the second
one the normal change of the surface and the third one the illumination difference
between the newly calculated illumination and the illumination of the old frame.
The first two indicators are pretty obvious, because if the position or the normal of
a surface point change, illumination will also change. The third indicator is used
to reduce temporal smoothing artifacts. Objects moving in the vicinity of the light
source may cause a sudden change in the overall illumination of the scene. The
first two indicators may not change but the illumination will probably change a
lot and therefore the confidence of the previous frame should be low, so that the
illumination adapts quickly to the new lighting situation.

We furthermore developed a new method to calculate multiple light bounces
that also supports glossy surfaces. The idea is to use the point samples as possible
virtual point light positions and to assign each sample point to an already existing
virtual point light. For all point samples that are assigned to a virtual point light we
then want to find the sample that receives the most illumination from the assigned
virtual point light and is actually also visible to it. Our method creates a new set
of virtual point lights directly in one pass. In contrast the method proposed by
Ritschel et al. [RGK+08], which needs two passes. One to create the imperfect
reflective shadow map and a second one to perform importance sampling on it.
However, since we do not need to create a complete imperfect shadow map, we
are able to reduce fill-rate drastically and thus get better performance.

In Chapter 4 we outlined details on our implementation and finally in Chap-
ter 5 we compared our method with the method proposed by Ritschel et al. [RGK+08].
Our method is slightly slower due to the overhead of temporal coherence calcula-
tion, when the same number of virtual point lights is used. However, it is worth
the extra costs, since it improves the overall image quality. Although our method
suffers from temporal smoothing artifacts, they are visually less disturbing than
the temporal aliasing artifacts that occur with the other method.

Our novel method to calculate multiple light bounces reduces fill-rate drasti-
cally and therefore works up to 11 times faster than the approach using imperfect
reflective shadow maps. When we combine our temporal coherence method with
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the new multiple light bounce method, we are actually able to outperform the
previous method in visual quality and rendering performance.

Finally, our tests showed that the introduced methods are able to provide visu-
ally pleasing global illumination, while maintaining high frame rates.

6.1 Future Work

The presented new method works very well, however, there is still a lot of work
that could be done to improve the overall quality of global illumination computa-
tion. One thing is to develop more appropriate sampling strategies for the scenes.
Up to now it is possible to give different weights on objects that influence, how
much sample points are assigned to an object. Maybe there are ways to perform
this step automatically. Furthermore sample points are located on random posi-
tions on the triangle. This is also a point where quasi random approaches could
lead to better results, as the ISM would have a better coverage.

Dachsbacher et al. [DS06] splatted a sphere geometry onto the G-Buffer to
reduce the shading costs, as only those pixels were calculated, that lied inside an
isosurface of influence by a VPL. We have not implemented this method yet, but
it could increase the rendering speed a lot, especially when very glossy objects are
in the scene.

The introduced method for multiple light bounces is faster, but at the same
time only the fittest VPLs will be in the set. This leads to a non optimal distribution
and therefore some randomness should be introduced to this method. This could
be done by adding some random offsets to the depth values that are used to find
the most important VPL.

The confidence calculation is based on three parameters. However, maybe
there are better parameters or different calculation modes, that give better results.
One idea would be to also temporally smooth a confidence buffer in a way that
areas that had a huge change in past frames, will still have low confidence for a
couple of frames.
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Fig. 6.1: This figure shows an image, rendered with our method at 73 frames per second.
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