
Predictor-Corrector Schemes for Visualization of
Smoothed Particle Hydrodynamics Data

Benjamin Schindler, Raphael Fuchs, John Biddiscombe, and Ronald Peikert, Member, IEEE

Abstract—In this paper we present a method for vortex core line extraction which operates directly on the smoothed particle hydro-
dynamics (SPH) representation and, by this, generates smoother and more (spatially and temporally) coherent results in an efficient
way. The underlying predictor-corrector scheme is general enough to be applied to other line-type features and it is extendable to
the extraction of surfaces such as isosurfaces or Lagrangian coherent structures. The proposed method exploits temporal coherence
to speed up computation for subsequent time steps. We show how the predictor-corrector formulation can be specialized for several
variants of vortex core line definitions including two recent unsteady extensions, and we contribute a theoretical and practical com-
parison of these. In particular, we reveal a close relation between unsteady extensions of Fuchs et al. and Weinkauf et al. and we
give a proof of the Galilean invariance of the latter.
When visualizing SPH data, there is the possibility to use the same interpolation method for visualization as has been used for the
simulation. This is different from the case of finite volume simulation results, where it is not possible to recover from the results the
spatial interpolation that was used during the simulation. Such data are typically interpolated using the basic trilinear interpolant, and
if smoothness is required, some artificial processing is added. In SPH data, however, the smoothing kernels are specified from the
simulation, and they provide an exact and smooth interpolation of data or gradients at arbitrary points in the domain.

Index Terms—Smoothed particle hydrodynamics, flow visualization, unsteady flow, feature extraction, vortex core lines.

1 INTRODUCTION

The smoothed particle hydrodynamics (SPH) method was invented in
the 1970’s for astrophysical simulations. Recently, SPH has become
an alternative to traditional Eulerian methods also in industrial com-
putational fluid dynamics (CFD) applications. It is especially useful in
problems where a free surface is present or in multi-phase flow simula-
tions. Here, strong initiatives are being taken by academia and industry
to make SPH a reliable tool to be used for practical engineering prob-
lems. The reason why SPH simulations have not been regularly used
much earlier in industrial CFD lies in the fact that SPH was originally
designed for unbounded domains. Much of the current research on the
numerics side has to do with the modeling of boundaries [11].

Two obvious approaches to visualize SPH data would be resam-
pling and triangulation. Resampled data, especially on uniform grids,
can be post-processed with a broad range of visualization algorithms
and implementations in commercial or academic software packages.
There are, however, some major drawbacks linked to this approach.
When resampling data of varying sampling density, either the den-
sity must match the highest density, causing an increase in data size,
or detail is lost in some regions. Also, solid walls and free surfaces
are difficult to represent in structured grids. And, finally, resampling
causes the dilemma of either blurring data or generating artifacts. The
alternative, to triangulate point-sampled data, is very time-consuming.
A triangulation functionality is not often found in visualization soft-
ware, and it has difficulties with concavities in domain boundaries. Fi-
nally, both resampling and triangulation induce an interpolation func-
tion which is not compatible with SPH interpolation.

There exist visualization algorithms and software that are capable
of operating directly on SPH data. However, most of these are either
limited to basic visualization techniques or they treat SPH data as gen-
eral point-sampled data, this way not fully exploiting the information

• Benjamin Schindler, Raphael Fuchs, and Ronald Peikert are with Institute
of Visual Computing, ETH Zurich, Switzerland, E-mail: {bschindler,
raphael, peikert}@inf.ethz.ch.

• John Biddiscombe is with Swiss National Supercomputing Centre, Manno,
Switzerland, E-mail: biddisco@cscs.ch.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

contained in the SPH representation.
Our approach is to respect the kernel functions that were used for

the simulation and to reuse them also for visualization. The advantage
is that at arbitrary points in the domain all interpolated values, includ-
ing derivatives, are exact with respect to the SPH representation. How-
ever, it implies that visualization algorithms relying on the cell struc-
ture of grids cannot be used but must be adapted or replaced by new
algorithms. Compared to other data representations, SPH data allows
us to compute gradients and second derivatives more efficiently and in
higher quality. This fact can be exploited especially in visualization
problems that can be tackled with a predictor-corrector strategy. This
holds for the extraction of line-type features, the problem addressed
in this paper, but also for other types of features or other geometric
objects such as isosurfaces. Both prediction and correction steps make
heavy use of derivatives, therefore this strategy is appropriate for SPH.

Some classes of grid based visualization rely on the connectivity of
a grid in the sense that they compute in a cell-by-cell manner. Exam-
ples are Marching Cubes type contouring methods and parallel vec-
tors methods. Such methods can be reformulated as (spatial) tracking
methods if it is possible to estimate the tangent of the feature curve
or the tangential plane of the feature surface. Error accumulation in
such tracking methods can be avoided by including correction steps,
resulting in predictor-corrector schemes. These have the advantage
that they work without a grid, but the price to pay is that derivatives
are needed for the tangent estimation. In principle, a numerical inte-
gration method for stiff ODEs could be used instead of the correction
steps. But for problems such as isosurfacing or finding parallel vec-
tors, the error can be detected locally and correction to an exact feature
point is possible. This is different from the standard case of stream-
line integration where a good integration method is the only choice to
reduce errors. The simplicity of the prediction and correction steps
makes this approach attractive from a performance point of view.

The properties of predictor-corrector schemes make them ideally
suited for SPH visualization where no grid is available but where
derivatives can be fast and accurately computed. Moreover, in time-
dependent data, prediction can be made for the feature in the subse-
quent time step. This way, temporal coherence is exploited. The ef-
ficiency of spatial tracking methods depends on the seeding strategy.
Computing seed points should be fast, enough seed points must be
generated not to miss a feature, and redundancy should be minimized.
An important factor is the availability of a fast rejection test which
helps to quickly traverse space where there is no feature.

1243

 1077-2626/09/$25.00 © 2009 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

In this paper we focus on vortex core lines, although the presented
methods can be applied to more general line-type features as long as
they can be expressed with the parallel vectors operator [15]. Vor-
tex core lines are a useful representation of vortices which, espe-
cially in unsteady flow, cannot be visually inferred from a streamline
or pathline pattern. We present an algorithm to extract vortex core
lines directly from SPH data, and we detail out versions for the vortex
core line criteria defined by Levy et al. [9], Sujudi and Haimes [23],
Weinkauf et al. [27], and Fuchs et al. [4]. As a second contribution,
we compare the latter two, which extend the Sujudi-Haimes criterion
to unsteady flow, with the older criteria that implicitly assume steady
flow. A comparison will be done on the level of the definitions, result-
ing in an equivalent formulation of Weinkauf et al.’s criterion in terms
of the acceleration vector which reveals the Galilean invariance of this
criterion. Based on two time-dependent data sets, we compare results
of the mentioned variants, and we compare results of direct SPH visu-
alization with those of visualization based on resampled data.

2 BACKGROUND AND RELATED WORK

2.1 Smoothed Particle Hydrodynamics

SPH was introduced by Gingold and Monaghan [5] and Lucy [10] for
astrophysical problems, and has later become a general CFD method.
A review of SPH theory and application can be found in [13]. Here,
we focus on aspects of SPH that are most relevant for visualization.

The interpolation rule for a quantity A is

A(x) =
N

∑
j=1

m j

ρ j
A jW (x−x j,h j) (1)

where m j is the mass of the j-th particle, ρ j its density, A j the value
of A associated with that particle, x j its position, h j its smoothing
length, and W is the radially symmetric kernel. The summation is
done over all particles having the point x within their kernel support
(cf. [17], equation 3). The normalized interpolation is obtained by
dividing (2.1) by the interpolation of unity which is

N

∑
j=1

m j

ρ j
W (x−x j,h j)≈ 1 (2)

The kernel most often used is the cubic spline

W (r,h) =
1

πh3

 1− 3
2 q2 + 3

4 q3

1
4 (2−q)3

0

0≤ q≤ 1
1≤ q≤ 2

q≥ 2
(3)

where q =‖r‖/h. To avoid round-off errors, the interpolation formula
is often rewritten as

A(x) =
N

∑
j=1

w jA jW (x−x j,h j) (4)

where w j = h−3
j m j/ρ j and W (x−x j,h j) = h3

jW (x−x j,h j) (cf. [17],
equation 6). For simplicity, we use the abbreviation W j(x) for the
full interpolation weight of A j, namely m j

ρ j
W (x− x j,h j). With this

notation, the normalized interpolation is

A(x) =
N

∑
j=1

A jW j(x)

/
N

∑
j=1

W j(x) (5)

and, using the quotient rule, the gradient can be calculated as

∇A(x) =
N

∑
j=1

(
A j−A(x)

)
∇W j(x)

/
N

∑
j=1

W j(x), (6)

and, if needed, the Hessian can be computed along the same lines.
The SPH method introduces a smoothing kernel which imposes

a coherency in space and time commensurate with the underlying
physics used to define the model. An ideal simulation will produce
a field which is as smooth as the real conditions, but a bad model, or a
set of results which miss time steps, will introduce unrealistic fluctua-
tions in the fields. It is beyond the scope of this paper which concerns

visualization to address the deficiencies in the data itself, though the
method used to track vortices tries to be as accurate as the data allows.

2.2 Direct visualization of SPH data
One of the best known visualization packages for SPH data is
SPLASH [17], which is capable of producing 2D plots of data by pro-
jecting particles onto a plane, and 3D plots by integrating the kernel
contributions of all particles intersecting a ray through the view pixel.
Additionally, SPLASH can produce a form of surface plot by using an
“optically thick” integration of particle contributions where the density
of material through which the ray passes forms the absorption term of
the transport equation. Both 3D plots provided by SPLASH can be
considered as image-space based renderings and whilst a simple 2D
streamline plot is possible, there is no true support for object-space
feature based generation of images.

Extensions to ParaView [6] given in [2] make it possible to resample
SPH data onto planes, grids and arbitrary geometric meshes. Rosen-
thal et al. presented an isosurfacing algorithm for SPH data and ap-
plied it to astrophysical data [21]. It generates surfels (surface ele-
ments, i.e. points with radius, normal and color information) between
selected pairs of neighboring particles. The method can be applied to
any point-sampled data, not just SPH data. However, since it is ig-
nores the SPH kernels, the obtained isosurface is not strictly correct in
the sense of the SPH model. An alternative algorithm was presented
later [20] where the isosurface is computed by solving a PDE. Again
it targets general point-sampled data, but it seems possible to use the
same strategy to compute an isosurface of a quantity given in SPH
representation.

2.3 Vortex core line extraction
Vortices in flow fields can be represented by their axes, also known
as vortex core lines. Like for the vortices themselves, there is no
unique definition of a vortex core line, but rather a number of crite-
ria defined by several authors. Some definitions include the pressure
field [1, 12], but others only make use of the velocity information.
Many of these definitions can be expressed in part by the parallel vec-
tors operator [15]. For this purpose, two vector fields v and w (which
can be original or derived data) are specified. Then, vortex core lines
according to this definition are obtained by finding locations of paral-
lel vectors and applying a post-filtering. Some possible choices for the
vector fields v and w are listed in Table 1.

For extracting the raw feature lines, i.e., curves in space which
point-wise fulfill the parallel vectors condition, a number of algorithms
have been proposed. Peikert and Roth [15] focused on cell-wise meth-
ods which solve for the intersection points with the faces of a cell. A
different strategy is to track the feature line, starting from a seed point
on the feature. Theisel et al. [25] and Sukharev et al. [24] formulated
expressions for the tangent of a feature line, and based on this, algo-
rithms for computing raw feature lines by numeric integration. Van
Gelder and Pang pointed out that both these methods are prone to er-
ror accumulation. They came up with a method [26] that alternates
prediction steps with correction steps.

Post-filtering removes parts of raw features that do not fulfill ad-
ditional criteria required by the respective feature definition. For in-
stance, the vortex core line definition by Sujudi and Haimes [23] re-
quires that the velocity gradient has a pair of complex conjugate eigen-
values in addition to the above stated parallelism. Alternatively, raw
feature points can be tested for a minimum amount of swirl. Further-
more, to remove false positives, it is also advisable to restrict the angle
between the velocity and the feature tangent [16] (e.g. to less than
45◦). Finally, after removing raw feature points together with incident
line segments, the remaining set of feature lines can be checked for a
minimum length. Too short lines are considered as noise and removed.

3 A PREDICTOR-CORRECTOR METHOD FOR VORTEX CORE
LINE EXTRACTION

Two vector fields v and w are parallel where their cross product
c = (c1,c2,c3) = v×w vanishes. In the general case, solutions of this
equation are lines, not isolated points. Therefore, the zero isosurfaces

1244 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

v w Method
u velocity ∇×u vorticity Levy et al. [9]
u velocity er(∇u) single real eigenvector of velocity gradient Sujudi and Haimes [23]
u velocity (∇u)u steady acceleration –, eigenvector-free reformulation
u velocity a acceleration (∇u)u+∂u

/
∂ t Fuchs et al. [4]

a acceleration er(∇u) single real eigenvector of velocity gradient Weinkauf et al. [27]
a acceleration (∇u)a velocity gradient times acceleration –, eigenvector-free reformulation
∇p pressure gradient (∇∇p)∇p pressure Hessian times gradient Miura and Kida [12]

Table 1. Choices of vectors v and w for vortex core line extraction

of c1,c2 and c3 intersect in a line, as is shown in Fig. 1. The tangent
direction of this line is perpendicular to all three gradients ∇ci. From
this we can derive procedures for predicting and for correcting feature
points (subsections 3.2 and 3.3). In comparison with Van Gelder and
Pang’s method [26], our proposed method is restricted to 3-space and
does not support inhomogeneous systems of equations. This restric-
tion allows us to formulate a very simple correction step, which in a
similar way could also be derived for other feature extraction problems
such as isosurfaces or Lagrangian coherent structures.

c = 0
1

c = 0
3 c = 0

2 prediction
∇c x ∇ci j

c = v x w = 0

Fig. 1. Zero isosurfaces of components of c used for prediction and
correction steps.

3.1 Generating seed candidates

In the first stage of the algorithm we need to find potential seed points
for our predictor-corrector method. Since this process needs to look
at the entire data volume, a very fast rejection test is needed for the
algorithm to have reasonable performance.

For the cross product c to vanish in the neighborhood of a particle,
there must be a zero crossing in every component of c and thus both
signs must occur for every component of c within this neighborhood.
To make this test reasonably fast, the radius of the neighborhood is
chosen smaller than the kernel support, but still large enough to guar-
antee a dense covering (1.5h in the case of the cubic spline kernel).
Also, these calculations are carried out on raw feature data to avoid
expensive SPH interpolations.

As a next step, candidates in regions with no swirl are discarded.
This equals to calculating the characteristic polynomial χ of the veloc-
ity gradient and only selecting particles where χ has a pair of conju-
gate complex roots. Instead of just requiring swirl, a minimum vortex
strength can be prescribed. Vortex strength ω is defined as the imagi-
nary part of the complex eigenvalues of the velocity gradient. For rigid
rotation, this is the angular speed, but if a deviatoric strain is added,
|ω| gets smaller, and for pure shear it is zero. Thresholding by vortex
strength is especially useful if large portions of the flow are nearly at
rest (cf. the example in Section 5.3), because it effectively suppresses
small features caused by noise. With the remaining seed candidates,
an initial correction step is made before starting the predictor-corrector
loop to make sure that the seed candidate lies on a feature line.

3.2 The prediction step

To predict the next feature point from a given position, we need the
gradient of the components of c = (c1,c2,c3) = v×w. The gradient
of ci can be expressed by v, w, and their gradients as follows (with
indices taken modulo 3):

∇ci = vi+1∇wi+2 +wi+2∇vi+1− vi+2∇wi+1−wi+1∇vi+2 (7)

From these three vectors, we compute the pairwise cross products
∇ci×∇c j and select the pair (i, j) which maximizes the magnitude
of this cross product. The motivation for this choice is that we want
to simultaneously avoid small angles between isosurfaces (ci = 0) and
small rates of change perpendicular to an isosurface. The direction of
this cross product is now taken as the tangent direction of the feature
line, and its sign is chosen consistent with the current tracking direc-
tion (see Fig. 1). Along this tangent, the next feature point is predicted
at a given step size.

3.3 The correction step
Again the gradients ∇ci are computed using (7), and the pair (i, j)
is chosen for which ∇ci×∇c j has maximal magnitude. The idea is
now to find a feature point in the plane through the given point x and
spanned by the two vectors ∇ci and ∇c j, that is a point x′ = x+s∇ci +
t∇c j. At the point x′ the approximation

c′k ≈ ck +(s∇ci + t∇c j) ·∇ck (k = 1, · · · ,3) (8)

holds. Setting the right hand side to zero for k = i, j leads to the system

s∇ci ·∇ci + t∇c j ·∇ci =−ci

s∇ci ·∇c j + t∇c j ·∇c j =−c j,
(9)

for the unknowns s and t. This system is solved for s and t which
then yield the corrected point x′. In this approach, we ignore the third
component of the cross product, which is fine because the three com-
ponents fulfill

v · (v×w) = v1c1 + v2c2 + v3c3 = 0. (10)

Therefore, when c1 and c2 are zero, c3 becomes also zero as long as
v3 6= 0. If v3 = 0, the same argument can be repeated with v replaced
by w in (10). Only in the degenerate case where v3 = w3 = 0 can c3
become nonzero. However, this will be detected if the corrector does
not converge to a solution.

The correction step is essentially a Newton-Raphson step, and
therefore it can be repeated. We found empirically that two iterations
are sufficient to make the error negligible, for prediction step sizes
chosen to meet rendering requirements. In case of no convergence,
the prediction step can be redone with half the step size, or ultimately,
the feature is terminated.

3.4 Usage of given velocity gradients
Typically, at least one of the vectors v and w involves the velocity
gradient. But often the velocity gradients ∇ui (i = 1,2,3) are available
from the simulation as particle attributes gi = (gi

1,g
i
2,g

i
3). In this case,

(7) can be computed with only first derivatives of the given quantities.

• For the Levy criterion, we have vector components

vi = ui wi = gi+1
i+2−gi+2

i+1 (11)

and gradients

∇vi = ∇ui ∇wi = ∇gi+1
i+2−∇gi+2

i+1 (12)

• For the Sujudi-Haimes criterion, we have v = u as above and

wi = gi ·u (13)

1245SCHINDLER ET AL: PREDICTOR-CORRECTOR SCHEMES FOR VISUALIZATION OF SMOOTHED PAR TICLE HYDRODYNAMICS DATA

and its gradient is computed using the product rule

∇wi =
(

∇gi
)

u+(∇u)gi. (14)

• For the criterion of Fuchs et al. [4], we have

wi = gi ·u+
∂u
∂ t

(15)

and its gradient is computed in analogy to (14). Alternatively,
because here w is the particle acceleration, this can be computed
more simply and efficiently from particle velocities at two time
steps (dividing their difference by the time difference).

• For the criterion of Weinkauf et al. [27], we have

vi = ai wi = gi ·a (16)

(a is acceleration) and gradients computed in analogy to (14).

Note that in (12) and (14) the terms ∇ui must be computed by using
the gradient of the SPH kernels, not using the data attributes gi (even
if they are available). The reason is that the given gradient data may
differ from gradients obtained using kernel gradients. Therefore, to
make the predictor-corrector scheme work, the vectors gi and u must
be treated as independent quantities.

3.5 Termination criteria
The predictor-corrector process terminates when the boundary of the
fluid volume is reached, when the correction step does not converge or
when the filtering criteria fail for N consecutive sample points. It also
terminates when getting close to another feature line or when encoun-
tering a loop (see below).

The way candidate selection works, it is very natural for the candi-
dates to form a cloud around a feature line, thus candidates must be
eliminated on the fly to prevent a feature line from being traced mul-
tiple times. Since the candidate list not only consists of positions, but
also of ids, filtering candidates can simply be done by removing any
id from the candidate list which is inside the neighborhood of a given
tracing point. Since the neighborhood is already calculated for SPH
interpolation, this step does not cause much overhead. Unfortunately,
since candidate points are selected based on raw particle data, this pro-
cess is not completely reliable. To detect a feature line being drawn
multiple times, we save for every particle which core line id and step
number visited it. Thus, when all neighboring particles at a certain
step have already been visited by another core line, the tracing process
is terminated. When all neighbors have been visited by the same core
line already, there is the possibility of a looping core line.

If we would terminate at this point, looping core lines would not
be closed. This is because neighborhoods overlap and the termination
would come too early. Instead, we now calculate a similarity criterion
loosely inspired by [3]. We first find the point on the core line closest
to the last point. We then calculate the average distance of the last N
points to the core line. If this distance is smaller than the step size used
for the prediction step, we terminate.

3.6 Post-filtering of raw features
In the post-filtering stage, the set of raw features is reduced to the final,
meaningful features. For vortex core lines, filtering criteria include the
following:

• a pair of complex conjugate eigenvalues of ∇u
• sufficient vortex strength (see Section 3.1)
• small angle between velocity and the core line.

The small angle criterion is useful, because some of the criteria
assume a “swirl” type vortex and do not work well for “tumble” vor-
tices [8]. It is very usual for a criterion to fail along a core line. To get
nicely connected core lines, we use a tolerant filtering which accepts
N consecutive failures of any filtering criterion before aborting. If N
is reached, the last N inserted feature points are removed to have a
consistent output. In the end, only feature lines longer than a specified
limit are accepted.

3.7 Temporal coherence

When creating animated core lines, feature points of the previous time
step can be reused. Since this guarantees candidate points for the fea-
tures already available in the previous time step, we can reduce the
amount of searching done when generating seed candidates. In our
implementation, we chose to run the candidate test only on every tenth
particle, which results in substantial speed-ups (see Fig. 5). This op-
timization can theoretically lead to a feature being missed for nine
consecutive time steps, but in practice almost all features can be traced
from many possible candidate points. Comparisons with full candidate
searches revealed that only a few very small and short-lived features
were missed.

3.8 Higher-order temporal interpolation

To save storage space, it is common practice in flow simulation to save
only every n-th computed time step. This means that very often data
sets have good resolution in space, but not in time. To make smooth
animations of core lines possible, interpolation between two time steps
is needed. Higher-order instead of linear interpolation can be used,
which on average increases accuracy and reduces visualization arti-
facts, but comes at higher computational cost and can introduce other
artifacts due to overshooting.

With SPH data we have to deal not only with field data, but also with
particle positions, the interpolation of which is especially important
because it affects not only the particle paths but the reconstruction
of all other data channels as well. This is nicely illustrated in Fig. 2
where linear interpolation leads to a water volume that incorrectly fills
the hollow roll formed by a wave turning over. A consequence of this
incorrectly enlarged domain is that a vortex core line is falsely detected
near the center of the roll. When animated, such an “invented” feature
pops up only at interpolated, but not at original, time steps.

With cubic interpolation, interpolated particle paths correctly re-
main inside the water volume and thus the popping artifacts are
avoided. For this, it is sufficient to apply cubic interpolation to po-
sitions, while field data can be interpolated linearly. The advantage of
this scheme is that it can be realized with no more than two time steps
simultaneously kept in memory. This is achieved by using cubic Her-
mite interpolation based on particle positions and on particle velocities
which serve as the first derivatives. The resulting particle paths are C1
and more consistent with the particle velocities. This way, a smooth
(C1) trajectory is obtained and moreover, the problem of overshooting
is avoided by not applying polynomial interpolation to more than two
data points.

Fig. 2. Importance of cubic interpolation of particle paths. Arrows in-
dicate positions and velocities of all particles and show a region of air
under the wave rolling over. Red lines mark linearly interpolated paths
of some of the particles, while green curves indicate the corresponding
cubically interpolated paths.

1246 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

4 UNSTEADY EXTENSIONS OF THE SUJUDI-HAIMES VORTEX
CORE LINE CRITERION

In this section we compare two recent extensions of the Sujudi-Haimes
criterion for vortex core lines to unsteady flow. In its original formu-
lation this criterion requires that the velocity gradient has one real and
two complex eigenvalues and that the real eigenvector is aligned with
the velocity vector. It was discovered later [22] that the second part
of the criterion can reformulated as (∇u)u ‖ u where the term on the
left can be identified as the acceleration of a steady flow. It is obvious
that this expression lacking any temporal derivatives cannot correctly
describe a vortex axis unless the flow is steady or at least quasi-steady.
A straightforward extension is to replace the steady acceleration by
the true acceleration a = (∇u)u+∂u/∂ t. In the case of a steady flow,
this is consistent with the original Sujudi-Haimes criterion, while for
unsteady flow it was shown to give better results [4] in the sense that
they are more consistent with vortices reported by the λ2 criterion.

Independently, Weinkauf et al. [27] found a different extension by
taking Sujudi and Haimes’ initial motivation from 3D to the 4D space-
time domain. Instead of identifying the line about which the flow spi-
rals, they identified a “plane of non-swirling flow” in the 4D domain.
They came up with criteria for vortex centers in 2D and vortex axes in
3D for both steady and unsteady flow. We discuss these four criteria in
the following two subsections, and we give for each of them a second
equivalent formulation which we feel is more intuitive and which also
reveals some close relations.

4.1 Vortex centers in 2D

2D steady flow. In 2D steady flow a vortex center can be defined
as a critical point of the velocity field u(x,y) of type focus or cen-
ter. An equivalent formulation is: The velocity vector is zero and the
velocity gradient has two complex eigenvalues.

2D unsteady flow. Weinkauf’s criterion [27] is the Sujudi-
Haimes applied to the 3D steady space-time flow (encoding the given
unsteady 2D flow):

p(x,y, t) =

(
u(x,y, t)

1

)
=

 u(x,y, t)
v(x,y, t)

1

 (17)

We observe that the Jacobian of p

Jp =

(
∇u ut

0 0

)
=

 ux uy ut

vx vy vt

0 0 0

 (18)

(with subscripts denoting derivatives) has a zero eigenvalue. The
Sujudi-Haimes criterion demands that this is the only real eigenvalue
and that p is the associated eigenvector. Hence we have

Jpp = 0 ·p (19)

which implies
(∇u)u+ut = 0 (20)

An equivalent formulation is therefore: The acceleration vector is zero
and the velocity gradient has two complex eigenvalues.

Consistency with steady case. It is easy to see that the defi-
nition for the unsteady case is consistent with the steady case when
applied to steady flow. The acceleration vector is (∇u)u in the steady
case. This is zero if u is.

4.2 Vortex axes in 3D

3D steady flow. In 3D steady flow a vortex axis can be defined by
the Sujudi-Haimes criterion which requires that ∇u(x,y,z) has a single
real eigenvector and that this is aligned with u(x,y,z). An equivalent
formulation is: The velocity vector is either zero or along the single
real eigenvector of the velocity gradient.

3D unsteady flow. In 3D, Weinkauf’s criterion [27] (equation
28) is that the vector  f1

f2
f3

− f4u (21)

is the single real eigenvector of the velocity gradient. Here the vector
f denotes the eigenvector of Jp belonging to the zero eigenvalue:

Jpf =

(
∇u ut

0 0

)
f1
f2
f3
f4

= 0 (22)

From (22) follows

(∇u)

 f1
f2
f3

+ f4ut = 0 (23)

and therefore the identity

(∇u)


 f1

f2
f3

− f4u

=− f4 (ut +(∇u)u) (24)

in which, by (21), the left hand side is an eigenvector of ∇u. An
equivalent formulation is therefore: The acceleration vector is either
zero or along the single real eigenvector of the velocity gradient.

Consistency with steady case. Again, it is easy to show that
the definition for the unsteady case is consistent with the steady case
when applied to steady flow. The acceleration vector is (∇u)u in the
steady case. This is an eigenvector of ∇u if u is.

4.3 Comparison of criteria

The above reformulation of the vortex axis criterion by Weinkauf et
al. leads to two interesting observations. Firstly, it shows that this
definition of a vortex axis in 3D unsteady flow is Galilean invariant.
This is because both the acceleration vector and the velocity gradient
are Galilean invariant. Secondly, it reveals a close relation with Fuchs
et al.’s unsteady extension of the Sujudi-Haimes criterion [4].

Given a velocity field u(x, t) and a spatial location x where the ve-
locity gradient has a single real eigenvalue (and two complex ones),
let er denote the corresponding eigenvector, and let a denote the ac-
celeration vector (∇u)u + ut . With these three vectors the following
criteria for vortex core lines can now be expressed:

u‖er Sujudi and Haimes

u‖∇u ·u equivalent to Sujudi-Haimes

u‖a Fuchs et al.

a‖er Weinkauf et al.

Of all these, Weinkauf et al.’s a‖er is the only predicate which is
Galilean invariant, which at least theoretically is an advantage. On the
other hand, Fuchs et al.’s u‖a can be viewed as the more immediate
extension to unsteady flow. In practice, the two criteria were found
to behave quite similarly and depending on the application one or the
other might have slight advantages. We provide a comparison based
on unsteady SPH simulations in the results section.

5 RESULTS

5.1 Implementation details

Eigenvector-free formulations. We chose the eigenvector-free
formulations of the Sujudi-Haimes and Weinkauf criteria (see Table 1).
This way the calculation of the second vector reduces to a matrix-
vector product, which is faster than explicitly computing eigenvectors.

1247SCHINDLER ET AL: PREDICTOR-CORRECTOR SCHEMES FOR VISUALIZATION OF SMOOTHED PAR TICLE HYDRODYNAMICS DATA

Fig. 3. The Dam breaking simulation data. The free surface is shown at
time 0.2, 0.7, 1.2, and 1.7.

Eulerian vs. Lagrangian calculation of acceleration. Acceler-
ation data, as is needed for the criteria of Fuchs et al. and Weinkauf et
al., is usually not present in simulation data. Naively, it can be gener-
ated using the Eulerian formulation a = (∇u)u + ∂u

∂ t . This approach
however requires expensive SPH interpolations in three different time
steps, because for computing a finite difference, the velocity has to be
evaluated at a given point in space in two additional time steps. A
better approach is to calculate accelerations from particle attributes.
Since SPH works in the Lagrangian frame, this operation can be done
on the raw particle data. For the k-th particle, acceleration is calcu-
lated as ak(t) = ∂

∂ t uk(t) by using a finite difference. This calculation
can be done off-line as a form of preprocessing which then gives an
additional data channel in the input data, or it can be done on the fly
very quickly. This data is treated like any other raw data quantity. The
resulting core lines are not only more smooth compared to core lines
generated from Eulerian acceleration, they are also significantly faster
to generate, as is shown in Fig. 4.

Candidate filtering. As a means to reduce the number of can-
didates, we explored to filter them and discard those with a vortex
strength ω below a given threshold. Vortex strength measures radians
per second, but by multiplying with a ratio L/U of a typical length
over a typical speed it can be nondimensionalized. For the Dam data
L/U ≈ 8.5/3.0 and for the Tsunami data L/U ≈ 3.2/1.0, therefore
a threshold of 1.0 roughly means a winding angle of π per typical
length. We did not observe any loss of features when using this thresh-
old. Fig. 4 and 11 show the savings in computing time for ω = 0.0 (no
filtering), 0.1, and 1.0.

Software. The vortex extraction software has been imple-
mented as a module on top of ParaView [6]. It can
be downloaded from the URL http://graphics.ethz.ch/
research/visualization/sphvis.php. The temporal in-
terpolation code has been implemented as a separate ParaView
filter so that it can be reused in conjunction with other filters and
is being contributed to the core of the ParaView software pack-
age. It can be found under Filters→ Temporal→ Temporal
Interpolator (Particles).

All benchmarks were run on an Intel Q6600 quad core processor
with 3 GB of RAM running Linux.

5.2 Dam breaking simulation data set
Our first test data set is an SPH simulation of the SPHERIC dam break
case [7]. It has 670,575 fluid particles and 87 time steps, and the cubic
spline kernel has been used. Solid boundaries are modeled with solid
particles, while the air contains no particles.

Qualitative comparison of vortex core line methods. The well
known vortex core line methods by Levy et al. and by Sujudi and
Haimes are known to often produce quite different results. In this data
set, they behave remarkably similar (see Fig. 6). Interestingly, the two
unsteady extensions of Sujudi-Haimes produce significantly different
results, but among themselves they are quite consistent. This is an in-
dication that the methods designed for steady flow are not appropriate
for flow with strongly unsteady characteristics.

Fig. 4. Total time (seconds) for full feature extraction for the dam break
data set. An average over five time steps has been taken, and temporal
coherence was disabled. Three levels of candidate filtering based on
vortex strength ω are shown. The bars are broken up to show the time
taken by the candidate selection process (bottom) and the tracing step
(top). It clearly shows that for large data sets and adequate filtering, the
process is bound by the amount of time taken finding candidates.

Fig. 5. Impact of exploiting temporal coherence (criterion of Fuchs et
al.). The first time step is searched fully, while for subsequent time steps
temporal coherence is used. Total CPU seconds for a range of time
steps of the dam breaking data.

Fig. 6. Comparison of vortex core line criteria, Levy et al. (yellow), Sujudi
and Haimes (green), Weinkauf et al. (blue), Fuchs et al. (red). Closeup
of the vortex analyzed in detail in the accompanying video. The vortex
chosen is one of the quasi-symmetric pair of strongest vortices. Results
of the methods designed for steady / unsteady flow are pairwise similar.

Direct vs. resampling-based extraction. As a verification of
our predictor-corrector method, we compared results with those ob-
tained from velocity data resampled on a uniform grid. In Figs. 7 and 8
such a comparison is shown for a grid of roughly the same number of
nodes (660,275) as there are particles. The results are consistent for
all larger and stronger vortices. Feature extraction from resampled
data took 1.6 seconds, which is about 50 percent higher than direct

1248 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

grid nodes grid spacing mean error std. dev.
86,346 0.0264 0.00409 0.00196

660,275 0.0132 0.00305 0.00148
4,351,760 0.0066 0.00217 0.00107

Table 2. Error caused by resampling

Fig. 7. Vortex core lines directly computed from SPH data (yellow), and
from uniformly resampled data (magenta). Levy’s criterion (used in both
cases) extracts vortex axes in instantaneous velocity field, indicated also
by streamlines (dark blue).

Fig. 8. Close-up of Fig. 7, core lines only. Results show good consis-
tency, with the direct method (yellow) being slightly less noisy.

extraction from SPH data with temporal coherence enabled. In addi-
tion, the resampling took 7.2 seconds which, in principle, could also
be reduced by exploiting temporal coherence. If temporal coherence
is not exploited, our method requires roughly half as much time as the
resampling-based method (see Fig. 4). When comparing a resampling-
based method with a direct one, a point can be found where the resam-
pling frequency is low enough to make the resampling-based method
the faster one [14]. In our case, to reach this point, the grid must be
chosen even coarser than we did in the above experiment. That is, there
would be fewer sampling points than particles, and consequently the
quality of the result would be inferior to that in Fig. 7. For a quantita-
tive assessment of the quality of a feature point, we applied correction
steps (Section 3.3) and measured the length of the total correction. As
can be seen from Table 5.2 the mean error is roughly a quarter of the
grid spacing, and it is therefore very costly to reduce it. This allows us
to conclude that resampling is useful only for previewing purposes.

5.3 Tsunami data set

We tested our algorithm also on a second data set, an SPH simulation
of the creation of a tsunami [19]. In this simulation, a wedge is sliding
downward which is idealizing a section of earth falling. The number
of fluid particles is 58,674 (such low numbers are not uncommon in
hydrodynamics, in contrast to astrophysics). The number of time steps
is 227, and the kernel is a quadratic function within a support radius of
2h. This data set exhibits a vortex structure above the wedge, moving
downward with the wedge while deforming. Again, we observe a clear
difference between the features obtained with a steady and an unsteady
criterion (see Fig. 9) throughout most of the time steps. The steady
criterion (method by Levy et al.) reports a single vortex, however, its
middle part is neither in agreement with the unsteady variant nor with
the λ2 isosurface. The unsteady criterion (Fuchs et al.) reports only
the two end pieces of that feature, which is consistent with both the
steady criterion and the λ2 isosurface. That the feature does not follow
the λ2 isosurface along the edge of the wedge could be an effect of
the low number of particles. But it is also important to notice that λ2
cannot be taken as a ground truth for vortex detection.

t = 6.6s

t = 7.0s

t = 7.4s

Fig. 9. Three time steps of the tsunami simulation data set. Vortex core
lines according to Levy’s criterion (yellow) are connected, while those
according to Fuchs et al. (red) consist of two shorter pieces. Isosurfaces
of λ2 confirm the existence of a vortex, but not the exact location of either
type of core lines. The blue spheres represent (every tenth of) the SPH
particles at the first of the three time steps.

Fig. 10. LIC images of the tsunami velocity field at t=7.0s (the middle
time step of Fig. 9) at the symmetry plane of the domain. Velocities are
as seen from a static observer (left), an observer moving with the Levy
feature curve (middle), and an observer moving with the wedge and thus
with the hypothetical vortex indicated by the λ2 isosurface (right).

Since both the Levy feature curve and the λ2 isosurface are quasi-
symmetric near the symmetry plane of the domain (and of the wedge),
we checked both of these features for being consistent with Robinson’s
vortex definition [18] according to which spiraling flow behavior must
be seen by an observer moving with the vortex core (which is within

1249SCHINDLER ET AL: PREDICTOR-CORRECTOR SCHEMES FOR VISUALIZATION OF SMOOTHED PAR TICLE HYDRODYNAMICS DATA

Fig. 11. Total time (seconds) for feature extraction from the Tsunami
data set, under the same conditions as for the dam data in Fig. 4. Be-
cause there are a lot of small velocity magnitudes, filtering candidates
based on ω is essential.

the symmetry plane). The LIC images in Fig. 10 show that spiraling
flow exists at the intersection of both the feature curve and the iso-
surface, but only if the observer moves at a speed different from that
of the core of the hypothetical vortex. As a consequence, there is no
strong indication of a single connected vortex, and in that sense, the
unsteady criterion gives the better results than the steady one.

6 CONCLUSION

This paper presents a new method for finding vortex core lines in SPH
data on the basis of the parallel vectors operator. We have shown how
our predictor-corrector approach can make use of the SPH representa-
tion to efficiently generate high quality output. The method was then
extended to detect loops in vortex core lines and to exploit tempo-
ral coherence, speeding up the extraction process significantly. The
described approach is straight-forwardly extended to other mesh-free
data as long as kernels are radially symmetric and given analytically
such that derivatives can be efficiently evaluated. The method is also
extendable to other features than vortex core lines. Height ridges, e.g.,
can be computed by defining the vectors v and w of Section 3 appro-
priately, which involves the Hessian of the given scalar field.

We also contributed a theoretical comparison of two unsteady ex-
tensions of the method of Sujudi and Haimes and an analysis of the
results obtained with these variants. We found that the two criteria
by Weinkauf et al. and by Fuchs et al. produce very similar results.
We interpret this result in the way that in practice, Galilean invariance
seems less important than the use of a criterion based on the true (un-
steady) acceleration vector. Because the criterion by Fuchs et. al also
performed better in terms of runtime performance than the other cri-
teria, we can conclude that this criterion should be preferred over the
others for visualizing unsteady velocity fields.

What is still a matter of future research is to give a physical inter-
pretation of these two criteria that were derived largely by analogy. We
would also like to investigate tolerant filtering not only in space, but
also in time, to further reduce flickering of features in animations. One
way of achieving this would be to track entire features using corrector
steps on the vertices of a feature line of the previous time step. This
will require careful handling of merging and splitting of features.

ACKNOWLEDGMENTS

The authors would like to thank Jean-Christophe Marongiu for the
“dam breaking” data set, Ben Rogers for the tsunami data set, Yun
Jang for discussions, and the anonymous reviewers for their helpful
comments. The project SemSeg acknowledges the financial support of
the Future and Emerging Technologies (FET) programme within the
Seventh Framework Programme for Research of the European Com-
mission, under FET-Open grant number 226042.

REFERENCES

[1] D. C. Banks and B. A. Singer. A predictor-corrector technique for visu-
alizing unsteady flow. IEEE Transactions on Visualization and Computer
Graphics, 1(2):151–163, 1995.

[2] J. Biddiscombe, D. Graham, P. Maruzewski, and R. Issa. Visualization
and analysis of SPH data. ERCOFTAC Bulletin, SPH special edition,
76:9–12, 2008.

[3] Y. Chen, J. Cohen, and J. Krolik. Similarity-guided streamline placement
with error evaluation. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1448–1455, 2007.

[4] R. Fuchs, R. Peikert, H. Hauser, F. Sadlo, and P. Muigg. Parallel Vectors
Criteria for Unsteady Flow Vortices. IEEE Transactions on Visualization
and Computer Graphics, 14(3):615–626, 2008.

[5] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamic:
theory and application to non-spherical stars. Monthly Notices of the
Royal Astronomical Society, 181:375–389, 1977.

[6] A. Henderson. ParaView Guide, A Parallel Visualization Application.
Kitware Inc. (http://www.paraview.org), 2005.

[7] K. M. T. Kleefsman, G. Fekken, A. E. P. Veldman, B. Iwanowski, and
B. Buchner. A volume-of-fluid based simulation method for wave impact
problems. Journal of Computational Physics, 206(1):363–393, 2005.

[8] R. S. Laramee, D. Weiskopf, J. Schneider, A. Graz, and H. Hauser. In-
vestigating swirl and tumble flow with a comparison of visualization tech-
niques. In In Proceedings IEEE Visualization 04, pages 51–58, 2004.

[9] Y. Levy, D. Degani, and A. Seginer. Graphical visualization of vortical
flows by means of helicity. AIAA Journal, 28:1347–1352, 1990.

[10] L. B. Lucy. A numerical approach to testing the fission hypothesis. The
Astronomical Journal, 82(12):1013–1924, 1977.

[11] J. C. Marongiu, F. Leboeuf, and E. Parkinson. Numerical simulation of
the flow in a Pelton turbine using the meshless method SPH and a new
simple solid boundary treatment. Proc. of the Institution of Mechanical
Engineers, Part A: Journal of Power and Energy, 221(6):849–856, 2007.

[12] H. Miura and S. Kida. Identification of tubular vortices in turbulence.
Journal of the Physical Society of Japan, 66:1331–1334, 1997.

[13] J. J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress
in Physics, 68:1703–1759, 2005.

[14] B. Nelson and R. M. Kirby. Ray-Tracing Polymorphic Multidomain
Spectral/hp Elements for Isosurface Rendering. IEEE Transactions on
Visualization and Computer Graphics, 12(1):114–125, 2006.

[15] R. Peikert and M. Roth. The “Parallel Vectors” Operator - A Vector
Field Visualization Primitive. In Proc. IEEE Visualization, pages 263–
270, 1999.

[16] R. Peikert and F. Sadlo. Height Ridge Computation and Filtering for
Visualization. In I. Fujishiro, H. Li, and K.-L. Ma, editors, Proceedings
of Pacific Vis 2008, pages 119–126, 2008.

[17] D. J. Price. SPLASH: An interactive visualisation tool for Smoothed
Particle Hydrodynamics simulations. Publications of the Astronomical
Society of Australia, 24:159–173, 2007.

[18] S. Robinson. Coherent Motions in the Turbulent Boundary Layer. Annual
Rev. of Fluid Mechanics, 23:601–639, 1991.

[19] B. D. Rogers and R. A. Dalrymple. SPH Modeling of Tsunami Waves. In
Advanced Numerical Models for Simulating Tsunami Waves and Runup,
pages 75–100. World Scientific Publishing, 2008.

[20] P. Rosenthal and L. Linsen. Smooth surface extraction from unstructured
point-based volume data using pdes. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1531–1546, 2008.

[21] P. Rosenthal, S. Rosswog, and L. Linsen. Direct Surface Extraction from
Smoothed Hydrodynamics Simulation Data. In Fourth High-end Visual-
ization Workshop, pages 50–61. Lehmanns Media - LOB, 2007.

[22] M. Roth and R. Peikert. A Higher-Order Method for Finding Vortex Core
Lines. In Proceedings of the conference on Visualization ’98, pages 143–
150, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[23] D. Sujudi and R. Haimes. Identification of Swirling Flow in 3D Vector
Fields. Technical Report 95-1715, AIAA, 1995.

[24] J. Sukharev, X. Zheng, and A. Pang. Tracing parallel vectors. Visualiza-
tion and Data Analysis 2006, 6060(1):682–695, 2006.

[25] H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Extrac-
tion of parallel vector surfaces in 3D time-dependent fields and applica-
tion to vortex core line tracking. In Proc. IEEE Visualization 2005, pages
631–638, October 2005.

[26] A. Van Gelder and A. Pang. Using PVsolve to Analyze and Locate Posi-
tions of Parallel Vectors. IEEE Transactions on Visualization and Com-
puter Graphics, 15(4):682–695, 2009.

[27] T. Weinkauf, J. Sahner, and H. Theisel. Cores of Swirling Particle Motion
in Unsteady Flows. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1759–1766, 2007.

1250 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

