Parallel Generation of L-Systems
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This figure shows L-systems generated in real-time utilizing our algorithms. (a) Hilbert 3D space-filling curve, (b) 2D plant, (c) 3D tree, (d) closeup of a Koch curve.
Our system can work with parametric, context-sensitive, bracketed and stochastic L-systems and we are able to generate up to 198,000 L-system modules per mil-
lisecond. Our algorithm is efficient in the sense that it requires no explicit inter-thread communication or atomic operations, and is thus completely lock free.

Problem Statement Interpretation _

In this work we investigate whether it is possible to effici-
ently evaluate one of the most classical procedural mo-
deling primitives, L-systems, directly on parallel ar-
chitectures, exemplified by current GPUs and multi-core
CPUs. The main motivation is to enable interactive
editing of large L-systems by designers, therefore it is
important to speed up the computation of L-systems in
order to achieve low response times.

Generating geometry using L-systems consists of two
passes: lterative derivation of an axiom string to gene-
rate the output string, and interpretation of this string
using turtle commands to generate geometry. Although
L-systems are parallel rewriting systems, derivation
leads to very uneven workloads. Furthermore, the inter-
pretation of an L-system is an inherently serial process.
Thus, L-systems are not straightforwardly amenable to
parallel implementation.

Lacz and Hart showed how to use manually written
vertex and pixel shaders combined with a render-to-
texture loop to compute L-systems [1]. This concept
was later extended using automatically generated geo-
metry shaders [2]. Both methods require a shader com-
pilation step for the productions. Further a transformati-
on step of every production’s successor to a set of suc-
cessors Is needed to allow independent parallel execu-
tions in a shader. This is only valid if the successor does
not have any effect on the traversal state, which is not
generally the case.

Derivation

Three passes are performed for each iteration: First, the
chunks of the input string are evenly assigned to th-
reads. Every thread calculates the output length of its
assigned chunk. Second, a parallel scan operation
yields offsets for each thread to access the output
string. Finally, the replacement of string characters ac-
cording to the L-system rules is performed to generate
the output string.
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pass 1: count required number of
output module letters and parameters

letters: 9 6 6 9 6 6 5
param.: 4 2 2 4 2 2 2

pass 2. scan amount of required
module letters and parameters

letters: 0 9 15 21 30 36 | 42
param.. 0 4 6 8 12 14 | 16

pass 3: perform module rewriting
and parameter calculation, scatter
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We need to differentiate between unbracketed and bra-
cketed L-systems. Bracketed L-systems additionally uti-
lize stack push "[" and pop "]" commands.

For unbracketed L-systems we represent the turtle state
as a 4 by 4 matrix and every turtle command as a matrix
multiplication, enabling the following algorithm: Every
thread calculates a local combined matrix for the assig-
ned chunk. Then a parallel scan operation using matrix
multiplication as operator is performed to get the global
position of each chunk. Finally, the geometry is genera-
ted for each chunk.
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pass 1: calculate matrix for each chunk,
count number of required geometric objects

matrices: | () | €)1 ) | () |63 [ () [0)
objects: | 2 0 0 3 1 1 1

pass 2: (i) scan using matrix multiplications
provides global transformations for chunks
(ii) scan on object counts delivers VBO offsets

matrices: | () | ()] () | ) | ) () ()
objects: | 0 2 2 2 S 6 |7

pass 3: calculate transform for each geometric

object, scatter objects to VBO using offsets

VBO

Push and pop commands can not be represented as
matrix operations, therefore we parallelize bracketed L-
systems the following way: We create two work items
when a push command is encountered (one for the
push and one for the corresponding pop), and use a pa-
rallel work-queue approach to distribute work. The dif-
ficult part is to quickly find the pop command correspon-
ding to a push command in parallel. The main idea is to
extract the push and pop commands from the module
string and sort their positions into buckets according to
their depths.

FIDILIF{T{F\D)FI (T - D= FF DD T ]
pass 1: add 1 for each [, subtract 1 for each ]|

2 -1 |1 0 0 0 -2

get
pass 2: a scan results in the depth at depth
the start of each chunck of

each

02 |1 12 [2 [2 [2] |(and]

pass 3: count to get depth of each [ and ]
count how often each depth occurs <

deptho[ 1[0 0 [ 0 ][0 0 [1
depth1/ 4 11 [ 1 [ 2 [0 2 [1 |9

offsets
pass 4. performing a scan on each row >t0
results in the bucket offsets buftket
SO

depthO0| O | 1 1 1 1 1 |1 array
depth1/ o0 | 1 | 2 | 3| 5 | 5 |7

pass 5: store the positions of each[and ] in a

bucket sort array using determined offsets
¥ | AN ]

bucket 0 2& }¢2o 7N [ |y
bucket1 /3" |5 |7 [10//12 |16 17 |19
every two consecutive elements index a push/pop pair!
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We implemented our parallel algorithms for GPUs utili-
zing CUDA and for multi-core CPUs using POSIX
threads, and compared them against a highly optimized
single-core CPU version. The GPU version performs
approximately as fast as the multi-core version running
on a quad-core. Both versions are about 4 times faster
on most L-systems compared to the single-core versi-
on. In context-sensitive and stochastic L-systems the
single-core version is the fastest.
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Interpretation performance:
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