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Abstract

Recent advances in image acquisition technology and its availability in the medical
and bio-medical fields have lead to an unprecedented amount of high-resolution
imaging data. However, the inherent complexity of this data, caused by its
tremendous size, complex structure or multi-modality poses several challenges
for current visualization tools. Recent developments in graphics hardware archi-
tecture have increased the versatility and processing power of today’s GPUs to
the point where GPUs can be considered parallel scientific computing devices.
The work in this thesis builds on the current progress in image acquisition

techniques and graphics hardware architecture to develop novel 3D visualization
methods for the fields of neurosurgery and neuroscience.
The first part of this thesis presents an application and framework for plan-

ning of neurosurgical interventions. Concurrent GPU-based multi-volume ren-
dering is used to visualize multiple radiological imaging modalities, delineating
the patient’s anatomy, neurological function, and metabolic processes. Addition-
ally, novel interaction metaphors are introduced, allowing the surgeon to plan
and simulate the surgial approach to the brain based on the individual patient
anatomy.
The second part of this thesis focuses on GPU-based volume rendering tech-

niques for large and complex EM data, as required in the field of neuroscience.
A new mixed-resolution volume ray-casting approach is presented, which circum-
vents artifacts at block boundaries of different resolutions. NeuroTrace is intro-
duced, an application for interactive segmentation and visualization of neural
processes in EM data. EM data is extremely dense, heavily textured and exhibits
a complex structure of interconnected nerve cells, making it difficult to achieve
high-quality volume renderings. Therefore, this thesis presents a novel on-demand
nonlinear noise removal and edge detection method which allows to enhance im-
portant structures (e.g., myelinated axons) while de-emphasizing less important
regions of the data. In addition to the methods and concepts described above,
this thesis tries to bridge the gap between state-of-the-art visualization research
and the use of those visualization methods in actual medical and bio-medical
applications.
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Kurzfassung

Technische Fortschritte in bildgebenden Verfahren und deren weite Verfügbarkeit
im medizinischen und bio-medizinischen Bereich haben zu einer noch nie dagewe-
senen Menge an hochaufgelösten Bilddaten geführt. Für die meisten Visualisie-
rungs-Werkzeuge stellt jedoch die Komplexität dieser Daten, hervorgerufen durch
ihre enorme Größe, Auflösung, komplexe Struktur oder Multi-Modalität große
Herausforderungen dar. Die vorliegende Arbeit baut auf den aktuellen Entwick-
lungen im Bereich der bildgebenden Verfahren und der hohen Performanz und
Flexibilität heutiger Grafikkarten auf, um neue Methoden zur 3D Visualisierung
in der Neurochirurgie und Neurobiologie zu entwickeln.
Der erste Teil der Arbeit beschreibt eine Anwendung für die Planung von neu-

rochirurgischen Eingriffen. Es werden GPU-basierte Multi-Volume-Rendering-
Methoden entwickelt, um die Volumendaten mehrerer unterschiedlicher Bild-Mo-
dalitäten gleichzeitig darstellen zu können. Diese kombinierte Visualisierung er-
laubt die genaue Darstellung der individuellen Anatomie, neurologischen Funk-
tionen und Stoffwechselvorgänge der Patienten. Darüber hinaus werden neue
Interaktions-Metaphern eingeführt, die es Chirurgen ermöglichen, den operativen
Zugang zum Gehirn patientenindividuell zu planen und zu simulieren.
Der zweite Teil der Arbeit konzentriert sich auf GPU-basierte Volume-Ren-

dering-Techniken für die Darstellung großer und komplexer EM Daten, wie sie im
Bereich der Neurowissenschaften vorhanden sind. Ein neuer auf unterschiedliche
Auflösungsstufen beruhender Volume-Ray-Casting-Ansatz ermöglicht die artefak-
tfreie Darstellung von Blöcken mit unterschiedlichen Auflösungsstufen. Schließlich
wird NeuroTrace vorgestellt, ein Programm zur interaktiven Segmentierung und
Visualisierung neuronaler Prozesse in EM-Daten. Um die Qualität von abge-
bildeten EM-Daten zu verbessern, wird eine neue bedarfsorientierte und nicht-
lineare Rauschunterdrückung und Kantendetektierungsmethode beschrieben, die
wichtige Strukturen in EM-Daten (z.B. myelinisierte Axone) hervorhebt, während
weniger wichtige Regionen des Volumens ausgeblendet werden. Zusätzlich zu den
oben beschriebenen Methoden und Konzepten, versucht diese Dissertation eine
Brücke zwischen dem momentanen Stand der Forschung im Bereich der Volu-
menvisualisierung und deren Integration in tatsächliche medizinische und bio-
medizinische Anwendungen zu schlagen.
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Chapter 1

Introduction

Recent advances in image acquisition technology and its availability in the med-
ical and bio-medical fields provide an unprecedented amount of high-resolution
imaging data. Difficulties in handling this data often arise due to its complex-
ity, enormous size, multi-dimensionality and the need of fusing several separate
datasets into a single consistent visualization. Therefore, interactive 3D visu-
alization of these datasets is still an active area of research, facilitated by the
improvements made in current graphics hardware. GPU-based volume rendering
has made great advances thanks to the ever increasing flexibility in graphics card
programmability. With the advent of high-level shading languages such as Cg [53]
or GLSL [72] and, more recently, with the introduction of CUDA [60], GPUs can
now be seen as versatile computing devices.

This thesis focuses on the development of 3D visualization tools for the fields
of neurosurgery and neuroscience, ranging from the macro- and microscopic level
down to the nanoscale level. The first part of the thesis deals with concur-
rent GPU volume rendering of multiple medical datasets for planning of neuro-
surgeries. For use in clinical practice the combination of these different medical
datasets such as CT, MRI, DSA or PET scans into a single visualization needs to
be driven by a user-centered point of view, which closely resembles the surgeon’s
workflow. The second part focuses on GPU volume rendering of large and com-
plex EM data, as required in the field of neuroscience. When dealing with this
huge amount of data in the petascale range it does not suffice to simply adapt
the current algorithms to be able to cope with the data size. Instead, it requires
completely new ways of handling and processing this data, as well as new inter-
action methods.
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2 Introduction

1.1 Contribution
The main contributions of this work are as follows:

• An application for planning of neurosurgical interventions integrated into
the clinical workflow:
– Unified handling of GPU-based multi-volume ray-casting and bricking

with and without segmentation masks (Chapter 4, Section 4.5). For
each sample location, the volume to be sampled is either chosen de-
pending on segmentation information, or multiple volume samples are
blended. We circumvent GPU memory constraints by bricking each
volume (CT, MR, DSA, PET, fMR), and downloading only active
bricks into 3D cache textures (one per modality or unified). Segmen-
tation information is represented as a bricked object ID volume over
all modalities, which likewise employs a 3D cache texture.

– Skull peeling (Chapter 3, Section 3.3) for selectively removing struc-
tures obscuring the brain (e.g., skin, bone) without segmentation. In
contrast to opacity peeling [68], we consider registered CT and MR
data at the same time for more dependable results. The impact of
clipping is resolved consistently. Areas of the patient’s skin and bone
can be removed selectively by painting 2D clipping areas.

– Smooth rendering of segmented object boundaries, taking into account
the contributions of multiple volumes (Chapter 4, Section 4.5.5). We
propose an approach that is customized for the needs of our neu-
rosurgery pipeline that achieves better results in this case. During
ray-casting, the precise transition between two adjacent materials is
re-classified depending on user-specified iso-values and searching the
object ID and data volumes along the gradient direction.

• An application for interactive visualization (and segmentation) of large neu-
robiological EM datasets, for the reconstruction of neural connections in the
brain:
– A GPU-based bricked mixed-resolution volume rendering scheme that

is not restricted to downsampling at the original grid positions and
does not require modifying the original sample values. In this approach
we employ single-pass ray-casting to mix different levels of resolution
with continuous (C0) transitions between resolution levels.

– An application for scalable and interactive visualization of neural pro-
cesses in EM datasets. We propose a CUDA-based ray-caster which of-
fers on-demand filtering for de-noising and edge-enhancement of struc-
ture boundaries. A local histogram-based edge metric provides better
visual cues to easily find regions of interest in complex EM datasets
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compared to traditional transfer functions. This functionality is inte-
grated into NeuroTrace, an application that offers interactive segmen-
tation and visualization of EM data for neuroscience.

1.2 Organization
This thesis is organized into two main parts: The first part (Chapters 2, 3,
and 4) focuses on an application for neurosurgical planning, including necessary
pre-processing steps, interaction metaphors and visualization methods. Chap-
ter 2 starts with an introduction to medical imaging in neurosurgery as well as
fundamentals of medical visualization and surgical planning applications. Skull
Peeling, an algorithm for the fast visualization of the brain’s surface without any
prior segmentation, is introduced in Chapter 3. Finally, in Chapter 4, an appli-
cation for high-quality multimodal volume rendering for preoperative planning of
neurosurgical interventions is presented.
The second part of this thesis (Chapters 5, 6, and 7) focuses on volume ren-

dering of large, complex, biological data. Chapter 5 gives an introduction to the
fields of neuroscience and connectomics as well as large data and multi-resolution
rendering. The main technical contributions of this part are a method for smooth
mixed-resolution volume rendering, presented in Chapter 6, and a framework for
interactive segmentation and visualization of neural processes in EM datasets,
presented in Chapter 7. This thesis concludes with a summary of the presented
contributions and draws conclusions in Chapter 8.





Multi-Volume Rendering for
Neurosurgery
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Chapter 2

Introduction

In today’s clinical practice, computer aided diagnosis and surgery planning ap-
plications are becoming increasingly important. These specialized applications,
which rely on high-resolution 3D images (e.g., CT or MRI scans), often require
integrated volume de-noising, filtering, segmentation, and visualization possibil-
ities. However, the combination of all these features into a single application is
quite challenging. Often a compromise has to be found between quality, reliabil-
ity, usability, and the amount of time the user needs.

With the advent of modern GPUs and their high computing power many algo-
rithms can now achieve interactivity. Complex filtering and segmentation algo-
rithms can be run in real-time, permitting the user to stop or modify the ongoing
computation. Volume rendering, even of large or multiple datasets, can be per-
formed entirely on the GPU, at interactive rates. With the newest generation
of graphics hardware and the development of APIs such as CUDA [60, 31] or
OpenCL [26], the flexibility for scientific programming on the GPU has achieved
new heights. Medical and bio-medical applications can build on these new devel-
opments to perform compute-expensive calculations while still achieving interac-
tive performance.

This chapter starts with Section 2.1 reviewing different medical imaging tech-
niques. Section 2.2 presents fundamentals of image processing, registration and
segmentation of medical data. Finally, the basics of medical visualization and vi-
sualization systems for neurosurgery are given in Section 2.3. For a more detailed
introduction to medical visualization and image processing the reader is referred
to the textbook Visualization in Medicine by Preim and Bartz [63].

7



8 Introduction

2.1 Medical Image Data

In recent years, imaging scanners have been able to acquire images of ever in-
creasing quality, resolution and accuracy. Especially in the field of neurosurgery
it is common to use more than one modality for the exact delineation of the
patient’s anatomy and pathology. Each modality has different advantages and
shortcomings. Figure 2.1 shows the most common scanning techniques in the
field of neurosurgery which are described in the following:

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Examples of the most common imaging modalities in the field of neu-
rosurgery. (a) X-Ray image of a human head. (b) Slice of a CT image.
(c) MR image. (d) Volume Rendered DSA dataset. (e) PET super-
imposed on an MR image. (f) fMR superimposed on an MR image.



2.1 Medical Image Data 9

2.1.1 X-Rays
X-Rays, the most common form of diagnostic imaging, were first discovered by
Wilhelm Conrad Röntgen in 1895 and is based on measuring the attenuation of
electromagnetic radiation traveling through a scanned object. X-Rays traveling
through an object are absorbed and scattered depending on the object’s den-
sity, with dense objects having a higher absorption rate than less dense objects.
Therefore, dense objects, such as bones, get depicted as bright areas whereas less
dense objects, such as air, are depicted as a dark areas.

2.1.2 Computed Tomography (CT)
Computed Tomography works by taking a series of individual X-Rays from dif-
ferent viewpoints around the scanned object and back-projecting them into a
3D volume. An X-Ray emitter/detector pair rotates on a circular path around
the scanned object and creates X-Ray projections. The projections from a full
rotation are projected back, based on the Radon transform, to calculate one cross-
section of the final volume. Then the emitter/detector pair proceeds to scan the
next slice. Figure 2.2a depicts the CT acquisistion process and Figure 2.2b ex-
plains the CT reconstruction step in more detail. The drawback of CT imaging is
its high radiation dose. However, newer spiral CT scanners allow to not only scan
individual cross-sections but to continuously change the cross sections by mov-
ing the scanned object slowly through the X-Ray circle. After acquisition, the
computed values are normalized into Hounsfield units, where water is represented
with 0 and air is represented with -1000. For enhancing the visibility of vessels
or certain tissue, contrast agents can be introduced into the scanned object to
highlight these areas. In neurosurgery, CT is the medium of choice for depicting
the skull and bony structures and required for intra-operative navigation.

2.1.3 Magnetic Resonance Imaging (MRI)
Magnetic resonance imaging is based on the fact that human tissues have different
properties in a magnetic field. MRI works by placing the scanned subject in a
strong magnetic field. Hydrogen nuclei in the scanned subject align themselves
parallel or anti-parallel to this magnetic field. Next, a radio-frequency pulse is
induced which causes the hydrogen nuclei to spin synchronously (i.e., in phase).
After stopping the radio-frequency pulse the protons slowly de-phase. Measuring
the time of this relaxation allows to measure the proton density, which is depicted
in the MRI image.
In neuro-imaging MRI is usually used for depicting soft tissue such as the brain,

whereas it is not well suited to display tissue with little water in it, such as bone.
One main advantage of MRI compared to CT imaging is that there is no radiation
used in MRI imaging which could be harmful for the patient.
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(a) (b)

Figure 2.2: (a) During CT acquisition several X-Ray images from different direc-
tions around the scanned object are taken. (b) For CT reconstruction,
the original views are backprojected to create the final reconstructed
image.

2.1.4 Functional Magnetic Resonance Imaging (fMRI)
Functional MRI is used to depict the neural activation of certain brain areas.
It detects changes in blood flow and oxygen metabolism. Therefore, fMRI is
acquired while the patients are performing cognitive or behavioral tasks (e.g.,
talking) in the MRI scanner. The activation areas found by the fMRI are usu-
ally superimposed on an anatomic MRI image, to get a notion of the spatial
orientation and location of the “active” brain areas.

2.1.5 Digital Subtraction Angiography (DSA)
Digital subtraction angiography is an example for contrast enhanced imaging.
One angiographic image is taken before inducing contrast agent and one image
is taken after inducing contrast agent. The image without contrast agent is
then subtracted from the image with the contrast agent, resulting in an image
highlighting only the area where the contrast agent was present. DSA is primarily
used for imaging blood vessels and blood vessel trees and therefore very popular
in cerebral imaging.

2.1.6 Positron Emission Tomography (PET)
Positron emission tomography is a nuclear medicine imaging technique that de-
picts the metabolic activity of tissue. It works by injecting a short-lived radio-
active substance into the patient. When this substance starts to decay it emits
positrons. Subsequently, when a positron interacts with an electron two gamma
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photons moving in opposite directions are generated. These photons can be mea-
sured and used to localize their source location. PET has a very low spatial
resolution but is very useful in depicting areas of high metabolic activity, such as
certain tumors.

2.1.7 Imaging Artifacts
Medical imaging data aquired by the scanning techniques described above, is
always subject to different kinds of imaging artifacts. Knowledge of the differ-
ent kinds of artifacts and their occurrence is therefore vital for correct image
understanding and analysis.
In the following, the most important types of imaging artifacts are listed and

explained:
Undersampling occurs when a signal is sampled below the Nyquist rate. The

Nyquist rate is defined to be more than twice the frequency of the original signal,
and is necessary for a correct reconstruction of the signal. If the sampling rate
is below this rate, the original signal might be mistaken for a different signal,
and aliasing effects and information loss occur. Figure 2.3 shows a signal that is
sampled below its Nyquist rate and the resulting erroneous signal.
Another typical artifact in medical data is the partial volume effect. This effect

is caused by the limited resolution of the image data reconstruction and happens
when two or more tissue types are present within a single voxel. The partial
volume effect leads to blurring of boundaries between high and low intensities
and always needs to be considered when dealing with medical imaging data.
Signal artifcats, such as metal streak artifacts in CT data, arise from the dis-

tinct properties of individual imaging modalities. For example, in CT imaging,
a piece of metal might cause the attenuation measurement on a detector to be
incorrect, resulting in several visible streaks in the image.
Image inhomogeneities are commonly found in MRI data, and are caused by

inhomogeneities of the magnetic field produced by the scanner. These inho-
mogeneities cause distortions in both geometry and intensity of the MR images.
Many image processing algorithms try to reduce the effect of these different kinds

Figure 2.3: Undersampling of the original signal (black curve) at the red sampling
positions leads to the erroneous reconstructed signal (dashed curve).
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of imaging artifacts. However, careful parameter setting during the actual image
acquisition is the most dominant factor for image quality.

2.2 Image Processing for Medical Data
Most medical visualization systems rely on some kind of preprocessing of the raw
volume data. The aim is to extract clinically relevant information from the radio-
logical image data, which helps in diagnosis or treatment planning for the patient.
Usually there is an entire pipeline of different pre-processing steps, consisting of
image filters for de-noising and smoothing, segmentation of important structures
and registration or resampling of datasets prior to visualization.

2.2.1 Filtering and De-noising
The main objective of image smoothing in medical applications is the enhance-
ment of image quality as a preprocessing step prior to segmentation or visualiza-
tion. The aim is to reduce noise while preserving important features to improve
the visualization and segmentation result.
Where some preprocessing steps only try to visually enhance the image, other

methods improve the signal-to-noise ratio in the scanned images. Histogram
equalization, for example, tries to enhance the contrast in the image by equalizing
the histogram (i.e., transforming the histogram so that all histogram bins have
nearly the same value). This enhances the contrast of the image visually, but
does not improve the actual signal-to-noise ratio.
The amount and type of noise present in medical images has several different

causes: it greatly depends on the imaging modality, its spatial resolution, slice
thickness and patient movement, to name a few. Noise is considered to be in
the high frequency spectrum of the image. Therefore, noise reduction techniques
often try to low-pass filter the dataset to reduce the noise present.

Image filtering is a neighborhood operation in which the image values of a spec-
ified neighborhood are used to compute the output filter value of one pixel/voxel.
Linear filtering can be thought of as a convolution of the original image with a
filter kernel. A very simple example for a linear filter is averaging. Another exam-
ple is Gaussian filtering, where the original image is convolved with a Gaussian
function as shown in Equation 2.1 for the 2D case:

g(x, y) = 1
2πσ2 e

−x
2+y2

2σ2 (2.1)

Since the Gaussian kernel is continuous, for filtering a discrete 2D image the
values of the Gauss kernel are usually pre-calculated and stored in a discrete 2D
filter mask of a given size (e.g., 3×3, 5×5).
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A non-linear filter, on the other hand, is a filter that generates an output that is
not a linear function of the input. The most common examples are median, bilat-
eral or anisotropic diffusion filters. Non-linear filters are usually more expensive
to compute than linear filters but achieve better filtering results.
Diffusion filtering is an edge-preserving filtering technique where the physical

process of diffusion is simulated. The common notion of diffusion is a physi-
cal process that equilibrates concentration/energy differences without creating or
destroying mass/energy. For example, transporting molecules from a region of
higher concentration to one of lower concentration, finally resulting in a complete
mixing or a state of equilibrium. For image filtering this idea is used to smooth
intensity differences in adjacent pixels. Non-linear and anisotropic diffusion scale
the amount of diffusion depending on the gradient magnitude of a pixel to reduce
diffusion around edges. A comparison of different diffusion filtering techniques
and their application to medical data is given by Suri et al. [80].

2.2.2 Segmentation
Segmentation is the process of partitioning image data into distinct regions by
assigning labels to structures of interest. In medical imaging, segmented objects
are usually clinically relevant structures such as organs, bone, vessels or tumors.
Segmentation methods can be divided into manual, semi-automatic and au-

tomatic approaches. Even though manual approaches are very time consuming,
they are still common in clinical practice. Automatic approaches, on the other
hand, are often very limited in their scope of application because of their highly
specialized algorithms, and they might not allow interactive adjustments of global
parameters.
There are several popular strategies for image segmentation ranging from edge-

and region-based approaches to model-based or multi-scale approaches. An in-
depth discussion of different segmentation techniques is out of scope of this thesis
but the reader is referred to [62, 81].
In the context of volume rendering the result of the segmentation process is

usually stored as a segmentation mask which defines the object membership of
each voxel (see Figure 2.4). However segmentation results can also be stored as
surface representations or as distance fields.

2.2.3 Registration and Resampling
Registration is the process of transforming separate images into the same coordi-
nate system, so that structures in one image can be related to the corresponding
structures in the registered image. The different images that need to be registered
can either come from the same imaging modality but from different acquisition
times, from different imaging modalities, or from an anatomical atlas. Medical
image registration can either be rigid or non-rigid. Rigid registration allows only
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(a) (b) (c)

Figure 2.4: (a) Slice view of an unsegmented hand CT dataset. (b) Slice view
showing the segmented dataset. (c) Volume rendering of the seg-
mented dataset.

for translation, rotation and scaling whereas non-rigid deformation allows for
a broader range of modifications and deformations. For the neurosurgical plan-
ning application described in this thesis we use an external registration algorithm
based on mutual information [14] and perform rigid registration (i.e., only trans-
lation and rotation).

Resampling is often a part of registration and is the process of changing the
grid/voxel structure of the input data into another grid/voxel structure. In the
context of medical imaging this usually means either resampling from a non-
regular grid into a regular grid (e.g., resampling in 3D ultrasound) or resampling
from one regular grid into another regular grid to change resolution or orientation
of the grid (e.g., for registration). A major concern in image resampling is degra-
dation of image quality. Several different methods have been developed, ranging
from very fast trilinear interpolation to more advanced triquadratic or tricubic
interpolation [83].

2.3 Visualization of Medical Data
The objective of medical visualization is to support doctors and medical per-
sonnel in their decision finding process. Medical visualization is a subarea of
scientific visualization which tries to create images and renderings that aid the
user in understanding complex or high-dimensional data. The main purpose of
visualization is to gain insight into the data [56]. The user should be able to
explore the dataset, declare and test hypotheses and present and illustrate the
found results.
In the medical field the applications of visualization are mainly education,
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Figure 2.5: Medical illustration of Leonardo da Vinci. “View of a skull”, 1489.

diagnosis, treatment planning and intraoperative support. First medical illustra-
tions depicting anatomical systems and pathologies date back to the 16th century
and were based on sketches made during or after surgery or dissections (see Fig-
ure 2.5). Depending on the final application a medical visualization system needs
to support different features such as volume illustration and labeling, support
for measuring, visualization of segmentation results, surgery planning tools and
the integration into intraoperative navigation systems. An overview of different
medical visualization algorithms and applications can be found in [63, 37, 38].

For use in clinical practice most visualization systems are embedded into med-
ical workstations that support the user in patient management and diagnosis
and often provide additional filtering, segmentation and visualization capabili-
ties. Figure 2.6 shows the Agfa IMPAX EE system and the integrated volume
rendering and multiplanar reconstruction views presented in this thesis.

In multiplanar reconstruction (MPR), oblique cutting planes are positioned in
the volume and displayed as slices. The standard MPR usually displays slices
orthogonal to the x, y, and z axis of the dataset.

A main criterion for the acceptance of medical visualization applications in
clinical use is their usability, including their support for more advanced features
such as measuring tools, volume labeling, and clipping, as well as their inter-
activity. Therefore, all algorithms proposed in this thesis are implemented in a
GPU-based framework and show interactive performance.
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Figure 2.6: Medical workstation IMPAX EE by Agfa Healthcare.

2.3.1 Volume Rendering

Direct Volume Rendering (DVR) [18] creates images of volumetric datasets with-
out the need to explicitly extract geometry or surfaces. It is based on an optical
model that defines how a volume emits, reflects, scatters and occludes light. Ray-
casting techniques [44] shoot viewing rays through the volume and accumulate
color and opacity values while traversing the volume, as depicted in Figure 2.7.
The accumulation of color and opacity is computed by evaluating the volume
rendering integral that integrates the emission and absorption of light along the
direction of light traversal [18](see Figure 2.8):

I(D) = I0e
−
∫ D
s0
κ(t)dt +

∫ D

s0
q(s)e−

∫ D
s
κ(t)dtds (2.2)

I0 is the initial intensity at point s0, where the light is entering the volume from
the background. I(D) is the intensity when the ray is leaving the volume at
point D. The first term in Equation 2.2 represents the light from the background
that is absorbed along the ray through the volume. The second term in Equa-
tion 2.2 defines the active emission and absorption of the participating medium
(i.e., volume) along the remaining distance.
The volume rendering integral is usually implemented by its approximation by
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Figure 2.7: The ray-casting principle. Viewing rays are traced from the viewpoint
through the volume, accumulating color and opacity values at each
sample position along the ray.

Figure 2.8: By evaluating the volume rendering integral, the amount of light that
reaches the viewpoint is calculated. Image courtesy of Hadwiger et
al. [29].

a Riemann sum, where the integration is split into n discrete intervals. :

I(D) =
n∑
i=0

c(xi)αi
i−1∏
j=1

(1− αj) (2.3)

c(xi) in Equation 2.3 denotes the color at position xi, αi is the sample’s opacity.

The mapping of scalar intensity values of the raw data to color and opacity is
usually done by transfer functions. An example of a 1D transfer function editor
can be seen in Figure 2.9. Using 1D transfer functions, every sample with the
same intensity value is assigned the same color and opacity. Figure 2.10 depicts
volume rendered images with and without transfer functions.
However, if spatially distinct regions in a dataset have the same intensity range

it is impossible to distinguish between these regions by only using the transfer
function, thus occlusions occur. Multi-dimensional transfer functions [39] try to
alleviate this problem by using additional parameters for the lookup of color and
opacity. To enhance boundaries between structures, for example, the intensity
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Figure 2.9: GUI transfer function editor displaying the current transfer function
and the original data histogram (in log and linear format). The user
can add colored transfer function nodes in the editor, with the x-axis
corresponding to the original data’s intensity, and the y-axis speci-
fying the opacity of the transfer function. Colors and opacities are
linearly interpolated between the nodes.

(a) (b) (c)

Figure 2.10: Volume rendering with and without transfer functions. (a) Volume
rendering of original intensity values (i.e., grey values), with con-
stant opacity. (b) Volume rendering with opacity ramp. (c) Volume
rendering with transfer function from Figure 2.9.

value can be used in combination with the gradient magnitude to assign colors
and opacity. A major problem of transfer functions, however, is the difficulty in
designing and specifying good transfer functions, which is a research area on its
own [8, 67, 76, 87].

2.3.2 Volume Visualization for Neurosurgery
In neurosurgery, surgical approaches tailored to an individual patient’s anatomy
and pathology have become standard. Therefore, precise preoperative planning
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is necessary to achieve an optimal therapeutic effect. Volume rendering is used
in many surgical planning systems to support the surgeon with high-quality 3D
visualization. Especially when multiple radiological imaging modalities are used
to delineate the patient’s anatomy, neurological function, and metabolic pro-
cesses, concurrent 3D visualization of these datsets can significantly help in de-
veloping a three-dimensional perception of the surgical approach. Traditionally
this was done by just mentally fusing the different datasets. However, in neu-
rosurgery there are many small objects and high-risk structures that must not
be damaged during the surgical approach, which further emphasizes the need
for computer aided surgical planning. Many different systems have been pro-
posed for the planning and simulation of different kinds of neurosurgical proce-
dures [4, 24, 32, 42, 59, 69, 70, 85]. Recently fiber tracking, the reconstruction
of microstructural characteristics in the brain and central nervous system using
diffusion tensor imaging (DTI) has become a popular area of research, leading to
several neurosurgical planning tools such as virtual Klingler dissection [75].

Applications for endoscopic approaches to the brain simulate the reduced field
of view and camera movement during endoscopic interventions [2, 42, 59]. In en-
doscopic approaches to the sinuses or pituitary gland a rigid endoscope is inserted
into the patient’s nose and advanced through the nasal airways. STEPS [59], an
application for advanced virtual endoscopic pituitary surgery, not only simulates
the endoscopic view, but also restricts the surgeons movement of the endoscope
and simulates surgical tools for removing bones and tumors (see Figure 2.11).
More recently, Krueger et al. [42] proposed a system for simulating sinus en-

doscopy, focusing on GPU-based volume rendering and a realistic representation
of the rendered biological structures such as mucosa.

Multi-volume rendering deals with the concurrent visualization of multiple vol-
umes in a single rendering. Most neurosurgical planning applications heavily rely
on image data from multiple modalities. Simultaneously visualizing anatomi-
cal and functional data enables the surgeon to examine the spatial relationship
between brain activation and brain tissue [73, 71, 32].
Different approaches for multi-volume rendering allow different levels of data

intermixing [22]. The first distinction lies in the number of volumes that are dis-
played simultaneously at one sample position, either displaying only one volume
per sample (i.e., one property per point) or blending multiple volumes at one
sample position (i.e., multiple properties per point). Furthermore, when multiple
properties are displayed per sample, property fusion can occur at different points
in the volume rendering pipeline. Usually volume properties are fused either
based on their raw intensity values, as gradient or material fusion, or during the
shading or compositing steps. A more in-depth review of related work in the field
of multi-volume rendering is presented in Section 4.2.
Recently an application for neurosurgical tumor treatment was proposed by
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Rieder et al. [69] which uses multimodal data and offers distance-based enhance-
ments of functional data and lesions and allows the visual exploration of the
surgical approach to the structure of interest by advanced clipping and cutaway
tools.

Advanced clipping and cutaway techniques in volume rendering allow the dis-
play of structures of interest which would otherwise be occluded. The specification
of the cutting area can be done either geometrically or based on volume features.
Exploded views or context-preserving techniques such as presented by Bruckner
et al. [11] try to display the interior of a volumetric dataset while preserving
context information (see Figure 2.12). Semantic volume rendering approaches
try to support the non-expert user by allowing users the specification of volume
rendering parameters in the natural language of the domain [65].

If segmentation information is available, clipping of segmented objects is possi-
ble [4]. Segmented objects are usually either displayed as surface mesh [24] or as
voxelized, binary segmented objects [28]. While the integration of surface models
into a volume rendered image needs extra care, the segmentation information can
be displayed as a smooth surface. Binary segmented objects, on the other hand,
allow a volumetric display of the segmented structure, including the assignment
of different transfer functions and render modes.
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(a)

(b) (c)

Figure 2.11: STEPS - A virtual endoscopy training application. (a) Endoscopic
approach. b) Tumor and vessel visualization in endoscopic view. (c)
Tumor resection tool. Image courtesy of Neubauer [58].
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Figure 2.12: Illustrative context-preserving volume rendering tries to display the
interior of volumetric datasets while preserving context information.
Image courtesy of Bruckner et al. [11].



Chapter 3

Skull Peeling

Figure 3.1: Skull Peeling, fast visualization of the brain without prior segmenta-
tion.

3.1 Introduction
Parts of this chapter are based on the papers Segmentierungsfreie Visualisierung
des Gehirns für Direktes Volume Rendering, in Proceedings of Bildverarbeitung
für die Medizin [5] and High-Quality Multimodal Volume Rendering for Preopera-
tive Planning of Neurosurgical Interventions. IEEE Transactions on Visualization
and Computer Graphics (Proceedings of IEEE Visualization 2007) [4].
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In today’s clinical practice, direct volume rendering (DVR) is already used
routinely for the 3D visualization of medical volume data, such as those created by
MR or CT scanners. The main advantage of DVR compared to surface rendering
methods is the higher information density of the images. Transfer functions,
which map the intensity values of the raw data to color and opacity, are used to
create meaningful images. However, if spatially distinct regions in a dataset have
the same intensity range, it is impossible to distinguish between these regions by
only using the transfer function. This leads to occlusions and ambiguities in the
volume rendered image. Higher dimensional transfer functions might alleviate
this problem, however their design is even more burdensome than the design of
1D transfer functions.
Therefore, one of the biggest problems in DVR is the occlusion of potentially

interesting areas by other structures of the same intensity/density. One example
is data from an MR scan of the head, where the brain has the same intensity
values as some outer tissues and, therefore, gets occluded. Due to this occlu-
sion, visualizations of the brain usually rely on pre-segmentation methods (the
so-called skull stripping), where the brain gets segmented prior to visualizing it.
Unfortunately, the use of skull stripping tools in clinical practice is not always
possible due to constraints in quality, robustness and available user time.

This section describes the skull peeling algorithm for directly displaying the
unoccluded brain from MR data without the need for prior segmentation. Keep-
ing the requirements for clinical applications in mind, our intention is to reliably
visualize the brain without the need of tedious preprocessing or complex user
interaction. Naturally, a manual segmentation of the brain would achieve the
best visual results, but would require a much longer preprocessing time, which
we want to avoid.
Our algorithm is based on the idea of opacity peeling [68], a view-dependent

method for peeling away layers in DVR guided by accumulated opacity. In other
words, it tries to reduce viewpoint-based occlusions by skipping over outer “un-
interesting” structures to expose inner structures of a volume dataset. Although
opacity peeling quickly generates meaningful images, a major problem for medical
practice is its dependency on the threshold parameters. Minor changes of these
settings can cause major changes in the resulting images (such as a shrinking or
expanding brain). Thus, it is an important goal to improve reliability. The work
described in this chapter arises from the requirements of neurosurgical applica-
tions to be able to extract and visualize the brain in an MR dataset in a fast and
robust way, without much user interaction and in high quality.
Additionally, an application for the display of implanted electrodes, used for

epilepsy surgery, and for the display of superficial brain tumors was developed
based on the described algorithm. Using skull peeling, the surgical approach to
the brain can be simulated by only removing those parts of the skull that need
to be removed for surgery.
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3.2 Related Work
High-quality renderings of the human brain from cranial MR scans usually require
segmentation due to the brain being occluded by surrounding structures and
tissue. However, this segmentation process, called skull stripping [1, 78], is not
trivial and automatic methods often have problems with noise or require certain
MR sequences or scanners. The interested reader is referred to Atkins et al. [1]
and Song et al. [78] where different skull stripping approaches are compared and
evaluated.
If the brain is rendered without prior segmentation, it is occluded by surround-

ing tissue of similar intensity values (e.g., skin). Adjusting only the transfer
function, including multi-dimensional transfer functions [39], cannot solve this
problem. Methods such as opacity peeling [68] or confocal volume rendering [57]
are ray-casting-based methods that peel away outer, less important regions of a
volume to visualize inner structures. These methods, however, are hard to use
in clinical applications because the visual results are very sensitive to several
user-defined parameters.
As described by Rezk-Salama and Kolb in [68], opacity peeling is based on

ray-casting. The first step consists of stepping along the ray and accumulating
color and opacity, as in standard ray-casting. However, when the accumulated
opacity along a ray exceeds a threshold T1, the color- and opacity values of this
ray are stored for later display and then reset. Stepping further along the ray,
when the opacity value of one single sample (i.e., the current sample) falls below
a threshold T2, the accumulation of color and opacity along the ray is started
again (until threshold T1 is exceeded again). This loop continues and permits
to calculate several layers of the dataset in one render pass and display them
subsequently.
Confocal Volume Rendering [57] is a viewpoint-dependent method for visual-

izing deep structures, where the volume gets displayed only beyond a certain
depth and for a user-defined length. Bruckner et al. [11] have introduced a
context-preserving DVR method, where a function of shading, gradient mag-
nitude, distance to the viewpoint and accumulated opacity directly influences the
opacity.
However, the final visualization results of these methods for selectively dis-

playing occluded structures are often hard to predict and highly dependent on
manual parameter settings. We try to alleviate this problem in our new skull
peeling method.
Our visualization framework is based on DVR [44], which creates images di-

rectly from volumetric data without the need to extract any geometry first. The
major advantage of DVR is the increased amount of information that can be
conveyed in one image by making use of transparency, which allows users to peer
inside the volume. Additionally, transfer functions and lighting can significantly
enhance the 3D perception of the volumetric structure. Hardware accelerated ap-
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proaches allowing interactive high quality volume visualization on standard PCs
range from 2D texture mapping based algorithms [66] to more recent GPU-based
ray-casting [41]. Rendering of segmented volume data imposes the additional
problem of filtering object boundaries at high resolution and has been addressed
by Hadwiger et al. [28]. They use GPU-based two-level volume rendering to spec-
ify transfer functions and render modes on a per object basis with trilinear object
filtering.

3.3 Skull Peeling

Figure 3.2: Different examples of skull peeling. The brain, superficial vessels
and implanted electrodes can be displayed fast and without any prior
segmentation of the brain.

The skull peeling algorithm simultaneously uses the information of registered
CT and MR volumes in order to remove areas along the viewing ray which occlude
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the brain in the MR volume [5]. Different examples of skull peeling can be seen
in Figure 3.2.
While the brain is depicted well in MR scans, CT scans are superior in depicting

bony structures with very high intensity values. We exploit this knowledge to
decide automatically if a sample lies within a bony area (i.e., the value of the CT
dataset is above 1000 Hounsfield units). During ray-casting, both the CT and
the MR volume are sampled. When the current ray hits a bone for the first time,
the accumulated opacity and color values from the MR volume are reset and the
ray is advanced until the bony area is exited. At that point, accumulation starts
again in order to reveal the brain. This algorithm needs no user input and works
well in standard cases where the brain is surrounded by bone (see Figure 4.2a).
In many cases the need of a registered CT does not lead to an additional

screening for the patient, because a CT is required anyway for intraoperative
navigation. Due to this additional volume, the skull peeling algorithm is inde-
pendent of the user-specified parameters of the original opacity peeling algorithm,
thereby increasing the reliability and quality of the visualization.
However, when the brain is not surrounded by bone (e.g., after surgery, or when

clipping planes are enabled during rendering) this algorithm would fail. The ray
would hit a bone for the first time after traversing the brain and everything in
front of that hitpoint would be skipped (see Figure 3.3b). We therefore added
the following extensions:

• The position of the first hitpoint of the skin (i.e., first sample with a density
higher than air) is saved. If the ray does not hit a bone within a certain
number of steps (defined by threshold Tclip1) we assume that there is no
bone in front of the brain and use the radiance accumulated from the first
hitpoint.

• A second extension to the algorithm was made to improve visualization
near the skull base. When looking at the brain from below, along the
spinal chord, many small bone pieces occlude the view of the brain. We
introduce a threshold Tclip2 which specifies the minimum distance two bony
areas must have in order to assume the area in-between to be brain. If this
distance is not reached, the area between these two bone areas is skipped
and not rendered.

Both thresholds have default values that usually work very well and only need to
be adjusted for special cases (e.g., looking at the brain from below). Figure 3.4
outlines the standard case of skull peeling and a case where threshold T1 is needed.

3.4 Neurosurgical Applications
The skull peeling algorithm described above, for displaying the brain surface, was
applied to several different neurosurgical application scenarios, namely epilepsy
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(a) t (b)

(c)

Figure 3.3: Skull peeling of clipped volumetric datasets. (a) Original rendering.
(b) Incorrect clipping, resulting from erroneously skipping parts of
the brain that are not occluded by the skull. (c) Corrected clipping,
after introducing the additional parameters Tclip1 and Tclip2 .

surgery planning and for planning of the surgical approach to the brain for surgery
on superficial lesions.

3.4.1 Surgical Approach to the Brain
Finding the ideal position for the skin incision and subsequent bone removal is
important for minimizing the invasiveness of a surgery. For this purpose, we
introduce clipped skull peeling to visualize the simulated surgical approach (Fig-
ure 3.5). The user input consists of the surgeon drawing the areas for the skin
incision and subsequent bone removal directly onto the volume-rendered image
of the head. After skin removal, the skull is rendered with shaded DVR, as this
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area to be skipped 

potential brain area 
(might be discarded later) 
brain area 

 

Figure 3.4: Skull peeling algorithm. The lower ray displays the standard case
where the ray hits the skull prior to the brain. The upper ray depicts
the case where the brain is not covered by bone.

enhances the 3D perception and helps the surgeon to find anatomical landmark
points on the skull, which can be used as orientation aides during surgery. The
result of clipped skull peeling is generated in three ray-casting passes by using
the stencil buffer in order to restrict pixels and thus rays to one of three different
cases with one specific rendering mode each: (1) Everything outside the specified
clipping areas is rendered using unshaded DVR of the MR volume; (2) Inside
the skin incision area the skull is displayed (shaded DVR of the CT data), but
accumulation of color and opacity is started only after the threshold for bone
has been exceeded; and (3) The bone removal area is skull-peeled. The assign-
ment of these three rendering modes to their corresponding pixels is performed
as follows: After clearing the stencil buffer to zero, the polygon that was drawn
by the user to simulate the skin incision is rendered, increasing the stencil val-
ues of the covered pixels to one. Next, the polygon drawn for bone removal is
rendered as well, which increases the stencil values of the corresponding pixels
to two. However, for rendering the bone removal polygon the stencil function is
set such that stencil values are only modified in areas where the stencil buffer is
already one. This ensures that the bone is only removed in areas where the skin
has already been removed. Then, the three ray-casting passes outlined above are
performed, restricting rendering to the corresponding pixels by setting the stencil
function accordingly. Note that this algorithm could easily be extended to more
general view-dependent clipping methods. Simulating the surgical approach to
the brain by planning the skin incision and removing the bone window can be
seen in Figure 3.5.
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(a) (b)

(c)

Figure 3.5: Planning the surgical approach to the brain. (a) Original volume
rendering. (b) Displaying the skin incision area. (c) Removing the
bone window.
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3.4.2 Epilepsy Surgery Planning
To localize the source of epileptic seizures, one common method is the use of
invasive electrodes. These small electrodes are implanted onto the patients brain
surface during a small surgery. Next, the patient is supervised and when an epilep-
tic seizure happens the location of the source of the seizure can be determined by
the read-out of the implanted electrodes. This information can subsequently be
used for surgery, where the part of the brain that causes the seizures is operated
on. However, a big problem for the surgeons is to determine the exact location
of the implanted electrode in regard to the brain and the brain’s surface prior
to surgery. For imaging of the electrodes a CT is acquired, which we use for
threshold segmentation of the electrodes. Using skull peeling we can display the
brain’s surface along with the segmented electrodes. Since the implanted elec-
trodes usually seem to sink into the brain’s surface a little bit we can optionally
improve their visibility in the skull peeled image. This is achieved by resetting
the color and opacity values of the ray when first hitting an electrode, as long as
the opacity along the ray has not reached a maximum before (see Figure 3.6b).

3.5 Results and Evaluation
The algorithm was implemented on a Pentium IV 3,2 GHz PC with a ATI X1800
graphics card. A MR T1 dataset (512× 512× 512) achieves frame rates of 14 fps
which illustrates the interactivity of the approach. For a more detailed evaluation
see Section 4.6 in Chapter 4.

3.6 Summary and Conlusion
The proposed method allows us to visualize the exact position of superficial brain
tumors as well as surrounding vessels (see Figure 3.6c). Implanted electrodes for
the localization of epilepsy centers are displayed in Figure 3.6b.
Skull peeling allows for a simple and fast visualization of the brain’s surface

and does not require any tedious pre-segmentation of the brain. This was very
positively received by the medical doctors who were using our system.
Our system is mainly designed for the use in time critical applications, where

a high-quality segmentation of the brain is not feasible or possible. Skull peel-
ing is not entirely artifact-free (especially near the silhouette) but it achieves
good results in a very small amount of time. For a more detailed evaluation of
the integration of our skull peeling algorithm into a 3D neurosurgical planning
application see Section 4.6.
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(a) (b)

(c)

Figure 3.6: Medical example applications for using skull peeling. (a) Visualiza-
tion of a superficial brain tumor. (b) Displaying implanted electrodes
for epilepsy surgery. (c) Simulation of the surgical approach to the
brain.



Chapter 4

Preoperative Planning
of Neurosurgical Interventions

Figure 4.1: Multi-volume rendering of segmented data (green: tumor - MR, red:
vessels - MRA, brown: skull - CT).

4.1 Introduction
Parts of this chapter are based on the papers High-Quality Multimodal Volume
Rendering for Preoperative Planning of Neurosurgical Interventions. IEEE Trans-
actions on Visualization and Computer Graphics (Proceedings of IEEE Visual-
ization 2007) [4].
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Surgical approaches tailored to an individual patient’s anatomy and pathol-
ogy have become standard in neurosurgery. Precise preoperative planning of
these procedures, however, is necessary to achieve an optimal therapeutic effect.
Therefore, multiple radiological imaging modalities are used prior to surgery to
delineate the patient’s anatomy, neurological function, and metabolic processes.
Developing a three-dimensional perception of the surgical approach, however, is
traditionally still done by mentally fusing multiple modalities. Concurrent 3D
visualization of these datasets can, therefore, improve the planning process sig-
nificantly.
Minimally invasive neurosurgical procedures are constantly gaining importance

with the aim to minimize surgical trauma, shorten recovery times and reduce
postoperative complications. For surgery of deep-seated structures, neurosurgical
keyhole procedures are becoming standard, where a small opening in the skull is
sufficient to gain access to a much larger intracranial region via an endoscope or
operating microscope. In contrast, interventions in areas directly below the skull
require a larger and individually tailored opening of the cranial bone. For both
approaches (i.e., surgery of deep-seated structures and near the brain’s surface),
orientation is necessary to perform the skin incision and bone cover removal at the
optimal location. For deep-seated targets, further orientation is crucial to find
the structures of interest while additionally preserving the surrounding tissue.
Preoperative planning enables the surgeon to identify anatomical landmarks and
critical structures (e.g., large vessels crossing the path of the operating microscope
or critical cranial nerves) and in determining the optimal position of incision prior
to surgery. It is during this planning session that the physician decides upon the
optimal approach by adapting the general surgical plan to the individual patient’s
anatomy. The medical doctor uses this knowledge during surgery to determine
the current location in the skull and the subsequent optimal course of action.
Therefore, the success of a surgery, especially in keyhole approaches, depends
largely on accurate preoperative planning.
Up to now, the standard approach of presurgical planning is performed using

stacks of raw images obtained from medical scanners such as CT (Computed
Tomography) or MRI (Magnetic Resonance Imaging). In the field of neuro-
surgery, MR scans are the medium of choice for depicting soft tissue such as the
brain, whereas CT scans are superior in picturing bony structures. Functional
MR (fMR) images depict neural activity, Positron Emission Tomography (PET)
shows metabolical activity and Digital Subtraction Angiography (DSA) depicts
vessels in high quality. However, a mental combination of all these datasets and
a correct 3D understanding by simple slice-by-slice analysis is very difficult, even
for the skilled surgeon.
3D visualization alleviates this problem by enhancing the spatial perception of

the individual anatomy and, therefore, speeding up the planning process. Con-
sidering the neurosurgical background, a preoperative planning application has
to meet certain requirements: First of all, it should provide a high-quality, inter-
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active and flexible 3D visualization of the volumetric dataset using direct volume
rendering (DVR). Next, a preoperative planning application should offer mul-
timodal visualization of datasets from different imaging modalities such as CT,
MRI, fMRI, PET or DSA. Interactive manipulation of the visualization such as
simulated surgical procedures, endoscopic views or virtual cutting planes should
be available and, finally, an intuitive workflow is necessary, which is integrated
into an application framework and ready for use by surgeons or medical staff.
In this chapter we introduce an application for planning of individual neuro-

surgical approaches with high-quality interactive multi-volume rendering for the
concurrent and fused visualization of multimodal datasets (see Figure 4.2 for
several examples).
The application supports three main tasks:

• Planning of the surgical approach to access the brain, by simulating the opti-
mal skin incision and removal of the cranial bone tailored to the underlying
pathology and without any prior segmentation.

• Visualization of superficial brain areas, including information from addi-
tional volumes such as DSA, fMR or PET to provide further insight into
the individual brain anatomy, function and metabolism.

• Visualization of deep-seated structures of the brain for (keyhole) surgery, by
including segmentation information.

The visualization is based on direct multi-volume ray-casting on graphics hard-
ware, where multiple volumes from different modalities can be displayed concur-
rently at interactive frame rates. Graphics memory limitations are avoided by
performing ray-casting on bricked volumes. For preprocessing tasks such as reg-
istration or segmentation, the visualization modules are integrated into a larger
framework, thus supporting the entire workflow of preoperative planning.
All visualization modules are integrated into a framework that is designed to

support surgeons in the task of preoperative planning, including a preprocessing
stage for registration and optional segmentation of the different datasets.
Rendering performs real-time GPU ray-casting with perspective projection, in

general using a single ray-casting pass for 32-bit floating point computations and
blending. We employ efficient empty space skipping, early ray termination, and
bricking for memory management of multiple volumes. Ray-casting is performed
through several volumes at the same time, potentially taking into account multi-
ple volumes at a single sample location.

The technical contributions presented in this chapter are:

• Unified handling of multi-volume ray-casting and bricking, with and without
segmentation masks. For each sample location, the volume to be sampled is
either chosen depending on segmentation information, or multiple volume
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(a) (b)

(c) (d)

Figure 4.2: (a) Visualization of the brain without prior segmentation using our
skull peeling algorithm. (b) Multi-volume rendering of segmented
data (green: tumor - MR, red: vessels - MRA, brown: skull - CT).
(b) Multi-volume blending (black/white: brain - MR, red: metabolic
active part of tumor - PET, yellow: brain areas active during speech -
fMR). (c) Perspective multi-volume rendering for simulating keyhole
surgery.

samples are blended. We circumvent GPU memory constraints by bricking
each volume (CT, MR, DSA, PET, fMR), and downloading only active
bricks into 3D cache textures (one per modality or unified). Segmentation
information is represented as a bricked object ID volume over all modalities,
which likewise employs a 3D cache texture.
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• The integration of Skull peeling (see Chapter 3) for selectively removing
structures obscuring the brain (skin, bone) without segmentation (Fig-
ure 3.4). In contrast to opacity peeling [68], we consider registered CT
and MR data at the same time for more dependable results. The impact of
clipping is resolved consistently. Layers can also be peeled away selectively
by painting 2D clipping areas (Figure 4.10).

• The result of skull peeling is view-dependent. In order to employ it for pow-
erful view-independent clipping, we first generate a view-dependent depth
map, which is then transformed into volume space and resampled into a
static segmentation mask.

• Smooth rendering of segmented object boundaries, taking into account the
contributions of multiple volumes. In contrast to earlier work [28], we do
not propose a general solution, but an approach that is customized for the
needs of our neurosurgery pipeline that achieves better results in this case.
During ray-casting, the precise transition between two adjacent materials is
re-classified depending on user-specified iso-values and searching the object
ID and data volumes along the gradient direction.

4.2 Related Work
The main advantage of DVR compared to surface rendering lies in the increased
amount of information that can be conveyed in one image, as the entire volumetric
dataset is used to create the final rendering.
For rendering multimodal data, several methods have been proposed [13, 96, 25,

23]. Their key differences lie in the way how the volumes are combined. Different
data intermixing levels (e.g., accumulation level, illumination level, image level)
and fusion methods (e.g., one or multiple properties per sample) are used de-
pending on the characteristics of the volumes and the desired results. Manssour
et al. [52] use an MRI volume to define the opacity transfer function, while a
PET volume determines the color transfer function. Clusters [96] and special-
ized volume rendering hardware [25, 71] have also been used. Recently, Rößler
et al. [71] introduced a slice-based multi-volume rendering method to display a
template brain along with patient-specific fMR data, including advanced clipping
techniques and render modes. All of the above methods, however, do not address
the problem of high-quality rendering of segmented multimodal data.
For high-quality rendering of segmented data, object boundaries must be de-

termined at the subvoxel level [84, 28, 89], mostly using linear or cubic filtering.
Tiede et al. [84] propose a CPU-based method for threshold-segmented objects.
They compare the intensity of each sample to the objects in its 23 neighborhood
to assign the object ID. If the objects have not been segmented via thresholding,
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trilinear filtering of object masks is used. They also propose to extend their ap-
proach to multimodal data. Two-level volume rendering [28] is a flexible rendering
method for segmented data with trilinear object boundary filtering and per-object
transfer functions and rendering modes. Preoperative planning for neurosurgery
has been an active research topic for several years [77, 33, 59, 69], with the main
focus often on the integration of imaging, registration, and segmentation into a
planning workstation [17], but often falling short of a high-quality visualization of
multi-volume datasets. The virtual tumor resection planning of Serra et al. [77]
uses volume slicing with basic support for multiple volumes. Even though vol-
ume slicing approaches achieve a fast and flexible visualization, they usually do
not reach the quality of ray-casting methods, especially with respect to close-up
perspective views. Other approaches employ iso-surface rendering [59], or the
extraction of 3D contours that can subsequently be blended into a mono-volume
rendering [33]. This, however, is not optimal for versatile preoperative planning
as it does not offer the amount of flexibility needed by surgeons for interactive
exploration, e.g., changing the transfer function.
Rieder et al. [69] recently proposed a neurosurgical tumor treatment application

which uses multimodal data, offers distance-based enhancements of functional
data and lesions, and supports advanced clipping and cutaway tools to visually
explore the surgical approach. An illustrative hybrid visualization method for
anatomical and functional brain data was proposed by Jainek et al. [32].
We build on previous research in the area of multimodal volume rendering,

and especially GPU-based ray-casting. While first approaches were based on
slicing [93, 66], GPU ray-casting is now a viable and very powerful alternative [41].
The basis for our volume rendering framework is a GPU-based ray-caster [74]
(requiring Shader Model 3.0) that achieves interactive frame rates also for large
volumes. However, we have extended this ray-caster considerably in order to
support multiple volumes, segmentation masks, flexible per-object as well as view-
dependent clipping, and rendering modes tailored for neurosurgical applications.

4.3 Workflow
For daily use in clinical environments it is crucial for CASP applications (Com-
puter Aided Surgical Planning) to be integrated directly into the clinical work-
flow. CASP applications should support the surgeon, who usually has a very
tight schedule, by offering an intuitive, easy-to-use interface. Therefore, we have
integrated our rendering framework as a plugin into the medical workstation and
PACS system Impax 6.0 by Agfa Healthcare1. The complete workflow of our
planning tool can be seen in Figure 4.3 and contains the following steps: Data
acquisition, registration, segmentation, planning of the skin incision and bone
removal area, brain surface visualization, and surgery planning for deep-seated

1http://www.agfa.com
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for deep-seated lesions

Technical Implementation

Blended Multi-Volume Rendering - 
Concurrent visualization of multiple volumes in a single rendered image

Skull Peeling -
Using information from CT and MR data to interactively skip structures obscuring the brain

Rendering of Segmented Multi-Volumes -  
Smooth transitions between binary  masks in multiple volumes

INTERACTIVEPREPROCESSING

Registration and Segmentation 
are done directly in a medical 
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PACS.  

Figure 4.3: Detailed workflow of our neurosurgical planning application. Data
acquisition, registration and segmentation are performed in a prepro-
cessing step. The interactive part of the workflow consists of three
main parts, described in Section 4.5.

structures, tailored to the individual anatomy. The application consists of a
preprocessing stage, which was intentionally kept as short as possible, and an
interactive stage for rendering. After acquisition of the radiological images, the
different datasets are registered and segmented directly in the medical worksta-
tion before starting the interactive visualization. Segmentation is not mandatory
but helps later on by giving additional information during the visualization of
deeper structures. Optionally, diffusion-based smoothing or segmentation [6] can
be employed. Using skull peeling (Section 4.5.2), the surgeon can take a look at
the brain’s surface and optionally define the area on the patient’s head for the
skin incision and bone window removal. The superficial brain can be displayed
via direct multi-volume rendering (Section 4.5.3), showing the brain (MRI) along
with other structures such as vessels (DSA), implanted electrodes (CT), or func-
tional brain areas (fMRI, PET). Next, the surgeon may navigate the viewpoint
through the keyhole in the cranial bone to access deeper brain structures, using
multi-volume rendering of segmented data (Section 4.5.4). Additionally, binary
segmented objects can be displayed in high quality and without staircase arti-
facts by an on-the-fly subvoxel classification algorithm based on ray-casting (Sec-
tion 4.5.5). During the entire interactive visualization process, tools for further
exploration of the data are available to the surgeon, such as MPR (multiplanar
reconstruction) views, clipping geometry, or endoscopic views.

4.4 Preprocessing Stage
In the registration module, the different multimodal datasets are aligned and re-
sampled. We use an automatic registration algorithm based on mutual informa-
tion [14] and perform rigid registration (i.e., only translation and rotation). The
algorithm usually converges after a few seconds. If the result is not satisfactory,
the user can improve the registration manually by interacting with three orthog-



40 Preoperative Planning of Neurosurgical Interventions

onal slice views. The segmentation module implements manual segmentation,
thresholding, watershed segmentation based on markers [21] and diffusion-based
segmentation [6]. Watershed based on markers is a semi-automatic segmentation
algorithm where the user has to draw initial markers for the different objects
into the volume data. For each voxel its most probable membership to an object
is calculated. The algorithm completes within seconds, however, manual refine-
ment of the initial markers is necessary most of the time. The binary segmented
objects are saved in an additional segmentation volume that defines the object
membership of each voxel.

4.5 Visualization Modules
The three visualization modules illustrated on the right-hand side of Figure 4.3
constitute the main part of our application. Section 4.5.1 provides a technical
introduction to our multi-volume rendering system, which is the basis for all vi-
sualization modules. Specifics of the modules are then described in Section 4.5.2
for skull peeling in order to perform view-dependent clipping of “uninteresting”
parts of a volume, Section 4.5.3 for multi-volume blending in order to visual-
ize unsegmented data, and Section 4.5.4 for segmented multi-volume rendering
for visualizing segmented objects from multiple modalities. Rendering smooth
boundaries of segmented volumes is described in Section 4.5.5. General interac-
tion tools which support the surgeon in the exploration and planning process are
explained in Section 4.5.6.

4.5.1 Multi-Volume Rendering
A very important issue in multi-volume rendering is how the contributions of
different modalities are combined. Our rendering pipeline offers several options
that are part of a single consistent framework. Contributions of multiple volumes
are combined on a per-sample basis during ray-casting. For a given sampling
location, either a single volume is sampled and mapped to optical properties via
a transfer function, or the contributions of multiple volume samples taken at
the same relative location in each modality are blended after separate transfer
functions have been applied.
A single object ID volume guides these choices for combining multiple vol-

ume contributions. Table 4.1 gives an overview of the most important texture
types that are used in our implementation. Each voxel is assigned the ID of the
segmented object it belongs to (tex_objectID), and each object is assigned the
volume it belongs to using a 1D mapping (tex_volumeID). For example, “bone
voxels” would be assigned to the CT volume, whereas “brain voxels” would be
assigned to the MR volume. Each object can use its own transfer function, which
is determined using its object ID [28]. The mapping of object ID to volume ID
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implicitly solves the problem of using different transfer functions for different vol-
umes, as long as each object uses only a single transfer function. Additionally,
special blending object IDs known by the ray-casting shader are used to indicate
that for this object a given configuration of multiple volumes should be blended
at each sampling location, where each volume uses its own transfer function and
blending weight. We currently support only a fixed number of useful configura-
tions, such as blending the MR and the DSA volume used in the visualization
module described in Section 4.5.3. However, adding additional configurations is
easy, and our system could easily be extended to full generality using additional
look-up textures.
Table 4.2 illustrates the basic texture look-ups used by multi-volume render-

ing. The transfer function TFj in Table 4.2 is determined by the object ID,
which either means j = o(x) for regular object IDs, or a set of predefined j’s is
used by the shader because o(x) is a blending object ID and thus uses multiple
transfer functions. Each object can further have its own set of up to six axial
clipping planes, whose positions are obtained in the shader by sampling two 1D
look-up textures for minimum and maximum (x, y, z) coordinates, respectively
(Table 4.1). Note that segmentation information is not strictly required. If no
object ID volume is available, all parts of our pipeline will implicitly assume that
all voxels belong to the same default object. In this case, the only option for
combining different volumes is blending them.

Data and Memory Management: Another important challenge in multi-volume
rendering is volume data management and coping with memory consumption.
We use a bricked volume rendering scheme that subdivides each volume into
equally-sized (e.g., 163 or 323) bricks and maintains 3D brick cache textures. For
rendering, active bricks of the volume are held in GPU cache memory, and small
3D layout textures are used for address translation [30] between “virtual” volume
space and actual cache texture coordinates. Figure 4.4 shows an overview of our
system. One cache stores segmentation information (an object ID per voxel),

Texture Dim.+ Type Function
tex_objectID 3D (I) map sample position to object ID
tex_volumeID 1D (I) map object ID to volume ID
tex_volumei 3D (I) texture cache for volume i
tex_clipmin 1D (RGB) map object ID to clip planes (min)
tex_clipmax 1D (RGB) map object ID to clip planes (max)
tex_tf 2D (RGBA) packed 1D textures TFj for all j

Table 4.1: Basic multi-volume rendering textures. Texture type I is single-channel
(intensity), and RGB is three-channel, to store three axial clipping
plane positions (min or max for x, y, and z, respectively).
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obtain ... at x as
object ID o(x) = sample(tex_objectID,x)
volume ID i(x) = sample(tex_volumeID, o(x))
volume scalar si(x) = sample(tex_volumei(x),x)
transfer function TFj(x) = sample(tex_tf, (si(x), j))

Table 4.2: Basic multi-volume rendering quantities and texture look-ups.

with its corresponding layout texture. Each data volume (e.g, CT, PET) has its
own layout texture, and either also uses an individual cache texture, or refer-
ences bricks in a larger unified cache for multiple modalities. Individual caches
are less flexible because their size must be chosen at startup, whereas a unified
cache allows to change the memory limit dynamically for each modality. How-
ever, in this case the GPU must support the texture dimensions required by the
larger unified cache. In general, ray-casting is performed in a single rendering
pass [74] through “virtual” volume space. At each sampling location, one or mul-
tiple address translations are performed, and the sample from each modality is
obtained from the corresponding cache texture. Although address translation is
a relatively fast process, it can optionally be reduced by using a global cache
layout for all volumes. This, however, leads to a higher number of active bricks
and thus requires bigger caches, since in this case culling cannot be performed
independently for each modality.

objectID 
Volume 

PET 
Virtual  
Volumes 

GPU 
CPU 

Cache  
Textures 

Layout 
Lookup  
Textures LUTex objID LUTex CT 

 
LUTex PET 
 

CT 

objID Cache PET Cache CT Cache 

Figure 4.4: Bricked memory management for multi-volume rendering. No volume
is required to be resident in GPU memory in its entirety. Ray-casting
is performed in “virtual” volume space, with addresses translated to
actual cache texture coordinates using layout look-up textures.



4.5 Visualization Modules 43

4.5.2 Skull Peeling - Surgical Approach to the Brain
For simulating the surgical approach to the brain we integrated Skull Peeling,
as described in Chapter 3 into the system. Additionally, the user can now store
the result of the view-dependent skull-peeling procedure as a segmentation mask.
This is crucial for neurosurgical intervention planning as it enables viewing the
skull peeled area from any arbitrary angle.

View-Independent Skull Peeling: The skull peeling algorithm is inherently
view-dependent. This, however, implies that the peeled volume is static with
respect to the image plane instead of the volume, and the part of the volume that
is peeled away changes whenever the view is changed. We extend skull peeling to
a powerful view-independent approach for volume clipping. During ray-casting, a
depth image is generated that stores the depths where rays first hit a part of the
volume that is not peeled away. In order to generate a segmentation mask that
corresponds to the peeled area, each voxel position is transformed according to
the view transform into an (x, y) position and corresponding depth z. Compar-
ing the voxel’s transformed depth with the depth stored in the depth image at
(x, y) determines whether the voxel is included or excluded from the skull peeling
segmentation mask, which is equivalent to a voxelized selection volume [92]. This
process is very similar to shadow mapping [95, 20]. The generated mask allows
to switch back to standard volume rendering with segmented masks, toggling the
visibility of the peeled area on demand while it stays constant with respect to the
volume, even when the view is changed. Therefore, view-independent skull peel-
ing is the first step for multi-volume brain surface visualization (Section 4.5.3) as
it offers an unobscured view to the brain. An example can be seen in Figure 4.5.

4.5.3 Multi-Volume Blending – Brain Surface Visualization
Combining multiple modalities in a single rendering can significantly increase
the understanding of the actual clinical situation. Surgery at the brain’s surface
primarily includes tumor resection, epilepsy surgery, and vessel surgery (arteri-
ovenous malformation, AVM). For these cases, after virtually removing the bone
cover, the surgeon wants to see the brain surface with additional information
such as DSA or functional data (i.e., PET or fMRI). For this task, we employ a
visualization approach that combines different modalities without requiring seg-
mentation masks. A major motivation for this is that PET data is very diffuse
and cannot be segmented well, fMRI data is almost binary, and DSA data can be
visualized clearly with a simple ramp transfer function. Also, avoiding the need
for segmentation significantly speeds up the preprocessing phase. Therefore, a
method that combines multiple volumes based on property fusion is a very good
choice for visualizing the brain surface with information from multiple modalities.
Our algorithm only needs two or more registered volumes as input. It is flexible



44 Preoperative Planning of Neurosurgical Interventions

Figure 4.5: View-independent skull peeling allows to plan the surgical approach
to the brain in detail, by enabling the user to position the patient’s
head according to the surgical approach.

with regard to the number of volumes that can be visualized concurrently, since
our bricking scheme (Section 4.5.1) makes the approach scalable. Each volume
has its own individual transfer function. The volume contributions are combined
during ray-casting by applying the transfer functions of all volumes at each sample
location and combining the classified values.
We have implemented different combination techniques ranging from simple

linear blending to more specialized combination modes. For blending DSA data
with MR or CT, for example, it is sufficient to only display the DSA data whenever
its opacity value lies above a certain level. Otherwise, the other volumes are
blended and displayed. For visualizing functional data such as PET along with
anatomical data, the PET values can be used for color classification while the
anatomical data determines the opacity values. Figure 4.6 shows examples of
multi-volume rendering by blending.

4.5.4 Segmented Multi-Volume Rendering – Deep Lesions
For thorough planning of surgery on deep-seated processes, after skull peeling
and brain surface visualization certain structures need to be emphasized, e.g.,
a tumor or the optical nerve. This is achieved by a prior segmentation of the
structures of interest, and individually applying multiple optical properties such
as transfer functions and rendering modes. In the following, we assume that an
object ID volume is available, which is the combination of multiple binary seg-
mented objects. Our rendering algorithm for segmented volumes is conceptually
based on two-level volume rendering [28], which allows to define a separate ren-
dering mode and transfer function for each individual object. However, we use
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(a) (b)

Figure 4.6: Multi-volume rendering by blending different modalities. (a) Blending
MR and DSA. (b) Blending MR and fMR.

ray-casting instead of slicing, which allows for much more flexibility such as the
mask smoothing described in Section 4.5.5. During rendering, the object ID of a
sample determines the corresponding rendering mode and transfer function. All
1D transfer functions are stored in a single 2D texture with one transfer function
per row. All 2D transfer functions are stored in a single 3D texture. For multi-
volume rendering, the user additionally chooses a specific volume for each object
ID in order to select the modality that depicts the underlying kind of data best.
For example, choosing an MRI as underlying data of a segmented bone is not a
good choice, since bone is not depicted well by this modality. Using MRI data
for the “brain object,” and CT data for the “bone object” surrounding the brain,
however, is a very good choice. During rendering, a small 1D look-up texture is
used to fetch the corresponding volume ID for each object ID. The shader then
simply samples the volume texture corresponding to the volume ID of the sample.
Figure 4.7 depicts examples of multi-volume rendering for segmented data, which
also shows that it is possible to specify per-object clipping planes. The clipping
plane equations are obtained from two 1D textures, as outlined in Section 4.5.1,
and the shader simply discards fragments that should be clipped. A combination
of multi-volume blending with segmented data is also possible, which is deter-
mined by special blending object IDs, as described in Section 4.5.1. In this case,
each object can have as many transfer functions as there are volumes, and the
result is blended per sample after all transfer functions have been applied.
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(a) (b)

Figure 4.7: Multi-volume rendering of segmented data. (a) CT and MR data for
visualization of implanted electrodes for epilepsy surgery. (b) CT,
MR and MRA data for tumor resection planning.

4.5.5 Smooth Rendering of Segmented Multi-Volume Data
The main visual problem of rendering binary segmented objects are the staircase
artifacts that appear at object boundaries (Figure 4.8a). Especially small objects
with narrow diameters such as vessels get a ragged appearance with clearly dis-
cernable object boundaries of voxel size. For high-quality visualization, the real
boundary of the object is needed with subvoxel accuracy. Approaches such as
trilinear filtering of object boundaries improve visual appearance (Figure 4.8b)
and work for all kinds of segmented objects [28]. However, trilinear interpolation
does not completely remove all artifacts (especially in close-up views), as it takes
into account only the binary segmentation information and not the underlying
data values. Our approach for smooth rendering of segmented data (Figure 4.8c)
is based on the assumption that the object boundary can be described by an iso-
value. Values above the specified iso-value belong to the object whereas values
below or equal are outside. This works well for segmented vessels as well as other
structures of interest in neurosurgery, such as the bone or implanted electrodes.
We take advantage of this existing iso-value boundary to adjust the object ID of
each sample on-the-fly during rendering.
The algorithm works as follows: First, for each object that should use improved
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(a) (b)

(c)

Figure 4.8: Comparison of different volume rendering methods for displaying bi-
nary segmented objects. (a) Unfiltered object boundaries. (b) Trilin-
early filtered object boundaries. (c) Our smooth boundary rendering
algorithm.

smooth boundaries, the iso-value corresponding to its boundary must be specified
by the user. Then, for each sample during ray-casting, we take a number of steps
(defined by a user-adjustable parameter) in the positive and negative gradient di-
rection to check if there is another object nearby. The gradient direction is used
since new structures are most likely to appear in the direction of the greatest
change of intensity. If a sample in the gradient direction belongs to a different
object than the original sample, the original sample is treated as boundary sam-
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Figure 4.9: Smooth object boundary rendering. The density of a sample is com-
pared to the iso-values of neighboring objects in gradient direction.
The sample is assigned to the object with the closest iso-value.

ple, as below. If the sample is not a boundary sample, standard ray-casting for
segmented objects is performed as described above. For a boundary sample, the
following steps are applied: The intensity of the current boundary sample (Icur)
is compared to the predefined boundary iso-value of the current object (Isocur) as
well as to that of the adjacent object found (Isoadj). If the intensity value corre-
sponds to the iso-value of the adjacent object, the current sample is re-classified
by changing its object ID (oIDcur) to the adjacent object’s ID (oIDadj). Fig-
ure 4.9 depicts the different steps of the algorithm, and Equation 4.1 summarizes
the reclassification step:

oIDcur =
{
oIDadj if (Icur > Isoadj) ∧ ((Isoadj > Isocur) ∨ (Icur < Isocur))
oIDcur else.

(4.1)
Tiede et al. [84] have presented a similar approach based on threshold-segmented
objects and their corresponding min and max threshold values. Their approach,
however, only takes into account the eight surrounding voxels of each sample
to reassign object memberships, whereas we search a user-defined length along
the gradient direction. This gives us the possibility to adapt the boundary to our
needs. We can, for example, increase the boundary iso-value of a segmented vessel
on-the-fly to show only the interior of the vessel, or lower the iso-value to display
the vessel and its vascular hull. The main advantage of our algorithm is that even
inexact segmentation masks (e.g., slightly too small or too large masks) can be
rendered correctly and with a smooth appearance because the object boundary
is adapted to the actual underlying data. When extending this algorithm to
multiple volumes one has to be careful to always use the correct volume for iso-
value comparison. When comparing the current sample’s intensity value to the
adjacent object’s iso-value, the adjacent object’s ID has to be used to fetch the
correct volume for getting the intensity at the current sample. Figure 4.8 shows
the visual result of our algorithm compared to standard rendering of segmented
masks.



4.6 Results and Evaluation 49

4.5.6 Interaction Aides
Various features have been implemented to support the surgeon in the task of
preoperative planning:

Transfer Function Specification: Colors and opacities are specified over the
intensity range in a standard graphical TF editor, in which it is possible to load
a set of predefined transfer functions and adapt them manually to the individual
dataset.

Flythrough Navigation / Microscopic & Endoscopic View: The datasets can
be explored by flythrough navigation. To simulate the operating microscope
the viewpoint for rendering can be set inside the volume and moved around
interactively. An endoscopic lens with an adjustable field of view can be simulated
by perspective ray-casting.

Slice Views: Next to the 3D visualization window an MPR (multiplanar recon-
struction) can be displayed. The MPR consists of three orthogonal slice views
(axis aligned) displaying the raw data as well as the segmented objects.

Integration into a PACS: The whole framework is integrated into Agfa’s Im-
pax 6.0 medical workstation. Impax 6.0 offers a plugin interface which allows to
extend the basic functionality of the workstation to meet the individual demands
of the users. Therefore, by integrating our visualization framework, all other fea-
tures of the medical workstation (e.g., additional segmentation possibilities, data
access) can be used in combination with our neurosurgical planning application.

4.6 Results and Evaluation
We demonstrate the usefulness of our application by presenting two distinct plan-
ning cases as they were performed by a neurosurgeon. The cases consist of a
tumor resection at the frontal lobe near the brain’s surface and a tumor resec-
tion near the pituitary gland. The first patient underwent CT, MR, PET and
fMRI scans, as the tumor was in the vicinity of the motor language area. First
the datasets were registered and resampled to have the same volume dimensions
(2563). After initial exploration of the datasets (e.g., via skull peeling) and po-
sitioning of the patient’s head as done in real surgery, skin incision and bone
removal were performed tailored to the individual anatomy. Next, the datasets
(MR, PET, fMRI) were visualized by multi-volume blending where the MR data
depicts the anatomy, PET shows the metabolic active parts of the tumor and
the fMRI data shows the brain areas involved in language function, which must
be kept intact during surgery. Screenshots from different stages of the planning



50 Preoperative Planning of Neurosurgical Interventions

process are depicted in Figure 4.12. The virtual anatomic structures such as
gyri, sulci and blood vessels were found to correlate well with the intraoperative
view (Figure 4.10), thus allowing the surgeon to preoperatively plan the resec-
tion borders. Concurrent visualization of fMR data helped in identifying critical
“no-touch” areas at the left resection border. PET data revealed a focus of high
metabolic activity in the right part of the tumor where consequently a separate
specimen was taken and sent to histology during surgery, leading to additional
irradiation treatment.

(a)

(b)

Figure 4.10: Comparison of a skull peeled image (a) with the corresponding in-
traoperative view (b). Arrows show points of correspondence.
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Preprocessing: (avg 10 min for 3 volumes w/o manual segmentation)
Collection of image data from interdisciplinary PACS 2-10 min
network (radiology, nuclear medicine, neurology)
Image registration 2 min / volume
Threshold segmentation for bone/vessels 1 min / object
Manual segmentation of tumor > 5 min
Volume rendering initialization 1 min
Initial setup at interactive stage: (avg 2 min for 3 volumes and 2 objects)
Skull peeling immediate
Multi-volume blending (TF and blending factor design) 15 sec / volume
Multi-volume rendering of segmented masks 15 sec / object
(setting of volume, transfer function and render mode)
Smooth mask rendering (iso-value adjustment) 15 sec / object
Interactive exploration optional
Loading setup of archived case < 10 sec

Table 4.3: User effort for initial case setup (parameter setting).

The second patient had a deep-seated lesion near the pituitary gland and un-
derwent CT, MR and MR angiography scans (dataset size 512 × 512 × 164). In
this case, after registration, tumor and vessels were segmented by thresholding.
Next, the surgeon used our multi-volume rendering for segmented masks to gain
insight into the individual anatomy (i.e., position of critical vessels in relation to
the tumor). After he had a clear perception of the location of the tumor and
other anatomical landmarks he then used the skull peeling algorithm to plan the
optimal position of the surgical approach (Figure 4.11). During development we
kept a tight feedback loop with the department of neurosurgery at the General
Hospital Vienna to iteratively refine the system. The skull peeling algorithm
was received very well as it offered a direct view of the brain’s surface instantly,
without tedious preprocessing. The main drawback is the need of a registered CT
dataset which might not always be available. Multi-volume rendering by blending
also convinced because of its instant visualization without requiring segmentation
and its ease of use. However, the optimal method to blend/combine the different
volumes (e.g., linear blending, taking the first volume to define opacity and a sec-
ond to define color) depends strongly on the type of datasets that are visualized.
Therefore, an automatic setting of the combination method depending on the
types of datasets could further improve the usability of the entire system. The
multi-volume rendering of segmented masks was again perceived as very helpful
by the surgeon. A drawback, however, is the amount of parameters that need to
be set for each mask individually (assigning a volume to the mask, choosing the
render mode and transfer function, setting the iso-value for smooth object bound-
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(a) (b)

(c)

Figure 4.11: Planning of a right subfrontal approach for pituitary tumor resec-
tion. (a) Skin incision. (b) Operating microscope view. (c) Keyhole
approach planning.

aries). Naturally, these parameters offer a very high flexibility for visualizing the
datasets, however they also reduce the ease of use of the application. According
to the surgeon, the most tedious part of the workflow consists of collecting and
registering all the different datasets prior to visualization, especially fMR, PET
and DSA data. All issues considered, our surgery planning application was very
well perceived and is now used almost daily in clinical practice.
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Additional User Effort: In the routine clinical setting, preprocessing has been
shown to take an average of 10 minutes (Table 4.3), and initial case setup for
visualization up to 3 minutes. After initial exploration, all parameters of a case
can be saved in an archived casefile. Case exploration is interactive and re-loading
of archived cases takes less than 1 minute. The 3D cases are routinely prepared
by young residents and later demonstrated to and discussed with the performing
neurosurgeon: For the resident, this has the advantage of teaching and training
neuroanatomy of the oncoming surgical approach, for the advanced surgeon time
expenditure is thus very small. The cases are chosen by the surgeons either on
the basis of anatomical difficulty, individual variations in anatomy, or simply for
the convenience of a preoperative 3D visualization.

Case Study 1 Case Study 2
Visualization Method CT, MR, fMR, PET CT, MR, MRA

(each 256× 256× 256) (each 512× 512× 164)
# volumes 2 3 2 3
Skull Peeling 9.5 fps 9 fps 5 fps 4.5 fps
Multi-Volume (MV) Blending 23 fps 12 fps 18 fps 12 fps
Segmented Multi-Volumes 35 fps 27 fps 24 fps 20 fps
Smooth Segmented MVs 15 fps 5 fps 6 fps 4 fps

Table 4.4: Frame rates of the different visualization methods for two case studies.
(viewport 512× 512).

Performance: All our visualization algorithms run at interactive frame rates.
Naturally, the frame rates vary depending on the transfer functions and render
modes that are used (e.g., unshaded DVR, shaded DVR). Table 4.4 gives an
overview of the frame rates of both case studies for the different visualization
methods. Timings are for a Pentium 4, 3.2 GHz with 3 GB RAM and an ATI
Radeon X1800 graphics card.
Multi-volume rendering by either blending or segmented masks achieves the

highest frame rates. After activating our algorithm for rendering smooth object
boundaries, however, the frame rate drops significantly due to the complex shader
for rendering smooth boundaries. This problem can be alleviated by automati-
cally switching back to normal rendering during user interaction (e.g., while ro-
tating the view). The frame rates of the skull peeling algorithm can be explained
by the costly branching-statements that have to be performed in the shader to
cover all special cases for peeling the skull correctly. On the whole, the frame
rates were found to be adequate by the users, since minor viewpoint changes are
usually sufficient during preoperative planning.
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Memory Usage: The actual memory footprint of our system depends on the
cache sizes chosen, and on whether texture dimensions need to be padded to
power-of-two dimensions or not. For example, Case Study 2 (Table 4.4) can use
caches of size 5122×128 each for the CT and MR volumes and of size 5122×64 for
the MRA volume (all 16-bit voxels), and a 5122×256 cache for the object IDs (8-
bit voxels). This yields a memory consumption of 224MB, which would allow this
configuration to be rendered even on a 256MB graphics card. In comparison, the
original volumes sum up to 287MB, but if padding to power-of-two dimensions is
required (e.g., Radeon cards) would actually consume 448MB of GPU memory,
which requires at least a 512MB graphics card. However, it is important to note
that our caching scheme works better with larger volumes (e.g., 5122 × 300 and
upward), and especially helps to alleviate power-of-two requirements.

4.7 Summary and Conclusion
Our multi-volume rendering system for preoperative planning of neurosurgical
interventions was directly inspired by the needs of neurosurgeons to visualize
multimodal data fast, in high quality, and with as little user interaction as pos-
sible. The surgical approach to the brain is simulated by interactively removing
surrounding tissue such as skin and bone from MR data by making use of ad-
ditional information present in a registered CT dataset. Further we developed
multi-volume rendering techniques that work either purely on the data or include
additional segmentation masks. Rendering of segmented objects was improved
by an algorithm for smooth rendering of object boundaries. To encourage use in
daily clinical practice, we integrated our multi-volume visualization system into a
medical workstation which offers registration, segmentation and interactive data
exploration possibilities. As 3D visualization has become well accepted among
neurosurgeons, the next logical step would be to connect our system to a neu-
ronavigation system for tracking of the intraoperative position of the surgeon’s
instruments. Visualizing the multimodal datasets in parallel to the real surgery
could further help the surgeon in identifying structures of interest which are not
visible during surgery (e.g., functional areas, optimal skin incision line).
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(a) (b)

(c) (d)

Figure 4.12: Workflow for planning a tumor resection near the brain’s surface.
(a) Planning the surgical approach. (b,c,d) Multi-volume blending
for visualization of superficial structures. The visualization includes
MR (black/white), PET (red) and fMR (yellow and white) data.
The PET transfer function shows an area of high metabolic activity
within a low grade glioma. The fMR spots delineate areas activated
during speech.
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Chapter 5

Introduction

In recent years, new imaging and scanning technology have lead to the acquisition
of tremendously high resolution imaging datasets. High-resolution EM (Electron
Microscopy) images support neuroscientists in the reconstruction of the neural
circuitry of the nervous system to get a detailed “wiring diagram” of the brain.
This new area of bioscience research, called Connectomics, heavily relies on visual
inspection of high-resolution large-scale imaging data.

The enormous size of these datasets pose several challenging problems for 3D
visualization. Many traditional visualization techniques are not feasible for large
data and might result in severe bottlenecks in data storage, memory, transfer
bandwidth and processing. Therefore, new scalable techniques for visualization
are needed that are designed specifically for handling of large data. This includes,
for example, the need for on-demand computation of derived data instead of pre-
calculation and storage of the calculated data. These new scalable techniques,
however, often come at additional computational costs. Therefore, optimization
methods are required, that optimize and reduce the required computational cost,
memory or bandwidth.
Different methods have been proposed for volume rendering of large data, based

mainly on multi-resolution techniques, hardware-assisted volume rendering and
distributed rendering systems on CPU or GPU clusters.

This chapter starts with an introduction to the field of Connectomics, Electron
Microscopy and brain anatomy in Section 5.1. Fundamental work in the area
of large data volume rendering is reviewed in Section 5.2. More information on
volume rendering of large data can be found in the textbook Real-Time Volume
Graphics by Engel et al. [18].
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5.1 Connectomics

Connectomics [79] is an active research area in the field of bioscience, which aims
to develop methods, from data acquisition to analysis, to reconstruct the detailed
neural circuitry of the nervous system. Connectomics relies heavily on recent
advances in EM scanning technology as well as methods for handling enormous
amounts of data for analyzing, segmenting and visualizing neural connections.
The goal of connectomics (i.e., to determine the connectivity and structure

of the nervous system) is based on the realization that the brain’s connectivity
is intricately linked to the brain’s function. Therefore, the connectome (i.e.,
the complete description of the structural connectivity of an organism’s nervous
system) will enable scientists to come closer to an understanding of how the brain
works.

5.1.1 Brain Anatomy

The microanatomy of the nervous system consists primarily of a huge number
of interconnected cells (i.e., neurons). Neurons are electrically excitable cells
that process and transmit information by electrochemical signaling. They are
supported by glial cells, which are non-neuronal cells, responsible for providing
nutrition, form myelin and participate in signal transmition in the nervous sys-
tem. Neurons consist of several parts: The central part, which also contains the
nucleus is called soma. Dendrites are heavily branching cellular extensions of
neurons. The dendritic tree of a neuron is where the majority of the input to
the neuron occurs. The axon is a very long and fine extension of the neuron,
and is responsible for carrying nerve signals away from the soma. Synapses form
connections to target neurons and are responsible for transmitting information
to them, using neurotransmitter chemicals. A schematic view of a neuron is de-
picted in Figure 5.1.

The adult human brain consists of approximately 100 billion neurons and 250
trillion neural connections. One cubic millimeter of cerebral cortex contains an
estimated number of 50,000 neurons with 300 million interconnctions. In ad-
dition to this extremely complex structure, neurons and their interconnections
are highly specific. There are many different kinds of neurons, varying in their
shape, neurochemistry and function. Furthermore, the size of neuronal cells can
be very small, such as dendritic spines of roughly 50nm in diameter. Typical op-
tical microscopes can only attain resolutions of about 200 nanometers per pixel.
Therefore, it is necessary to use high-resolution EM technologies for reconstruct-
ing the connectome.
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Figure 5.1: Schematic view of a neuron, displaying it’s long elongated structure
for transmitting electrical signals to other neurons. (Image from
Wikipedia.)

5.1.2 Electron Microscopy Data

Electron microscopy uses a particle beam of electrons to create highly-magnified
images. Modern EM technologies are able to attain resolutions of up to 3-5
nanometers, with a slice thickness of 30 nanometers. The increased magnification
factor of electron microscopes compared to light microscopes is due to the fact
that the wavelength of an electron is much smaller than the wavelength of a
photon of visible light. A high-resolution EM dataset is depicted in Figure 5.2.
There are several different kinds of electron microscopes:

Transmission Electron Microscope (TEM)

TEM uses an electron gun to fire an electron beam through the specimen, as
seen in Figure 5.3. Next, the electron beam, carrying the information about the
structure of the specimen, gets magnified by an objective lense and is projected
onto a fluorescent viewing screen, where it can be photographed.
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Figure 5.2: High-resolution EM dataset of a mouse brain. The dense and complex
structure of the data poses significant challenges for segmentation
and visualization algorithms. Image courtesy of Hanspeter Pfister,
Harvard University.

Scanning Electron Microscope (SEM)

SEM, on the other hand, is based on raster scanning a specimen with a focused
electron beam across a rectangular area. When the electron beam hits the speci-
men, some electrons and electromagnetic radiation gets reflected and can subse-
quently be captured to create the final image. Even though the spatial resolution
of SEM is poorer than TEM, it is able to create image tiles of several centimetres
in size and has a greater depth of view. An example of an automated SEM is
Harvard’s ATLUM, depicted in Figure 5.4, which can produce up to 11 gigabytes
of data per second.
Due to the high-resolution of EM imaging, a cube of brain tissue of one mil-

limeter length will result in up to one petabyte of raw data. This tremendous
amout of data poses additional challenges of efficiently storing, processing and
retrieving the data. New image acquisition pipelines need to be developed, which
are able to deal with streams of data to maximize throughput.

5.1.3 Processing Pipeline
In connectomics, to be able to visualize neural processes in a large single volume
from the acquired large-scale EM data, a multitude of pre-processing tasks need
to be performed [9]. The first step consists of the acquistion of individual image
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Figure 5.3: Schematic view of a Transmission Electron Microscope. (Image from
Wikipedia.)

tiles (e.g., by the ATLUM microscope). Individual tiles usually have a resolu-
tion between 1000 × 1000 and 100, 000 × 100, 000 and need to be aligned and
stitched together to form one single image [15]. To create the final 3D volume,
the individual slices also have to be registered along the z-direction [10, 50]. To
improve image quality, usually there are also some image processing steps (e.g.,
de-noising, histogram-equalization) incorporated into the pipeline. Finally, the
neural processes can be reconstructed [16] using volume segmentation, labeling,
axon tracking [49, 35] and interactive visualization methods.

5.2 Large Data Volume Rendering
Due to the ever increasing size of volumetric datasets, volume rendering of large-
scale data has been an active area of research for several years. High-resolution
volumetric datasets are now common in fields such as medicine and biology as
well as in material sciences, geoscience and archeology. However, traditional
techniques for volume rendering are often not feasible for large-scale datasets.
Nowaydays, volumes can range from several mega- or gigabytes up to the petas-
cale (1015) range. This huge amount of data can cause severe bottlenecks in data
transfer bandwidth, memory and processing. In addition, the still common 32-bit
CPUs can only address up to 4 gigabytes of memory, requiring to switch to 64-bit
CPUs for addressing a larger amount of memory.
Several different approaches have been developed for volume-rendering of large-

scale data, mainly building on multi-resolution, data compression and packing
techniques.
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Figure 5.4: ATLUM - Automatic serial sectioning for large volume nanoscale
imaging. A diamond knife is used to cut a solidified tissue sample into
very thin slices. Subsequently, the resulting tissue ribbon is imaged
to acquire a high-resolution EM dataset. Image courtesy of Harvard
University, Center for Brain Science.

5.2.1 Multi-Resolution Techniques
Multi-resolution techniques for volume rendering try to reduce bandwidth require-
ments and memory storage on the GPU by adapting and reducing the resolution
of the volume that is being rendered based on LOD (level of detail) selection
schemes.
Bricking is the process of splitting up a single volume into several individual

volume bricks. Usually, each brick is rendered separately and composited to-
gether in the final step of the rendering pass [43]. Another approach is to use
a bricked volume layout together with texture packing to be able to render the
entire volume in a single pass [74]. Bricking by itself does not reduce overall
memory consumption, rather it is usually necessary to store an additional brick
boundary per brick, to circumvent artifacts during rendering. However, it can
reduce memory consumption on the GPU by downloading only currently active
bricks (i.e., the current working set of bricks) to GPU memory.
Octrees are one of the most prominent examples for a multi-resolution volume

hierarchy and have been used extensively for volume rendering [7, 27, 43, 91].
Octrees store the high-resolution bricks in their leaves, while inner nodes store
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Figure 5.5: Multi-resolution octree. The leaf nodes of the bottom level of the
octree store bricks in the original resolution of the volume, while nodes
in upper levels store lower resolution bricks. (Image from Wikipedia.)

the down-sampled volume at an eigth of the resolution of their eight child nodes.
Figure 5.5 displays the tree structure of an octree.
During rendering, a Level-of-detail (LOD) scheme is used to determine the

resolution of the individual bricks that are being rendered. LOD selection algo-
rithms are usually either based on the current viewpoint or eye/camera distance,
a region of interest, the data error, or the transfer function [46]. In the majority
of cases a combination of the above methods is used for LOD selection.
For creating down-sampled versions of the high-resolution data, most multi-

resolution volume rendering techniques use simple subsampling at the original
sample positions of the data to create the data hierarchy [43, 91]. Other ap-
proaches set the new sample position between the high-resolution sample points [47,
3] (e.g., as done for averaging). Figure 5.6 compares the different approaches.
One common problem in multi-resolution volume rendering is the appearance

of artifacts at resolution boundaries. Several methods have been proposed for
smooth transitions between blocks of different resolution [91, 3].
In addition to the multi-resolution hierarchy for handling the raw data, large-

scale volume rendering also requires efficient utilization of the different layers in
the computer’s memory hierarchy. On standard PCs, different types of mem-
ory (e.g., disk, RAM, GPU memory) have different storage capacities, memory
bandwidth and latencies (i.e., the time between a data read request and its de-
livery). Therefore, a hierarchical data management scheme is often necessary for
high-performance volume rendering. Figure 5.7 displays an exemplary out-of-core
data managment structure for volume rendering of large data (as implemented
in NeuroTrace, Chapter 7).
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(a) (b) (c)

Figure 5.6: (a) Multi-resolution hierarchy of a 1D signal. The bottom line depicts
the original signal, the upper lines display the down-sampled signal,
using subsampling. (b) Multi-resolution hierarchy of a 1D signal using
averaging for down-sampling. (c) 2D example of down-sampling by
averaging. White dots depict the original sample positions, red crosses
represent the first down-sampled layer, and the green star depicts the
second down-sampled layer.

5.2.2 Compression and Packing Techniques

Compression techniques aim at minimizing memory and bandwidth requirements
of the raw data by storing the data in a compressed format that is de-compressed
during rendering. Compression techniques include OpenGL’s built-in texture
compression as well as wavelet compression, discrete cosine transform or vector
quantization.
To achieve higher compression rates than directly compressing the original

data, compression is usually achieved in two steps. First a transform is applied
to the original data, resulting in different transform coefficients describing the
data. In the second step the resulting coefficients, or the most important subset
of them, are stored in a compressed way (e.g., entropy encoding).
Wavelet compression is based on the fact that images are usually comprised of

areas with high frequency and homogenous regions of low frequency. In wavelet
compression, the original signal is projected onto a series of basis functions, so
called wavelets. Compression is achieved by discarding wavelet coefficients of
low importance. Hierarchical wavelet representations have been used for multi-
resolution volume rendering [27].
Texture packing techniques try to pack the required volume blocks for ren-

dering into GPU memory as compact as possible. An additional small lookup
or indexing structure is used to translate between the virtual volume and the
packed volume in the texture cache. This allows to only download those parts
of the volume to the GPU that are required for the current frame, saving GPU
memory. A drawback of texture packing, however, is the need for an additional
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Figure 5.7: Out-of-core cache memory hierarchy. The GPU cache is the smallest
cache, holding only the current working set of blocks. The CPU cache
holds a super-set of the working set, while the full resolution octree
resides in the octree cache on disk/network storage.

texture lookup in the indexing structure. These additional texture fetches can
impose a considerable overhead and slow down the overall performance of the
volume renderer. Figure 5.8 shows the memory improvement of using a texture
packing scheme. In Chapter 6 a texture packing scheme for mixed-resolution
volume rendering is presented in more detail.

Figure 5.8: Adaptive texture maps for efficient texture packing. Left: Index tex-
ture, storing scale factors and coordinates for texture fetch. Right:
Packed data texture. Image courtesy of Kraus and Ertl [40].





Chapter 6

Smooth Mixed-Resolution
GPU Volume Rendering

Figure 6.1: Mixed-resolution volume rendering of a large medical dataset. High-
resolution bricks are colored in green.

6.1 Introduction
Parts of this chapter are based on the paper Smooth Mixed-Resolution GPU Vol-
ume Rendering. IEEE International Symposium on Volume and Point-Based
Graphics (VG ’08) [3].
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The sizes of volumetric data sets, as for example generated in medical imag-
ing, industrial scanners, or scientific simulations, are increasing at a very rapid
rate. Although volume rendering approaches exploiting graphics processing units
(GPUs) achieve real-time frame rates, GPU texture memory is still limited and
increasing in size more slowly than data sizes do. Therefore, many GPU volume
rendering schemes incorporate multi-resolution volume bricking or data compres-
sion techniques to cope with large volumes. Multi-resolution schemes circumvent
the memory constraints of GPUs by downsampling the volume or parts of it to
a lower resolution. To reduce visual artifacts in the final image, level-of-detail
(LOD) selection techniques can be employed to steer the selection of areas for
downsampling.
Most multi-resolution schemes for GPU-based volume rendering restrict the

sampling positions of the downsampled grid to a subset of the original sample
positions. This, however, restricts the choice of downsampling filters and thus
the attainable quality or smoothness of lower resolutions. A major reason for
this restriction is that it simplifies the generation of a continuous function when
different resolution levels are mixed. Many approaches use only nearest-neighbor
downsampling, and moreover require higher resolution samples to be overwritten
with values interpolated from lower resolution levels [91]. This implies that even
in the highest resolution level many samples are not identical to the original
volume and thus inaccurate.
We propose a mixed-resolution volume ray-casting approach that enables more

flexibility in the choice of downsampling positions and filter kernels, allows freely
mixing volume bricks of different resolutions during rendering, and does not re-
quire modifying the original sample values. Our approach can be used to render
volumes larger than GPU memory with ray-casting in a single rendering pass,
mixing different levels of resolution with continuous transitions between resolu-
tion levels. A C0-continuous function is obtained everywhere with hardware-
native filtering at full speed by simply warping texture coordinates of samples in
transition regions. It operates on a per-sample basis and solely modifies the co-
ordinates of texture fetches in a thin transition region between bricks of different
resolutions. Thus, it is fast and requires only minor modifications to existing ray-
casters, and could also be applied to renderers using texture slicing. We place the
sample positions of a downsampled level half-way between samples of the higher-
resolution level above it. This is the natural choice for downsampling filters that
weight an even number of samples in order to compute a lower-resolution sample.
In this work, we employ a 2× 2× 2 averaging filter, but our sampling scheme fa-
cilitates higher-order filters as well (e.g., cubic splines). Additionally, we propose
a simple but powerful, flat texture packing scheme that supports mixing different
resolution levels in a single 3D volume cache texture with a very simple and fast
address translation scheme. Although this packing constrains full scalability, it
enables mixing different resolution levels in GPU-based ray-casting with only a
single rendering pass. We demonstrate our approach on large real-world data,
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obtaining a continuous scalar function and shading at brick boundaries, using
single-pass ray-casting at real-time frame rates.
The major advantages of our approach are that: (1) bricks of different reso-

lutions are stored in a single 3D cache texture and can be freely mixed during
rendering; (2) address translation between volume space and the cache texture is
extremely simple; (3) the transitions between bricks of different resolution levels
are C0-continuous, which is achieved by simply modifying the texture coordinates
of chosen samples in the fragment shader; thus (4) actual interpolation can use
the hardware-native tri-linear filtering at full speed; and (5) downsampling posi-
tions do not need to be aligned with the original sample positions, which allows
for a wider range of filter kernels and thus more flexibility.

6.2 Related Work
Multi-resolution approaches for volume rendering try to circumvent memory re-
strictions of current hardware usually by breaking down a single large volume
texture into several smaller ones (i.e., bricks). For low-resolution representations
either the number of bricks is reduced (as in hierarchical bricking schemes) or the
texture size of the bricks is reduced (as in flat bricking schemes). The breaking
down of a larger texture into several smaller ones is called bricking and usually
requires duplication of texels at brick boundaries.
LaMar et al. [43] were one of the first to introduce a hierarchical (octree) brick-

ing scheme for hardware-assisted volume rendering. They propose a selection
filter for downsampling bricks depending on their distance from the viewpoint
and the view frustum, however they do not account for continuous transitions
between different levels of detail during rendering. Weiler et al. [91] ensure con-
tinuous level transitions in their octree-based multi-resolution scheme by adapting
the brick borders of the finer resolutions, throughout all hierarchy levels. They
are, however, restricted to downsampling on the original grid points. Other hier-
archical approaches including LOD selection algorithms were proposed by Boada
et al. [7] and Guthe et al. [27], who use a hierarchical wavelet representation and
screen-space error estimation for LOD selection. Entezari et al. [19] use Carte-
sian, FCC and BCC lattices for downsampling the data using different sampling
densities. Their approach, however, does not support mixing of different resolu-
tion levels. A method for iso-surface reconstruction of multi-resolution volume
data was proposed by Westermann et al. [94]. They create a hierarchical octree
using averaging and focus on fixing cracks in the surface at transitions between
different resolution levels.
A flat bricking scheme for multi-resolution data with continuous resolution

transitions was proposed by Ljung et al. [47]. Their approach does not need
sample replication at brick boundaries, as they perform interbrick interpolation
directly during rendering. This, however, requires complex fragment shaders
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flat bricking

hierarchical 
bricking

Figure 6.2: 2D example of hierarchical bricking vs. flat bricking. The resolution
is reduced from left (original resolution) to right (lowest resolution).
Culled bricks are marked in white.

to manually perform the correct interpolation. LOD selection is based on the
transfer function [48].
Most multi-resolution approaches render each brick individually, storing them

in different textures. Our work, however, is based on a scheme similar to adap-
tive texture maps introduced by Kraus et al. [40], where data bricks of different
resolution are packed into a single texture. An additional index texture is used
for address translation. In contrast to Kraus et al. [40], however, we maintain
our packed data and index texture dynamically.
Our volume visualization framework builds on previous research in the area

of hardware assisted volume rendering using commodity GPUs. While first ap-
proaches were based on texture slicing [93, 66], GPU ray-casting is now a viable
and very powerful alternative [41].

6.3 Mixed-Resolution Volume Rendering
Most multi-resolution volume rendering methods are based on hierarchical brick-
ing schemes where the brick size in voxels is kept constant from level to level, and
the spatial extent of bricks increases from high to low resolution until a single
brick covers the entire volume (Figure 6.2, top row). Conversely, flat bricking
schemes (Figure 6.2, bottom row) keep the spatial extent of bricks constant and
successively decrease the brick size in voxels. A major advantage of flat bricking
schemes is that the culling rate is much higher, illustrated by the number of white
bricks in Figure 6.2, because the granularity of culling stays constant irrespective
of actual brick resolutions. This not only reduces the required texture mem-
ory, as more bricks can be culled, but also allows for a much more fine-grained
LOD or shader selection per brick [45]. However, flat multi-resolution techniques
have a bigger memory overhead when samples are replicated at brick boundaries,
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because for decreasing brick sizes the overhead of duplicated voxels increases.
This overhead can be removed by avoiding sample duplication, but only at the
cost of highly increased run-time filtering complexity and cost [47]. We employ
flat multi-resolution bricking with sample duplication, but reduce the run-time
overhead significantly by using hardware filtering and only warping the texture
coordinates of samples where necessary.

6.3.1 Volume Subdivision for Texture Packing

The original volume is subdivided into equally-sized bricks of size n3 in a pre-
process, where n is a power of two, e.g., n = 32. During this subdivision, the
minimum and maximum value in each brick are stored for culling later at run
time, and lower-resolution versions of each brick are constructed. For the latter
we compute the value of the new sample at the center of eight surrounding higher-
resolution samples as their average, but higher-order filters could also be used.
We limit the number of resolution levels to minimize the overhead of duplicated
boundary voxels, and also to allow tight packing of low-resolution bricks in the
storage space reserved for high-resolution bricks (Section 6.3.2). By default we
use only two resolution levels, e.g., 323 bricks with a downsampled resolution of
163. For fast texture filtering during rendering, voxels at brick boundaries are
duplicated. In principle, duplication at one side suffices for this purpose [91],
e.g., storing (32 + 1)3 bricks. However, in the high-resolution level we duplicate
at both sides, because the space for a single (32 + 2)3 brick provides storage
for eight (16 + 1)3 bricks. Coincidentally, this often does not impose additional
memory overhead. The brick cache texture (Section 6.3.2) always has power-of-
two dimensions for performance reasons, and a cache of size 5123, for example,
can hold the same number of 343 and 333 bricks.
Although this approach is not fully scalable, it is very simple and a good trade-

off that is not as restrictive as it might seem. Because culling is very efficient in
a flat scheme, fewer bricks need to be resident in GPU memory. Even without
culling, if the size of the brick cache texture is 512x512x1024 (256 mega voxels),
for example, and two resolution levels are used (brick storage size 343), 15x15x30
bricks fit into the cache. This yields a possible data set size of about 1.7 giga
voxels, e.g., 960x960x1920, if all bricks actually need to fit into the cache. Due
to culling, the real data set size can typically be much larger. Additionally, for
very large data three levels could be used. For example, increasing the allocated
space for each brick from (32 + 2)3 to (32 + 4)3, both 163 and 83 bricks can
be packed tightly, including boundary duplication for filtering. Using three levels
with storage for (32+4)3 bricks, 14x14x28 bricks would fit into the cache, yielding
a data set size of 10.7 giga voxels, e.g., 1792x1792x3584, and more when bricks
are culled.
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6.3.2 Mixed-Resolution Texture Packing
For rendering, a list of active bricks is determined via culling, using, e.g., the
transfer function or iso value, and clipping plane positions to determine non-
transparent bricks that need to be resident in GPU memory. The goal is to pack
all active bricks into a single 3D brick cache texture (Figure 6.3, right). In the
beginning, all cache space is allocated for high-resolution bricks. If the number
of active bricks after culling exceeds the allocated number, individual bricks are
chosen to be represented at lower resolution. In this case, the effective number of
bricks in the cache is increased by successively mapping high-resolution bricks in
the cache to eight low-resolution bricks each, until the required overall number
of bricks is available. This is possible because the storage allocation for bricks
has been chosen in such a way that exactly eight low-resolution bricks fit into the
storage space of a single high-resolution brick, including duplication of boundary
voxels, as described in the previous section.
After the list of active bricks along with the corresponding resolutions has been

computed, the layout of the cache texture and mapping of brick storage space
in the cache to actual volume bricks can be updated accordingly, which results
in an essentially arbitrary mixture of resolution levels in the cache. The actual
brick data are then downloaded into their corresponding locations using, e.g.,
glTexSubImage3D(). During rendering, a small 3D layout texture is used for
address translation between “virtual” volume space and “physical” cache texture
coordinates (Figure 6.3, top left), which is described in the next section.

layout texture

brick cachevirtual volume

Figure 6.3: Mixed-resolution texture packing and address translation from vir-
tual volume space to physical cache texture space via the layout tex-
ture. Resolution levels are mixed by packing low-res bricks tightly
into high-res bricks.
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6.3.3 Address Translation
A major advantage of our texture packing scheme is that address translation can
be done in an identical manner irrespective of whether different resolution levels
are mixed. Each brick in virtual volume space always has constant spatial extent
and maps to exactly one brick in physical cache space. “Virtual” addresses in vol-
ume space, in [0, 1], corresponding to the volume’s bounding box, are translated
to “physical” texture coordinates in the brick cache texture, also in [0, 1], corre-
sponding to the full cache texture size, via a lookup in a small 3D layout texture
with one texel per brick in the volume. This layout texture encodes (x, y, z) ad-
dress translation information in the RGB color channels, and a multi-resolution
scale value in the α channel, respectively.
Conceptually, a volume space coordinate xx,y,z that is located within brick

brickvirtV ol in virtual volume space, is translated to cache texture coordinates
x′x,y,z by first subtracting the position of the brick’s origin (brickPosvirtV ol) from
xx,y,z, yielding the offset of xx,y,z within the brick brickvirtV ol. Next, this offset
needs to be scaled according to the resolution of the brick in the brick cache (i.e.,
using the multi-resolution scale factor tw). Taking into account the duplicated
border of a brick in the brick cache, tw has to be added to get the correct offset
of x′x,y,z within its brick in the brick cache (brickbrickCache). Finally, adding the
position of the brick’s origin in the brick cache (brickPosbrickCache) results in the
final coordinate x′x,y,z.

x′x,y,z = (xx,y,z − brickPosvirtV ol) · tw + tw + brickPosbrickCache, (6.1)

The detailed implementation for the translation from a volume space coordinate
xx,y,z ∈ [0, 1]3 to cache texture coordinates x′x,y,z ∈ [0, 1]3 in the fragment shader
is as follows:

x′x,y,z = xx,y,z · bscalex,y,z · tw + tx,y,z, (6.2)

where tx,y,z,w is the RGBA-tuple from the layout texture corresponding to volume
coordinate xx,y,z, and bscale is a constant fragment shader parameter containing
a global scale factor for matching the different coordinate spaces of the volume
and the cache. When filling the layout texture, the former is computed as:

tx,y,z = (b′x,y,z · bres′x,y,z − ox,y,z + tw)/csizex,y,z (6.3)
tw = 1.0, (6.4)

for a high-resolution brick, where b′ is the index of the brick in the cache, bres′
is the storage resolution of the brick, e.g., 343, and csize is the cache texture size
in texels to produce texture coordinates in the [0, 1] range. For a low-resolution
brick, this is computed with tw = 0.5. The offset ox,y,z is computed as:

ox,y,z = bx,y,z · bresx,y,z · tw, (6.5)
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where b is the index of the brick in the volume, and bres is the brick resolution
in the volume, e.g., 323. The global scale factor bscale is computed as:

bscalex,y,z = vsizex,y,z/csizex,y,z, (6.6)

where vsize is the size of the volume in voxels.

6.4 Smooth Mixed-Resolution Interpolation
The most fundamental operation in direct volume rendering using ray-casting or
texture slicing is taking individual samples along viewing rays into the volume.
This (re-)sampling requires interpolating between the discrete samples (voxels)
at the grid positions. In order to avoid discontinuities, this interpolation must
reconstruct a continuous function. When only a single resolution level is used,
piecewise tri-linear interpolation yields a continuous function, which is extremely
fast on current GPUs, where it can be performed automatically when a 3D texture
is sampled in the fragment shader.
However, when multiple resolution levels (i.e., bricks of different resolutions)

are mixed, obtaining a continuous function usually requires matching sample posi-
tions and modification of original sample values [91]. Figure 6.4 shows the sample
positions we are using in high-resolution (yellow) and low-resolution (blue) bricks,
respectively. In order to allow a sample offset between resolution levels and avoid
modifying original samples, we employ the following approach for (re)sampling
in the fragment shader:

• Sampling within bricks (at least 0.5 voxels away from the boundary) is
performed as usual, with hardware-native tri-linear interpolation at the
sample’s texture coordinates.

• Sampling at the boundary between bricks of different resolution warps the
texture coordinates of samples within 0.5 voxels from the brick’s boundary
in the brick of higher resolution. Coordinates are warped according to
special interpolation primitives described in detail below.

Note that simply warping texture coordinates implies that the actual interpo-
lation is still carried out by the hardware at full speed. Also, everything is
performed on a per-sample basis, i.e., no explicit vertices, vertex attributes, or
actual interpolation primitives are used. The primitives that ensure a continuous
function in transition regions are only implicit, and solely determine how texture
coordinates must be warped.

6.4.1 Smooth Transition Interpolation
Figure 6.4 illustrates the different cases of interpolation between bricks of dif-
ferent resolution in 2D. The extension to 3D is conceptually straight-forward
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1A 

2A 

3A 

2B 

3B 

Figure 6.4: Basic configurations of mixed-resolution interpolation in 2D transi-
tion regions. High-resolution bricks are shown in yellow with white
dots at the sample positions, low-resolution bricks in blue with crosses
at the sample positions. The figure focuses on the top-right high-
resolution brick (shown with its border of duplicated voxels in orange),
and the interpolation functions in its 0.5 texel border.

and described after the 2D case below. The actual interpolation functions that
have to be used in order to obtain a C0-continuous scalar function depend on
the configuration/adjacency of low-res and high-res bricks, all of which are de-
picted in Figure 6.4, apart from symmetry. Samples in low-res bricks are shown
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as black/colored crosses in blue bricks in Figure 6.4, and high-res samples as
white/colored dots in yellow bricks. When two bricks of different resolution lev-
els are adjacent to one another, the transition region that requires warping of
texture coordinates is a band of 0.5 voxels inside the brick of higher resolution. A
smooth function is guaranteed by modifying the texture coordinates in this band
in such a way that the hardware-native tri-linear interpolation actually carries
out a smooth warping between the two sample grids.
Consider the transition region shown in Figure 6.4 (2A). We have to obtain a

smooth interpolation between the high-res samples inside the high-res brick above
the brick boundary (colored dots above the colored crosses), and the low-res sam-
ples on the brick boundary (colored crosses). We apply two different, smooth
interpolation functions: (1) trapezoids between two low-res and two high-res
samples; and (2) triangles between one low-res sample and two high-res samples.
Trapezoids can be interpolated using bi-linear interpolation, and triangles with
linear (barycentric) interpolation. However, for efficiency both must be mapped
to hardware bi-linear interpolation inside a square of four samples. Using bi-linear
texture fetches in the transition region with the warping of texture coordinates
described below, the result of bi-linear texture interpolation is the same as inter-
polating within these trapezoids and triangles.
Figure 6.5 depicts this mapping for a single trapezoid, which can be used

for any trapezoid in Figure 6.4 by using the appropriate coordinate offsets. In
order to obtain the desired interpolation function with hardware-native bi-linear
interpolation, coordinates within the trapezoid must be mapped to a square in
such a way that the same interpolation function results. Inside a trapezoid with
the coordinate extents given in Figure 6.5, the following mapping can be used:

u′ = (u+ v)/(1 + 2v), (6.7)
v′ = 2v. (6.8)

The two top samples of the square in Figure 6.5 are original, unmodified high-
res samples. In contrast, the two bottom samples of that square must be modified.
However, these samples are duplicated voxels outside the high-res brick, i.e., their
modification does not change original sample values. This is illustrated by the
colored dots within the orange duplication border in Figure 6.4. These samples
must be set to the values of the low-res grid at the bottom of the trapezoid in
Figure 6.5. This modification only has to take place whenever the brick cache
changes, i.e., is performed entirely independent from the volume rendering frag-
ment shader. The details are explained in Section 6.4.3.
Figure 6.6 depicts the analogous mapping for a triangle, which can be used for

any triangle in Figure 6.4 by using the appropriate coordinate offsets. Inside a
triangle with the coordinate extents given in Figure 6.6, the following mapping
can be used to map a triangle of height 0.5 to a triangle of height 1.0 embedded
in a square such that bi-linear interpolation within that square again yields the
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u = - 0.5 u = 0.0 u = 1.0 u = 1.5

v = 0.0
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Figure 6.5: Mapping texture coordinates within a trapezoid to a square, such
that hardware bi-linear interpolation in the latter yields the same
result as (bi-)linear interpolation in the former.

v = 0.0
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v = 1.0
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Figure 6.6: Mapping texture coordinates within a triangle to a square, such that
hardware bi-linear interpolation in the latter yields the same result as
(bi-)linear interpolation in the former.

desired interpolation function:

u′ =
{

(u− v)/(1− 2v) v 6= 0.5
u v = 0.5 (6.9)

v′ = 2v. (6.10)

Again, the two top samples of the square in Figure 6.6 are original, unmodified
high-res samples, and the two bottom samples of that square result from modifi-
cation of the voxels in the duplicated border. They are both set to the value at
the apex of the triangle in Figure 6.6.
In order to apply the two mappings above to any trapezoid or triangle in

Figure 6.4, we start with texture coordinates (ū, v̄) ∈ [0, 1], where [0, 1] maps to
an entire brick. We then shift the coordinates toward the center of the voxels in
the high-resolution brick and map [0, 1] to the size of a single voxel, instead of
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the entire brick, to obtain the local coordinates (u, v):

u = fract(ū · bw − 0.5), (6.11)
v = fract(v̄ · bh − 0.5), (6.12)

where bw and bh are the width and height of the brick in voxels, respectively.

Extension to 3D

a)

b)

c)

d)

e)

Figure 6.7: Smooth mixed-resolution interpolation in 3D. In contrast to the 2D
case, in 3D three different primitives have to be used (a, b, c). How-
ever, all fragment shader computations can be performed in the 2D
front and side projections shown. In 3D, the primitives fit together
as shown in d, e.
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Fortunately, the 3D case is almost a direct extension of the 2D case. In 3D,
three different primitives must be used for interpolation, which are shown on the
left-hand side of Figure 6.7 (as top, front and side view). They fit together as
illustrated on the right-hand side of Figure 6.7 (as 3D and top-down view). These
primitives and the interpolation within them can be computed from projections
into 2D: The first primitive (Figure 6.7a) is a truncated pyramid that can be
constructed from two trapezoid projections. Computing the interpolation uses
Equations 6.7 and 6.8. The second primitive (Figure 6.7b) is a pyramid that can
be constructed from two triangle projections. Computing the interpolation uses
Equations 6.9 and 6.10. The third primitive (Figure 6.7c) can be constructed
from one trapezoidal projection and one triangular projection. Computing the
interpolation uses Equations 6.7, 6.8, 6.9, and 6.10. Therefore, checking the cur-
rent sample’s position in the 2D projections (front and side views in Figure 6.7a,
b, and c, allows to unambiguously identify the primitive the current sample point
belongs to.

Primitive type precedence

As can be seen in Figure 6.4 for the 2D case, special care has to be taken at
the corners of bricks (i.e., corners and edges in 3D). Depending on the resolution
level of the surrounding bricks different primitives have to be used for correct
interpolation. Case 2A in Figure 6.4, for example, uses a triangle at the leftmost
part of the lower border, because the adjacent brick on the left is in high reso-
lution. In case 2B, however, the adjacent brick on the left is in low resolution,
which results in using a trapezoid at the leftmost part of the lower border of the
high-res brick. In 3D, there are even more configurations how primitives can be
combined in the corner of a brick, as shown in Figure 6.8a, b, and c. In this figure,
we focus on the lower left corner in the back of the brick, and assume that there
is a low-resolution brick directly below the displayed brick. The figure shows the
possible configurations of the different primitives to correctly interpolate samples
at the lower left corner, in the back. Figure 6.8a depicts the case where all three
surrounding faces of the corner are adjacent to low-res bricks, in Figure 6.8b two
faces are adjacent to low-res bricks, and in Figure 6.8c only the bottom face is
adjacent to a low-res brick. If a high-res brick is only adjacent to a low-res brick
at an edge, there would be no face primitive (truncated pyramid) needed, but
an additional edge primitive instead. If the low-res brick is only adjacent at the
high-res brick’s corner, additional corner primitives would be necessary. Conse-
quently, if present, a face primitive always overrides an edge primitive, which in
turn overrides a corner primitive.
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a) b) 

c) 

Figure 6.8: Different configurations of face, edge and corner primitives, depend-
ing on the adjacency configuration of high-res and low-res bricks. Ac-
cordingly, the lower left back corner is composed of different primitive
types (a, b, c).

6.4.2 Volume Rendering Fragment Shader Modification
As described above, for smooth interpolation sampling in the fragment shader
must be modified in order to warp the texture coordinates of samples in transition
regions between bricks of differing resolution. This is done as follows:

1. Determine whether the sample position is in a high-res brick. If so, deter-
mine if the sample position is within the 0.5 texel border that is adjacent
to a low-res brick.

2. If it is, determine the primitive type the sample position projects to via
the two 2D projections (Figure 6.7) orthogonal to each relevant border.
For example, for a face orthogonal to the z axis, the (x, z) and the (y, z)
projections are used.

3. If the sample is contained in more than one border (e.g., at an edge), de-
termine the primitive type that must be used according to the primitive
precedence described above.

4. Warp texture coordinates in the two 2D projections according to Equa-
tions 6.7 – 6.10, and composite the results for the final 3D coordinate, e.g.,
(x, z) and (y, z) to (x, y, z).

In order to distinguish all possible configurations of adjacency of high-res and
low-res bricks efficiently (see Figure 6.4 for the 2D cases), we create a bit state of
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the 26-neighborhood of each high-res brick whenever the cache layout changes.
A bit is set when a low-res brick is adjacent to a face, an edge, or a corner,
respectively. For simplicity, this bit state is supplied to the fragment shader as
an additional small 3D lookup texture with one texel per brick, similar to the
3D layout texture. This texture contains a 32-bit integer value for each brick,
encoding the 26 neighborhood bits.

6.4.3 Brick Cache Fixup
In addition to adapting texture coordinates for sampling in the fragment shader,
selected sample values must be modified in the brick cache in order to compute
the smooth interpolation functions described in Section 6.4.1 between the cor-
rect source sample values. That is, whenever high-resolution bricks are adjacent
to low-resolution bricks in volume space, the voxels in the duplicated border of
high-resolution bricks might need to be modified in order to perform the correct
interpolation. However, this modification solely depends on the layout and res-
olutions of bricks in the cache, and thus only needs to be performed whenever
the cache changes, e.g., due to a transfer function change. It is also completely
independent from the volume rendering fragment shader and therefore does not
influence rendering performance.
Depending on the location of the low-resolution neighbor, we either have to

adjust the face, edge, or corner of the adjacent high-resolution brick.
Figure 6.9 shows the 2D case where the left border of the high-resolution brick

needs to be modified because it is adjacent to a low-resolution brick in volume
space. Therefore, the duplicated border voxels of the high-resolution brick have
to be set to the same value as the nearest low-resolution sample of the adjacent
brick (shown by the replicated crosses in the high-resolution brick).

low - resolution high - resolution 

 

Figure 6.9: Fixup of the high-resolution brick’s duplicated border to the nearest
sample of its low-resolution neighbor in volume space, for smooth
hardware-native interpolation.
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To efficiently implement this fixup step on the GPU, an additional reverse
layout texture for address translation between the brick cache and virtual volume
space is necessary. Using this reverse address translation, we can look up the
volume coordinates for a given brick in the fragment shader that does the fixup.
Note that this is not the rendering fragment shader, but an additional shader
that is only invoked once whenever the cache changes.
Whenever the brick cache is updated, all high-res bricks that are adjacent to

a low-res brick are marked. In order to modify sample values in the duplicated
borders where necessary, we rasterize all marked bricks slice-by-slice and perform
the fixup on each slice separately, either copying a 2D slice buffer back into the
3D cache texture or directly rendering into its slices. In the shader we check for
each fragment if it is located on the rasterized brick’s boundary. For all boundary
voxels, a reverse lookup is performed to fetch the coordinates in virtual volume
space. Translating those volume coordinates back to the brick cache automati-
cally fetches the correct neighbor of the rasterized brick. Now we only have to
check if this neighbor is a low-resolution brick. If this is the case, we overwrite the
current sample’s value with the sample from the low-resolution brick (using near-
est neighbor interpolation for the texture fetch in the low-resolution brick). This
simple scheme works well for fragments on the brick’s border that are positioned
on the brick’s face (i.e., there is only one direct neighbor). For voxels on the edges
and corners we have to check all adjacent bricks and perform the texture fetch
on the first low-resolution brick that we encounter. To fetch all adjacent bricks,
the current sample is first transformed to virtual volume coordinates and then
translated by one voxel in the virtual volume space, depending on the adjacent
brick we want to fetch. Performing a lookup from volume space back to the cache
brick yields again the correct adjacent brick.

6.5 Results and Evaluation
We have tested our mixed-resolution volume rendering approach on large real
world data. Figure 6.10 shows highly magnified views (unshaded and shaded
DVR) of a medical abdomen data set of size 512x512x1112 (16-bit voxels). Arti-
facts at brick boundaries of different resolution are clearly visible using standard
volume rendering (Figure 6.10, upper images). Using our approach, however, a
smooth and continuous function can be obtained (Figure 6.10, lower images).
Figure 6.11 shows an iso-surface rendering (first-hit ray-casting) of a high-

resolution industrial CT scan of a metal ring (1518x1518x232, 16-bit voxels).
The magnified views show the junction of two high-res and two low-res bricks.
Again, disturbing artifacts at the brick boundaries are visible in the standard vol-
ume rendering (Figure 6.11, left) whereas our method (Figure 6.11, right) obtains
a smooth function. Table 6.1 lists the frame rates of both data sets, as tested on
a Core 2 Duo with 3 GHz, 4 GB RAM and an NVidia Geforce GTX 280. For
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Figure 6.10: Transitions between different resolution levels in an abdomen data
set (512x512x1112). The upper images show the original discon-
tinuous transitions, whereas the respective lower images show the
smooth transitions obtained by our method.

shaded DVR, additional samples are needed for on-the-fly central-difference gra-
dient calculation. For smooth, shaded DVR, this requires six additional texture
coordinate warping and subsequent texture fetching steps, therefore resulting in
lower frame rates than smooth, unshaded DVR.
Calculating the brick cache fixup step does not impose an additional limitation

of the frame rates, as this step is only performed whenever the cache itself changes,
e.g., after a transfer function change. However, the brick cache can be updated
several times a second, if necessary.

Data set Fig. Resolution Cache Size Transition Render Discon- Smooth
Bricks Mode tinuous

Abdomen 6.10 5122 × 1112 5122 × 512 29% unshaded 60 fps 33 fps
shaded 41 fps 9 fps

Ring 6.11 15182 × 232 5122 × 256 22% unshaded 65 fps 35 fps
shaded 45 fps 6 fps

Table 6.1: Frame rates of our mixed-resolution approach with and without
smooth transitions between resolution levels obtained by warping tex-
ture coordinates in the fragment shader. Measured for a 512 × 512
viewport on a Geforce GTX 280.
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Figure 6.11: High-resolution industrial CT scan of a metal ring (1518x1518x232).
Zoom-in: Junction of two low-res and two high-res bricks. Discon-
tinuous (top left) vs. continuous (top right) resolution transition
between bricks.

6.6 Summary and Conclusion
In this chapter, a mixed-resolution volume rendering approach for high-quality
rendering of large data was introduced. We use a downsampling scheme where
the samples are shifted by half a voxel in each dimension, permitting more flex-
ibility in the choice of downsampling filter kernels. Our approach offers C0-
continuous transitions between different resolution levels by special handling of
high-resolution brick boundaries which are adjacent to low-resolution bricks. We
do this by warping the texture coordinates which are used for hardware-native tri-
linear interpolation of the sample’s value during ray-casting. Prior to rendering,
the duplicated voxels in the border outside high-res bricks at each high-res/low-
res boundary are adjusted in the corresponding high-resolution brick in a brick
cache fixup step.
All the necessary steps to ensure continuous transitions between resolution lev-

els are implemented on the GPU and offer interactive frame rates. Furthermore,
we have described an efficient texture packing scheme that allows to dynamically
store bricks of different resolutions in the same large 3D cache texture.



Chapter 7

Visualization of Neural Processes
in EM Datasets

Figure 7.1: Enhanced visualization of neural processes in EM data.

7.1 Introduction
Parts of this chapter are based on the paper Scalable and Interactive Segmenta-
tion and Visualization of Neural Processes in EM Datasets. IEEE Transactions
on Visualization and Computer Graphics (Proceedings of IEEE Visualization
2008) [34].

87
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In this chapter, NeuroTrace, a system for high-quality 3D visualization and
semi-automatic segmentation for neural processes is presented. In recent years
EM (Electron Microscopy) technology has enabled bioscientists to scan an un-
precedented amount of large-scale high-resolution data, allowing them to recon-
struct the complex neural interconnections in the nervous system.
Connectomics [79] is an emerging research area in bioscience, which aims to

determine the complete, detailed wiring diagram of neural circuits, with the goal
of understanding the function of the brain. Interactive segmentation and visu-
alization is a main requirement by neuroscientists, as it enables them to follow
neural processes interactively through the entire volume.
Modern electron microscopes can attain resolutions of three to five nanometers

within a slice, with 30 nanometers slice thickness. For the first time, this has made
the reconstruction of small neural processes such as synapses or narrow dendritic
spines feasible. Automated scanning devices, such as the ATLUM (Automatic
Tape-Collecting Lathe Ultramicrotome) at the Harvard Center for Brain Science
can produce up to 11 gigabytes of raw data per second. Scanning a 1mm3 sample
of brain tissue, for example, would result in roughly one petabyte of raw data.
This enormous amount of data, however, poses several challenging problems

for data storage, retrieval, processing, segmentation and visualization. EM data
is very complex, and segmentation is usually a difficult and time-consuming man-
ual process. Additionally, the complex structure of neural tissue makes the 3D
visualization of EM datasets very challenging. Conventional transfer functions
alone are not able to clearly depict neural processes and their interconnections,
resulting in cluttered images. In addition to that, new scalable methods for vi-
sualization are needed, which are able to maintain interactive performance while
dealing with this tremendous amount of data.

NeuroTrace is a system for segmentation and visualization of large-scale EM
data, designed to be scalable to large data and data-parallel hardware architec-
tures. The segmentation of neural processes is based on a semi-automatic multi-
phase level set segmentation [88] with 3D centerline tracking along the main axis
of the neural structure. The visualization system employs on-the-fly de-noising
and edge-detection. A local histogram-based edge metric is used to enhance im-
portant structures while reducing the clutter in the rendered image. Additionally,
the segmented neural structures are displayed as implicit surfaces in the volume
rendered image. To achieve interactive frame rates all methods are implemented
on the GPU.

This chapter starts with reviewing related work for 3D visualization of mi-
croscopy images (Section 7.2). In Section 7.3 NeuroTrace is presented, an appli-
cation that supports segmentation and visualization of neural processes in EM
data. In the scope of this thesis, however, we will focus mainly on the enhanced
3D visualization capabilities of EM data in NeuroTrace. Section 7.4 presents a
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volume rendering framework which supports on-demand filtering for de-noising
and detection of structure boundaries in complex EM datasets. We employ a
local histogram-based edge metric to visually enhance the boundaries of neural
processes and find regions of interest in the volume. To support processing of
large-scale datasets we implemented the algorithm entirely on the GPU and use
a dynamic caching system to ensure scalability. Finally, Section 7.5 presents the
results of our algorithm and Section 7.6 concludes this chapter.

7.2 Previous Work
Volume rendering of microscopic structures is a very recent area of research,
enabled by new developments in microscopic data aquisition techniques. Mayerich
et al. [55] presented segmentation and subsequent visualization of microvascular
structures and their relationships. However, the resolution of their microscopic
images is still two orders of magnitude lower than in EM data. We employ GPU-
based ray-casting of volumes and implicit surfaces [74] using a bricking scheme
for large data [3] implemented in CUDA.
Enhancing edges or structure boundaries has always been important in volume

rendering, and is typically achieved using higher-order transfer functions [44].
Kindlmann and Durkin [36] proposed a boundary emphasis function for enhanc-
ing edges in volume rendering. Caban and Rheingans [12] have recently intro-
duced texture-based tranfer functions based on first-, second-, and high-order
local (histogram) statistics. However, these methods are not effective in dealing
with noise in EM images. For enhancing cell boundaries in 2D TEM images
Tasdizen et al. [82] adapted coherence enhancing diffusion by constructing their
diffusion tensor based on the Hessian matrix.
The rendering framework presented here, employs a general filtering and de-

noising step with a neighborhood size that can be changed interactively. Viola
et al. [90] have presented early GPU implementations of non-linear filters such as
median, or bilateral filters.
Martin et al. [54] define a set of brightness, color, and texture cues for construct-

ing a local boundary model. To enhance edges during ray-casting we extended
their 2D boundary detection framework using local histogram comparisons.

7.3 NeuroTrace
NeuroTrace is an application which provides interactive segmentation and high-
quality 3D volume visualization of high-resolution electron microscope datasets.
NeuroTrace focuses on maintaining the scalability of the system to large-scale
datasets and high-performance parallel computing architectures. A screenshot of
NeuroTrace is displayed in Figure 7.2.
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Figure 7.2: NeuroTrace allows neuroscientists to interactively explore and seg-
ment neural processes in high-resolution EM data. The large view
shows a 3D volume rendering of the original EM data in combination
with implicit surface ray-casting of segmented structures. The smaller
views on the right depict the ongoing segmentation of an axon.
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7.3.1 Pre-Processing
NeuroTrace is embedded into a workflow that supports bioscientists in their re-
search. After acquisition of the EM datasets the individual image tiles are first
aligned and stitched into a single large high-resolution slice image. Next, the
slices are aligned and registered along the z-direction to create a 3D volume.
These pre-processing steps are performed outside of NeuroTrace, prior to starting
the application.

7.3.2 NeuroTrace Workflow
Figure 7.3 illustrates the workflow in NeuroTrace, supporting integrated and in-
teractive visualization and segmentation of neural processes.
The workflow in NeuroTrace starts with the visual inspection of the 3D EM

volume, prior to segmentation. The objective of the user is to gain an overview of
the dataset and identify regions of interest that contain important structures. We
support this step by enhancing boundaries of important structures in the volume
(e.g., myelinated axons) while simultaneously removing background noise. To
better delineate structures of interest we propose on-the-fly noise removal and
edge enhancement, as described in Section 7.4.
To specify a rectangular ROI (region of interest) as starting point for the seg-

mentation, the user can navigate a view-aligned clipping plane through the vol-
ume and define the ROI center by clicking on any point on the plane. Next, the
user can start the semi-automatic segmentation of a neural process by roughly
painting the outline of the process in the 2D view of the rectangular ROI. This
initializes the active ribbon segmentation step, which automatically detects the
2D boundary of the neural process that is to be segmented. After the cell bound-
ary has been detected, the segmentation algorithm proceeds to the next slice by
using a centerline tracking method [34].
At all times, the ongoing segmentation process is displayed interactively in

3D, allowing the user to inspect and modify the segmentation at any time. The
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Figure 7.3: Pipeline diagram of our integrated, interactive workflow for visualizing
and segmenting neural processes.
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segmented axons, the most important neural processes in our case, have long,
thin, elongated structures, which can be approximated by a list of elliptical cross-
sections. Therefore, in each slice, we approximate the actual boundary of the axon
by fitting an ellipse. This allows us to store the segmentation information in a
very compact and memory efficient way. Each axon is represented by a list of
ellipses, which are transferred to the volume renderer. Next, during ray-casting,
each sample along the ray is tested for potential intersections with the iso-surfaces
that delineate the segmented structures. If an intersection with an implicit surface
is detected, the sample point is colored accordingly, and the accumulation of the
color and opacity along the ray continues.

7.3.3 NeuroTrace Framework
NeuroTrace is implemented in C++, OpenGL, NVIDIA CUDA and Qt. We use
CMake as a cross-platform make tool to be able to easily port the existing appli-
cation to different operating systems. At the moment, we have built NeuroTrace
for Windows and Linux.

The NeuroTrace framework consists of four main conceptual modules:

• NeuroTrace Core: This module is the core of the NeuroTrace framework
and responsible for data handling and storage, including out-of-core data
loading, octree generation and cache management.

• NeuroTrace Segmentation Module: This module implements the segmenta-
tion functionality of NeuroTrace, the active ribbon segmentation algorithm.

• NeuroTrace Visualization Module: This module is responsible for 3D vi-
sualization, including direct volume rendering of EM data, on-demand de-
noising and edge-detection, and implicit surface ray-casting of segmented
processes (see Section 7.4).

• NeuroTrace GUI : This module provides the user interface to the entire ap-
plication which is completely decoupled from the actual core, segmentation
and visualization modules.

Data management is handled in the core. We use a separate loader thread
for opening and loading datasets. Whenever the thread has finished loading a
new block of data, it is interactively added to the visualization. This streaming
approach allows us to speed up the initial startup time of the volume renderer
by loading and displaying low-resolution blocks first, while the loader thread in
the background still reads in the higher resolution blocks. The encapsulation of
all data access functions into our data management layer will allow us to switch
from local data storage to a network-based file system without any changes in
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the visualization and segmentation modules.

The segmentation module accesses the original data via the NeuroTrace core
module. The segmentation results get propagated back and passed on to the
interactive visualization system. The segmentation module is treated as a black
box by the NeuroTrace framework, meaning that the actual implementation of
the segmentation algorithms is not known outside of the module.

The visualization module also accesses the data via the NeuroTrace core mod-
ule. It offers 2D slice and 3D rendering at interactive frame rates, transfer func-
tions, clipping planes, etc. In the case of binary segmentation information, the vi-
sualization module also offers two-level volume rendering for segmentation masks.

The user interface was developed with the Qt framework. We have imple-
mented a flexible layout using dockable views, which can individually be adjusted
by the user, depending on his/her primary requirements. We have implemented a
transfer function editor for 1D as well as for 2D transfer functions. Additionally,
we offer several adjustable 2D slice as well as 3D views which can be individually
activated or hidden, depending on user preferences. We have intentionally kept
the user interface decoupled from the rest of the application to be able to switch
from one GUI framework to another, if necessary in the future.
Additionally, we keep two tables of all visualization parameters that can be

changed in the GUI. One table at the user-interface side, and one table at the
renderer-side. This allows us to synchronize the two tables at an arbitrary time
in a thread-safe way. Using a separate thread for the user interface keeps the
application responsive, even during time-consuming processing tasks.

7.4 Volume Visualization
Volume rendering of high-resolution EM data poses several challenges. EM data
is extremely dense and heavily textured, exhibits a complex structure of inter-
connected nerve cells, and has a low signal-to-noise ratio. Therefore, standard
volume rendering results in cluttered images that make it hard to identify regions
of interest or to observe an ongoing segmentation.
The visualization approach presented here, supports the inspection of data

prior to segmentation, for identifying regions of interest (ROIs), as well as the
visualization of the ongoing and final segmentation (see Figure 7.3). To improve
the visualization of the raw data prior to segmentation, we have implemented
on-the-fly nonlinear noise removal and edge enhancement to support the user in
finding and selecting ROIs. Using a local histogram-based edge metric, which is
only calculated on demand for currently visible parts of the volume and cached for
later reuse, we can enhance important structures (e.g., myelinated axons) while
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fading out less important regions. During ray-casting we use the computed edge
values to modulate the current sample’s opacity with different user-selectable
opacity weighting modes (e.g., min, max, alpha blending).

7.4.1 On-demand Filtering

The main motivations for on-demand filtering (i.e., noise removal and edge detec-
tion) are the flexibility offered by being able to change filters and filter parameters
on the fly while avoiding additional disk storage and bandwidth bottlenecks for
terabyte-sized volume data. We perform filtering only on blocks of the volume
that are visible from the current viewpoint, and store the computed data directly
on the GPU for later reuse. We have implemented a caching scheme for these pre-
computed blocks on the GPU to avoid costly transfers to and from GPU memory
while at the same time avoiding repetitive recalculation of filtered blocks. During
visualization we display either the original volume, the noise-reduced data, the
computed edge values, or a combination of the above.
Our on-demand filtering algorithm consists of several steps: (1) Detect the

visible blocks for the current viewpoint (see Figure 7.4). (2) Build the list of
blocks that need to be computed. (3) Perform noise removal filtering on selected
blocks and store them in the cache. (4) Calculate the histogram-based edge
metric on selected blocks and store these blocks in the cache. (5) High-resolution
ray-casting combining edge values and original data values. The detection of
visible blocks (Step 1) is done either in a separate low-resolution ray-casting pass
or included in Step 5.

Figure 7.4: Detection of visible blocks (red) from the current viewpoint during
ray-casting. Only visible blocks that are not currently in the cache
need to be filtered and stored in the GPU cache.
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7.4.2 Noise Removal
Since EM data generally exhibits a low signal-to-noise ratio we have integrated an
on-demand noise removal filter step into our pipeline prior to calculating the local
histogram-based edge metric. We perform the filtering only on those blocks that
were marked as visible and are not present in the cache yet. We have implemented
2D and 3D Gaussian, mean, non-linear median, bilateral [86], and anisotropic
diffusion filters [61] with user adjustable neighborhood sizes. Especially non-
linear filters have shown good noise removal properties without degrading edges
in the EM data [82]. Our main objective, however, was to develop a general
framework for noise removal, where additional filters can be added easily. The
result for each processed block is stored in the cache and used as input for the
edge detection algorithm.

7.4.3 Local Histogram-based Edge Detection
We use a local histogram-based edge metric to modulate the opacity of the EM
data during ray-casting. Boundaries in the volume get enhanced while more
homogenous regions are supressed. This helps the user in navigating through
the unsegmented dataset and in finding regions where a segmentation should be
started. The edge metric is computed only for visible blocks that are not stored
in the cache yet.
Our edge detection algorithm is based on the work of Martin et al. [54] who

introduced edge and boundary detection in 2D images, based on local histograms.
They did a thorough evaluation of different brightness, color, and texture cues
for constructing a local boundary model, which was subsequently used to detect
contours [51] in natural images.
In our local histogram-based edge detection approach we take a block neigh-

borhood around each voxel to calculate the brightness gradient for different di-
rections. We separate the voxel’s neighborhood along the given direction into
two halves and calculate the histogram in each half-space. The different possi-
ble directions of the half-spaces used for histogram calculation are depicted in
Figure 7.5. Finally, the histogram difference is calculated using the χ2 distance
metric [64]. A high difference between histograms indicates an abrupt change
in brightness in the volume, i.e., an edge. The maximum difference value over
all directions is saved as the edge value in the cache block. As the neighbor-
hood size for the histogram calculation can be adjusted to match the resolution
level of the current input data, this approach scales to large data and to volume
subdivision schemes like octrees. Again, we have kept the implementation of our
edge detection framework as modular as possible to support adding different edge
detection algorithms in the future. During volume rendering, we fetch at each
sample location the corresponding edge value and use it to modulate the sample’s
opacity and/or color. Optionally, the user can first use a windowing function on
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Figure 7.5: Possible configurations for separating a 3×3 voxel neighborhood into
two half-spaces, used for histogram calculation and comparison.

the calculated edge values to further enhance the visualization.

7.4.4 Dynamic Caching

To improve the performance of our edge-based visualization scheme, we have
implemented a dynamic caching scheme for storing blocks computed on-the-fly.
Two caches are allocated directly on the GPU, one cache to store de-noised volume
blocks and the second cache to store blocks containing the calculated edge values.
First, the visibility of all blocks is updated for the current viewpoint in a first
ray-casting pass and saved in a 3D array corresponding to the number of blocks
in the volume. Next, all blocks are flagged as either: (1) visible, present in cache;
(2) visible, not present in cache; (3) not visible, present in cache; or (4) not
visible, not present in cache. Visible blocks that are already in the cache (flagged
with (1)) do not need to be recomputed. Only blocks flagged with (2) need to
be processed. Therefore, indices of blocks flagged with (2) are stored for later
calculation (see Section 7.4.5). During filtering/edge detection the computed
blocks are stored in the corresponding cache. A small lookup table is maintained
for mapping between block storage space in the cache to actual volume blocks
as described in Chapter 6. Unused blocks are kept in the cache for later reuse
(flagged with (3)). However, if cache memory gets low, unused blocks are flushed
from the cache and replaced by currently visible blocks.
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Figure 7.6: Local histogram-based edge detection in volume blocks using CUDA.
(a) Neighborhood required for local histograms. (b) Fetching only
one new sample per thread at each step to update the neighborhood.
(c) Shared histograms for calculation of the χ2 difference.

7.4.5 GPU Implementation

After detecting which blocks need processing, a CUDA kernel is launched with
a grid size corresponding to the number of blocks that need to be processed.
For simplicity we explain the implementation of our filtering and edge detection
algorithm in 2D. The extension to 3D is straightforward.
To calculate filter/edge values in each block, we start a CUDA kernel with a

CUDA block size that corresponds to the user specified neighborhood size, but of
one dimension lower than the actual neighborhood (e.g., for a 3D neighborhood a
2D CUDA block is started, for a 2D neighborhood a 1D CUDA block is started).
Figure 7.6 depicts the case where the edge detection of a block uses a 5 × 5
neighborhood. In this case the kernel is started with five concurrent threads.
Next, the threads iterate over the entire block that needs to be filtered and
calculate the filter/edge values for each voxel. Each thread is responsible for
only one part of the filter’s neighborhood, as depicted by the colored areas in
Figure 7.6. To reduce redundant texture fetches each thread locally caches its
previously fetched values. The size of this thread-local array corresponds to the
neighborhood size of the filter. Therefore, at each step a thread only needs to
perform one texture fetch, and store the value in its local cache (Figure 7.6b).
To calculate the local-histogram based edge metric, all samples in a voxel’s

neighborhood need to be assigned to one of the two local histograms (for both
half-spaces), as depicted in Figure 7.6c. The histograms are stored in shared
CUDA memory and used for the final calculation of the χ2 histogram difference.
The main steps for each thread are: (1) Update the histogram of the first half-
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space (histogramleft) by removing the sample that has left the filter neighborhood
and adding the last sample from histogramright. (2) Remove the sample that has
left the filter neighborhood from the thread-local cache. (3) Fetch the sample
that has entered the filter neighborhood from the volume texture and store it
in the thread-local cache. (4) Update the histogram of the second half-space
(histogramright) by removing the sample that is now in histogramleft and adding
the sample that has just been fetched from the volume texture.
All threads are synchronized after they have performed the above steps using

atomic CUDA operations for updating the shared histograms. Now the χ2 his-
togram difference for the current neighborhood can be computed and stored in
the cache.
To implement the de-noising filters we use the same basic strategy. For Gaus-

sian filters we transfer a 1D look-up table of the weights to the GPU to speed up
the calculation. For bilateral filtering we use the same look-up table to calculate
the geometric closeness function, whereas the photometric similarity function is
calculated on-the-fly in the CUDA kernel. For median filtering we implemented
bitonic sort on the GPU to find the median value of the filter neighborhood.
Anisotropic diffusion filtering is the most complex filter in our framework. It
requires a second filter cache to allow ping-pong swaps between source and des-
tination. Also, costly neighborhood lookups in the source cache are needed to
compute the boundary values of the destination blocks.
If the noise removal step is performed prior to the edge detection, the local

histogram calculation uses the values from the filtered block cache as input val-
ues instead of the original volume texture. Since the calculation of edge-blocks
requires samples from the block’s neighborhood (depending on the edge filter’s
neighborhood size), special care has to be taken that all necessary de-noised val-
ues are available when computing an edge-block. One way to handle this is to add
a duplicated border around each de-noised block, so that all neighborhood sam-
ples that are required for edge detection are already stored in the corresponding
de-noised block. Another way to deal with this problem is to detect the addi-
tional blocks that would have to be de-noised. Now if a sample outside the block
boundary of a de-noised block is needed, a neighborhood lookup can be performed
to fetch the correct block and the corresponding sample.

7.5 Results and Evaluation
The prefiltering and edge-detection methods (Figure 7.7) were both implemented
entirely in CUDA and achieve interactive frame rates. Filtering blocks on-demand
and caching them for later reuse allows the user to change filters and filter settings
interactively. Especially de-noising prior to calculating the edge metric improved
the results considerably. The best results were achieved using anisotropic diffusion
filtering. For our local histogram-based edge metric we found a histogram with
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64 bins to be sufficient for our data. Also, a simple average-based histogram
difference operator showed good results compared to the computationally more
complex χ2 distance metric. For our caching scheme we used 83 sized blocks, but
this can be adjusted according to the resolution of the data. At the moment our
implementation of the cache is based on CUDA arrays, but in the future we would
like to use 3D textures to improve tri-linear filter performance during ray-casting.
The dimension of EM data is highly anisotropic, with z-slice distances that can

be a factor of 10 or more larger than the pixel resolution. This poses real problems
for volume visualization, since the visible edges from axons are shifted consider-
ably between slices. However, promising new advances in electron microscopy
might reduce the minimum z-slice distance significantly. Even though our filter-
ing and edge detection method works better than traditional transfer functions,
the results are sometimes still ambiguous and confusing, requiring closer inspec-
tion of the 2D slice views to identify the ROI.

7.6 Summary and Conclusion
To support neuroscientists in their effort to study the connections of the mam-
malian or human brain, scalable algorithms for the visualization of large-scale,
high-resolution EM data is of immediate interest.
In this chapter NeuroTrace, a novel interactive segmentation and visualization

system for neural processes in EM volumes was introduced. The main contribu-
tion in this chapter is a volume rendering method with on-the-fly filtering and
edge detection, a scalable implementation of these methods on the GPU, and its
integration into the NeuroTrace framework.
Using NeuroTrace, neuroscientists are able to work on the reconstruction of

the neural circuitry, hopefully one day leading to a better understanding of the
brain’s intricacies and function.
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Figure 7.7: Left: Volume Slab visualization; Top: Original data; Middle: Gradi-
ent magnitude displayed on the top slice; Bottom: Local-histogram
edges; Right: Volume Rendering; Top: Original data; Middle:
Gradient-magnitude shaded; Bottom: Pre-filtering and edge enhance-
ment with opacity weighting.



Chapter 8

Summary and Conclusions

Today’s GPUs and high-performance parallel computing architectures offer never
before achieved flexibility and computing power for scientific programming. For
the first time, this allows us to include sophisticated, high-quality, interactive
volume rendering techniques for large and complex data into real-world applica-
tions.
This thesis has focused on two different application areas: surgical planning in

medicine, and connectomics research in neurobiology. Several different visualiza-
tion methods for rendering of multi-modal, complex, and large data have been
presented.

In today’s medicine, diagnosis and treatment planning heavily relies on recent
advances in image scanning technologies. The visual combination of images from
several different scanning modalities into a fused visualization helps doctors to
get a better understanding of the individual patient’s anatomy and pathology.
However, standard visualization systems need to be adapted and integrated into
the clinical workflow to be useful for doctors and medical personnel. In addition
to concurrent multi-volume rendering, intuitive interaction metaphors are needed,
which support doctors in their decision finding process.
In this thesis an application for precise preoperative planning of neurosurgical

interventions and approaches to the brain has been presented, which uses multiple
radiological imaging modalities to delineate the patient’s anatomy, neurological
function, and metabolic processes.
For interventions in areas directly below the skull, we addressed the problem of

opening the cranial bone tailored to the individual anatomy. The optimal surgical
approach to the brain is simulated by allowing the doctor to interactively specify
parts of the patient’s skin and skull that should be removed.

101
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In addition, a multi-modal volume rendering framework was presented for plan-
ning surgeries on deep-seated structures, where a small opening in the skull is
sufficient to gain access to a much larger intracranial region via an endoscope or
operating microscope. To enhance the spatial orientation of doctors in regard to
structures of interest and critical areas within the brain, multi-volume render-
ing techniques were introduced, which work either purely on the data or include
additional segmentation masks. The visual appearance of rendered segmented
objects was improved by an algorithm for smooth rendering of object boundaries.

In the field of Connectomics and neurobiology, the current visualization re-
search focus is on the development of scalable methods for volume rendering of
tremendously large and complex data. The latest generation of electron micro-
scopes can provide huge amounts of high-resolution data. Segmentation and vi-
sualization of the complex neural tissue aquired by electron microscopy, however,
is very challenging and still on-going research.
The second part of this thesis has dealt with volume rendering techniques and

interaction metaphors for large data. A new volume ray-casting approach was
introduced, which circumvents artifacts at block boundaries of different resolu-
tion. Volumes larger than GPU memory can be rendererd in a single ray-casting
pass, mixing different levels of resolution with continuous transitions between
resolution levels.
Finally, NeuroTrace, an application for interactive segmentation and visualiza-

tion of neural processes in EM volumes was introduced. The visual appearance
of volume rendered EM data was improved considerably, addressing one of the
most common problems in volume rendering of complex data - visual clutter. A
novel on-demand filtering and edge detection method, based on a high-quality
volume rendering framework, was integrated into NeuroTrace and presented.

This thesis presented significant progress in applying novel volume rendering
techniques to problems in different scientific fields. By building on the flexibility
and parallel processing power of current GPUs, new interactive volume visualiza-
tion methods could be developed, supporting medical doctors and neuroscientists
in their work. However, several challenges still remain, requiring further research
in scalable techniques and interaction metaphors. Especially user-centered tech-
niques for exploring, segmenting, and analyzing large datasets, which scale to the
multi-resolution representation of large data, are on-going research challenges.
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