
A GPU Laplacian Solver for Diffusion Curves and Poisson Image Editing

Stefan Jeschke∗

Arizona State University

David Cline†

Arizona State University

Peter Wonka‡

Arizona State University

Curves

Closest point map

Initial guess

Final image

Rasterization Variable stencil

diffusion

Figure 1: Diffusion curve rendering in our system. Analytical curves (left) are rasterized into a closest point map (distance map plus
information about the closest curve point) and an initial guess image (middle). The initial guess is diffused by our variable stencil size solver,
producing the final image (right).

Abstract

We present a new Laplacian solver for minimal surfaces—surfaces
having a mean curvature of zero everywhere except at some fixed
(Dirichlet) boundary conditions. Our solution has two main contri-
butions: First, we provide a robust rasterization technique to trans-
form continuous boundary values (diffusion curves) to a discrete
domain. Second, we define a variable stencil size diffusion solver
that solves the minimal surface problem. We prove that the solver
converges to the right solution, and demonstrate that it is at least as
fast as commonly proposed multigrid solvers, but much simpler to
implement. It also works for arbitrary image resolutions, as well
as 8 bit data. We show examples of robust diffusion curve ren-
dering where our curve rasterization and diffusion solver eliminate
the strobing artifacts present in previous methods. We also show
results for real-time seamless cloning and stitching of large image
panoramas.
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1 Introduction

A minimal surface, also known as a “rubber sheet”, is a function
that has zero mean curvature everywhere, except at a few fixed
points, called Dirichlet boundary conditions. Given a set of bound-
ary points, the corresponding minimal surface can be found by solv-
ing the equation which minimizes the Laplacian (∇2G = 0) of
the solution while maintaining the boundary values. This equation
shows up repeatedly in engineering contexts, and is referred to var-
iously as the homogenous Poisson equation, the Laplace equation,
the heat equation or the diffusion equation. We will use these terms
interchangeably in the paper.

One application of minimal surfaces in computer graphics is the re-
cently introduced Diffusion Curve Image (DCI) [Orzan et al. 2008]
representation. A DCI is defined by a set of curves with colors
on either side that are meant to be viewed as a rubber sheet; i.e.
the colors diffuse out from the curves filling the plane. Thus, the
fundamental rendering operation is solving the diffusion equation.
Diffusion curves provide an intuitive and efficient method for im-
age manipulation, and are at the same time general in the sense that
a wide variety of images can be generated. However, proper treat-
ment of diffusion curve rendering remains an unsolved problem.
Existing multigrid solutions can lead to noticeable artifacts, as seen
in figure 2 (left) and the accompanying video.

A second important application of minimal surfaces is seamless im-
age cloning [Pérez et al. 2003]. Seamless cloning allows a source
image patch to be pasted into a destination image without visible
seams. The process works by exchanging the source and destina-
tion rubber sheets within the patch. As with diffusion curves, the
rubber sheet difference between the source and destination is a so-
lution to the homogenous Poisson equation, which in the original
work was solved using either Gauss-Seidel iterations with succes-
sive overrelaxation, or a multigrid solver.



Figure 2: Comparison of the rendering of Orzan et al. (left) to our
rendering (right). Note the color bleeding at small features in the
left image. These artifacts are even more prominent in animations,
where they result in visible strobing (see accompanying video).

Contributions. This paper provides two important contributions
that make diffusion curve rendering faster and more robust, and
allow for real-time seamless cloning of large image patches.

The first contribution is a rasterization technique for diffusion curve
rendering that provides high quality for interactive applications. A
major challenge in the diffusion curve rendering process is that the
nicely defined analytical curves have to be discretized in a regu-
lar grid to provide the input for the diffusion solver. Due to the
global nature of the diffusion process, even small errors in the ini-
tial setup can lead to noticeable errors affecting thousands of pixels.
Additionally, the location of the curves relative to image pixels may
change during every frame in an interactive application, for exam-
ple, if the image is viewed at multiple resolutions, or if the curves
are edited. Our solution gets rid of these fragile dependencies by
rasterizing the Voronoi diagram of the curves as an initial state, col-
oring each pixel with the color of the closest curve point before
diffusion begins.

The second contribution of the paper is to define a variable stencil
size diffusion solver that quickly computes the minimal surface for
any initial conditions within a few iterations. Typically 8 iterations
suffice to produce visually smooth output. The new solver works by
performing Jacobi-like iterations, except with a larger stencil size
than usual diffusion. This simple modification has a profound effect
on the convergence rate of the solver, making it faster than existing
multigrid solutions for computing minimal surfaces. Furthermore,
the output of our variable stencil size solver is stable under subpixel
translation and general curve animations.

2 Background

The Poisson equation and minimal surfaces. The Poisson
equation is a very successful model of a number of different prob-
lems in science and engineering. In computer graphics, Perez et al.
[2003] were the first to provide a rigorous treatment of the Poisson
equation as an image editing tool. A number of different methods
have been suggested to solve the Poisson equation. Perez et al. sug-
gested the use of either a conjugate gradient or a multigrid solver,
with the multigrid method being the more efficient of the two. Later
solutions have also mostly relied on the multigrid method [Mc-
Cann and Pollard 2008], [Grady et al. 2005], [Bolz et al. 2003],
[Goodnight et al. 2003], [Kazhdan and Hoppe 2008], [Kimmel and
Yavneh 2002], [Grady 2008].

Several applications allow a reformulation to a minimal surface
problem instead of the general Poisson equation. This reformula-
tion is an instance of the homogeneous Poisson equation (or Laplace
equation), meaning that the value of the Laplacian is zero every-
where except at some Dirichlet boundary conditions, or in other

words, fixed values at specified pixel locations. The solution to this
subset of the Poisson equation in 2D is called a minimal surface, or
more colloquially, a rubber sheet. Seamless cloning and diffusion
curve rendering are two applications of minimal surfaces.

Seamless cloning. Perez et al. [2003] described a number of im-
age manipulation techniques that relied on different solutions of the
Poisson equation, the most successful of which they named seam-
less cloning. Here, the goal is to paste a source image patch into
a destination image without leaving a visible seam. To do this the
source patch is modified to conform to the corresponding boundary
in the destination image.

An appealing formulation of seamless cloning is to find the differ-
ence between the source patch and its seamless counterpart, which
results to a minimal surface problem. Observing that the accord-
ing rubber sheet function is extraordinarily smooth away from the
boundaries, Agarwala [2007] proposed a quadtree decomposition to
solve for very large rubber sheets for use in stitching image panora-
mas.

In work simultaneous to ours, Farbman et al. [2009] dispense with
the Poisson equation altogether. As an alternative, they note that a
true Laplacian membrane is not required for seamless cloning and
many other applications — almost any surface will do as long as
it has the correct boundary and a smooth interior. Thus, they de-
fine an alternate membrane based on mean value coordinates that is
suitable for seamless cloning. While this new membrane can be cal-
culated fairly quickly, it requires a lengthy setup time, up to several
seconds, whenever the boundary shape changes, so it is not suitable
for interactive applications.

Diffusion curves. A more recent application of minimal surfaces
is the diffusion curve image (DCI) [Orzan et al. 2008]. The diffu-
sion curve description extends the ideas of Elder et al. [2001], who
showed that edges are a near complete image representation. A
DCI represents an image as a set of curves with associated color
values on either side that diffuse outwards to fill the image plane,
creating a minimal surface. A DCI is therefore just a nice encoding
of a rubber sheet. This vector encoding has a number of appealing
properties. It is compact, and the curves have an intuitive meaning,
which makes them easy to work with. Also the gradients possi-
ble in a diffusion curve are more expressive than those available in
most other vector graphics formats. However, a major question is
how to efficiently render diffusion curves, since they do not have a
closed-form solution as do other vector graphics.

Orzan et al. [2008] designed a multigrid solution to render the dif-
fusion curves. While fast, this solver suffers from strobing artifacts.
The sources of the artifacts are two-fold. First, the curves that de-
fine the rubber sheet surface are not rasterized in a robust manner,
and the diffusion amplifies these rasterization errors. Second, the
solver itself is not able to converge to within visual tolerance within
a few iterations. This might not necessarily be a problem, except
that the artifacts align with coarse levels in the multigrid. Conse-
quently, small translations can result in large changes in the image,
leading to more strobing.

We present solutions to both problems above: a discretization tech-
nique that robustly transforms the continuous curve colors onto a
regular grid for the diffusion process, as well as an easy to imple-
ment diffusion solver that is faster than existing multigrid solvers.
Our solution is based on variable stencil sizes instead of a hierar-
chy, as is multigrid. It is also related to “morphological interpola-
tion” [Salembier et al. 1996].



3 A Minimal Surface Solver for Diffusion

Curves

3.1 Overview

In this section we present the two main parts of our solution for dif-
fusion curve rendering: the curve rasterizer and the variable stencil
size diffusion solver. The rasterizer takes as input a set of curves
with associated colors, and produces a distance map of the curves
along with an initial guess of the solution. The diffusion solver then
diffuses the guess image, using the distance map as a guide to pre-
vent color mixing over curve boundaries. Together, the rasterizer
and diffusion solver allow us to render diffusion curves quickly and
without the strobing artifacts present in previous solutions.

3.2 Robust Curve Rasterization

The first step in rendering a diffusion curve is to rasterize the con-
tinuous curves into a discrete image. It is essential that rasterization
be handled robustly, as even a single wrong pixel in the input can
result in large artifacts after the diffusion process. This process is
made more difficult when one considers even simple manipulations
such as subpixel panning and curve scaling.

Our rasterizer avoids fragile single pixel dependencies by raster-
izing curve colors over the entire image and not solely relying on
local information during the diffusion. First, we divide the curves
into a number of small linear segments, which are fed to the raster-
izer. These segments can be sampled from any curve description,
in our case Bezier splines as described in Orzan et al. [2008]. The
rasterizer creates a discrete Voronoi diagram of the segments, ini-
tializing pixels to the color of the closest curve point, as shown in
figure 1 (middle). For this step we implemented the algorithm of
Hoff et al. [1999] which we briefly review here.

The algorithm of Hoff et al. creates a Voronoi diagram by rendering
“slanted” polygons around each curve segment, letting the z-buffer
comparison generate the respective Voronoi regions. For each lin-
ear segment we construct a tent as two quads starting with depth
zero at the segment and growing perpendicularly outward towards
depth one. The size perpendicular to the segment, s, is the diagonal
of the output texture. This ensures that each segment will stretch
across the whole texture. On the outer side at each junction be-
tween adjoining segments we define a triangle fan that closes the
gap between adjacent tents: starting at the junction at depth zero
and growing towards depth one at size s. Fan triangles are gen-
erated so that their angle at the junction is no larger than 45 de-
grees. Similarly, at each curve endpoint we form a 180 degree fan
consisting of four 45 degree triangles. In our implementation all
polygons are generated in the geometry shader. To form the fans
between segments, neighborhood information about the predeces-
sor and successor segments are stored per vertex.

When the slanted polygons are rasterized, the Voronoi regions
emerge automatically due to z-buffer comparison. We store the fol-
lowing per-pixel information in addition to the depth: (1) the curve
color of the closest point on the same side of the curve segment as
the point. (2) the opposite side curve color at the same point. This
will later be needed for anti-aliasing. (3) the distance of the pixel to
the curve, which results in a distance map (i.e. we store the actual
distance in addition to the depth, rather than just using the depth
as the distance). Together, we call the 3 values the “closest point
map”.

Note that a 45 degree fan introduces a distance error of up to
(1− cos 45

2

◦
) ≈ 8% [Hoff et al. 1999] where triangle fans overlap,

since depth is not exactly equal to distance on the fans. We will

compensate for this distance error in the diffusion step in the next
section. The error could be eliminated by setting depth in the pixel
shader but unfortunately, the performance hit is unacceptably large
as it disables early z-culling on current hardware, resulting in an
extremely high fill rate. Table 1 shows some performance figures
with and without early z culling. As one can see, early z culling de-
creases the rendering time by factors between 8 and 55 with an in-
creasing acceleration factor for more complex models. Fortunately,
future APIs (DirectX 11) will provide early z-culling even if depth
is changed in the pixel shader.

# Curve segments 109 297 338 656 1193 1779

With early z (FPS) 333 243 211 139 96 73

Without early z (FPS) 42 19 7.1 3.75 1.97 1.32

Acceleration factor 7.9 12.8 29.7 37.07 48.7 55.3

Table 1: Curve rasterization speed comparison in frames per sec-
ond (800 × 800 pixels) with and without early z culling for curve
models with different complexity.

3.3 A Variable Stencil Size Diffusion Solver

The Jacobi method. Perhaps the simplest way to solve the dif-
fusion equation is to use Jacobi iterations. The end goal of the
diffusion equation is to minimize the Laplacian ∇2G of an image.
Adding fixed pixels, such as boundary curves, imposes color con-
straints on the system:

G(x, y) = B(x, y) if (x, y) is a boundary value, and

∇2G(x, y) = 0 otherwise.
(1)

In the equation (x, y) denotes an image pixel, and B the Dirichlet
boundary values. The Laplacian operator is discretized as

∇2
G(x, y) =

4
∑

i=1

G(ni) − 4G(x, y), (2)

where ni denotes the pixels in the 4 connected neighborhood of
(x, y). A standard Jacobi solver iterates toward the solution by set-
ting each pixel to the average of its direct neighbors:

G(x, y) =
1

4

4
∑

i=1

G(ni). (3)

Boundary constraints are maintained by fixing pixel colors near the
curves. This basic approach converges quite slowly, however, tak-
ing more than 20,000 iterations for a modest 512×512 pixel image.

Varying the stencil size. The main reason for the slow conver-
gence of Jacobi is that color cannot quickly travel from one part of
the image to another. Here we present a more efficient approach
that applies similar iterations but with larger stencil sizes to more
quickly transport colors over the image. We start our discussion
with the 1D case and common Jacobi iterations. In this case, the
converged solution between two fixed boundary points is clearly
always linear. Let

Ag = b (4)

be the 1D analog of equation 1 in matrix form. Here, g is the func-
tion that we want to find. b gives the desired Laplacian and bound-
ary values; it is zero everywhere except at the boundary points. The
matrix A is tridiagonal, and has two types of rows: one row type
corresponds to the boundary values, and it contains only 1’s on the
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Figure 3: Demonstration of our diffusion solver using the “shrink always” strategy. After just 8 diffusion steps, the image is visually smooth,
and very similar in appearance to the converged result using 400 steps.

diagonal, and 0’s elsewhere. The other row type, corresponding to
the Laplacian operator, contains a −2 on the diagonal and two 1’s
next to it. The matrix A is irreducibly diagonally dominant. Con-
sequently, by the Gerschgorin circle theorem, the matrix has full
rank and the Jacobi method is guaranteed to converge to an unique
solution.

The interesting point is that A remains irreducibly diagonally dom-
inant no matter where the off-diagonal elements are placed (and
Jacobi is still guaranteed to converge). Thus, we can modify A
to place the off diagonal elements at distance ±h from the diag-
onal, instead of right next to it. In particular, we choose h to be
the distance to the closest fixed boundary point. Now we show that
the modified system has the same solution as the original as fol-
lows: we set g to the solution of the original system (linear between
boundary points) and run a single Jacobi iteration on the new sys-

tem. Any non boundary point gi will be set to
gi−h+gi+h

2
during

the Jacobi iteration. However, this is equal to gi, since all three
points lie on the same line by construction. Thus, the system is in a
converged state, and the solution to the modified system is the same
as for the standard system.

An interesting point is that the spectral radius of the Jacobi itera-
tion matrix J compared to standard diffusion is appreciably smaller,
which makes the matrix easier to solve. For example, in 1D, with
seven values and Dirichlet boundary conditions on the end, the it-
eration matrix for the standard Laplacian stencil is

J =















0 0 0 0 0 0 0
0.5 0 0.5 0 0 0 0
0 0.5 0 0.5 0 0 0
0 0 0.5 0 0.5 0 0
0 0 0 0.5 0 0.5 0
0 0 0 0 0.5 0 0.5
0 0 0 0 0 0 0















.

J has a spectral radius of 0.87, and this value quickly approaches 1
for larger problem setups. On the other hand, with the large stencil
sizes the iteration matrix becomes

J =















0 0 0 0 0 0 0
0.5 0 0.5 0 0 0 0
0.5 0 0 0 0.5 0 0
0.5 0 0 0 0 0 0.5
0 0 0.5 0 0 0 0.5
0 0 0 0 0.5 0 0.5
0 0 0 0 0 0 0















,

with spectral radius 0.5. Larger problem sizes retain this small spec-
tral radius so that the diffusion happens faster.

It seems natural that the best choice for h is the distance to the
closest boundary value as this provides fast convergence. Figure 4

shows this process. Starting from two Voronoi regions (red and
blue), one can observe how plateaus of equal color subdivide, cut-
ting the error in half with each diffusion step.

Figure 4: 0, 1, 2 and ∞ variable stencil size diffusion iterations in
one dimension.

The 2D case. The direct 2D extension of the above setup is to use
circles around each sample that do not cross any boundary curve
(we can ensure this by using the distance map). As in the 1D case
we again have an irreducibly diagonally dominant matrix by con-
struction, which guarantees convergence to an unique solution. The
mean value theorem for harmonic functions states that in a mini-
mal surface the value at the center of a circle is equal to the average
value on the circle boundary, which proves that this solution is iden-
tical to the minimal surface that we are looking for.

A practical 2D solver. The inputs to our solver are the Voronoi
color image and the distance map obtained in the rasterization step
(section 3.2). The former serves as an initial solution guess, and
the latter determines the radius of the sampling circle around each
pixel, which ensures that no boundaries are crossed. (We reduce all
of the radii by 8% to compensate for errors in the distance map, as
described in section 3.2.) Averaging all samples from a large cir-
cle during diffusion steps is clearly too slow for practical use, so in
practice we reduced the number of samples to only four values in
axis aligned directions. Unfortunately, since each sample now has
a great influence on the result, artifacts similar to mach banding can
result. Figure 5 (left) shows such horizontal and vertical banding ar-
tifacts, mostly visible at the tips of the Siggraph logo. Our solution
is to successively shrink the stencil radius during the diffusion.

We have identified two different shrinking strategies suitable for
different situations, which we will refer to as “shrink always” (SA)
and “shrink half” (SH). In SA, we shrink the stencil size linearly at
each step. In other words, if the solver will perform n iterations,
the radius on iteration i will be scaled by 1 − i

n
. This lets pixel

values align more and more with their local neighborhood at later
iterations, producing smoother behavior. The appeal of SA is that it
removes visible banding artifacts and color plateaus quickly, almost
always within 8 iterations. However, the color distribution is typ-
ically not converged at that point, which makes the image appear
with slightly higher contrast. This difference is very minor, though,



Figure 5: Errors resulting from different shrinking strategies: (left)
no shrinking, (middle) shrink always, (right) shrink half. The top
row shows images after 8 diffusion iterations, and the bottom row
shows the difference compared to a converged image, magnified 5
times.

and difficult to see even with a side-by-side comparison to the con-
verged solution. Figure 3 shows an example result of SA over a
number of iterations. Note the very subtle differences between the
solution with 8 steps and the converged solution with 400.

The SH strategy is similar to SA, except that the sampling radii are
kept at full size for the first half of the diffusion iterations. SH con-
verges towards the correct result faster than SA, but visible banding
artifacts may remain for up to 12 or 14 iterations. Figure 5 com-
pares the kinds of errors that result after 8 iterations with different
shrinking strategies. At this number of iterations, SH exhibits less
than half the error of SA. Even so, the proper shrinking strategy for
a given application depends on the desired accuracy and smooth-
ness of the result. Of course, both SA and SH converge to the right
solution with an increasing number of steps, simply by the fact that
the last iterations are identical to standard diffusion. In addition,
in-between solutions are visually appealing because all errors have
very low frequency. Figure 5 demonstrates that this type of error
is hardly visible for the human eye: the left image with smaller
but high frequency error looks less appealing. We also maintain
temporal coherence, i.e., flickering is avoided as can be seen in the
accompanying video.

3.4 Reblurring

In order to support unsharp edges, curves can be blurred after the
diffusion. To facilitate this process, blur values are defined along
curves. These values get diffused over the image along with the
colors, resulting in a blur map. To complete the blur, Orzan et al.
[2008] apply a spatially varying convolution to the diffused image,
with a kernel width specified by the blur map. This process can
be quite slow, however, and Orzan et al. report times of near a full
second per frame.

To increase the speed of the reblurring step, we simply pretend that
the spatially varying convolution is separable, and perform repeated
box filtering in each direction, with a different filter radius at each
pixel. (Recall that if n box filtering passes are performed, the kernel
radius should be divided by

√
n to achieve approximately the same

amount of blur as a single pass.) We fix the number of samples
taken at each pixel to 10 to even out the rendering time. Our experi-
ence is that we can achieve good blur results using only two passes,
which is effectively a tent filter. When using only two passes, we
have found that we can achieve a smoother blur by decreasing the

Figure 6: (Center) Unblurred images. (Left) The blur of Orzan et
al. (Right) Our fast separable blur, showing little visual difference
in the output.

kernel radius by 5% on the second pass to stagger the sample lo-
cations. Although the separable approach is not entirely accurate,
in practice the method is visually difficult to distinguish from the
brute force result, and it runs at more than 200 Hz on an 800× 800
image. Figure 6 compares our separable blur to the approach of
Orzan et al.

4 Performance and Applications

We have implemented our curve rasterizer and variable stencil size
diffusion solver in HLSL. Our tests were rendered on a Geforce
8800 GTX with 768 MB of video memory. As shown in this sec-
tion, the algorithm is quite fast compared to other diffusion solvers.
The high performance is not surprising as our diffusion process ba-
sically consists of a few Jacobi-like iterations (8 for most of the
results shown in this paper). Our algorithm also works well for 8
bit data and non power of two texture resolutions. The rendering
pipeline, including rasterization, diffusion, blurring, and display is
entirely done in graphics hardware.

4.1 Speed and Convergence.

Figure 7 compares the convergence rates of different versions of our
algorithm to two different multigrid implementations, the diffusion
curve renderer of Orzan et al. [2008] (using their application), and
McCann and Pollard’s gradient domain solver [2008] (which we
reimplemented for testing purposes). The graphic used for the tests
is the “Zephyr” image, although slightly more zoomed out than is
shown in figure 3.

The ground-truth image for our algorithm was created using 50,000
standard diffusion steps at 32 bit accuracy, which takes about one
minute for a 10242 image on our hardware. The results for our
algorithm include the time to create the distance map and initial
guess image, which was about 7.6 ms. for 32 bit (the same as 7 dif-
fusion steps), and 5.8 ms. for 8 bit (10 diffusion steps). See Table 1
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Figure 7: A plot of render time vs. error (# of gray levels) for dif-
ferent variants of our solver, compared with the muligrid solutions
of Orzan et al. and McCann and Pollard. All times are plotted for
a 10242 image and the curve points correspond with different num-
bers of solver iterations. Times for our solver include distance map
creation as well as diffusion.

for more rasterization results. SH converges appreciably faster than
SA in both the 8 and 32 bit modes. In 32 bit mode, SH achieves
an RMSE of one gray level twice as fast as SA, but once again, SH
may require more iterations to create a visually smooth membrane,
which is all that is really required for diffusion curve rendering and
seamless cloning. As might be expected, the 8 bit variants run al-
most twice as fast as full floating point. They also converge at a
similar rate for the first few (∼ 16) iterations. Afterwards the error
increases since rounding errors begin to dominate. Consequently,
the diffused image gets slightly darker as the number of iterations
increases. But the image quality of the 8 bit solver can still be con-
sidered high since low frequency RMSE errors of 2-5 are practically
not noticeable by the human eye.

Comparison with Orzan et al. The solver of Orzan et al. does
not perform multiple V cycles. Rather, it simply increases the num-
ber of smoothing steps to achieve a more converged result. The
accepted image that we used for this solver was the image created
with the maximum iterations allowed in their renderer. Their appli-
cation produces a 5122 (or 5132) texture and rescales it for display,
so we render at the default size and multiplied the render times by 4
for comparison. Roughly speaking, this solver converges between
six and ten times slower than our solver, depending on settings.
Furthermore, the output of their solver is not stable under transla-
tion even with a very large number of smoothing steps, whereas our
output is visually stable, even under subpixel translations.

It is interesting to note that in a fully converged state, even our
solver produces some strobing during subpixel movements. The
problem is that there is a fragile dependency of the solution on the
Dirichlet boundary conditions. All of the solvers we know about
discretize the Dirichlet boundaries to specific pixels. The result is
that even small changes lead to large changes in the output due to
a changing input pixel mask. This is especially noticeable at curve
endpoints where different fixed colors are spatially close.

Our solver is different than most solvers in that it starts with the
whole image as an initial guess, instead of individual rasterized
lines. This initial image dictates the result after the first few it-
erations rather than the boundary conditions, which makes these
in-between results very stable and visually pleasing. However, as
stated above, the fully converged solution still has a fragile depen-

Figure 8: Examples of animated diffusion curves. Left: animated
water waves. Right: a moving magnifying glass.

dence on fixed rasterized pixels near the curves, which produces
strobing. In the same vein, if only pixels near curves are initialized
with the right color, our solver is much slower. For that case it takes
more than 50 iterations for the SH strategy to entirely fill the canvas
and visually converge (SA takes even longer, as one might expect).
The conclusion we draw from this is that the initial Voronoi raster-
ization supports a stable and visually pleasing (though not totally
converged) solution, but cannot remedy the inherent problems of
discretized Dirichlet boundary conditions.

To quantify the discretization error in our solver, we computed a
number of different renderings of the same graphic with subpixel
translations and different numbers of iterations. We then compared
these in a pair-wise fashion to determine the magnitude of strobing
that might occur. Even in extreme cases, we measured RMSE dif-
ferences of less than 1.5 gray levels with 8 to 16 iterations of our
solver. This was typically not visible. However with more than 16
iterations, the fixed boundary conditions start to assert themselves,
and discernible strobing occurs by 32 iterations (RMSE 3.8) , and
by 256 iterations, the error may be as high as 13 gray levels.

Comparison with McCann and Pollard. McCann and Pollard’s
multigrid solver for gradient domain painting runs multiple V cy-
cles with no pre-smoothing and 2 post-smoothing steps. It han-
dles non-zero Laplacian internal conditions and Neumann domain
boundaries, rather than internal Dirichlet boundaries as does our
solver. However, McCann and Pollard’s solver can perform seam-
less cloning, as can ours, so it is reasonable to compare the two.
To make a meaningful comparison, we created a test with non-zero
Laplacian values at the same image pixels as our Dirichlet bound-
aries. In general it takes 4 V cycles for McCann and Pollard’s solver
to reach a stable state that does not flicker visibly under translation.
This is about half as fast as our solver for smooth, visually stable re-
sults. Four V cycles is also the point at which their solver overtakes
our best variant (32 bit SH) in terms of error vs. time. However,
this solver does not solve the same problem as ours, and it is not
suitable for diffusion curve rendering.

4.2 2D Diffusion Curve Rendering

In general the input to a diffusion curve solver has to be very ac-
curate near curves as even single pixel errors can lead to large vis-
ible errors in the final image. For animated images such as those
shown in figure 8, small errors are prominently visible as flicker-
ing or strobing artifacts. The problem becomes even more com-
plicated for minified viewing where multiple curves might cover a
single pixel. In contrast to the solution by Orzan et al. [2008] that
poses problems for features smaller than 3 pixels, our rasterization



Figure 9: Rendering with different curve styles.

method is very consistent, even under minified viewing. If multiple
curves fall into a pixel, that pixel itself may get an arbitrary color,
but pixels that are further away get the correct colors from the near-
est curve. Consequently, our approach produces no visible color
leaking or strobing artifacts during animations, as can be observed
in the accompanying video.

Since we have the sampled distance function and the parametriza-
tion and colors at the closest curve point we can easily anti-alias
edges or apply effects based on curve distance, such as outlining,
procedural strokes, embossing, color gradients, or drop shadows as
Qin et al. [2008]. Figure 9 shows examples of different stoke styles.
In addition, it is interesting to note that closed curves with only a
single color defined on each side are already correctly represented
after the rasterization step. This means, images only consisting of
such curves with a constant exterior color can be rendered without
diffusion, which is an interesting subclass of DCIs, close to tradi-
tional vector graphics.

4.3 Real-time Seamless Cloning

A second application of our solver is seamless image cloning [Pérez
et al. 2003]. In seamless cloning, the goal is to paste a given source
image patch into another image without leaving visible seams. This
is done by swapping the source rubber sheet, defined by the bound-
aries of the source patch, with the destination rubber sheet, de-
fined by the corresponding pixels in the destination image. In other
words, we add the difference between the destination and source
rubber sheets over the patch to the source image:

Fdest(x,y) = Fsrc(x,y) + Gdest(x,y) − Gsrc(x,y) (5)

where Fdest is the final cloned image, Fsrc is the source patch, and
Gdest and Gsrc are the destination and source rubber sheets de-
fined by the patch boundaries. To perform the rubber sheet swap,
we compute the difference rubber sheet (Gdest−Gsrc) as described
in Section 3.3. However, we use the jump flood algorithm [Rong
and Tan 2006] to create the distance map. A straightforward ap-
plication of the rasterization routine described in Section 3.2 would
rasterize a cone for each pixel on the cloning boundary which is a
more expensive operation.

Figure 11 demonstrates seamless cloning using our diffusion solver.
This example contains about 350 thousand cloned pixels, and runs
at 104 fps with a destination image size of 10242, including the
time for jump flooding. This time could be somewhat improved by
confining the distance map and diffusion renderings to the bounding
box of the cloned area. Figure 10 shows a second cloning example,
stitching together a large panorama. Here, every second photo was
seamlessly pasted into the final image, yielding a seamless compos-
ite. This example runs at 26 fps at 4096 × 1024 pixels and 3.6 fps
at 8192 × 2048.

Comparison with mean value cloning. The work of Farbman et
al. [2009], developed at the same time as ours, constructs a differ-

Figure 11: Seamless cloning with our new solver.

ence membrane to perform seamless cloning based on mean-value
coordinates. Their application achieves a peak cloning rate of 11
M pixels/sec. on the CPU and 44 M on the GPU. This does not in-
clude the significant preparation time required whenever the shape
of the cloned patch is modified (0.5 sec. for an example comparable
to figure 11, and 3.6 sec. for an example comparable to figure 10).
The long preparation times make mean value cloning impractical
for interactive editing of large patch boundaries. By contrast, our
cloning rate for figure 11 is 36 M pixels/sec. including preparation
time, and 63 M without.

5 Conclusions

This paper presented a variable stencil size diffusion solver for the
discrete calculation of minimal surfaces in two dimensions. We
showed that the new solver is both simple to implement, produces
stable renderings, and is more efficient than competing multigrid
solvers. We demonstrated the solver on several applications, in-
cluding the rendering of diffusion curves, and real-time seamless
cloning.

There are still a number of open questions related to the solver that
could bear further study. For example, it is unclear how to achieve
the best convergence rate per iteration. We tried several diffusion
strategies such as gathering 8 samples instead of 4, but the simple
4 sample model worked best in our tests. Also, it would be inter-
esting to attempt to determine an optimal shrinking function. Other
optimization ideas include computing the distance map or some of
the diffusion steps at lower resolution, essentially hybridizing our
solver with a multigrid. The solver itself could also be extended in
a number of ways, such as computing 3D diffusions and adding the
capability to handle nonzero Laplacian boundary conditions. Fi-
nally, we believe that the variable stencil size idea, as opposed to
hierarchical decomposition, has the potential to be a useful general
technique for computer graphics. For example, the jump flooding
that we used for seamless cloning is very much in this vein. A num-
ber of other search problems may fit well into the mold of variable
stencil size search and processing.

Acknowledgements

We thank Orzan et al. [2008] for their drawing application and
curve models as well as McCann and Pollard [2008] for making
their code publicly available. This work was supported by the NSF.



Figure 10: Image panorama taken at Delicate Arch near Moab, Utah, USA. (Top) Aligned photographs. (Bottom) Final seamless composite
removing illumination changes between the photos.
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