
Interpretation

Push and pop commands can not be represented as
matrix operations, therefore we parallelize bracketed L-
systems the following way: We create two work items
when a push command is encountered (one for the
push and one for the corresponding pop), and use a pa-
rallel work-queue approach to distribute work. The dif-
ficult part is to quickly find the pop command correspon-
ding to a push command in parallel. The main idea is to
extract the push and pop commands from the module
string and sort their positions into buckets according to
their depths.

Markus Lipp1 Peter Wonka2 Michael Wimmer1

The Institute of
Computer Graphics
and Algorithms
Computer Graphics Group

Results

In this work we investigate whether it is possible to effici-
ently evaluate one of the most classical procedural mo-
deling primitives, L-systems, directly on parallel ar-
chitectures, exemplified by current GPUs and multi-core
CPUs. The main motivation is to enable interactive
editing of large L-systems by designers, therefore it is
important to speed up the computation of L-systems in
order to achieve low response times.

Generating geometry using L-systems consists of two
passes: Iterative derivation of an axiom string to gene-
rate the output string, and interpretation of this string
using turtle commands to generate geometry. Although
L-systems are parallel rewriting systems, derivation
leads to very uneven workloads. Furthermore, the inter-
pretation of an L-system is an inherently serial process.
Thus, L-systems are not straightforwardly amenable to
parallel implementation.

Supported by:1 2

1 {lipp|wimmer}@cg.tuwien.ac.at
2 pwonka@gmail.com

We implemented our parallel algorithms for GPUs utili-
zing CUDA and for multi-core CPUs using POSIX
threads, and compared them against a highly optimized
single-core CPU version. The GPU version performs
approximately as fast as the multi-core version running
on a quad-core. Both versions are about 4 times faster
on most L-systems compared to the single-core versi-
on. In context-sensitive and stochastic L-systems the
single-core version is the fastest.

Derivation performance:

Interpretation performance:

Derivation

Three passes are performed for each iteration: First, the
chunks of the input string are evenly assigned to th-
reads. Every thread calculates the output length of its
assigned chunk. Second, a parallel scan operation
yields offsets for each thread to access the output
string. Finally, the replacement of string characters ac-
cording to the L-system rules is performed to generate
the output string.

We need to differentiate between unbracketed and bra-
cketed L-systems. Bracketed L-systems additionally uti-
lize stack push "[" and pop "]" commands.
For unbracketed L-systems we represent the turtle state
as a 4 by 4 matrix and every turtle command as a matrix
multiplication, enabling the following algorithm: Every
thread calculates a local combined matrix for the assig-
ned chunk. Then a parallel scan operation using matrix
multiplication as operator is performed to get the global
position of each chunk. Finally, the geometry is genera-
ted for each chunk.

This figure shows L-systems generated in real-time utilizing our algorithms. (a) Hilbert 3D space-filling curve, (b) 2D plant, (c) 3D tree, (d) closeup of a Koch curve.
Our system can work with parametric, context-sensitive, bracketed and stochastic L-systems and we are able to generate up to 198,000 L-system modules per mil-
lisecond. Our algorithm is efficient in the sense that it requires no explicit inter-thread communication or atomic operations, and is thus completely lock free.

(a) (b) (d)(c)

Previous Work

Lacz and Hart showed how to use manually written
vertex and pixel shaders combined with a render-to-
texture loop to compute L-systems [1]. This concept
was later extended using automatically generated geo-
metry shaders [2]. Both methods require a shader com-
pilation step for the productions. Further a transformati-
on step of every production’s successor to a set of suc-
cessors is needed to allow independent parallel execu-
tions in a shader. This is only valid if the successor does
not have any effect on the traversal state, which is not
generally the case.

[1] LACZ, P., AND HART, J. 2004. Procedural geome-
tric synthesison the gpu. In Workshop on General Pur-
pose Computing on Graphics Processors, ACM, NY,
USA, 23–23.

[2] MAGDICS, M. 2009. Real-time generation of l-
system scene models for rendering and interaction. In
Spring Conf. on Computer Graphics, Comenius Univ.,
77–84.

Problem Statement

Literature

Contact

Parallel Generation of L-Systems

