
Interpretation

Push and pop commands can not be represented as 
matrix operations, therefore we parallelize bracketed L-
systems the following way:  We create two work items 
when a push command is encountered (one for the 
push and one for the corresponding pop), and use a pa-
rallel work-queue approach to distribute work. The dif-
ficult part is to quickly find the pop command correspon-
ding to a push command in parallel. The main idea is to 
extract the push and pop commands from the module 
string and sort their positions into buckets according to 
their depths. 
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Results

In this work we investigate whether it is possible to effici-
ently evaluate one of the most classical procedural mo-
deling primitives, L-systems, directly on parallel ar-
chitectures, exemplified by current GPUs and multi-core 
CPUs. The main motivation is to enable interactive 
editing of large L-systems by designers, therefore it is 
important to speed up the computation of L-systems in 
order to achieve low response times.

Generating geometry using L-systems consists of two 
passes: Iterative derivation of an axiom string to gene-
rate the output string, and interpretation of this string 
using turtle commands to generate geometry. Although 
L-systems are parallel rewriting systems, derivation 
leads to very uneven workloads. Furthermore, the inter-
pretation of an L-system is an inherently serial process. 
Thus, L-systems are not straightforwardly amenable to 
parallel implementation.
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We implemented our parallel algorithms for GPUs utili-
zing CUDA and for multi-core CPUs using POSIX 
threads, and compared them against a highly optimized 
single-core CPU version. The GPU version performs 
approximately as fast as the multi-core version running 
on a quad-core. Both versions are about 4 times faster 
on most L-systems compared to the single-core versi-
on. In context-sensitive and stochastic L-systems the 
single-core version is the fastest.

Derivation performance:

Interpretation performance:

Derivation

Three passes are performed for each iteration: First, the 
chunks of the input string are evenly assigned to th-
reads. Every thread calculates the output length of its 
assigned chunk. Second, a parallel scan operation 
yields offsets for each thread to access the output 
string. Finally, the replacement of string characters ac-
cording to the L-system rules is performed to generate 
the output string.

We need to differentiate between unbracketed and bra-
cketed L-systems. Bracketed L-systems additionally uti-
lize stack push "[" and pop "]" commands.
For unbracketed L-systems we represent the turtle state 
as a 4 by 4 matrix and every turtle command as a matrix 
multiplication, enabling the following algorithm: Every 
thread calculates a local combined matrix for the assig-
ned chunk. Then a parallel scan operation using matrix 
multiplication as operator is performed to get the global 
position of each chunk. Finally, the geometry is genera-
ted for each chunk.

This figure shows L-systems generated in real-time utilizing our algorithms. (a) Hilbert 3D space-filling curve, (b) 2D plant,  (c) 3D tree,  (d) closeup of a Koch curve. 
Our system can work with parametric, context-sensitive, bracketed and stochastic L-systems and we are able to generate up to 198,000 L-system modules per mil-
lisecond. Our algorithm is efficient in the sense that it requires no explicit inter-thread communication or atomic operations, and is thus completely lock free.
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Previous Work

Lacz and Hart showed how to use manually written 
vertex and pixel shaders combined with a render-to-
texture loop to compute L-systems [1]. This concept 
was later extended using automatically generated geo-
metry shaders [2]. Both methods require a shader com-
pilation step for the productions. Further a transformati-
on step of every production’s successor to a set of suc-
cessors is needed to allow independent parallel execu-
tions in a shader. This is only valid if the successor does 
not have any effect on the traversal state, which is not 
generally the case.
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