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Abstract

The field of information visualization tries to find graphical representations of data

to explore regions of interest in potentially large data sets. Additionally, the use

of algorithms to obtain exact solutions, which cannot be provided by basic visual-

ization techniques, is a common approach in data analysis. This work focuses on

optimization, distance computation and data estimation algorithms in the context

of information visualization.

Furthermore, information visualization is closely connected to interaction. To

involve human abilities in the computation process, the goal is to embed these

algorithms into an interactive environment. In an analysis dialog, the user observes

the current solution, interprets the results and then formulates a strategy of how

to proceed. This forms a tight loop of interaction, which uses human evaluation to

improve the quality of the results.

Optimization is a crucial approach in decision making. This work presents an

interactive optimization approach, exemplified by parallel coordinates, which are

a common visualization technique when dealing with multi-dimensional problems.

According to this goal-based approach, multi-dimensional distance computation is

discussed as well as a data estimation approach with the objective of approximating

simulations by the analysis of existing values.

All these approaches are integrated in an existing visual analysis framework and

deal with multi-dimensional goals, which can be defined and modified interactively

by the user. The goal of this work is to support decision makers to extract useful

information from large data sets.
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Kurzfassung

Das Anwendungsgebiet der Informationsvisualisierung versucht graphische Darstel-

lungen von Daten zu finden, um relevante Teilbereiche in oftmals hochdimensionalen

Datensätzen zu untersuchen. Zudem werden oft Algorithmen eingesetzt, die exakte

Lösungen bereitstellen, welche durch elementare Visualisierungstechniken nicht ver-

mittelt werden können. In der vorliegenden Arbeit werden die Themen Optimierung,

Distanzberechnung und Datenabschätzung im Kontext der Informationsvisualisie-

rung behandelt.

Darüber hinaus ist der Begriff Informationsvisualisierung eng mit Interaktion

verbunden. Um menschliche Fähigkeiten in den Berechnungsprozess einzubeziehen,

werden diese Algorithmen in eine interaktive Umgebung eingebunden. In einem

Mensch-Maschine-Dialog beurteilt der Benutzer die derzeitige Lösung, interpretiert

das Ergebnis und formuliert die weitere Vorgehensweise. Dies führt zu einem In-

teraktionskreislauf, der sich menschlicher Beurteilung bedient, um die Qualität der

Lösung zu verbessern.

Optimierung ist ein äußerst wichtiger Ansatz in der Entscheidungsfindung. Die

vorliegende Arbeit behandelt einen interaktiven Optimierungsansatz. Der Lösungsweg

wird am Beispiel von parallelen Koordinaten erläutert, welche eine gängige Visuali-

sierungstechnik in Verbindung mit mehrdimensionalen Problemen darstellen. In An-

lehnung an diesen zielbasierten Ansatz wird mehrdimensionale Distanzberechnung

diskutiert, sowie ein Ansatz zur Datenabschätzung mit dem Ziel, Simulationen durch

die Analyse von vorhandenen Werten zu approximieren.

Die Algorithmen sind in ein bestehendes Visualisierungssystem integriert und

wurden in Hinblick auf mehrdimensionale Ziele entwickelt, die interaktiv vom Be-

nutzer definiert und modifiziert werden können. Das Ziel der Arbeit ist es, Ent-

scheidungsträger bei der Suche nach zweckdienlichen Informationen in großen Da-

tensätzen zu unterstützen.
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Chapter 1

Introduction

The large amount of information available today bears enormous potential. Thus,

it gets more and more important to find ways to determine and present sets of data

which are relevant for a specific task. The comparatively young field of information

visualization aims to give insight into the flood of data. However, the retrieved

information is often visualization dependent, which means that only the actually

displayed information can be explored. For example, figure 1.1 shows a scatter plot

of a data set comparing cars. The image clearly indicates a relation between horse-

power and fuel consumption (miles per gallon). To determine more relations, an

advanced visualization technique can be used, like parallel coordinates. However,

some tasks might need an exact solution that cannot be provided by basic visual-

ization techniques. In this case, algorithms are necessary that prepare the desired

results first.

The intention of this work is to examine ways to integrate algorithms into infor-

mation visualization in order to solve complex optimization tasks, distance compu-

tation and data estimation.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Scatter plot showing horsepower and fuel consumption (miles per gallon) of
cars. Data courtesy of Donoho and Ramos [12].

1.1 Visualization

Visualization is the process of creating visual representations of data. The intention

is to use knowledge about human perception for data analysis. The use of visual

metaphors helps to amplify cognition. Visualization can be seen as a mapping from

data to the human perception system. Data is mapped to visual structures, which

meet the properties of perception. The challenge is to find a suitable visualization

technique to give more insight into the data. At the same time, it has to be assured

that no incorrect patterns are perceived, which would lead to incorrect decisions

[34].

A reference model for mapping data to visual form was introduced by Card

et al. [5]. This model is leading to the visualization pipeline (figure 1.2), which

describes the process of converting raw data to visual representations. The first

step is to acquire data by measurements, simulations or modeling. The goal of the

data transformation step is to transform the raw data into appropriate data sets to

work with. Often the data format is built upon data tables, where each data entity

is represented by one row, containing a fixed number of dimensions (columns). This
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step also includes data enhancement like filtering, resampling and interpolation. For

example, the data could require noise suppression or aggregation. Once the data is

stored in a suitable form, a visual mapping is applied. The intention of this step

is to generate renderable structures. The mapping approach depends on the data

itself and the intention of the visualization. For example, volume data generated in

medical applications is often mapped to geometry or point clouds, since an inherent

spacial reference is given. On the other hand, abstract data can be represented by

structures, whose appearance have no clear reference to the underlying data, like

glyphs. The challenge in this step is to find suitable structures to represent the

data and to support the user in the analysis of the data set. The final step is to

generate an image by applying computer graphics methods. The view transformation

handles visibility, illumination and other viewing parameters. Nowadays, this part

is typically realized in a flexible way to support user interaction. By changing

view parameters, the user is able to explore the data set. Apart from navigation

actions like zooming, panning and rotations, other interaction methods may involve

changing the color parameters and altering visibility.

Figure 1.2: The visualization pipeline. It describes a reference model for mapping data
to a visual form. Human interaction is used to tailor the visualization to specific needs.
Image adapted from Card et al. [5].
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1.1.1 Goals

The major goals of visualization are presentation, confirmatory analysis and ex-

ploratory analysis [26]. The Oxford English Dictionary (1989) defines visualization

as follows:

“To form a mental vision, image, or picture of (something not visible or

present to sight, or of an abstraction); to make visible to the mind or

imagination.”

This describes a very abstract visualization term, but it becomes clear that visualiza-

tion is more than visual information seeking. In this section, some goals and related

application areas of visualization are given, as denoted by Keim [24]. Basically, the

goals of visualization can be summarized by three types.

Exploration. Visualization can be used to create hypotheses. Typically, very little

is a priori known about the data. In this case, visualization helps searching

for structures, trends, etc. For example, in medical applications, visualization

can be used to find anomalies in data sets generated be computer tomogra-

phy. Interaction plays an important role in data exploration, especially when

dealing with large data sets [5].

Analysis. If there are hypotheses about the data, visualization can be used for

examination. The goal is to verify or to disprove these hypotheses. This also

includes quality control of simulations and measurements. In the automotive

industry, for example, flow visualization is used to improve the aerodynamics

behavior by evaluating the car designer’s work.

Presentation. If (almost) everything is known about the data, the third important

visualization goal is to present the data. In this case, visualization serves for

communication of the results. For example, the results of elections are often

visualized as bar charts. The data is known and the intention is to present

them in a way that provides an easy perception of the distribution of votes.
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1.1.2 Scientific Visualization versus Information Visualiza-

tion

Card et al. [5] give the following rough classification of visualization disciplines.

Volume visualization. This topic deals with representing 3D volumes and pro-

vides techniques to explore them. A typical application is the analysis of

medical data.

Flow visualization. Flow visualization is the study of methods to display the dy-

namic behavior of flows. It is used in the analysis of liquid or gas flows, as

well as in weather observation applications. The challenge here is to combine

spatial and temporal variables in one visualization.

Information visualization. Information visualization focuses on representing ab-

stract data. The goal is to deliver insight into (mostly large) data sets that

often do not have any spatial or temporal reference.

Most other kinds of visualization like illustrative visualization and software visualiza-

tion can be seen as subtypes of the general classification above. Volume visualization

and flow visualization are often grouped under the term scientific visualization, since

the applications in this area involve the visualization of physical data such as the

human body, the earth, and so on. Unlike scientific visualization, information visu-

alization deals with abstract, not necessarily physically-based data. The challenge

with abstract data is to design visual representations. Often virtual objects are

created that can be manipulated as if they were real objects. For example, figure

1.3 shows a visualization of hierarchical data. Inspired by nature, a file structure is

visualized as a tree [29].

Rhyne [45] poses the question, whether this separation is justified anymore.

There are visualization applications combining techniques from both types of vi-

sualization. The recent interest in visualizing bioinformatics data is mentioned as

an example. Information visualization techniques are well suited for genomic data,

as they use metaphors to deal with the inherently non-spatial characteristics of ge-

nomic data sets. On the other hand, there are biological and chemical aspects, which

rather belong to the area of scientific visualization.
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Figure 1.3: Botanic visualization of a Unix home-directory. The file structure is visualized
as tree. Image from Kleiberg et al. [29].

Another issue is cartographic and geographic information. Weather modeling,

environmental sciences, geology, and other earth sciences make use of cartographic

metaphors as typically found in information visualization. At the same time, the

inherent spacial reference and the clearly non-abstract data require scientific visu-

alization and sometimes real-time rendering.

It turns out that many application areas benefit from both scientific and infor-

mation visualization. Therefore, it is a legitimate question, if it is really necessary

to distinguish between information and scientific visualization.
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1.2 Data Enrichment

As mentioned in section 1.1, the visualization pipeline includes data enrichment

in the data transformation step. Additional information may be derived from the

source data that might be useful for a specific application. For example, computing

gradients enhances the visualization of a 3D data set. Data enrichment in the present

context is concerned with the creation of useful information about the underlying

data set.

Data analysis is not only done by visualization. Applying algorithms on the data

set is still a much more common approach, which is suitable to get specific informa-

tion about certain characteristics. This section provides an overview of approaches,

which are relevant for this work. All these approaches have in common that they

rely on multi-dimensional goals.

The major contribution of this work is the integration of domain-specific au-

tomatic methods into information visualization. The approach given here defines

a tight loop of interaction. Information visualization helps to explore the current

solution. The user analyzes the solution and uses the new knowledge to modify the

algorithm parameters, if the results are not satisfying. Once the interaction process

is finished, the computation is restarted and the new solution is visualized. The

interaction between the user and the combination of information visualization and

the used algorithm forms the core of this work. Figure 1.4 illustrates this loop.

Figure 1.4: Loop of interaction. The tight coupling of user input, automated data pro-
cessing and information visualization plays an important role in this work.
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1.2.1 Optimization

Optimization is a crucial approach in decision making. The goal is to identify an

optimal solution to a problem with respect to one or more objectives (i.e., maxi-

mizing or minimizing a function), where the parameter space is typically restricted

by constraints. A classical optimization task is to achieve maximum benefit at min-

imum cost. Chapter 4 describes the computation and visualization of a specific

optimization algorithm. This algorithm is embedded in an interactive environment.

1.2.2 Distance Computation

A useful data extension is to store an additional value to each data entry that

describes the distance to a specified goal. The interactive approach presented in this

work helps to detect entries, which are beneficial for a specific purpose as well as

outliers. Several distance computation techniques are discussed in chapter 5, dealing

with assigning numerical distance values to the data with respect to predefined

multi-dimensional goals.

1.2.3 Data Estimation

This work describes a method to estimate the data characteristics at a predefined

multi-dimensional goal. Based on an approximation approach, the intention is to

provide estimations of not yet simulated parameterizations in order to get a “sim-

ulation preview”. In the application context of analyzing multiple simulation runs,

the purpose of this method is to spare costly simulations by approximation. In a

loop of interaction, the user may specify and alter the multi-dimensional goal and

the visualization system updates and displays the estimated result. Chapter 6 gives

a detailed description of this task.



Chapter 2

State of the Art and Fundamentals

In the introduction the necessity of effective viewing techniques was discussed. This

chapter presents approaches that were developed in the field of information visualiza-

tion. In particular, the concept of parallel coordinates is discussed. The subsequent

sections give an overview of multi-criteria and interactive optimization, as well as

a brief discussion on memory-based reasoning. Furthermore, the Bulk Analyzer

visualization tool is described.

2.1 Information Visualization

A study done by the University of Berkeley showed that in 2002 print, film, magnetic

and optical storage media produced about 5 exabytes (five times 260 bytes) of new

data and this value increases every year [33]. The amount of data to deal with is huge

in many areas. As an example, in the field of engineering large, multi-dimensional

data sets are generated by measurements and simulations. Simple methods to dis-

play data such as lists or tables are of limited use for such amounts of complex

data due to the lack of visual structures that can be perceived well by the human

and the limited interaction potential [5]. The emerging and rapidly growing field

of information visualization seems to offer solutions in order to get insight into the

data, to show its structure, anomalies and behavior. The idea is to combine human

cognition and perception with the computational power of computers. Card et al.

[5] give the following definition:

9
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“Information visualization: The use of computer-supported, interactive,

visual representations of abstract data to amplify cognition.”

2.1.1 Visualization Techniques

A classification of visualization techniques is not straightforward. Some techniques

are combining several ideas and others are very specific to a certain application,

like special topics in document visualization. Keim [25] classifies information vi-

sualization techniques by their basic visualization principle. This section briefly

summarizes this classification and presents some examples.

Standard 2D/3D displays. Simple displays, such as bar charts and scatter plots,

are often used since they are easy to understand and it is common knowledge

to interpret them. The major disadvantage is that the number of shown di-

mensions is very limited.

Geometrically transformed displays. This kind of displays aims at mapping

multi-dimensional data to a set of points or lines. The main idea is to transform

the multi-dimensional data set into the two-dimensional space. This way,

a high number of dimensions can be visualized. Typical examples here are

scatter plot matrices or parallel coordinates, which are discussed in detail

later in this chapter.

Icon-based displays. These displays try to map the attribute values of a multi-

dimensional data item to the features of an icon. The number of displayable

dimensions is not limited with this approach. However, they are not used very

often with high-dimensional data sets, since a quick information exploration

is problematic. The famous Chernoff faces or stick figure icons can be taken

as examples.

Dense pixel displays. Pixel based displays, such as the circle segments technique

[4], target at mapping each value to a colored pixel. Pixels are grouped ac-

cording to the dimension the item belongs to and are arranged on the screen

appropriate to different purposes (e.g., the most relevant data items may be

presented in the center of the display). In general, one pixel is used per data

value, so the number of displayable values is rather high.
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Stacked displays. Stacked displays are based on a hierarchical subdivision of the

data. For example, tree maps fill the screen space recursively, where the area

reserved for each item is proportional to a selected attribute (e.g., the size of

a file).

In the following, some examples are presented here that should demonstrate the

wide range of techniques covered by the field of information visualization. Figure

2.1 shows a basic visualization of 2D and 3D data using scatter plots. Data values

are simply mapped to a Cartesian coordinate system where each axis represents an

attribute. As a well known visualization technique, scatter plots are used in many

fields of application. Extensions to scatter plots have been introduced in order to

(a) (b)

Figure 2.1: Visualization of low-dimensional data: (a) 2D scatter plot and (b) 3D scatter
plot comparing cars. Data courtesy of Donoho and Ramos [12].

increase the number of displayable dimensions. The scatter plot matrix in figure 2.2

(a) represents each dimension plotted against each other in a matrix. Only one half

of the matrix has to be displayed, since it is symmetric. The number of displayed

dimensions is only limited by the physical screen space. Another idea to show a set

of n-dimensional points is realized in parallel coordinates. As depicted in figure 2.2

(b), the axes are not set orthogonal, but parallel and every data point is represented

as a line strip. The illustrations in this work focus on parallel coordinates, therefore

this approach is discussed in detail in the next section.
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(a) (b)

Figure 2.2: Visualization in higher dimensions: (a) Scatter plot matrix in 5 dimensions
and (b) parallel coordinates comparing cars. Data courtesy of Donoho and Ramos [12].

Icon-based displays follow a different approach. Data characteristics are repre-

sented by certain features and visual properties of icons (also referred to as glyphs).

Figure 2.3 demonstrates this in two examples. The Chernoff faces in figure 2.3 (a)

depict every n-dimensional data item as a face icon. Each dimension is represented

by a face attribute (like head shape, nose length, and so on). Similar to this, star

glyphs in figure 2.3 (b) consist of line segments radiating from a central point. The

length of each line segment indicates the value of the corresponding data dimension.

Although exact data values are hard to perceive with icons and glyphs, they are

suitable to convey certain aspects efficiently and often make use of metaphors of the

respective application domain.

Pixel-oriented visualization follows the pixel-per-value approach. As an example,

the circle segments technique is shown in figure 2.4 (a). An important issue of pixel-

oriented techniques is how the pixels are arranged on the screen. The idea of this

example is to map a data set with m dimensions onto a circle with m segments.

Each segment represents a different attribute. To improve the comparability between

dimensions, the pixels are sorted (independently for each segment) and colored based

upon their data value. It is intended for high dimensional data and each pixel stands

for a single value of one dimension.
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(a) (b)

Figure 2.3: Icon-based visualization techniques: (a) Chernoff faces; (b) Star glyphs. Im-
ages from Lee et al. [31].

Another well-known visualization technique are tree maps. Tree maps belong to

the class of stacked displays and are designed for visualizing hierarchical structures.

Using size and color, leaf nodes and subtrees are encoded in a space-filling way.

Figure 2.4 (b) shows a tree map representing a file system.

2.1.2 Parallel Coordinates

The challenge in visualizing multi-dimensional data is to map the desired informa-

tion onto a two-dimensional display screen. Due to human physiology, the brain is

trained to think in not more than three dimensions. To map a space of arbitrary di-

mensions onto the screen, techniques have to be applied that deal with this problem.

Many visualization methods have been proposed and some of them were discussed

in the previous section. One of the most important techniques for visualizing multi-

dimensional data are parallel coordinates, introduced by Alfred Inselberg [22] in the

1980s. Since plotting more than three orthogonal axis is impossible, the dimensions

are drawn as parallel lines, typically vertical and equally spaced. This way, there is

no predefined restriction on the number of displayable dimensions. To show a set of

points in an n-dimensional space, data values are depicted by polygonal lines, often

called polylines. Each line intersects all axes and represents one data value in the

n-dimensional space. The point of intersection with an axis is given by the mapped

position of the value in this dimension. For n = 2 the result of this is a point↔ line
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(a) (b)

Figure 2.4: Dense pixel displays and stacked displays: (a) Circle segments technique
representing about 265,000 data items in 50 dimensions; (b) Tree map representing a disk
directory system containing 850 files, colored by file type. Images from Ankerst et al. [4]
and Shneiderman [49].

duality (figure 2.5). Each point in the two-dimensional space represents a line in

parallel coordinates. Vice versa, all lines in parallel coordinates that have a common

intersection point, induce points in the plane, which are positioned on a line. This

line corresponds to the intersection point in parallel coordinates. The order of axes

influences the display a lot. To reduce clutter in this technique, it is sometimes

helpful to rearrange the dimensions to minimize the outliers between neighboring

dimensions [40]. A simple approach is to sort the dimensions according to the data

characteristics (e.g., median, standard deviation, ...). Advanced methods can be

used to determine the similarity of dimensions in order to find the optimal axis ar-

rangement [3]. A useful axes order may also show clusters and correlations which

are not visible in a different arrangement.

The parallel coordinates technique targets at continuous data variables. To use

categorical data within parallel coordinates, the categories have to be mapped to

numbers [46]. Because of the discrete nature of categorical data, polylines are bun-

dled to few points in categorical dimensions and the space on each axis is not used

efficiently. For purely categorical data, parallel sets are more practical, which adopt

the layout of parallel coordinates with the idea of displaying frequencies as represen-
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(a) (b)

Figure 2.5: In the plane parallel coordinates induce duality: (a) Lines in parallel coordi-
nates represent points in the scatter plot; (b) A point in parallel coordinates represents a
(virtual) line in the scatter plot.

tatives for the categories [30]. One problem with this visualization technique is that

lines usually need more space to be drawn than points. If there is a huge amount

of data values, the lines will fill all the available space and it will be impossible to

extract information of the visualization. Advanced drawing techniques or clustering

algorithms are used to overcome this issue [21][15]. Also, interaction is a crucial

component here to be able to explore the data conveniently, as described in the

following section.
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2.1.3 Interaction

Interaction plays an important role in information visualization. Adopting the vi-

sualization dynamically greatly facilitates the exploration of multi-dimensional data

sets. A summary of interaction techniques is given in the following [25].

Dynamic projections. The dynamical change of projections allows to modify

view transformations. An important example is camera movement, which

allows the change of position of the observer. Viewing from another angle can

avoid object occlusion, which is a major problem in dense information spaces

[5].

Interactive filtering. The selection of desired subsets is very difficult for very large

data sets. Therefore a number of interaction techniques have been developed

to improve interactive filtering in data exploration. For example, magic lenses

show a modified view of the selected region, while the rest of the visualization

remains unaffected. The idea is to support filtering of the data directly in the

visualization, where several lenses with different filters may be used [5].

Interactive zooming. Large data sets are often presented in a highly compressed

form to provide an overview of the data. Zooming is used to display details,

which does not only mean to display the data objects larger but it also means

that the data representation automatically changes to present more details

on higher zoom levels [25]. For example, the table lens approach implements

interactive zooming, which is used to visualize large tabular data [43]. Each

numerical value is represented by a small bar, which has a height of one pixel

and the length is determined by the attribute value. In order to explore a

region of interest the user can zoom in and the affected rows (or columns) are

displayed in more detail, usually in textual form.

Interactive distortion. Distortion is a useful way to show specific portions of the

data set with a higher level of detail while others are shown with a lower level

of detail. This approach uses the focus and context concept, since the user

needs both the overview (context) and detail information (focus) [5]. Popular

techniques are hyperbolic and spherical distortion [25]. Examples of distortion

techniques include bifocal displays [52] and graphical fisheye views [16].
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Interactive linking and brushing. It is often necessary to combine several visu-

alization techniques to overcome the shortcomings of single approaches, since

all of them have strengths and weaknesses. Linking and brushing ensures that

selected points are highlighted in all visualizations. Interactive changes made

in one visualization are automatically reflected in the other visualizations [25].

Focusing on parallel coordinates in this work, interaction techniques specific for this

kind of visualization are discussed in the following, which are also mentioned by

Hauser et al. [21]. A more general discussion on direct manipulation of parallel

coordinates is given by Siirtola [50].

Reordering of axes. One of the most important interaction features when work-

ing with parallel coordinates is the possibility to reorder axes. For example,

to clearly indicate relations between the values of two dimensions, it is often

necessary to put the appropriate axes side by side.

Flipping of axes. To improve the recognizability of correlations, it is useful to

change the ordering of values on certain axes.

Changing the mapping. Normally, the value range of each axis is adjusted to the

underlying data. Sometimes it it helpful to manually specify a range. It could

also be advantageous to enforce that a specific value (e.g., zero) is mapped to

the same height along all coordinate axes.

Clustering. One way to reduce visual clutter is clustering. The main cause of the

clutter comes from too many polylines. To overcome this problem, polylines

are grouped according to application-specific parameters (e.g., by similar val-

ues of a specific dimension). Zhou et al. [61] describe a clustering algorithm

based on the geometric relationship between polylines.
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2.2 Introduction to Optimization

Our daily life consists of making decisions every day. In many cases, real-world

decision problems can be formulated as mathematical optimization problems. Opti-

mization can be defined as the science of determining the “best” solutions to certain

mathematically defined problems, which are often models of physical reality [13].

Optimization became an independent subject in the late 1940s, when linear program-

ming methods were investigated [55]. Nowadays, modern optimization methods can

solve large scale problems and are essential parts in many computer-assisted appli-

cations. To use optimization, an objective must be identified, which is a quantitative

measure of the performance of the system under study [38]. This objective could be

profit, time or any other quantity that can be represented by a single number. More

complex optimization problems deal with more than one objective. These problems

will be discussed in the next section. The general form of optimization problems is

min f(x) (2.1)

s.t. x ∈ S,

where x ∈ Rn is a decision variable, f(x) an objective function and S ⊂ Rn a

constraint set or feasible region [55].

A classification of optimization problems can be done in several ways, according

to different aspects of the problem itself or their solutions. In the following, classifi-

cation criteria are given, which are discussed in more detail by Nocedal and Wright

[38].

Discrete and continuous optimization. In discrete optimization, the variables

used in the objective function(s) are restricted to assume only discrete values,

such as the integers (e.g., a number of objects). The problem is then known as

an integer programming problem [60]. By contrast, continuous optimization

finds a solution from an uncountably infinite set, typically a set of vectors with

real components [38].
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Unconstrained and constrained optimization. Problems can be classified by

the existence of constraints on the variables. In unconstrained optimization

problems of the form

min f(x) (2.2)

s.t. x ∈ Rn,

often (natural) constraints are disregarded if they have no effect on the so-

lution [38]. Thus, there is no restriction on the search space. Constrained

optimization problems arise from models that include explicit constraints on

the variables. These constraints may be simple bounds or more complex con-

straints such as nonlinear inequalities that represent relationships among the

variables [38][58]. A problem is called linear programming (LP), if it involves

the optimization of a linear objective function, subject to linear equality and

inequality constraints [35]. LP is an important special case of optimization

problems, because many practical problems can be formulated as linear pro-

gramming problems and it therefore arises in a vast number of fields and

applications.

Local and global optimization. Local optimization algorithms seek a solution

that is only locally optimal. They do not always find the best of all optima,

which is the global solution. The global optimum of the whole domain is usually

difficult to identify and even more difficult to locate [38]. Although global

solutions are necessary in many applications, local optimization algorithms

are important as they are comparatively fast and, in addition, many global

optimization algorithms proceed by solving a sequence of local optimization

methods [55]. To give an example, linear programming problems fall in the

category of convex programming, in which all local solutions are also global

solutions [38].

Stochastic and deterministic optimization. In many situations, decision mak-

ers wish to solve optimization problems which depend on parameters which

are unknown. Stochastic optimization algorithms use these quantifications of

the uncertainty to produce solutions that optimize the expected performance
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of the model [51]. In deterministic optimization problems the model is fully

specified. Deterministic algorithms are exact in so far as a repeated execution

will yield the same output given the same input.

Single-objective and multi-objective optimization. Problems can also be clas-

sified according to the nature of the objective function. The general form

(equation 2.1) states a single-objective problem, since only one objective func-

tion is to be minimized. However, in many real-world decision making prob-

lems, optimization techniques are applied to sets of functions, which represent

multiple criteria. Multi-objective optimization often means to compromise con-

flicting goals. In this case, there will always be more than one optimal solution

[59]. As this work mainly deals with multi-objective optimization, these prob-

lems will be discussed in more detail in the following section.

The applicability of optimization methods is widespread, reaching into many activ-

ities in which numerical information is processed, and much research has been done

on optimization methods. To describe all techniques that were introduced in the

last 50 years would go beyond the scope of this work. Focusing on problems with

multiple objectives, the following section will provide an overview of multi-objective

optimization algorithms.
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2.3 Multi-Criteria Optimization

In many real-world problems, there is more than one criterion crucial before coming

to a decision. These tasks are called multi-criteria or multi-objective optimization

problems.

2.3.1 Objective Functions

Miettinen [37] defines multi-objective optimization problems as follows. The starting

point is a problem of the form

minimize {f1(x), f2(x), . . . , fk(x)} (2.3)

s.t. x ∈ S,

where S ⊂ Rn denotes a feasible region. The word minimize means that all objective

functions fi are minimized simultaneously. Here we have k objective functions fi :

Rn → R. These form an objective vector

f(x) =


f1(x)

f2(x)
...

fk(x)

 . (2.4)

The statement above refers to a minimization problem only. If an objective function

fi has to be maximized, it is equivalent to minimize−fi. The goal is to find a decision

vector

x =


x1

x2

...

xn

 (2.5)

such that every objective function attains its optimum.
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2.3.2 Pareto Optimality

If the functions are not conflicting, a solution exists that is optimal with respect

to every objective function. In real-world problems, this trivial case occurs very

rarely. Usually, multi-criteria optimization means finding a compromise by trading

off contradicting objectives against each other. In this case, there will always be

more than one solution.

Pareto optimality defines the front of solutions that can be reached by trading-

off the conflicting objects in an optimal manner [59]. This concept is based on

efficiency. A point x ∈ S is efficient if its criterion vector is not dominated by the

criterion vector of some other point in S. In other words, a point in a minimization

problem is efficient if it is not possible to decrease one of the objectives without

necessarily increasing at least one of the others [54]. Figure 2.6 shows Pareto efficient

points in a two-dimensional minimization problem. The set of these points is called

Pareto set or Pareto frontier. The concept of Pareto optimality is used in chapter 4,

where an algorithm is presented, which computes Pareto frontiers in an interactive

environment.

Figure 2.6: Efficient points define the Pareto frontier in a two-dimensional minimization
problem.
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2.3.3 Solutions to Global Optimization

A classification of algorithms to solve global multi-objective optimization problems

is given by Weise [59]. Figure 2.7 emphasizes the multitude of the approaches.

Figure 2.7: Classification of global optimization algorithms. Image from Weise [59].
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Weise divides optimization algorithms into two basic classes: deterministic and

probabilistic algorithms. A deterministic algorithm is an algorithm which behaves

predictably. Given a particular input, it will always produce the same output, and

the algorithm will always pass through the same sequence of states [11]. On the

other hand, an algorithm is probabilistic (also called randomized) if its behavior is

determined not only by its input but also by values produced by a random-number

generator, so random choices are made during the course of the algorithm [11]. In

case of probabilistic optimization algorithms, they try to make a trade-off between

guaranteed correctness of the solution and shorter runtime. This does not mean the

results could be incorrect, but they may not be the global optima [59].

An important class of algorithms is evolutionary computation. It encompasses

algorithms that are based on a set of multiple solution candidates (called popu-

lation) which are iteratively refined. Evolutionary algorithms (EA), which form a

subset of evolutionary computation, are well-suited for optimization problems and

have grown in popularity over the last years. Evolutionary algorithms are random-

ized search algorithms using biology-inspired mechanisms like mutation, crossover,

natural selection and survival of the fittest [59]. The basic idea behind evolutionary

algorithms is to copy the process of Darwinian evolution in order to find solutions

for hard problems. Figure 2.8 shows the basic process cycle of such an algorithm.

Figure 2.8: The basic cycle of evolutionary algorithms. The process of finding solutions is
based on selection and reproduction. Image from Weise [59].
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2.4 Interactive Optimization

Many real-world optimization problems cannot be totally automated. In this case,

user interaction is necessary for refining the optimization problem. Interactive opti-

mization (a.k.a. human-in-the-loop optimization or human-guided search) is a field

of optimization based on user feedback. There has been a considerable amount

of work on automatic optimization systems. However, interactive approaches are

very rare. Current optimization systems typically solve simplified formulations of

real-world problems and produce solutions which sometimes are difficult for users to

understand or trust. Interactive optimization allows users to explore many possible

solutions in order to better understand the trade-off between possible solutions and

then choose a solution based on their understanding of the domain.

Approaches using an interactive process leverage the strengths of both humans

and computers. Research in interactive optimization directly addresses the questions

of how people can effectively interact with optimization systems and how far the

user can affect the solutions to the current problem [7]. Simple user interaction is

used in interactive evolution. These algorithms generate solutions via biologically

inspired methods and use human evaluation to produce better solutions in the next

iteration step [56]. Other systems provide more interactivity by allowing users to

control search parameters or to manually modify computer-generated solutions [48].

A reason to involve people in the optimization process is to leverage their abil-

ities in areas in which humans outperform computers, such as visual perception or

learning from experience. On the other hand, the major problems with interactive

optimization are human fatigue in the interaction process and the fact that human

evaluation is slow and subjective [56].

2.4.1 Cycle of User Interaction

In the introduction, the loop of interaction was mentioned. This loop describes the

steps in the human-computer interaction. Chimani et al. [7] define the cycle of user

interaction as three activities: inspection, modification and reoptimization of the

current solution. These steps are illustrated in figure 2.9 and briefly discussed in

the following.
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Figure 2.9: The cycle of user interaction is defined by inspection, modification and reop-
timization.

Inspection. In this step, the user browses through the solution and checks if all

constraints are satisfied. Information visualization assists the user in this task

by providing interaction techniques.

Modification. Once the quality of the current solution is determined and the user

is not satisfied with the results, the modification state is applied. The user

modifies the optimization parameters in order to get a better solution. This

step is the major difference to automatic methods and it is in particular nec-

essary if user has real-world knowledge that is not modeled in the problem

specification.

Reoptimization. After the modification phase, the optimization algorithm is restarted

using the modified parameters. To investigate if this leads to a better solution,

the cycle of user interaction turns to the inspection step again.

2.4.2 Selected Approaches

Interactive optimization systems add new contributions to the research topics of

optimization and information visualization. In this section, some approaches and

applications are presented that make use of interactive optimization concepts.

Human-guided search. Human-guided simple search uses a hill-climbing algo-

rithm [47] for finding local minima. By visualization and interaction tech-

niques, the human user identifies promising regions of the search space for the
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computer to explore [2]. The idea is to escape non-optimal local minima by

human guidance. Human-guided tabu search [27] follows the same approach

using a more complex optimization algorithm. The HuGS platform [28], a

toolkit for interactive optimization, provides visual metaphors that allow users

to focus and constrain the exploration of the search space.

Interactive evolution. As mentioned above, interactive evolution algorithms are

based on an iterative process. Subjective human evaluation is used to control

the progress of the iteration. Thus, it is an evolutionary computation technique

whose fitness function is replaced by a human user [56]. Interactive examples

are provided by the University of Kent as online experiments [14]. Oliver et

al. [39] deal with the problem of automatically generating the style and layout

of web pages. They use a genetic algorithm, which takes into account user

preferences by selecting solutions that he favors according to their graphical

representation.

Interactive partitioning. Lesh et al. [32] apply interactive optimization on k-way

network partitioning, which is the NP-hard problem of partitioning the nodes

of a network into k disjoint subsets with the goal to minimize the number

of hyperedges spanning two or more subsets. The purpose of the interaction

component is to select groups of nodes on which to concentrate the computer’s

search.

Interactive design optimization. Aspects of design are typically ignored in op-

timization models because they are difficult to model with mathematics. How-

ever, they are very important in areas such as architectural design. Michalek

and Papalambros [36] describe an interactive design optimization approach for

architectural layouts. An interactive design CAD tool allows the designer to

add, delete and modify objectives (e.g., minimize wasted space), units (e.g.,

bedrooms) and constraints during optimization to refine the problem defini-

tion. The designer may interact with the optimization problem in three ways:

defining the problem, guiding the search and exploring the design space.
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Interactive decision making. Pirkul et al. [41] describe the visual interactive de-

cision support tool VisOpt, which is designed to solve P -median optimization

problems (e.g., locating P facilities relative to a set of customers). The system

provides a graphical representation of the problem and allows easy manipula-

tion of solution characteristics through a point and click approach. What-if

questions can be answered by clicking on visual elements, which makes it easier

for the decision maker to define the optimization parameters.

2.5 Memory-Based Reasoning

Memory-based reasoning (MBR) is an approach from the field of machine learning

that is used to discover valuable information from existing data. A new problem is

solved by finding similar cases in the past, and reusing them in the new problem

situation. For example, a salesman could infer the profit of this year’s sales from

the known profit of a past year having comparable conditions. MBR emphasizes a

collection of cases as a large memory, and reasoning as a process of searching in this

memory [1].

MBR is used in many pattern recognition and machine learning applications. The

rapidly growing amount of information continually produced and distributed makes

it difficult to retrieve relevant information and to draw conclusions from known data

concerning future cases. MBR is a quantitative method that predicts a new case by

retrieving similar cases from the past. It uses the past cases to predict the solution

to the current problem [6]. MBR belongs to a class of methods named case-based

reasoning (CBR). This class covers a range of different methods for organizing,

retrieving, utilizing and indexing the knowledge retained in past cases [1].

The key question is how to find reference cases to predict the solution of the

current problem and how similar one data instance is to another. This yields an

application-related degree of similarity [23]. A simple approach in classification is

the nearest neighbor (NN) method. NN classifies an instance X according to the

class of the stored instance whose Euclidean distance to X is minimal [42]. In this

case, the Euclidean distance defines the similarity feature. In this work, a simple

MBR approach is used to estimate data values concerning predefined targets. The

goal is to approximate data with respect to given input parameters. The background
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of this approach is to avoid costly simulations. In many real-world applications,

data is collected by simulations of a system that reacts on input parameters. These

simulations can be time-consuming and expensive. To get a “preview” of the data

values with respect to modified input parameters, a data estimation approach is

used, which is based on distances and interpolation of existing values.

2.6 The Bulk Analyzer

Bulk Analyzer is an information visualization system aiming at multi-dimensional,

large data sets. It was developed at the VRVis research center [57], where this

work was done. The system combines concepts and techniques commonly used in

information visualization toolkits. Due to an extensible framework, new views can

be added to the system by the use of a plug-in mechanism. It supports various

input formats and visualization techniques like histograms, scatter plots (in 2D and

3D), parallel coordinates, categorical data, hierarchies, curves and even time series.

Important concepts of the toolkit are given in the following sections.

2.6.1 Linking and Brushing

A strength of Bulk Analyzer is the linking and brushing concept over multiple views.

The user selects subsets of the data set and the system automatically highlights

these values in all views. This often provides more information than considering

the visualizations independently [25]. Furthermore, the toolkit provides composite

selections. Selections can be specified by queries using the Boolean operations AND,

OR and NOT. For example, a selection can be formed by two interval selections on

different attributes, combined by a logical AND. By this concept, the selected subset

can be restricted or expanded in a flexible way.

2.6.2 Layers

The Bulk Analyzer supports four data layers, which determine certain subsets of the

data set. By different visual representations of these layers, the focus and context

concept is obtained. The all entries layer represents all data items currently im-
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ported. The current selection layer specifies the current focus specified by a query

mentioned above. An arbitrary number of queries can be defined in Bulk Analyzer,

but only one of them can be the current focus at a time. All other selections belong

to the context layer. The superfocus layer represents highlighted values which cur-

rently lie beneath the mouse cursor. The visual properties of each layer (e.g., color,

transparency, ...) can be set independently. Figure 2.10 illustrates an example of

this, showing three different views comparing car properties. The scatter plot shows

horsepower and miles per gallon (MPG), the histogram accumulates MPG values

using 50 bins and the parallel coordinates view compares the attributes horsepower,

MPG, acceleration and the number of cylinders. The gray values denote all val-

ues that are not part of a focus or context layer. The red values show the current

selection, which is specified by an interval on the right-most axis of the parallel

coordinates view. The green values are part of the context layer. Finally, the blue

values belong to the superfocus layer, which is given by the mouse position in the

histogram view. Changes in any layer updates the visual layer representation in all

views.

2.6.3 Used Data Sets

This section shortly describes the data sets used in this work to illustrate the theo-

retical background. For simple exemplifications, the cars data set [12] is used. The

data set was collected by Ernesto Ramos and David Donoho in 1982 and deals with

automobiles. It includes eight variables for 406 different cars and it is a quite popular

data set in various kinds of publications. The variables include vehicle weight, horse-

power, time to accelerate from 0 to 60 mph, miles per gallon, number of cylinders,

engine displacement, model year and origin (American, European, Japanese).

To demonstrate the results using real-world data, a more complex data set is

used, which originates from simulation data of an engine manufacturer and is de-

scribed in detail at the beginning of the case study in chapter 7. It includes input

and output parameters and is therefore particularly suitable for the data estimation

task in chapter 6.
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Figure 2.10: Layers in the Bulk Analyzer system. Used views: 2D scatter plot, histogram
and parallel coordinates depicting car attributes. Layers: The all entries layer is gray-
colored. The current selection layer (red) and the context layer (green) are defined by
interval selections in the parallel coordinates view. The superfocus layer (blue) is given
by the mouse position in the histogram view. Data courtesy of Donoho and Ramos [12].



Chapter 3

Multi-Objective Problems

An important goal of this work is to provide interactive means for finding solutions to

problems involving more than one objective function. The objectives, which often

are in conflict, may describe very different aspects of the solution. These multi-

objective or multi-criteria problems come in the context of optimization. Collette

and Siarry [9] define optimization problems as the search for a minimum or max-

imum (the optimum) of one or more functions, which define the objectives of the

optimization problem.

Optimization is discussed in the next chapter, which uses minimization, maxi-

mization and a third objective type goal, which is a minimization of |f(x)− g| in

mathematical terms, with g denoting the goal value. From a conceptual standpoint,

a goal objective means a certain value on a specific dimension, which describes the

objective in a numerical way.

The concept of goal values is reused in the chapters on distance computation and

data estimation. In these topics, goals are seen as points in the n-dimensional space.

Although there is a conceptual difference between multi-dimensional objectives in

optimization and n-dimensional goals in the subsequent chapters, the generation and

manipulation of goal values is realized in a uniform manner. The large overlap of the

two concepts, especially with regard to interaction, led to this combined handling

of goals. Therefore, this concept is a kind of link between the different topics dealt

with in this work.

32
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3.1 Defining Objectives

In Operations Research, objectives are handled in a more sophisticated way. The

parameters of multi-objective problems are differentiated between attributes, ob-

jectives and goals [8]. Attributes mean properties or characteristics of alternatives.

Objectives denote specific and measurable requirements to meet, thus a concrete

purpose. For instance, a problem could have the attributes effort and benefit, where

the aim of minimizing effort and maximizing benefit are objectives. Intentions that

are not specific enough to be measured, are usually referred to as goals. Goals are

abstract purposes toward which an endeavor is directed, whereas objectives are con-

crete intentions. In the example above, a goal could be to make money. The present

text uses the term objective for the minimization or maximization of values in a spe-

cific dimension. The term goal is not used as the vague intention mentioned above,

but as a definition of a concrete value in a particular dimension, thus a goal value

can be seen as an objective in numerical terms. For this reason, the term objective

is used for both the actual objectives (minimization, maximization) and the goals.

In the chapters on distance computation and data estimation, goals denote points

in the n-dimensional space and appoint targets of the actual problem.

For the studies in this work, it is possible to define objective functions for ar-

bitrary dimensions. When dealing with parallel coordinates, this task is intuitive,

since each considered dimension is depicted by a particular axis. Section 3.3 shows

how this ability is provided in the Bulk Analyzer system.

3.2 Assessment Ranges

To provide more control over the optimization’s result, the objective concept was

extended. Objectives are not only defined by their target dimension and type (min-

imization, maximization, goal) in the Bulk Analyzer system. Additionally, assess-

ment points represent distances from the goal value, which allow for assessing the

“quality” of individual cases with respect to the according objective. Each objec-

tive has three assessment points. The target defines a range around the goal value,

where resulting values are considered desirable. The tolerated range encloses the

target range. Values located in this range are considered acceptable but not opti-
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mal. Finally, the undesirable point has the highest distance from the goal value and

defines a range, in which results are unacceptable. Solution points outside these

ranges are ignored, if assessment ranges are activated.

These ranges are defined by the user, separately for each objective. By this

concept, it is possible to split up the solution set into four quality sections. Values

inside the target range of each objective are cases of best quality, tolerated values

are acceptable, undesirable values are unacceptable and all other cases have worst

quality. For instance, a constraint could be to highlight only those values of the

solution set, which are contained within the tolerated range of all objectives.

In case of goal objectives, assessment ranges are placed symmetrically around

the goal value. When dealing with maximization and minimization objectives, as-

sessment ranges only make sense in one direction. The next section shows, how this

is realized in the Bulk Analyzer system.

3.3 Integration into Bulk Analyzer

If an objective is defined for a dimension, one of three types can be set as objective

function: maximization, minimization and goal. Goal objectives make it possible to

specify arbitrary numerical goal values to the optimization. In the Bulk Analyzer

system, the user may specify objectives in two ways. In a dialog, numerical input is

supported by selecting a target dimension, choosing the objective type and entering a

value in case of a goal objective. Assessment ranges are specified by entering the dis-

tance to the goal value for each range. The advantage of the dialog-based objective

specification is to provide precise input in form of numerical values. Additionally,

a graphical approach was implemented, which offers the ability to change the goal

value and the assessment ranges interactively in the parallel coordinates view. The

graphical objective representation was designed with regard to interaction. The user

may modify the parameters directly in the graphical data representation, allowing

an uninterrupted working process without opening dialogs. The drawback of this

approach is that precise input is not always possible.

Assessment ranges are depicted by various colors. The green area represents

the target, yellow indicates the tolerated range and red is assigned to undesirable.

Figure 3.1 shows the visualization of three objectives. The optimization consists of
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a maximization on the acceleration axis, a minimization on the number of cylinders

and a goal value of 138 on the horsepower axis. Note that in case of a goal objective,

the assessment ranges extend in both directions. The goal value and the assessment

points can be changed interactively by dragging.

Figure 3.1: Objectives in a parallel coordinates visualization showing attributes of cars.
Acceleration is maximized, the number of cylinders is minimized and horsepower is set to
a goal of 138. Data courtesy of Donoho and Ramos [12].



Chapter 4

Interactive Optimization

Many problems in today’s applications do not have only one solution, which fits

best for all criteria. Especially in the case of multi-criteria optimization, objectives

are typically contradicting each other, leading to a set of solutions. Therefore,

identifying “optimal” parameterizations requires trading off objectives against each

other. Among other approaches, involving the user in this process can help to

attain reliable solutions fast. Pursuing this motivation, this chapter describes an

interactive approach to multi-criteria optimization combining computation-based

algorithms with visualization of multi-variate data.

4.1 Goals

The goal of optimization algorithms is to find the optimal solution to a specific prob-

lem. Although optimization usually is used analytically (which means it operates

on functions), this chapter describes a multi-criteria optimization approach, which

operates on discrete values. Especially when dealing with a large number of data

elements in high dimensions, the use of computation-based techniques is essential.

Many optimization algorithms exist and the informative value of the results also

depends on the given problem.

A point in the solution set is optimal if it maximizes the potentiality to reach the

decision maker’s goals. Sometimes the effort is too high to find optimal points, so in

practice a “near-optimal” solution is often satisfying. Therefore, the final solution

36
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often differs from the optimal solution in multi-criteria optimization problems [54].

The following section specifies a way to determine optimal solutions in the Pareto

sense. Also, an algorithm will be presented that finds the Pareto optimal solution

to a given optimization problem.

4.2 Pareto Algebra

As a starting point of solving this kind of problems, we make use of Pareto alge-

bra, named after Vilfredo Pareto (figure 4.1), an Italian sociologist, economist and

philosopher. Among contributions in other fields of science, one of his main interests

was the analysis of individuals’ choices. He introduced the concept of Pareto opti-

mality (also named Pareto efficiency) [10]. The starting point is an optimization

Figure 4.1: Vilfredo Pareto (1848 - 1923). Image from Wikipedia [10].

problem with potentially conflicting objectives. With respect to Pareto optimality,

a solution is said to be optimal, if it is impossible to find a solution which improves

one or more objectives without worsening any other. As an example, imagine we

are looking for a powerful car, which saves fuel at the same time. Figure 4.2 shows

the two dimensions of the cars data set already mentioned in chapter 2. Thus, we

are interested in finding those cars which have maximum horsepower and maximum

MPG (miles per gallon). This states a typical optimization problem with multiple
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criteria. In this example, there are two functions to maximize simultaneously:

max
x∈D

f1(x) (4.1)

max
x∈D

f2(x) (4.2)

where f1 stands for horsepower and f2 means MPG (with D denoting the considered

domain). The figure clearly indicates that there is more than one item in the Pareto

optimal solution set (the red points depict the solution). In fact, most real-world

problems lead to multiple solution points when dealing with Pareto optimality.

Figure 4.2: Pareto optimal solution in a scatter plot comparing cars with the goal to
maximize horsepower and MPG simultaneously. Data courtesy of Donoho and Ramos
[12].

A point in D is optimal if it fits best for the user’s purposes, thus it maximizes

the utility function. To be optimal, a point must be efficient, which means that it is

not possible to increase one objective without decreasing at least one of the others.

Inefficient solutions are not candidates for optimality.
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In the following, mathematical definitions are given that are part of Pareto al-

gebra [17].

Definition 4.1 A quantity is a set Q with a partial order � .

We assume here that smaller values are preferred over larger ones. This does not

fit to our maximization problem above, but we will see in the next section that it is

easy to convert a general optimization problem to a minimization problem.

Definition 4.2 A configuration space S is the Cartesian product Q1×Q2× . . .×Qn

of a finite number of quantities.

Definition 4.3 A configuration c = (c1, c2, . . . , cn) is an element of the configura-

tion space Q1 ×Q2 × . . .×Qn.

In the example above a configuration would be a point in the scatter plot, therefore

a car having concrete horsepower and MPG values.

Definition 4.4 If c1, c2 ∈ S, then c1 � c2 if and only if for every Qk of S, c1(Qk) �
c2(Qk). If c1 � c2, then c1 is said to dominate c2.

Dominance of one configuration over another describes a partial order. If c1 � c2,

then c1 is at least as good as c2. There could be quantities, which are better, but

none of them will be worse. Configurations that are not dominated by any other

configuration in the configuration space are called Pareto points. These form a set

of configurations, which are best with respect to all quantities and it is called Pareto

optimal set or Pareto frontier. It usually represents the trade-off between conflicting

goals. In literature, often the term “best compromises between the criteria” is used.

Furthermore, disregarding all points that are contained within the Pareto frontier

and searching for the Pareto points again, obtains a second Pareto frontier. All these

points are dominated by the points in the first frontier and dominate all remaining

points. If this method is continued until all points are assigned to Pareto frontiers,

a classification of data entries is obtained, that subdivides the data like peeling

onion skins. The next section presents a deterministic algorithm, which computes

all Pareto frontiers for a given data set of arbitrary dimensions.
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4.3 A Deterministic Algorithm Computing All Pareto

Frontiers

4.3.1 Data Preparation

The algorithm assumes that the data is stored in a two-dimensional array containing

the data entries for each objective (dimension).

data[number of objectives][number of entries]

As the algorithm itself minimizes all objectives, all involved dimensions have to be

transformed to minimization problems first. A maximization problem is equivalent

to a minimization problem after inverting the sign of all values of the respective data

column. For objectives, where a goal value g is given, each value x is transformed

to

x′ = |x− g| (4.3)

in order to translate the objective to an equivalent minimization problem. The

result of the algorithm is saved to an array that holds the Pareto frontier index for

each data item. This array is initialized to −1 for each entry.

frontiers[number of entries]

4.3.2 The Algorithm

The algorithm presented here is designed to find all Pareto frontiers. It terminates

when all entries are assigned to a frontier (algorithm 1).

Algorithm 1 Computes all Pareto frontiers

1: procedure ComputeParetoFrontiers
2: frontier index ← 1
3: repeat
4: ComputeFrontier(frontier index)
5: frontier index ← frontier index + 1
6: until all entries are assigned to a frontier
7: end procedure
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Algorithm 2 computes whether entries belong to the specified frontier. The

procedure takes a frontier index as parameter and searches for entries that belong

to this frontier by iterating through all items. The first check is if the current item’s

frontier index is already found (line 3). In this case, it is skipped, since we know

that it surely does not belong to the current frontier. Then the algorithm analyzes

all items after the currently observed one (line 5). Again, items are skipped if they

belong to a different frontier. If there are two items, that potentially belong to the

considered frontier, a sub procedure is called that provides the information, whether

one item is dominating the other (line 7).

Algorithm 2 Computes membership to a Pareto frontier

1: procedure ComputeFrontier(frontier index)
2: for i = 1 to number of entries do
3: if frontiers[i] is −1 then
4: currentFrontier ← true
5: for j = i + 1 to number of entries do
6: if frontiers[j] is −1 then
7: result ← CheckDomination(i, j)
8: if result is “j dominates i” then
9: {i does not belong to the current frontier, so stop here}

10: currentFrontier ← false
11: break for-loop
12: end if
13: end if
14: end for
15: if currentFrontier is true then
16: {i belongs to the current frontier}
17: frontiers[i] ← frontier index
18: end if
19: end if
20: end for
21: end procedure

The procedure CheckDomination (algorithm 3) compares two data items with

respect to Pareto algebra as described in the last section. It takes two indices as

input parameters and iterates through all objectives (line 4). If the value at the

first index of the current objective is less than the value at the second index, but

greater for any other objective (line 7), none of the items is dominating the other,
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since for domination no value must be “worse”. The same holds for the other way

round (line 13). After all objectives have been considered, a domination state can

be assigned (lines 19-28).

The advantage of this algorithm over other solutions is that it is deterministic. It

always assigns the correct Pareto frontiers, independent of the data characteristics.

In each step a predefined way to proceed is given, since it does not use any random

components. Another benefit is that it computes the result frontier by frontier. This

way, a Pareto frontier can be visualized while the next one is still being processed,

assuming that the underlying system supports multiple threads. This concept was

used in the Bulk Analyzer system and it proved beneficial not to block the user’s

work while the calculation is running.

A disadvantage of the shown algorithm is its quadratic runtime, which will be

analyzed later in this work. When dealing with millions of data items, this algorithm

will not help very much, since the computation time will be prohibitively long. In

this case, the exact solution should be disregarded in favor of an acceptable runtime,

if a solution “near the optimum” is satisfactory.
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Algorithm 3 Gets domination information for two entries

1: procedure CheckDomination(first index, second index)

2: index1Smaller ← false

3: index2Smaller ← false

4: for all objectives do

5: if data[objective][first index] < data[objective][second index] then

6: index1Smaller ← true

7: if index2Smaller is true then

8: {none of the entries is dominating the other}
9: return “no domination”

10: end if

11: else if data[objective][first index] > data[objective][second index] then

12: index2Smaller ← true

13: if index1Smaller is true then

14: {none of the entries is dominating the other}
15: return “no domination”

16: end if

17: end if

18: end for

19: if index1Smaller is true and index2Smaller is false then

20: {i dominates j in all dimensions}
21: return “i dominates j”

22: else if index1Smaller is false and index2Smaller is true then

23: {j dominates i in all dimensions}
24: return “j dominates i”

25: else

26: {none of the entries is dominating the other}
27: return “no domination”

28: end if

29: end procedure
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4.3.3 Runtime Studies

For the following runtime analysis we denote n as the number of entries in each data

column and m as the number of used objectives.

The ComputeFrontier procedure has to check every entry against every entry

that comes after it. The outer loop takes n calls, the inner loop n
2

in average. The

function is called m times in the main procedure, thus we have a complexity of

m · n · n
2

so far. The CheckDomination procedure iterates through all objectives

again, therefore the total complexity is m · n · n
2
·m. The number of objectives m is

constant and usually there will be much more data entries than objectives, so the

crucial element is n. This leads to the notation c · n2 and the quadratic runtime

O(n2). The quadratic runtime holds for the best case and the worst case as well

here.

This is not the fastest way to compute Pareto frontiers, but it is an easy and

straightforward algorithm. However, if just an approximation is needed instead of

the exact solution, genetic algorithms improve performance. Coello et al. [8] give

examples of how to solve multi-objective problems using evolutionary algorithms.

4.3.4 Improvements

One improvement that was made in the implementation for the system was addi-

tional data preparation. When testing the algorithm with real-world data, it became

clear that multiple data points have equal values on all considered dimensions used

as objectives. All these entries will have the same Pareto frontier index, so it is

not necessary to compute the frontier index for each of them. The implementation

marks all entries with identical values for all objectives in a previous step and starts

the frontier index calculation just for one of them. The resulting frontier index is

assigned to the remaining points afterward. Although the task of marking multiple

data entries also causes extra costs, the performance of the algorithm increases, if

there are many entries lying on the same point in the m-dimensional space, with m

denoting the number of objectives.



CHAPTER 4. INTERACTIVE OPTIMIZATION 45

4.4 Integration into Bulk Analyzer

This section covers the challenge of integrating the algorithm described above into

the information visualization system Bulk Analyzer. The intention was to provide

a framework to define objectives, to compute the Pareto frontiers and to visualize

the results. A major design goal was interactivity, so objectives should be able to

be modified in an interactive way.

4.4.1 Integration into the System

The algorithm was implemented as drafted in section 4.3. In a first version, the

resulting frontier indices were just stored in an array. Thresholding was used to set

the focus mask for entries, where the frontier index is smaller than or equal to a

value defined by the user. This approach turned out to be too limited, as there was

no possibility to reuse the computed values in any other way.

In a second version, the frontier indices are stored in a separate data dimension.

This way, the values computed by the algorithm can be accessed by any component

in the system. The content of this dimension depends on the optimization param-

eters, which are defined by objectives. If any parameter is changed, the values are

optionally updated automatically or by clicking a button. We will return to this

concept in chapter 5.

Each Pareto frontiers dimension can be used like any other attribute. In par-

ticular, it can be shown as a new axis using parallel coordinates and the individual

Pareto frontiers can be selected directly within the view via brushing. In figure 4.3,

the first frontier of an optimization is selected. The left image shows the number

of entries contained within each Pareto frontier in a histogram. The first frontier

is selected and highlighted in parallel coordinates, where the right-most axis shows

the appropriate frontiers dimension itself.

4.4.2 Frontier Selection and Assessment Restriction

Apart from Pareto frontiers dimensions themselves, an additional selection com-

ponent was added to the system. It provides the ability of changing the selected

frontier (all entries of frontiers smaller than or equal to a user-defined threshold)
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(a) (b)

Figure 4.3: Selection of a Pareto frontier of an optimization: (a) Histogram showing the
number of data items in each Pareto frontier; (b) The optimization in parallel coordinates.
The right-most axis represents the Pareto frontier dimension. The highlighted values
denote the first frontier. Data courtesy of Donoho and Ramos [12].

and optionally also considers the assessment ranges. Sometimes there are entries in

the set of Pareto points that lie far away from one or more goals. To make sure,

that only goal-relevant values are highlighted, the Pareto frontier selection can be

restricted to one of the user-defined assessment ranges. Although it is also possible

to achieve this restriction by a combination of interval selections on the axes, this

approach is more intuitive. For each objective, the user is able to define ranges,

in which results are tolerated or not. In figure 4.4, the first eight Pareto frontiers

are selected, restricted to the tolerated range (the yellow area on the objectives).

Changes on the assessment ranges take effect immediately; there is no need to start

a new frontier calculation, since all frontiers are already computed and stored in the

Pareto frontiers dimension.
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Figure 4.4: Component handling frontier selection and assessment ranges. In this example,
the frontier selection is restricted to the tolerated range of each objective. Data courtesy
of Donoho and Ramos [12].

4.4.3 Generating Objectives by Selections

As described above, optimizations can be defined by explicitly specifying goals on

data dimensions, which can be used to select values matching these objectives.

Sometimes it is also helpful to go the other way round. The goal is to obtain a

set of objectives (i.e., an optimization), which describe a given selection as good as

possible. The purpose of this is to assess non-selected data entries with respect to

properties characterizing the given selection in order to identify entries, which are

similar to the selected ones. Analyzing statistical properties of the given selection

determines the parameters of the objectives. For all selected values on a specific

axis, the arithmetic mean

x̄ =
1

n

n∑
i=1

xi (4.4)
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is taken as goal value (the objective type is always goal here). The assessment ranges

are derived from the sample standard deviation

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2. (4.5)

With this, the optimization properties are set as follows.

goal = x̄ (4.6)

target = s (4.7)

tolerated = 2 · s (4.8)

undesirable = 3 · s (4.9)

This way, the selected data can be “described” by multiple objectives. If s is high,

the selected values span a wide range on the respective dimension. In this case, the

assessment distances will also be high. If s is low, the assessment distances will have

lower values. This ensures a more evenly distribution of tolerated and non-tolerated

values among the considered dimensions. The user may choose the dimensions, for

which objectives are created, in a dialog.

4.4.4 Coloring by Frontiers

To integrate the Pareto frontier information into parallel coordinates, the view was

extended. Although it is possible to visualize the membership of data items to

Pareto frontiers by adding the frontiers dimension as an additional axis, coloring of

polylines was implemented to perceive the information directly in the view. The

goal was to map one extra dimension to the view without adding another axis. The

colors are set according to the values in the desired dimension. This requires a

mapping from data values to RGB color values, which is done by predefined transfer

functions. Figure 4.5 shows an example of a transfer function mapping small values

to blue, moderate values to green and high values to red.
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Figure 4.5: Sample transfer function. Low values are mapped to blue, high values to red.

For the purpose of this chapter, the Pareto frontiers dimension is mapped to color

values. A benefit of colored polylines is the improved perception of connected lines.

In figure 4.6, bluish values determine low Pareto frontier indices, which means, that

these items are “good” with respect to the underlying optimization. This example

illustrates the advantage of storing the optimization result to an independent di-

mension. Since any dimension can be chosen as color attribute, no special handling

is needed to map the Pareto frontier indices to colors.

Figure 4.6: Pareto frontier dimension used as color information. This optimization mini-
mizes acceleration, maximizes horsepower and minimizes MPG. Data courtesy of Donoho
and Ramos [12].



CHAPTER 4. INTERACTIVE OPTIMIZATION 50

4.5 Interaction Loop

Interaction was a key aspect of the approach as examined in this thesis. The loop

of interaction contains user input, Pareto frontier computation and visualization.

Every time, the user modifies one or more objectives, the algorithm is recomputing

all Pareto frontiers either automatically or by clicking a button. This computation

is executed in a separate thread, in order not to delay the user’s work. The result is

computed frontier-by-frontier; this ensures that each frontier can be selected once it

is determined. As mentioned, the objectives can be manipulated directly within a

parallel coordinates visualization. By dragging, goal values can be modified as well

as the assessment distances.

The algorithm described in this chapter is used to compute the Pareto frontiers.

The result of this computation (one Pareto frontier index for each data item) is

stored into a separate data dimension. This way, the Pareto frontier indices can be

used like any other attribute.

The visualization part provides the possibility to handle the Pareto frontiers as

selection. The user specifies the number of frontiers to be highlighted and the visu-

alization system restricts the selection. This selection can be treated like any other

selection, particularly it can be combined with other selections. The visualization

front-end also allows the user to set the assessment ranges. If the selection should

be restricted to a predefined area around the objectives, the values target, tolerated

or undesirable can be chosen (see chapter 3 for further informations on assessment

ranges). This process is shown in figure 4.7.
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Figure 4.7: Loop of interaction. The interaction cycle consists of modification of objectives
and assessment ranges (user input), evaluation (computation of Pareto frontiers) and the
visualization of the results. These results can be shown as additional attribute (e.g., as
an axis in parallel coordinates) or as a selection of entries. Furthermore, the results can
be reused as color information.



Chapter 5

Distance Computation

The previous chapter dealt with Pareto optimization, which is a measure of fitness

with respect to predefined goals. To discuss another approach based on multi-

dimensional goals, distance computation techniques are presented, which were im-

plemented in the Bulk Analyzer system.

5.1 Goals

The Pareto frontier calculation algorithm shown in chapter 4 assigns each data value

to its appropriate Pareto frontier. The drawback of Pareto optimization is that

entries can be possibly useless, although they belong to the first Pareto frontier, as

they are “good” for a single goal, but not for all. Another way of determining the

fitness of data is to compute the distance from each entry to a predefined multi-

dimensional goal. This way, there are no classes of entries anymore, as when dealing

with Pareto frontiers. Instead, a numerical distance value is assigned to each item,

which determines the closeness to the target.

In the following sections, several ways of calculating these distance values are

presented, as well as the integration into the Bulk Analyzer system.

52
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5.2 Context to Optimization

Although optimization and distance computation are different approaches, this the-

sis points out analogies concerning goal definition and the characteristic of the solu-

tion. The Pareto optimization approach considers the “real” objectives minimization

and maximization, whereas only numerical goal values are used in this chapter. The

definition of these goals is done in the same way as described in chapter 3.

The result of the computation is one distance value for each data entry. Again,

this result is stored in a separate data dimension and can be used as an additional

attribute. Both the calculation of Pareto frontiers and distance values considered

in this chapter describe the relationship from one data item to others as well as the

closeness to the predefined multi-dimensional goal.

5.3 Scaling Data

Different data attributes mean different value ranges. As an example, the cars

data set includes the attributes weight and cylinders. Weight ranges from 1500 to

5500 lbs, whereas cylinder values lie between 3 and 8. This discrepancy must be

taken into account before calculating an overall distance value. Thus, all considered

dimensions must be mapped to a common data range first in order to get comparable

values. The following sections describe various scaling methods that were examined

in the context of this thesis. Results and differences in quality between the various

methods will be shown in a case study in chapter 7. Note that also the goal value

has to be scaled in order to fit to the underlying data after the transformation.

5.3.1 Minimum/Maximum Scaling

Each dimension is scaled linearly to the range [−1, 1]. Let xmin and xmax denote the

minimum and maximum, respectively of a given dimension x, then the coefficients

for the scaling equation are computed by

k =
2

xmax − xmin

and (5.1)

d = −1− k · xmin. (5.2)



CHAPTER 5. DISTANCE COMPUTATION 54

These coefficients are used to project each entry to its scaled equivalent by the linear

function

xi
′ = k · xi + d. (5.3)

This transformation projects all points of the dimension x to the interval [−1, 1].

However, this approach is very sensitive to outliers. If there are values that are

numerically distant from the rest of the data, the range of relevant data will be very

small, which could lead to numerical problems in successive calculations.

5.3.2 Statistical Normalization

This approach scales the data by the statistical values mean and standard deviation.

These values are calculated by

x̄ =
1

n

n∑
i=1

xi and (5.4)

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2. (5.5)

The aim of normalization is to obtain the distribution of values with mean ≈ 0 and

variance ≈ 1 for each attribute. To normalize the data, the following equation is

used.

xi
′ =

xi − x̄

s
(5.6)

5.3.3 Linear Interpolation

Another idea is to interpolate the data with respect to assessment points. The

user may define distances, which specify the scale the values will be interpolated

to. To illustrate this concept, figure 5.1 shows the interpolation of a value x to

the user-defined scale. The interpolation is defined by the goal and the assessment

points of the considered dimension (horizontal axis) and the user-defined distances

dTarget, dTolerated and dUndesirable (vertical axis). These values form the lines in the

illustration (symmetric about the goal value), along which the value x is projected

onto the scaled value x′.
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Since the user-defined distances are equal for all dimensions to be scaled, the pro-

jected values will have a common data range.

Figure 5.1: Scaling by linear interpolation. The vertical axis shows user-defined distances,
which define the interpolation properties with respect to the assessment points of the goal.
This interpolation is used to project each value x onto the scaled value x′.

The advantage of this approach is that the user is able to influence the results.

Defining different linear interpolation properties (i.e., different slopes of the lines in

the illustration) makes it possible to provide separate projections for the values in

each assessment range.

5.3.4 Division by Average / Division by Goal

The last scaling approach is division. Division by average normalizes all considered

dimensions to a mean of 1.

xi
′ =

xi

1
n

∑n
k=1 xk

(5.7)

Division by goal scales values around the goal to ≈ 1.
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5.4 Distance Computation

Once the data is scaled to a common value range, distances can be computed.

As mentioned before, the goal value also has to be transformed, when the data is

projected by scaling, as denoted by goal′. The distance computation is done by a

subtraction from the goal value.

di = |xi
′ − goal′|exponent

(5.8)

Before aggregation, an optional non-linear exponent can be defined. If this exponent

is > 1, small distances (< 1) are decreased, whereas large distances (> 1) are

increased. The default exponent is 1. The effect of exponents > 1 is that the distance

computation gets more sensitive to outliers, whereas exponents < 1 decrease this

sensitivity.

5.5 Aggregation

In order to obtain a single distance value for each data record, a final step is required

where the distance values of the individual dimensions are aggregated. Several

methods were implemented in the context of this thesis. In chapter 7, a case study

is presented comparing the methods.

Maximum distance. Defines the maximum distance over all objectives as a result

value. Denoting obj as the set of all objectives, the solution distance di for

each data entry i is

di = max
obj

dobj,i. (5.9)

Average distance. Calculates an average distance value over all used objectives.

In the following, m denotes the number of objectives.

di =
1

m

m∑
obj=1

dobj,i (5.10)
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Summed distance. Sums all distances belonging to one data item.

di =
m∑

obj=1

dobj,i (5.11)

Weighted summed distance. Specifying a weight to each objective allows for

assigning different priorities to the dimensions. Usually, the sum of all weights

is 1 to avoid normalization problems. Denoting the weight of the objective obj

with wobj, the distance value of the ith data entry is retrieved by

di =
m∑

obj=1

(dobj,i · wobj). (5.12)

5.6 Integration into Bulk Analyzer

As in the case of the optimization task in chapter 4, the result (i.e., the distance

per entry) is stored in an own data dimension. Thereby, the distance values can

be accessed by the system like any other data attribute. In the parallel coordinates

view, for instance, a new axis can be added to show and select distance values. In

figure 5.2, the eight lowest entries on a distance dimension (the right-most axis) are

selected to improve the perceptibility of data items having low distance. Based on

two goal values, the “closest” values are computed. Statistical normalization was

chosen as scaling method, the resulting distances were accumulated by average.

Distances can also be used as a color map. Figure 5.4 shows a 2D scatter plot

depicting the attributes horsepower and MPG. The distance dimension is mapped

to color by the use of the transfer function in figure 5.3. Points close to the target

are dark blue, indicating low distance. The higher the distance to the target, the

more changes the data points’ color to green, yellow and finally red.
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Figure 5.2: Selection on a distance dimension with goal values 120 on horsepower and
18 on MPG in a parallel coordinates visualization. The eight lowest distance values are
selected. Data courtesy of Donoho and Ramos [12].

Figure 5.3: Transfer function used in figure 5.4. Low values are mapped to blue, high
values to red.

Figure 5.4: 2D scatter plot of the attributes horsepower and MPG using distances as color
information. The target (120 on horsepower, 18 on MPG) is depicted as a red cross. Data
courtesy of Donoho and Ramos [12].
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Figure 5.4 demonstrates the correctness of the distance computation. Normally,

attributes are colored that are not part of the distance definition to obtain additional

information from the computed distances.

The input parameters of the distance computation are represented by points in

the n-dimensional space. In this thesis, these points are referred to as goals. Goals

are defined as described in chapter 3. This also means that user interaction is similar

to interactive optimization in chapter 4, although the semantics differs, since we do

not have objectives in distance computation, but n-dimensional goal points.

Once a distance dimension has been created using a particular set of goals, the

properties of the distance computation can be changed via an input dialog (figure

5.5 left). Another dialog is used to define objective weights (figure 5.5 right), which

are used by one aggregation mode as explained in section 5.5. All involved attributes

are listed in a window. The weight of each attribute can be set by a slider control.

Whenever a weight is changed, the other weights are adjusted to assure an overall

weight of 100% by evenly adding, respectively subtracting percentage points.

Figure 5.5: Dialogs handling distance computation parameters (left) and objective weights
(right).



Chapter 6

Data Estimation

The previous chapters mainly dealt with approaches to assess data entries with

respect to multiple objectives. The goal of the work as described in this chapter is

to compute and visualize estimated data values.

6.1 Goals

Normally, data is collected by measurements or generated by simulations. Numerical

simulations are typically very complex and time-consuming, so it might be helpful

to provide approximations of (not yet simulated) parameterizations in order to get

a quick “simulation preview”. Although it is unavoidable to start a new simulation

in order to get exact results, an approximation can help decision-makers to identify

beneficial parameterizations.

In this work, approximation is used to estimate simulation results at positions

of the parameter space, which have not yet been simulated. Based on statistical

methods and distances (see chapter 5), values are determined, which depend on

predefined input parameters. This describes a predictive modeling problem [20],

which is a common task in data mining. The goal of these problems is to predict the

value of one or more variables from known values (of potentially other variables).

60
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6.2 Estimation Computation

Approximation is used in this work to compute a data point that represents an esti-

mation of a simulation based on predefined targets. The idea behind this approach

is based on the concept of similarity. Results are determined by analogous situations

in the past (e.g., from preceding simulations). In AI research this task is referred

to as memory-based reasoning (MBR). The intention is to use a large memory of

examples as a reasoning base. Further details on MBR are given by Stanfill and

Waltz [53].

6.2.1 Estimation Targets

The estimation targets, for which the values are approximated, are set via goals, as

it was done in the previous chapters. These goals are n-dimensional points, defining

input values used for the estimation. In the following, a way is discussed how to

estimate values for all dimensions that fit best according to these targets. Due to

the conceptual overlap, the interactive definition of goals as described in chapter 3

is reused for data estimation.

6.2.2 Weights

The implemented estimation method uses distances as computation base. The pre-

calculated distance dimension contains the distance of each data entry to the user-

defined estimation target. These distances are transformed to weights and stored in

a separate data dimension. The weights are used when summing up the existing val-

ues in order to obtain the desired result. Data values close to the target (which have

small distance values) thus preponderate over values that are numerically distant

from the defined parameters.

The first step is to calculate the weight per entry by transforming high distances

to small weights and vice versa. This is done by

wi =
1

di + 1
. (6.1)
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By this, a weight of 1 is assigned to values having distance 0, whereas weights are

getting smaller with increasing distance. In order to get useful results, this values

have to be normalized. By dividing each weight by the sum of all weights, an overall

sum of 1 is achieved.

wi
′ =

wi∑n
k=1 wk

(6.2)

6.2.3 Estimated Values

The next step is to compute a value for each data dimension, which represents the

result of the estimation. This is done by computing the weighted sum for each

dimension m.

Im =
n∑

i=1

(xm,i · wi
′) (6.3)

This yields a vector I that represents one estimated result per dimension. This result

value is highlighted in a parallel coordinates visualization by an orange polyline, as

figure 6.1 demonstrates. In this example, a two-dimensional estimation target is set

(Input 1 and Input 2 in the left image).

(a) (b)

Figure 6.1: Data estimation in parallel coordinates: (a) Two estimation targets define
the input parameters of the estimation; (b) The estimated values are depicted as orange
polyline.
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6.2.4 Global versus Local Approximation

The computation of weights used for the estimation can be done in several ways.

In a first approach, the estimated values were determined by taking all values into

account, which means that for all values a weight > 0 was calculated, since all

values have a distance ≥ 0. When the results were analyzed, it became clear that

values, which are very far from the predefined estimation target, influenced the

resulting values too much. The effect of this was that the estimated values only

changed slightly when the target was modified, because values having high distance

interfered in the computation.

Thus it turned out that the estimation approach is not a global problem, since

the relevant values are located around the estimation target. Considering this in a

second try, the calculation of the weights was transformed to a local problem. The

goal was to assign weights only to relevant points around the target, whereas all

other weights are set to zero. This was done by selecting the closest value in each

direction, which leads to 2m values that will be taken into account, when m denotes

the number of goals, which represent the estimation target. Figure 6.2 shows the

selection of relevant points in two and three dimensions.

(a) (b)

Figure 6.2: Choosing the relevant points for the approximation. In the two-dimensional
space (a), the four closest values are taken into account; in three dimensions (b), the eight
closest ones (one per direction).

However, the results were still not satisfying, since this approach of choosing

relevant values is too restrictive. If the chosen values are outliers, the approximation

will also not represent the underlying data correctly.
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In a final attempt, a compromise was made between the previous approaches.

For the computation of weights, all values are taken into account that are located

within a certain interval. This interval is defined by the closest value and additionally

an amount of five percent of the dimension’s range in each direction, as figure 6.3

demonstrates in parallel coordinates. The upper bound of the interval is defined by

the first crossing point upwards plus an amount of five percent of the axis’ range; the

same procedure is done downwards for the lower bound. All values in this interval

are considered for the estimation, which means that weights are computed for these

points only. The weights for all other points are set to zero.

Figure 6.3: Choosing the relevant point range for the computation of weights. In each
dimension, an interval is defined that includes the closest points up- and downwards plus
an amount of five percent of the data range in each direction. The goal value is depicted
by a red cross.
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6.3 Estimation Confidence

Additionally to the estimated values, the confidence of the estimation is assessed

by the weighted average distance between the estimated and the actual data values.

One confidence value is computed per dimension, which indicates the significance

of the estimated value in the respective dimension. It is calculated by the following

equation with m denoting the mth dimension.

Sm =
1

n

n∑
i=1

(|xm,i − Im| · wi
′) (6.4)

According to the estimated values, this yields a vector containing one confidence

value per dimension. Low values indicate a high confidence in the result and vice

versa. Low values mean that the majority of high weighted data values is concen-

trated around the estimated value, which indicates a robust result.

6.4 Integration into Bulk Analyzer

The data estimation was designed to work on top of a distance computation. There-

fore, the parameters used as estimation target are defined via n-dimensional goals.

Chapter 5 describes a way to generate distances based on these goal values. Once the

distance dimension is computed, another dimension is built on this basis, containing

the weights used for the computation of the estimated values. Inside the parallel

coordinates visualization, an estimation result may be added as an attribute. In the

Bulk Analyzer system, attributes are used to set (visual) properties of a view. For

example, other attributes of the parallel coordinates view are the used axes or the

dimension used for coloring. An arbitrary number of estimations can be added to

the view, and a color is assigned to each of them (figure 6.4).

The view automatically computes the estimated value and the confidence for

each dimension using the precalculated weights. The estimated values are depicted

by a bold polygonal line, the confidence by a semitransparent area as additional

visual elements, as figure 6.5 illustrates. If the semitransparent band is thin in one

dimension, the level of confidence in the approximation is high and vice versa.
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Figure 6.4: Data estimation management window. Estimations are added as attribute;
the user interface provides the possibility to change the assigned colors and to remove
them.

Each time the user modifies the estimation target, the underlying distance di-

mension changes its contents as well as the weights assigned to it. This also effects

all estimations generated from this weight dimension. This approach forms an intu-

itive way of getting additional information by the analysis of existing data. In the

following chapter, data estimation is illustrated in detail in a case study.

Figure 6.5: Data estimation using real-world simulation data of an engine manufacturer.
The target is defined by goals on two input parameters of the simulation (3,150 on engine
speed and 0.77 on load signal). The orange polyline shows the approximated simulation
result, bordered by the semitransparent confidence information. Data courtesy of AVL
[19].



Chapter 7

Case Study

This chapter illustrates the usefulness of the techniques as described in this thesis

by an interactive visual analysis of simulation data of a car engine.

7.1 Used Data Set

The investigated data set is provided by AVL, a company offering power train en-

gineering and testing solutions in both the automotive and nonautomotive indus-

tries. The data consists of multiple simulation runs, which have been generated by

an engine simulation program named AVL BOOST. This program computes one-

dimensional gas dynamics for intake- and exhaust-systems in order to model one or

more complete engine cycles. The simulations’ results can be used to predict engine

performance, acoustics and effectiveness [19].

BOOST offers a graphical editor to build a model using engine elements like

cylinders, junctions and restrictors, which are connected by pipes (figure 7.1). From

an abstract point of view, each simulation run is specified by multiple input parame-

ters and it generates a typically large number of — mostly time-varying — results as

output. In the BOOST engine model, such results as pressure, temperature, air/fuel

ratio, and many more, are computed at predefined measuring points in the simula-

tion model. The distinction between input and output parameters is also reflected

in the data set.

67
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Figure 7.1: Graphical editor for the engine simulation tool AVL BOOST. Iconic elements
define the engine model. Image from AVL [18].

The data set used in this chapter consists of 504 entries (i.e., simulation runs)

with 1,038 dimensions. 569 attributes are defined as 1D curves. The techniques

introduced in this thesis can not directly be applied to them and 1D curve attributes

are therefore not used in this case study. Five dimensions are input parameters of the

simulation model. The remaining 464 attributes represent the result of a simulation

as scalar values. Figure 7.2 shows an extract of the data set’s structure. Attributes

referring to the same position within the model are organized in folders. For example,

the expanded output folder Measuring Point 3 contains twelve attributes, which

define the result of the simulation at a specific measuring point.

7.2 Goals

The case study in this chapter is going to demonstrate optimization, distance com-

putation and data estimation. The results are illustrated in the context of the data

analysis and visualization tool Bulk Analyzer.

Three sections build the main parts of the case study in this chapter. First, an

optimization task is defined that demonstrates the search for optimal configurations
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in order to maximize the engine power under additional engine parameters. Several

ways to visualize the results are presented. The second part deals with distance

computation, showing a way to find configurations “close” to predefined parameters.

The methods presented in this work are analyzed and evaluated. The third part

shows a way to predict simulation runs by the use of a data estimation approach

based on precalculated distance values.

Figure 7.2: AVL BOOST Dataset. Output dimensions belonging together are grouped in
folders. Data from AVL.
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7.3 Pareto Optimization

This example considers six attributes of a BOOST data set. Power states the power

output of the simulated engine (in kW). Fuel mass flow defines the injection rate

of the fuel injector (in kilogram per second). Engine speed denotes the number of

full rotations completed in one minute the simulated engine provides (in revolutions

per minute). Fuel-energy describes the energy content of fuels (in Joules). Fur-

thermore, two attributes are taken from measuring point 2: pressure (in Pascal)

and temperature (in Kelvin). These attributes are added to the parallel coordinates

view.

The first goal is to maximize engine power. Therefore, an objective is defined

that maximizes the power axis. Simultaneously, pressure is minimized, temperature

at measuring point 2 is set to a goal of 311 K and fuel mass flow is set to 0.002 kg/s

for demonstration purposes (figure 7.3).

Figure 7.3: A maximization objective is set on power, pressure is minimized, temperature
is set to a goal of 311 K and a goal of 0.002 kg/s is set on fuel mass flow. Data courtesy
of AVL [19].

After the objectives are set, the optimization algorithm can be started. The

algorithm creates the new attribute set frontiers, which will contain the Pareto

frontier index of each simulation run as soon as the computation is done. In figure

7.4, this new data dimension is added to the parallel coordinates view as the right-

most axis. Furthermore, all data items belonging to the first Pareto frontier are

selected (the current selection layer is colored red in this example). The first Pareto
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frontier contains 34 data items, which are not dominated by any other item in the

Pareto sense. The frontier includes high values for engine speed. As explanation,

the visualization shows that power is distinctly correlated with engine speed. The

visualization also indicates that fuel-energy values around 1,750 J and 2,150 J are

optimal for this configuration.

Figure 7.4: Selection of the first Pareto frontier in parallel coordinates. The current
selection layer is defined by a selection of the first Pareto frontier on the set frontiers axis.
Data courtesy of AVL [19].

The new dimension containing Pareto frontier indices can be used like any other

attribute in the Bulk Analyzer system. Therefore, it is also possible to use it as color

information for the parallel coordinates view, in order to improve the perception of

the results. Figure 7.5 shows the results using a color gradient from red (low indices)

to blue (high indices). The image clearly indicates the separation of regions which

are near the optimum and those which are non-optimal.

The Bulk Analyzer visualization system also allows to use a certain dimension

to be displayed as interpolated background color in the 2D scatter plot view. The

background color is set to the mapped values of the underlying data, where the

color between the data points is interpolated. To illustrate this, the input parameter

engine speed is plotted against another input parameter intake value closing shift,

in order to provide a visual exploration of the parameter space (figure 7.6). To find

the Pareto optimal configuration with respect to the objectives above, it is possible

to select the first Pareto frontier in parallel coordinates, which also highlights the

points in the scatter plot by the linking and brushing concept. Another way is to use
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Figure 7.5: Pareto frontier indices as color information in parallel coordinates. Red poly-
lines denote items having a low Pareto frontier index regarding to the current set of objec-
tives; Green, yellow and red polylines indicate increasing frontier indices. Data courtesy
of AVL [19].

the Pareto frontier indices as background color information. Again, red areas denote

regions near the optimum, whereas blue areas indicate non-optimal regions. This

way, the engineer quickly detects optimal settings by the analysis of the parameter

space.

Figure 7.6: Pareto frontier indices as interpolated background color in a 2D scatter plot
comparing input parameters of the simulation. Red areas denote regions having low Pareto
frontier indices, blue areas indicate non-optimal regions. Data courtesy of AVL [19].
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To give another example in the field of sales and marketing, the cars data set

mentioned in chapter 2 is analyzed. Due to the high fuel price in 2008 and the up-

coming financial crises, the demand for lightweight and petrol-saving cars increases

[44]. To fulfill the customers’ needs, the data set is explored using a parallel coordi-

nates visualization and Pareto optimization. To save fuel, a maximization objective

is set on MPG (miles per gallon). The weight is minimized as we are not looking

for heavy, gas-guzzling cars. Furthermore, the intention is to sell new cars, so the

maximum value of the model year axis is targeted. Figure 7.7 shows the results. The

first Pareto frontier and, in contrast, the last frontier are selected. One noticeable

Figure 7.7: Pareto optimization analyzing cars in a parallel coordinates visualization.
The “best” configurations (data items belonging to the first Pareto frontier) are red, the
“worst” configurations (data items belonging to the last Pareto frontier) are green. Data
courtesy of Donoho and Ramos [12].

issue is the origin of cars. The categorical axis origin maps American cars to 0,

European cars to 1 and Japanese cars to 2. The first Pareto frontier (i.e., the “best”

configurations in this optimization task) contains two European, six Japanese, but

no American cars. Many US cars have a high Pareto frontier index, which indicates

that customers would rather buy European or Japanese cars.
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7.4 Distance Computation

For the following demonstration, four goals are set in parallel coordinates: 12 kW on

the power axis, 99,000 Pa on the pressure axis, 310 K on the temperature axis and

0.0008 kg/s on the fuel mass flow axis. Using these (conflicting) objectives, distance

values are computed as described in chapter 5. Figure 7.8 shows three distance

computations (dimension set distances), each with different distance parameters. As

mentioned, the distance computation approach consists of data scaling, the distance

computation per dimension and aggregation to retrieve an overall distance. The

following table shows the parameters used in this example.

Figure Scaling mode Computation mode (aggregation)

Top Minimum/maximum Maximum distance

Middle Normalization Average distance

Bottom Division by goal Weighted summed distance with weights

60% on power

10% on pressure

10% on temperature

20% on fuel mass flow

The right-most axis in each image contains the computed distance values. A

distance of zero would mean that one or more data items exactly meet the target.

The various computation modes focus on different aspects of data aggregation. The

top image uses the maximum distance of all dimensions as overall distance. If a data

item is very close to a goal in one dimension, but distant in another dimension, the

overall distance will be high. In the middle image, the average distance is calculated,

which is the arithmetic mean of the distances in all considered dimensions. The

bottom image uses weighted sum aggregation. A weight is specified for each goal,

which can be seen as “importance”. The distance on each dimension is weighted by

the specified value and the resulting overall distance is the sum of these weighted

distances.
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Figure 7.8: Comparison of distance computation modes. All images use the same goals
for power (12 kW), pressure (99,000 Pa), temperature (310 K) and fuel mass flow (0.0008
kg/s). The used computation modes are listed in the table above. The right-most axis
(set distances) contains the computed distance values. Data courtesy of AVL [19].
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To demonstrate the effect of the non-linear exponent, which can be specified

as an additional factor, three scatter plots are compared in figure 7.9. In each

image, the power goal is set to 7.5 kW and the temperature goal to 305 K. The

default distance parameters are used, which are normalization for scaling and average

distance aggregation. The left image uses an exponent of 0.5, so the square root

of all distances is computed before they are aggregated. In this case, all distances

are closer to 1 after the computation and the number of small distances (the red

area in the image) decreases. For the middle image, the default exponent 1 is used,

which means no modification. The right image uses an exponent of 4. Distances < 1

are getting smaller, whereas higher distance values are expanded. In this example,

many original distances are < 1, therefore, the red area in the image expands.

Figure 7.9: Effect of the non-linear exponent in distance computation. The white circles
denote the two-dimensional goal. The left image uses an exponent of 0.5, which causes
a reduced number of small distances; therefore the bluish area (high distance values)
expands. The middle image shows the default distances (exponent 1). The right image
uses an exponent of 4, which causes a concentration on the lower bound of the distances’
range; therefore the red area (low distances) expands. Data courtesy of AVL [19].
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7.5 Data Estimation

The final part of this case study deals with data estimation. The goal is to approxi-

mate data based on estimation targets by analyzing existing values. Although goals

can be specified on arbitrary dimensions, two input parameters of the simulation

data set are chosen here to demonstrate the interactive input-computation-output

activity with real-world data.

The output dimensions enthalpy flow, which is a description of thermodynamic

potential of a system (in Joules per cycle), pressure and temperature are added to

the parallel coordinates view. The dimensions engine speed and load signal are

added as input parameters. The goals on these input parameters are set to values

that do not yet exist in the data set. The user specifies input values by setting

multi-dimensional goal points and gets an idea of how the system behaves for that

parameterization. As figure 7.10 shows, the approximated value on the pressure axis

lies between two clusters. In this case, it is not clear, whether the value will tend

to one of these clusters or not. Thus, there is a high uncertainty, expressed by the

semitransparent band.

Figure 7.10: Data estimation in parallel coordinates. The two-dimensional estimation
target consists of 2,500 rpm on engine speed and 0.6 on load signal. The orange polyline
suggests the behavior of the system with respect to the modified input. The semitranspar-
ent band around this value indicates the confidence in the approximation. Data courtesy
of AVL [19].

As mentioned in chapter 6, the approximation approach is based on distances,

which are used as weights in the approximation process. Only values close to the
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estimation target are taken into account. The weights are determined by their overall

distance to the goals. All other weights are set to zero. To illustrate the weights,

figure 7.11 shows two more data estimation examples. The one-dimensional goal

on engine speed is set to 4,500 rpm in the upper image and 6,500 rpm in the lower

image. The weights are assigned to the right-most axis. The light polylines indicate

values that are not relevant for the approximation process and thus having a weight

of zero. The black polylines denote values close to the target. Small distances mean

high weights and vice versa.

Figure 7.11: Weights used for data estimation in parallel coordinates. The light gray
polylines denote values, which are not relevant for the approximation. The black polylines
indicate values close to the target and therefore having a weight > 0. Data courtesy of
AVL [19].



Chapter 8

Summary

Extracting important information from the large amount of data available today is

essential in many fields of application. It is a common approach to apply application-

specific algorithms to retrieve certain data characteristics. The integration of these

algorithms into information visualization helps to identify and explore exact problem-

specific solutions, which often cannot be provided by basic visualization techniques.

This work presents three interactive approaches in the context of optimization, dis-

tance computation and data estimation.

8.1 Introduction

Visualization uses the human perception to give insight into data. It denotes the

process of transforming data into images on the screen with the goals of exploration,

analysis and presentation [5][24]. If visualization alone is not sufficient, it is a com-

mon approach to apply advanced data analysis algorithms on the data set to retrieve

specific information.

The contribution of this work is to integrate particular automatic methods into

information visualization. The goal is to achieve a tight interactive process between

the user, the domain-specific computation and visualization. Figure 8.1 shows this

loop of interaction. Information visualization helps to explore the current solution.

The user analyzes the solution and uses the new knowledge to modify the algorithm

parameters, if the results are not satisfying. Once the interaction process is finished,

79
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the computation is restarted and the new solution is visualized. This concept is used

in the context of interactive optimization, distance computation and data estimation.

Figure 8.1: Loop of interaction. The tight coupling of user input, automated data pro-
cessing and information visualization plays an important role in this work.

8.2 Related Work

When dealing with large data sets, data representations in form of tables are of lim-

ited use due to the lack of visual structures that can be perceived well by the human

[5]. Information visualization tries to provide insight even for large and complex

data. The illustrations in this work focus on parallel coordinates, a technique that

maps multi-dimensional data onto a two-dimensional display screen [22]. Parallel

coordinates use n axes to represent n data dimensions and aligns these axes in a

parallel way. Data items are depicted by polygonal lines (polylines), which intersect

each axis at the mapped position of the value in the particular dimension (figure

8.2).

8.2.1 Interactive Optimization

The first part of this work deals with multi-criteria optimization. Optimization can

be defined as the search for the “best” solutions to mathematically defined problems

[13]. In general, this means to maximize or minimize one or more functions. There is

a wide variety of optimization problems, which can be classified by the variable type

used in the objective function (discrete or continuous), the existence of constraints,
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Figure 8.2: Parallel coordinates comparing cars. Data courtesy of Donoho and Ramos
[12].

the nature of the solution (local or global), the used solution approach (stochastic or

deterministic) or the number of objectives (single-objective or multi-objective) [38].

This work focuses on global solutions to multi-objective optimization problems.

Furthermore, Pareto optimality is used to find a global solution, which is based

on efficiency. A point x ∈ S is efficient if its criterion vector is not dominated

by the criterion vector of some other point in the feasible region S ⊂ Rn. Thus,

a point is efficient if it is not possible to increase one of the objectives without

necessarily decreasing at least one of the others [54]. The set of efficient points is

called Pareto set or Pareto frontier (figure 8.3) and usually represents the trade-off

between conflicting goals.

Much research has been done on solving optimization problems. Therefore, there

is a wide variety of algorithms and automatic optimization systems. However, many

real-world optimization problems cannot be totally automated. In this case, user

interaction is necessary for refining the optimization problem. Interactive optimiza-

tion approaches are based on user feedback and leverage human abilities, such as

visual perception or learning from experience. Users may explore many possible

solutions and then choose a solution based on their understanding of the domain.

This approach also helps to find a solution for multi-objective problems, where no

unique solution exists and the user chooses the “subjective best” one.
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Figure 8.3: Efficient points define the Pareto frontier in a two-dimensional minimization
problem.

Interactive approaches leverage the strengths of both humans and computers.

Chimani et al. [7] define the cycle of user interaction as three activities: inspection,

modification and reoptimization of the current solution. Inspection means to browse

through the current solution with the assistance of information visualization. Modi-

fication is the main interaction step, in which optimization parameters are changed

if the current solution is not satisfying. After this, the reoptimization step restarts

the computation, which leads to the inspection step again. For example, interactive

evolution algorithms generate solutions via biologically inspired methods and use

human evaluation to produce better solutions in the next iteration step [56]. Other

approaches that make use of the concept of interactive optimization are human-

guided search [2][27], interactive partitioning [32], interactive design optimization

[36] and interactive decision making [41].

8.2.2 Memory-Based Reasoning

Memory-based reasoning (MBR) is an approach from the field of machine learning

with the goal to predict unknown information from existing values. A problem is

solved by finding similar cases in the past, and reusing them in the new problem

situation [6]. This work shows a simple MBR approach to estimate data values

according to given input parameters. Using these parameters, data is estimated by

interpolation of existing values. In real-world applications, data is often generated
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by simulations. The goal of the approximation approach discussed in this work is

to get a data “preview” of not yet simulated parameterizations based on already

known values without starting costly simulation runs.

8.3 Interactive Optimization

Optimization is a mathematical discipline that concerns the finding of the optimum

of given problems (e.g. to minimize or maximize functions) [54]. Especially when

dealing with large, high-dimensional data sets, the use of automated optimization

techniques is essential. However, many problems cannot be fully defined as math-

ematical problems. Often human evaluation is necessary to come to a solution. In

this case, interactive optimization approaches can help if there are many solutions

to choose from or problems are difficult to model with mathematics. For example,

in design optimization the solution is based on subjective human interaction [36].

This work uses a global optimization algorithm in an interactive environment. The

algorithm is based on Pareto optimality. It computes all Pareto frontiers with re-

spect to user defined objectives, which can be manipulated interactively in parallel

coordinates. Each objective is defined as maximization, minimization or as an arbi-

trary goal value. This represents a multi-objective optimization problem, which can

be defined and modified directly within a parallel coordinates visualization. Figure

8.4 shows a parallel coordinates visualization comparing cars [12]. An optimization

is defined containing objectives on acceleration, horsepower and miles per gallon.

The right-most axis contains the Pareto frontier index of each data item and the

first frontier is selected. Additionally, the histogram in the left image shows the

number of data items in each frontier.

The visualization system allows the user to modify the objectives by dragging.

At each user interaction, the computation is restarted and the results are updated.

This generates a tight loop of interaction defined by user input, Pareto frontier

computation and information visualization.



CHAPTER 8. SUMMARY 84

(a) (b)

Figure 8.4: Selection of a Pareto frontier of an optimization: (a) Histogram showing the
number of data items in each Pareto frontier; (b) The optimization in parallel coordinates.
The right-most axis represents the Pareto frontier dimension. The highlighted values
denote the first frontier. Data courtesy of Donoho and Ramos [12].

8.4 Distance Computation

Another way to determine the fitness of data with respect to predefined n-dimensional

goals is to compute distances. Various approaches are given in this work to compute

a distance value for each multi-dimensional data item. The computation of distances

involves three steps. The first step is to scale the data in order to unify potentially

different data ranges of the dimensions. The second step is the computation of the

distances to the predefined goal in each dimension. In the last step, the distances of

all dimensions are aggregated to obtain an overall distance value for each data item.

This work describes four scaling methods. Minimum/maximum scaling trans-

forms all values to the range [−1, 1]. Statistical normalization uses the statistical

values mean and standard deviation for the data transformation. Linear interpo-

lation is used to project the values to a common range by the help of user-defined

distances. Division divides all values by either the average (mean value) or the goal

value.
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The distances are then computed using the scaled values xi
′ and the scaled goal

goal′ for each considered dimension. Additionally, a non-linear exponent can be

specified to influence the resulting distances concerning outlier sensibility.

di = |xi
′ − goal′|exponent

(8.1)

The final aggregation of the distances di can also be done in several ways. In the

following, m denotes the number of goals.

Maximum distance

di = max
obj

dobj,i. (8.2)

Average distance

di =
1

m

m∑
obj=1

dobj,i (8.3)

Summed distance

di =
m∑

obj=1

dobj,i (8.4)

Weighted summed distance

di =
m∑

obj=1

(dobj,i · wobj). (8.5)

Summed distance

di =
m∑

obj=1

dobj,i (8.6)

Figure 8.5 shows the results using the cars data set [12]. Statistical normalization

was chosen for data scaling and the average distance was used as aggregation mode.

The left image shows a parallel coordinates visualization containing computed dis-

tances (the right-most axis). The eight lowest distances are selected to improve the

perceptibility of data items having low distance to the defined goals. In the right

image, the distances are used as color information in a 2D scatter plot.
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Using a color transfer function, blue points mean low distance in this example, red

points mean high distance.

(a) (b)

Figure 8.5: Distance computation using goals on horsepower (120) and MPG (18): (a)
Parallel coordinates comparing horsepower, MPG and weight. The eight lowest distances
are selected on the distance dimension (right-most axis); (b) Distance values used as color
information in a 2D scatter plot. Horsepower is plotted against MPG; the two goals define
a point in the plane, which is depicted by a red cross. Data courtesy of Donoho and Ramos
[12].

8.5 Data Estimation

Data sets are in most cases either collected by measurements or generated by sim-

ulations. These simulations can be very complex and time-consuming. If input

parameters of the simulations are changed, it is sometimes helpful to provide ap-

proximations of not yet simulated parameterizations in order to get a “preview” of

results at that position of the parameter space without starting costly simulations.

This work shows an approach, which is based on the analysis of existing data values.

Estimation targets are defined by a multi-dimensional goal. A weight is assigned

to each data item by the help of distances to this goal. High distances to the goal

mean low weights, low distances mean high weights. These weights are normalized
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and then used for the data estimation. In the following equation, wi
′ denotes the

normalized weight assigned to the ith data item, n denotes the number of data items,

and m means the mth dimension.

Im =
n∑

i=1

(xm,i · wi
′) (8.7)

This vector I represents the estimated values for all result dimensions of the simu-

lation. The weighted average distance between the estimated and the actual data

values can additionally be used to assess the confidence of the estimation.

Sm =
1

n

n∑
i=1

(|xm,i − Im| · wi
′) (8.8)

Low values indicate a high confidence in the result of the respective dimension and

vice versa. Figure 8.6 shows an estimation in parallel coordinates. The data set is

provided by AVL [19], a company offering power train engineering and testing solu-

tions in both the automotive and nonautomotive industries. The estimation target

is defined on two input parameters of the simulation: 3,150 rpm on engine speed

and 0.77 on load signal. The orange polyline shows the result of the approximation.

The semitransparent band around this polyline denotes the confidence in the ap-

proximation. On the third axis (convergence), the band is thin, which means that

the prediction is rather robust in this dimension.

Interaction is a key concept in this approach. Once the estimation target is

modified by dragging, the computation is restarted automatically and the result is

updated. This loop of interaction makes it possible to quickly explore “virtual”

simulations on arbitrary input parameters.

8.6 Conclusion

The major goal of this work is to show the benefit of integrating automatic methods

into information visualization in an interactive manner. The approaches in this work

deal with multiple objectives. Direct manipulation of objectives inside the parallel

coordinates visualization is a key aspect to provide convenient interaction. Future
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Figure 8.6: Data estimation using real-world simulation data of an engine manufacturer.
The target is defined by goals on two input parameters of the simulation (3,150 on engine
speed and 0.77 on load signal). The orange polyline shows the approximated simulation
result, bordered by the semitransparent confidence information. Data courtesy of AVL
[19].

extensions could provide visual and functional representations of objectives in other

views, like a movable goal point in a scatter plot.

The optimization approach uses an algorithm based on Pareto optimality. A

considerable amount of work has been done in the field of optimization, however,

interactive approaches are rare. The approach studied in this work is a contribution

to interactive optimization. An extension to the shown algorithm could be to define

weights on the objectives in order to set different priorities to different dimensions.

The computation of distances with respect to multi-dimensional targets can be

used in various applications. Further implementations could use distance values for

application-specific algorithms (e.g., in the field of cluster analysis). The data esti-

mation approach in this work uses distances to compute weights for existing data

values, which are used in the approximation process. Interactive optimization, dis-

tance computation and data estimation support decision makers to explore relevant

subsets of large data sets.
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Conclusion and Future Work

Automatic methods to explore large data sets have been used in many fields of

application. One drawback of automated approaches is that the problem must

be fully specified before application. The major contribution of this work is tight

interactive combination of information visualization and problem-solving algorithms.

User feedback in terms of objective modification allows to explore the solution space

in order to get results under subjective human guidance. The user is able to specify

the algorithm parameters directly in the visualization of the data set. The system

reacts on this modification and restarts the computation. This concept defines an

intuitive loop of interaction. In an analysis dialog, the user observes the current

solution, interprets the results and then formulates a strategy of how to proceed.

This work focuses on multiple objectives, which occur in many fields of applica-

tion. Direct manipulation of objectives inside the visualization provides convenient

interaction. The manipulation and visual representation of objectives has been inte-

grated in a parallel coordinates visualization. Future extensions could provide visual

and functional representations of objectives in other views. For example, a movable

goal point in a 2D scatter plot could be used to define targets simultaneously in two

dimensions.

The optimization approach uses an algorithm based on Pareto optimality, which

is a common way to deal with multi-objective problems. The algorithm is determin-

istic and computes the global solution to the defined optimization problem. Since

goals can be defined as arbitrary values, this approach is very flexible and intuitive

89
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at the same time. Only limited research was done on interactive optimization and

many approaches in this field were designed for specific applications. This approach

is a contribution to interactive optimization in a general sense. Future improvements

could provide the ability to define weights on the objectives, which would allow for

ranking the values inside each Pareto frontier. Another extension could be to set

implicit optimization constraints to restrict the solution set.

The concept of distance offers additional information about the data set under

observation. Distance values with respect to multi-dimensional targets can be used

in various situations. For example, the implemented data estimation approach uses

distances as weighting basis. Distances can be seen as degree of closeness and

similarity. Further implementations could reuse these values to solve problems by

application-specific algorithms and visualizations. In the field of cluster analysis,

for instance, similarity is often according to a distance measure.

The goal of this work is to show the benefit of integrating automatic methods

into information visualization in an interactive manner. This motivation led to an

interactive approach dealing with multi-objective problems, which are defined as

modifiable goals in parallel coordinates. This approach helps users to find solutions

in an interactive process. Interactive optimization, distance computation and data

estimation support decision makers to extract important information from large

data sets in order to increase the efficiency of their applications.
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