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Abstract 
 
This paper presents a simulation tool for industrial X-Ray computed tomography (CT) systems 
which is able to predict the results of real measurements. Such a prediction helps the technician 
in measurement technology to minimize artefacts by using optimal measurement parameters 
and therefore it helps to get more accurate results. The presented simulation software offers an 
implementation for CPU’s and GPU’s. The performance difference between these implementa-
tions is shown, for a specific test part. Furthermore a parameter variation has been carried out, 
to illustrate the influence of the acquisition settings. We use a multi-image view tool to compare 
and evaluate the acquired dataset series which contains CT data gained with different X-Ray 
source voltages and a different number of projections. 
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1. Introduction 
 
X-Ray Imaging is a common method for non-destructive testing using radiographic or tomographic systems. A 

new and challenging application in the field of computed-tomography (CT) is metrology, which has to fulfil the 

demands of today’s standards for quality control. The achievable uncertainty of measurement mainly depends 

on the CT data’s quality and in addition on the used evaluation algorithms. CT device settings like X-Ray 

source voltage, anode current, filter plates, detector integration time and the measurement conditions influ-

ence the image acquisition and the quality of the CT dataset. Properly chosen settings produce sharp edges, 

minimise artefacts, and simplify subsequent semi automatic evaluation procedures within CT data. Selection 

and optimisation of these parameters has to be done by an experienced system operator, which leads to sub-

jective measurement results. A CT simulation software would be able to do this optimization process auto-

matically and generate user independent device parameters and results. Monte-Carlo simulations are able to 

model the interactions of X-Rays with matter very accurately, but due to their high computational costs, 

Monte-Carlo simulations are not suitable for the required optimisation of a complete CT scan with a high 



number of projections. The objective of the presented work is a time optimized simulation for industrial cone 

beam CT’s, which models all essential interactions at a sufficient accuracy and is applicable for the optimiza-

tion of the device parameters. 

 

2. Polychromatic X-Ray cone beam computed-tomography (3DCT) 
 
An industrial cone beam CT system as shown in Figure 1 consists of an X-Ray source, a rotary table and an 

X-Ray sensitive detector. During a discrete 360 degree turn of the specimen, penetration images which con-

tain the spatial X-ray attenuation are recorded. Using these images it is possible to reconstruct the fully inner 

and outer structure of the specimen. The reconstruction method used within this work is a filtered back-

projection. 
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Figure 1: Schematic of a cone beam computed-tomography system. s is the source and p the end point of an 
ideal casted X-ray penetrating the object. 
 

CT measurements for this investigation were performed by a RayScan 250 E CT device consisting of a Vis-

com 225 kV-microfocus tube and a 1024x1024 Perkin Elmer flat panel detector. 

 

3. Modelling a polychromatic X-Ray cone beam computed-tomography system 
 
Modelling of a cone beam CT system include, the X-Ray source model, the interactions of X-Rays with matter 

and the detector model. The presented simulation uses an X-Ray source model published by Ebel et al. [1]. It 

allows the calculation of polychromatic spectra consisting of Bremsstrahlung and characteristic radiation. Fig-

ure 2a illustrates a calculated spectrum. The virtual specimen is represented by a surface model consisting of 

a triangle mesh and an assigned material, which is defined by mass weighted chemical formulas. Furthermore 

the simulation is able to handle more than one surface mesh and even different material assignments. 

A Raytracing algorithm [2] calculates the penetration lengths L(s,p,N) along an ideal ray from the source s to a 

point p on the detector, whereas the whole sensor area has to be covered with ideal rays. Subsequently Lam-

bert-Beer‘s law according to Equation (1) is applied for each ray and each energy channel ΔE. Finally the 

photons in a specific energy channel are weighted with DE(E) the detector efficiency (Figure 2b), and summed 



up to a grey value GV ( Equation (2) ). P0(E) and P(E)
 are the number of X-Ray photons before and after the 

linear attenuation process, µN are linear X-Ray attenuation coefficients as given by Brunneti et al.[3] or combi-

nations of them. Effects caused by beam hardening are completely covered. 
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Figure 2: (a) Calculated X-ray spectrum: U=210keV, I=300μA, ΔT=1s, Cu 1mm, ΔE=1keV, tungsten target (b) 
detector efficiency model used for an Perkin Elmer RID1640 Al1 ES X-Ray detector which has a scintillating 
screen made of Gd2O2S:Tb. 
 

Due to the high number of detector pixels (>1024x1024), pixel oversampling and the high number of energy 

channels (common value for ΔE = 1keV), Equation (1 and 2) have to be calculated for several million times to 

generate suitable results for one projection image. The calculation for each ray is independent, therefore it 

can be parallelised on a multi-processing unit. 

In addition to Lambert-Beer‘s law the simulation tool offers the opportunity to consider first order scatter ef-

fects within the inspected specimen. With some approximations it is possible to reduce the scattering process 

to NE convolutions, where the operator-kernel is about twice the size of the detector dimension and NE is the 

number of energy channels for the scatter calculations (common value for ΔE = 20keV). In contradiction to 

conventional analytic first order scatter models (e.g. Freud et al. [5]) our approach does not require a repre-

sentation of the specimen in voxels. Monte-Carlo Simulations [6][7] and hybrid approaches [8][9] are out of 

scope, because of their high calculation effort. 

Furthermore a model for detector inherent scattering has been developed, in which the time-consuming tasks 

are NE convolutions with point spread function (PSF) kernels up to about 300x300 pixel for a Perkin Elmer 

RID1640 Al1 ES flat panel detector. Considering one specific detector, the kernel size depends only on the 

participating X-Ray photons energy. For each energy channel NE a kernel has to be specified. 



4. Implementation and Performance 
 
The whole CT Simulation process has been implemented on the CPU using C++ and on the GPU using 

Nvidia CUDA toolkit [10]. Algorithm 1 shows pseudo code for the Lambert-Beer‘s law implementation using a 

CUDA Kernel within C++. The code demonstrates the necessary steps to use the graphics card for general 

purpose calculations. Starting with the device memory allocation and continuing with the transfers between 

device and host. The Memory management on the device is very critical due to the limited memory available 

on graphics boards. Constant memory is a read-only memory and accessible by all threads, shared memory 

is useable within a thread and global memory is read and write able by all threads, but the access times are 

 

Algorithm 1: Pseudo Code of Lambert-Beer’s Law using the CUDA Toolkit within C++. Using the terminology 

of CUDA, a device is the graphics card and the host is the system using the graphics card. 

 
void ImGen_kernel_wrapperForCpp( … ) 
{ 
 Allocate Memory on the DEVICE; 
 Transfer data from HOST to DEVICE; 

Define textures for read-only data in the global memory of the DEVICE; 
 

Split the rays toward the detector into threads per block dimBlock and 
blocks per grid dimGrid; 
sharedMemory used per thread has the size of the xray source spectra; 

 
 ImGen_kernel<<<dimGrid,dimBlock,sharedMem>>>(Image); 
 
 Transfer Image from DEVICE to HOST; 
 Free Memory on the DEVICE; 
} 
 
__global__ void ImGen_kernel( Image ) 
{ 
 Determine the currect ideal ray via block and thread id; 

Load initial xray source spectrum iniS(E) from constant to shared memory 
curS(E); 

  
 Iteration throuth absorbing objects 

curS(E) = LinearAttenuation(curS(E), µ(E), length); 
 
Image(ray) = Sum of photons within the spectrum curS(E); 

} 
 
__device__ void LinearAttenuation( spectrum(E), µ(E), length ) 
{ 

Iteration through the energy channels E 
spectrum(E) = spectrum(E) * __expf( -length * spectrum(E) * µ(E) ); 

} 

 



potentially 150 times longer than to registers, constant and shared memory. NVidia graphics cards supporting 

Compute Capability 1.3 have 16kB of shared memory, 64kB of constant memory [13], which limits the spec-

trum size to 4096 32Bit float values. Calling a CUDA Kernel require a division of the calculations into parallel 

calculateable parts so called threads. That’s why every thread calling the kernel function first has to determine 

the part it has to calculate via the block and thread-id. The number of threads is limited [13]. Therefore blocks 

of threads are specified. After running the kernel the calculated results have to be transferred to the host and 

the memory on the device can be freed. 

We performed a performance comparison of the CPU and GPU implementation of Lambert-Beer‘s law for a 

specific test part called TK03. This aluminium test part TK03 shown in Figure 3, consists of one central drill 

hole, 6 small inner drillholes of which four are located in the bottom section of the specimen and two at the top 

section. Figure 3b shows the projection image of TK03 used for the performance comparison. Further Figure 

2a and 2b show the used spectrum and detection efficiency. 

The calculation times for one projection are shown in Table 1. They depict a performance increase by a factor 

of 7 to 9, when using the GPU instead of the CPU implementation. This increase in performance shows a 

slight dependence on the number of ideal rays. The benchmark was done on an Intel Quad core QX9650 sys-

tem using an NVidia G80 GPU. 

 

 
     (a)             (b)        (c) 

Figure 3: (a) Surface model of the aluminium test part TK03 for the evaluation of the simulation tool consisting 
of 200000 triangles, (b) Simulated X-Ray projection images used for the reconstructed image, (c) 3D-
representation of the simulated CT data of the test part TK03. 
 
 
Table 1: Performance comparison solving Lambert-Beer’s Law using a CPU or a GPU implementation for a 
different number of rays per projection. 

 

no. of ray C++ OpenMP 
CPU Intel QX9650 

CUDA 
GPU NVidia G80 

performance 
difference 

512x512 608ms 80ms 7.6x 
1024x1024 2420ms 350ms 6.9x 
2048x2048 9,71s 1,1s 8.8x 
4096x4096 39,04s 4,46s 8.7x 

 



The time critical steps for the scatter models mentioned in chapter 3 are large inseparable convolutions in the 

Fourier space. We use a FFT-convolution published within the CUDA SDK by V.Podlozhnyuk [10]. Compared 

to other available CPU implementations (e.g. Intel Math Kernel Library MKL, fftw3) the CUDA implementation 

shows a 4x shorter computation time for the listed hardware (Table 2). 

 

Table 2: Performance comparison of single-precision, complex, out-of-place, 2d FFT implementations. 
 

implementation machine FFT size computation time 
Intel MKL** CPU Intel P4 3GHz 1024x1024 46ms 

NVidia CUDA*** GPU NVidia G80 1024x1024 10ms* 
fftw3** CPU Intel P4 3GHz 1024x1024 54ms 

     * including transfers between host and device, ** [12], *** [10] 

 

The implementation of Lambert-Beer‘s law within C++ using OpenMP and all further implementations, which 

are necessary for a CT-Simulation are not discussed within this paper. 

 

5. Results 
 

Figure 4 shows simulated and measured CT data of test part TK03.  This comparison of real and simulated 

CT reconstructions shows a slight difference regarding the strength of cupping artefacts toward the centre of 

the cylinder. 

To demonstrate the potential of this simulation tool regarding an optimization of the imaging parameters a 

parameter variation has been carried out for the voltage of the X-Ray source and the number of projections. 

Table 3 shows some details about the acquired datasets. Differences within these datasets are compared and 

visualised using a multi-image view implemented by M.M.Malik et al.[4], which overcomes a side by side 

comparison of the dataset series. Figure 5a and 5b show a multi-image view of test part TK03, which divides 

a slice image into hexagons. In the centre of every hexagon the so called base-dataset is displayed. The sur-

rounding sections contain the datasets that are compared to the base-dataset. Figure 5c visualises the grey 

value difference between base-dataset and the dataset within a specific section. This difference is colour 

coded according to a user defined colour scale. The grey value of air is almost constant in all datasets in the 

region highlighted by a green rectangle (Figure 5b) for a variation of the X-Ray source voltage in the steps 

150kV, 180kV, 210kV and 220kV. However Beam Hardening has raised the air grey values within 
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Figure 4: Axial slice within reconstructed data of real (a) and simulated (b) CT acquisitions of TK03. 
 

the yellow region causing only a small difference between aluminium and air, where the penetration lengths 

are highest during the acquisition. Figure 5b and 5c show that beam hardening is less using a higher X-Ray 

source voltage, which leads to the conclusion that 150kV is a too low X-Ray source voltage for the inspection 

of test part TK03. 

Reconstruction results with a variable number of projections are shown in Figure 6. The reconstruction has 

been done with 90, 270, 360, 720, 990 and 1440 projections. Figure 6b shows an increasing quality until 720 

projections, further projections cause a negligible quality improvement. Acquiring 720 projections instead of 

1440 will reduce the real measurement time to 50 percent, without a significant loss in image quality. 

 

Table 3: Dataset series of test part TK03. The first dataset series contains a variation of the X-Ray source 
voltage. The second series show the influence of the used number of projection for a CT acquisition. 

 
no. parameter dataset size voxel size no. of datasets 
1 X-Ray source voltage 16bit uint 1000x1000x882 (1,64GB) 122 µm 4 
2 no. of projections 16bit uint 1000x1000x882 (1,64GB) 122 µm 6 

 



 

 

 

 

 

 

 

 

 

 
    (a)           (b)     (c) 
 
Figure 5: (a) Sagital multi-image view of parameter variation no.1: X-Ray source voltage, (b) without the bor-
ders of the hexagons, (c) colour coded difference between surrounding datasets and base-dataset 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

             (a)              (b) 
Figure 6: Multi-image view of dataset series no.2. (a) Axial slice view of the dataset with 270 projections, (b) 
colour coded difference between different simulated CT datasets generated by various numbers of projec-
tions. 
 

 

6. Conclusion 
 
We have presented a simulation tool for industrial X-Ray Computed Tomography systems, where we take 

advantage of the graphics hardware to achieve minimal calculation times. We have shown CT results caused 

by different acquisition parameters, using a multi-image view and we were able to choose optimal measure-

ment parameters. 
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