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Abstract

Interactive visual analysis has become a very popular research field.
There is a significant body of literature on making sense of mas-
sive data sets, on visualization and interaction techniques as well
as on analysis concepts. However, surveying how those results can
be applied to actual engineering problems, including both product
and manufacturing design as well as evaluation of simulation and
measurement data, has not been discussed sufficiently to date. In
this paper we provide a selection of demonstration cases that doc-
ument the potential benefits of using interactive visual analysis in
a wide range of engineering domains, including the investigation
of flow and particle dynamics, automotive engine design tasks and
change management in the product design process. We attempt to
identify some of the proven technological details such as the link-
ing of space-time and attribute views through an application-wide
coherent selection mechanism. This paper might be an interesting
survey for readers with a relation to the engineering sector, both
reflecting on available technological building blocks for interactive
visual data analysis as well as exemplifying the potential benefits
on behalf of the application side.

CR Categories: I.6.6 [Simulation and Modeling]: Simulation
Output Analysis; I.6.9 [Simulation and Modeling]: Visualization—
Applications

Keywords: interactive visual analysis, engineering, simulation,
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1 Introduction

Making sense of the massive amounts of data from engineering de-
sign, simulation or measurement processes is by no means an easy
task [Hauser 2006]. Traditional analysis procedures are based on
computing various statistical properties of the data. Interactive vi-
sual analysis [Thomas and Cook 2005] is a relatively new alterna-
tive that has already gained a lot of interest. It allows the gradual
exploration of data in a guided human-computer dialogue. Inter-
active visual analysis takes full advantage of the advanced human
visual and cognitive system to find unknown or unanticipated de-
tails that could otherwise go unnoticed. The interactive nature of
the analysis can often reveal more information than complex, but
static visualizations. In fact, it calls for simple and effective visual-
ization techniques that can be rapidly adjusted to provide the exact
piece of information that the analyst needs at a given stage of the
exploration.
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Data in engineering application domains usually stems from mea-
surements, or, more typically, from simulation. These data sets are
large, complex, multidimensional and multivariate. The data is of-
ten time-dependent and dependencies in the data are intricate. Dur-
ing analysis, experts working with these data sets want to under-
stand the behavior of the simulated or measured system, discover
relations, create and support hypotheses. They often look for fea-
tures and phenomena that they cannot exactly describe before the
analysis. Interactive tools can assist them in the process of making
sense of their data. This constitutes a domain where one can expect
interactive visual analysis to be of great added value.

There is often no single visual representation that can encode all of
the important information contained in the data. Interactive visual
analysis systems can show different aspects of the same data in sev-
eral distinct views [Baldonado et al. 2000]. Each individual view
can be textual (e.g. a table) or graphical (histogram, scatter plot,
etc). The views can differ in the data they depict or in the visual
representation of the data. The data displayed in one view can be a
subset or an aggregate of the data depicted in another view, or it can
be completely different information, e.g. a map that provides geo-
graphical context. Using multiple views in a visualization system
can be advantageous when the data attributes are diverse, when dif-
ferent levels of abstraction need to be represented or when the users
of the system exhibit different levels of expertise. Different views
can highlight different properties and correlations in the data. They
can help the user understand intricate, often surprising and unex-
pected relations in the data. The visualization system can follow
a “divide-and-conquer” approach and present partitions of the en-
tire data set in individual views. This avoids the cognitive overload
that users could face when they need to consider the entire data set
at one time. Efficient interaction with the visualization is crucial
in the analysis procedure. There are several concepts of coordinat-
ing multiple views, including linked navigation, focusing, brushing
and linking [Buja et al. 1991; Becker and Cleveland 1987]. There
are numerous well known visualization systems based on these
principles, including XmdvTool [Ward 1994], GGobi [Swayne
et al. 2003], Snap-Together Visualization [North and Shneiderman
2000], WEAVE [Gresh et al. 2000] and Improvise [Weaver 2004].
Please refer to the paper by Matkovic et al. for a list of academic
and commercial visualization tools [Matković et al. 2008a].

After more than a decade of related research, there is a significant
body of literature. Roberts provides an overview of many research
publications related to coordinated and multiple views or one of the
many associated boundary sciences [Roberts 2007]. He discusses
developments in data preparation, concepts of creating and linking
views, exploration techniques, window and sessions management,
usability and perceptual issues and various display mediums. The
book by Thomas and Cook [Thomas and Cook 2005] covers many
aspects of visual analytics. We do not attempt to present another
overview of the very broad topic, but rather focus on a very limited
subset: interactive visual analysis in solving engineering problems.
That means we do not discuss any of the very interesting devel-
opments in medical visualization [Gresh et al. 2000; Oeltze et al.
2007], gene expression analysis [Weber et al. 2007; Saraiya et al.
2004] or visualization in software engineering [Bohner et al. 2007;
Grǎcanin et al. 2005], either.

The remainder of the paper is organized as follows: Section 2 deals
with analysis in product and manufacturing design. In Section 3



Figure 1: Linked views for the investigation of changes in the en-
gineering design process.Left: Combined risk plot.Right: Change
propagation paths.Image courtesy of Keller et al.

we focus on interactive visual analysis in flow simulation. Sec-
tion 4 discusses several applications in automotive engine design.
Section 5 mentions systems for the analysis of particle simulations.
Section 6 briefly covers the exploration of sensor data. Finally, Sec-
tion 7 contains a collection of thoughts about the future.

2 Engineering Design and Project Planning

Data sets from a wide range of engineering problems follow a very
similar model [Tweedie et al. 1995]. This model includes a set of
parameters(P) that the designer can directly influence. There is a
set of dependent variables termedperformances(F) that depend on
P. The requirements of the design are typically formulated in terms
of subsets ofF . The dependencies ofF on P are usually complex
and non-linear, but can be computed. This computation is generally
termedsimulation. However, the mapping fromF to P cannot be
computed. The Influence Explorer [Tweedie et al. 1995] is one of
the early visual analysis systems that assists the designer in explor-
ing the complex relations betweenP andF in either direction. The
user can select a range in one of the dimensions ofF and the corre-
sponding data items are highlighted in the linked histograms of the
other dimensions of bothF andP. The rapid brushing and studying
of the linked views helps in the development of a mental model of
the parameters’ impact on the performances. Ultimately, it allows
identifying the parameters which yield the required performances.

Keller et al. propose a visual analysis framework for engineering
change management [Keller et al. 2005] (see Figure 1). Complex
products consist of tens of thousands of interlinked components.
Most products are designed by modifications of existing products,
therefore change is an integral part of the design process. Changes
to a component can have a dramatic impact on others, either direct
or indirect. Their system visualizes the results of a change predic-
tion method. Each direct link in the change propagation model is
assigned an estimated likelihood value (probability of the change
propagating between the two components) and an estimated impact
value (severity of the change to the receiving component). The risk
value is the product of those two. The prediction method computes
the risk value of a change propagating from any component to any
other component. The authors propose two types of views for the
visualization of the change propagation. The Design Structure Ma-
trix can show direct linkages or change likelihood and impact val-
ues. It is powerful in highlighting high-risk connections. However,
it fails in depicting indirect links. They also use the Propagation
Tree, a network graph representation with radial layout where the
part that initiated the change is in the center. Other components
are displayed at a distance inversely proportional to the risk of a
change propagating from the initiating component. Each branch

Figure 2: Linked 2D (left) and 3D (right) texture advection views
reduce occlusion problems and provide enhanced spatial cues.Im-
age courtesy of Schafhitzel et al.

of the tree represents one change propagation path and the lengths
of the branches are proportional to the probability of this propa-
gation path. This tree is suitable for studying the effect of change
propagation to all components, thereby complementing the Design
Structure Matrix. A collapsed version of the tree with a different
layout allows the visualization of all propagation paths from one
component to another. The Propagation Tree offers a fisheye-style
focus and context approach, too.

Actors collaborating in design and construction activities in archi-
tecture constitute an “adhocratic” (as opposed to hierarchical) orga-
nization. Coordination management in an adhocratic organization
can be a challenging task. TheBat’iViewsconcept [Kubicki et al.
2007] integrates views manipulated everyday by the construction
stakeholders to highlight relations between them.

3 Volume and Flow Visualization

Volume and 3D flow visualization is a vast and actively researched
field of scientific visualization. Application areas of flow visualiza-
tion include meteorology, oceanography, computational fluid dy-
namics (CFD), ground water flow and medical visualization. The
applications are diverse, but many of the tasks and challenges are
similar. Specification and localization of flow features like vortices
and flow reversal is one of the recurring tasks. Analysis often in-
volves finding relations of different flow attributes. Occlusion in
3D flow visualization is another omnipresent issue.

Schafhitzel et al. suggest using linked 2D and 3D texture advection
views (Figure 2) to improve the interactive exploration of 3D flows
and alleviate occlusion problems [Schafhitzel et al. 2005]. The 3D
texture advection view provides spatial context. In addition, texture
advected flow visualization on several parallel 2D slices through
the data set is also displayed. In the 2D slices, a further scalar
flow attribute, thefeature attribute(e.g. pressure, temperature or
velocity magnitude) can be represented by color coding. A range
of feature attribute values can be brushed in the 2D slices to define
a focus domain. Saturation of color distinguishes focus and context
areas. The focus and context are immediately linked to all other
views. Spatial cues are provided by a kind of navigational slaving.
The current position in a 2D view is indicated by a traditional mouse
pointer. The corresponding position in the 3D display is marked



with a little box. Furthermore, the location of the 2D slice under
the mouse is indicated by a rectangular frame in the 3D view.

Feature-based flow visualization attempts to visualize interesting
flow patterns or regions like vortices, flow reversal or flow sepa-
ration. These features must be found and extracted from the flow
data before they can be displayed. Automatic or semi-automatic
flow feature extraction has a long research history [Post et al. 2003].
Automated approaches need a priori specification of criteria defin-
ing the features of interest. unfortunately, proper definition is often
impossible because the feature is poorly understood, thus interest-
ing flow features can be overlooked. Therefore, there is a lot of
work on interactive feature specification. Henze described one of
the early multiple linked view systems for interactive feature spec-
ification [Henze 1998]. The proposedlinked derived spacescon-
cept uses an arbitrary number of linkedportraits that are essen-
tially extended scatter plots. Each portrait can display pairs of flow
attributes. The points in the portraits are connected with respect
to the connectivity information of the physical simulation grid. A
selection of brush types including axis-aligned rectangles, wedges
and parabolas can be used to select regions of interest in each por-
trait. All views are linked and the brushed set is highlighted in all
other views.

Doleisch et al. have developed a system called SimVis for interac-
tive feature specification and localization in 3D flow data [Doleisch
et al. 2003]. They propose scatter plots and histograms linked via
advanced brushing for specification of flow features. Linked (but
passive) 3D glyph displays provide spatial information. Flow sim-
ulation data often exhibits a rather smooth distribution of attribute
values in space. This smooth nature is reflected insmooth brush-
ing, which results in a continuous degree-of-interest (DOI) func-
tion. The DOI can also be interpreted as the degree of being in
focus. The continuous DOI function is used for opacity modulation
in the linked views, thereby smooth focus and context visualiza-
tion is achieved. Complex features can be described by composite
brushing. The feature definitions are expressed in an XML-based
feature definition language and are persistent across analysis ses-
sions. The paper describes localizing features in the simulated air
flow around a car and finding backflow regions and possible vortex
cores in a catalytic converter.

Bürger et al. have suggested a multiple views framework where
local feature detectors can complement each other [Bürger et al.
2007]. This enhances the credibility and combines the advantages
of several detectors in an interactive visual analysis system. This
concept is used for the analysis of combustion in a two-stroke en-
gine. The authors investigate the mixing process inside the com-
bustion chamber and the connection between turbulent motion and
mixing.

Features in time-dependent volume data can be explored in a linked
system of time histograms, parallel coordinates and volume render-
ing, too [Akiba and Ma 2007]. This approach (see Figure 3) ef-
fectively partitions the three factors contributing to the complexity
of the data into three views: (1) Thetime dependent natureof the
data is displayed in the time histograms. (2) Parallel coordinates
displaymultivariatedata. (3) The volume rendering provides the
spatialdetails. The transfer function for the volume rendering can
be defined directly in the parallel coordinates. The time histogram
assists user in finding time steps of interest and in the classification
of time-varying data. Furthermore, a temporal transfer function can
be defined. Linking between those two views is two-fold. The sub-
set of voxels defined in the parallel coordinates is displayed in the
time histogram. In addition, the transfer function widgets are also
linked. Any changes to those two views are immediately reflected
in the 3D volume rendering. The authors present an analysis of
combustion simulation. The simultaneous visualization of mixture

fraction, mass fraction of OH radicals, local mixing rate and the
flame surface collaborate to reveal the interactions between mix-
ing and reaction. The actively burning flame surface can also be
identified.

4 Automotive Engineering

Virtually all aspects of an automobile are simulated before the first
physical prototype is built. Testing new designs in simulation is
more cost effective and allows shorter development cycles than
making measurements on prototypes. The massive amount of data
that automotive engineering simulations produce calls for advanced
analysis methods. In this section we introduce several visual anal-
ysis tools used in automotive design.

There are many (often conflicting) goals of engine design, includ-
ing the need for high power and good fuel efficiency, meeting emis-
sion regulations and reducing noise levels. The fuel injection sys-
tem in diesel engines is the key component to achieve those goals.
Matković et al. have presented an approach to finding optimum de-
sign parameters for a fuel injection system [Matković et al. 2005a].
The procedure involves the simulation and visual analysis of several
thousands of different parameter combinations. Linked histograms,
scatter plots and parallel coordinate views are used for the simulta-
neous display of design parameters and simulation results. Instead
of a single highlight color, the brushed items are assigned a color
gradient which establishes visual links between the corresponding
data items in different views. Through brushing in any of the views,
the engineer can acquire insight into the correlations between de-
sign parameters and results. The paper captures the exploration and
analysis process and the set of optimum design parameters are iden-
tified.

This work has been extended by incorporating the analysis of
detailed time-dependent injection simulation data [Konyha et al.
2006] (see Figure 4). The complete fuel injection process takes
less than 0.01 seconds. Simulation computes several time series,
including injection rate and pressure, in fine resolution over this
short time period. The time-dependent data is displayed in function
graph views and the authors introduce a novel technique for brush-
ing them. The investigation focuses on the temporal parameters of
the injection system and their impact on the injection process. Com-
plex composite brushes spanning multiple views reveal correlations
and dependencies in the data and the authors identify the means of
achieving the desired temporal patterns in the fuel injection process.

Simulation models often have many design parameters that can be
varied over a large range with fine resolution. In other words, the
dimensionality and granularity of the design parameters constitute a
very large space. The number of parameter combinations can be so
large that exhaustive simulation and analysis is impossible in prac-
tice. Fortunately, this is not necessary, because most of the design
variants are uninteresting and only a small subset of them is close
to the desired optimum. The paper by Matković et al. [Matkovíc
et al. 2008b] exploits this in the context of fuel injection system
design. In their workflow, the simulation results are investigated in
an interactive visual analysis session similar to the one described
in their previous work [Konyha et al. 2006]. The findings from the
analysis are then used as input for the iterative refinement of the
simulation model and its parameters. The concept of introducing a
feedback loop into the workflow allows quick prototyping and de-
sign optimization by saving unnecessary simulation computer time
and reducing the amount of data that the engineer is confronted with
in each cycle.

A linked dual view system for the visual exploration ofengine char-



Figure 3: Visual analysis of a combustion dataset using linked parallel coordinates, time histograms and volume rendering.Image courtesy
of Akiba and Ma.

Figure 4: Linked views in the analysis of a diesel fuel injection system [Konyha et al. 2006]. The brushed rectangle in the scatter plot repre-
sents conditions when fuel is injected deep in the combustion chamber and with high power. The linked injection rate function graphs show
that this requires boot shaped main injections. The desired needle opening and closing velocities are highlighted in the parallel coordinate
view.

acteristic diagramshas been proposed [Matković et al. 2005b]. The
data set consists of a 2D attribute space, for example, engine speed
and load signal. For many points of the attribute space, time series
data is computed in simulation that represents the amount of fuel in-
jected over time, for instance. The attribute space is displayed in a
2D scatter plot. The time series are shown in a function graph view.
The user can explore the various function graph shapes by simply
hovering the mouse pointer over the attribute domain. The func-
tion graph that belongs to the point under the mouse in the attribute
domain is highlighted while all other graphs are drawn as context.
If there is no data point directly under the mouse pointer then the
displayed time series is interpolated from the data associated with
the neighboring points. Both views can be brushed using tradi-
tional rectangular brushes. In addition, a polyline brush can also
be defined in the attribute space. The polyline brush is especially
useful because engine operation cycles like accelerating from stand-
still can be represented by a continuous line in the attribute domain.
This line can be approximated by the polyline brush. Therefore all
function graphs pertaining to an operation cycle can be intuitively
selected.

Motion of certain engine components, including the valvetrain, can
be modeled by simulation based on rigid body dynamics. The pro-
cess of finding optimum design parameters for a timing chain using
interactive visual analysis has been published [Konyha et al. 2007].
A variety of views, including histograms, scatter plots and paral-
lel coordinates are used during the analysis, together with a novel
segmented view for discontinuous series data. The segmented view

manages to simultaneously highlight focus and preserve outliers.
The investigation is aided by iterative composite brushing. Data in
all views can be brushed and composite brushes can span multiple
views.

SimVis (see Figure 5) has been successfully adapted for the anal-
ysis of time-dependent simulation data of a diesel exhaust sys-
tem [Doleisch et al. 2004]. Each view can either show data of one
time step or accumulate the data of many successive time steps. A
two-level focus and context visualization is implemented. The first
level is a traditional focus and context view for data in the currently
active time steps. The second level of context displays the data of all
time steps. A combination of linked 2D/3D scatter plots [Piringer
et al. 2004] can be used to specify flow features. The authors de-
scribe the analysis of a diesel exhaust system consisting of a diesel
oxidation catalyst and a diesel particulate filter. They find answers
to several questions related to the particulate filter regeneration pro-
cess that are of interest to the designer, including: (a) do all soot
deposits in the particulate filter oxidize completely during the filter
regeneration phase? (b) where and how fast does the soot oxidize?
(c) how high is the thermal stress of the particulate filter? Much of
the analysis focuses on the changes in soot mass value over time,
which requires visualizing the gradient. The authors have imple-
mented a framework to compute several derived data attributes like
differences, normalized values, etc. to cope with this requirement.

The same approach has been applied to the visual analysis of com-
bustion in a diesel engine [Doleisch et al. 2005]. Several aspects of



Figure 5: Snapshot of the visual analysis of a diesel particulate fil-
ter. Left: high CO and CO2 mass fraction values and high temper-
ature are selected via smooth brushing in the scatter plot.Right:
the linked 3D view show gas velocity in those cells at 35 seconds
into the particulate filter regeneration process.Image courtesy of
Doleisch et al.

the combustion are of interest to the engineers, including questions
like: What are the regions of incomplete combustion and what are
the reasons for the incomplete burning? How much soot is pro-
duced and what does the amount of soot depend on? The paper
provides a detailed description of the analysis procedure using the
linked 2D scatter plots and 3D views.

Laramee et al. present the visual analysis and exploration of fluid
flow through a cooling jacket [Laramee et al. 2005]. The cooling
jacket is a part of the engine block where coolant circulates and
transfers heat away from the cylinders. Some of the cooling jacket
designing goals are expressed in terms of coolant flow characteris-
tics like even flow distribution, avoiding stagnant flow, etc. Further
important goals include minimizing the amount of coolant in order
to reduce weight and allow the engine to reach its operating tem-
perature quicker. The paper describes a combination of 2D scatter
plot and 3D flow visualization views. Features can be specified by
brushing the scatter plots. The linked focus+context 3D view pro-
vides spatial information.

A modern car contains up to 70 electronic control units that control
various emission, safety and convenience features of the automo-
bile. Typically, each unit performs a variety of functions. Com-
plex operations like lifting a power window require the cooperation
of functions in several units. Therefore, the units are linked via
bus systems to exchange data and messages. Fault diagnosis and
root cause analysis in these systems is an integral part of automo-
tive development. The dual-view approach presented by Sedlmair
et al. [Sedlmair et al. 2008] supports automotive developers in the
process of analyzing and diagnosing dependency chains within er-
roneous in-car communication processes (see Figure 6). A treemap-
like diagram displays the entire physical layer of the in-car com-
munication network. The area of each rectangle in the treemap is
roughly proportional to the amount of functionality implemented
and activated in the given control unit. The user can select a specific
functionality within one control unit. The linkedsequence chartde-
picts the dependency chain of the selected function, similar to UML
sequence diagrams. Other functionalities in the dependency chain
can be selected directly in the sequence chart to display their depen-

Figure 6: A tool for the visual analysis of communication be-
tween in-car electronic control units.Left: the ECU-Map shows
a treemap-like view of the control units.Right: the sequence chart
displays the communication sequence initiated by the selected com-
ponent.Image courtesy of Sedlmair et al.

dency chains. The user can navigate through the already explored
dependency chains by using a web browser like history. Detailed in-
formation like full component names are provided on mouse-over.
Furthermore, semantic fisheye zoom along the horizontal axis is
implemented in the sequence chart: vertical lines that belong to one
unit can be collapsed.

5 Analysis of Particle Simulation Data

Prior to construction of a particle accelerator, simulations of par-
ticle beams are developed to produce the best possible accelerator
design. The large, time-dependent and multivariate simulation data
represents complex physical phenomena. Researchers analyzing
the data are often unsure what features of the data are meaning-
ful, especially since physical phenomena hidden in the data may
have never been observed before. A system of linked 2D and 3D
scatter plots has been proposed for such tasks [Co et al. 2005] (see
Figure 7). Rich brushing capabilities in 2D scatter plots including
rectangular and lasso selections as well as an intuitive paint brush
tool are offered to support interactive feature specification. The 3D
scatter plots are enhanced by rendering small disks instead of dots.
The orientation and the color of the disks encode the momentum
vector of the particle. Time is represented via animation.

Jones et al. have also proposed tightly coupled heterogeneous views
for the analysis of gyrokinetic particle simulations [Jones et al.
2008] (see Figure 8). Features can be brushed in a binned paral-
lel coordinates view. The time-dependent particle data can be dis-
played by multivariate glyphs or pathlines in a lined 3D view. They
offer two different strategies for preserving selections when moving
to a different time step. The user can preserve the currently selected
set of particles in order to track their temporal behavior. Alterna-
tively, the selected attribute range in the parallel coordinates can
be preserved so that the evolution of features over time can be ex-
plored.

The paper by Navrátil et al. describes a very different approach
based on resampling the particle simulation data to a regular
grid [Navŕatil et al. 2007]. The resampled data is imported into an



Figure 7: Using the paint brush selection tool in the analysis of
particle beam simulation data.(a) Particles in a spiral arm are se-
lected. (b) The marked particles can be seen in a later time step.
Image courtesy of Co et al.

existing scientific visualization system for analysis where ionized
regions are displayed by isosurface extraction. This procedure can
highlight properties of the data that are more difficult to discover
with previously used methods.

6 Analysis of Sensor Data

Kim et al. describe an approach for the analysis of sensor data
from pipeline pigs [Kim et al. 2006]. Pipeline pigs are devices that
are inserted into and travel (driven by a product flow) throughout
the length of a pipeline. Geometry pigs make measurements of the
inside surface of the pipe. The measurement data is analyzed to find
conditions such as dents, wrinkles, ovality, bend radius and angle,
and occasionally indications of significant internal corrosion. The
data includes the displacements of several radially arranged fingers
over time. The resulting 1D multivariate data is displayed using
a combination views including line graphs, 3D height maps and
dense pixel displays. Fisheye view is used to help users focus on
specific regions of interest. Ivanov et al. have addressed several
issues related to the real time visual analysis of sensor data [Ivanov
et al. 2007]. The application domain presented in their work is not
engineering, however, the formulated design principles are quite
relevant for other real time sensor data analysis systems.

7 Conclusion

In this paper we provide an overview of opportunities and appli-
cations of interactive visual analysis tools in engineering contexts.
Some of them are certainly impressive. Interactive visual analysis
has been considered a success story already [VisSuccess 2009], but

Figure 8: A multivariate exploration interface for the analysis of gy-
rokinetic particle simulations. Parallel coordinates can be brushed
to select features of interest. The 3D view provides spatial infor-
mation. The color coding can be controlled by the transfer function
editor (bottom middle).Image courtesy of Jones et al.

there is still a long way to go and there is a lot of room for innova-
tion.

Some of the proposed visual analysis tools work with a data model
that can be represented by a single table. This is definitely insuffi-
cient when one needs to represent complex dependencies in design
and manufacturing processes, for example. We suggest that more
work should be invested in dealing with heterogeneous data sets as
opposed to a single table.

Interactively linking displays of substantially more than 105 data
items can be a challenge [Andrienko and Andrienko 2007]. Pixel
oriented techniques can work up to a few million items, limited
by the available screen space. Unfortunately, practical data sets
exceed that limit. Methods that rely on aggregation to reduce the
data set need careful tuning of the aggregation parameters in order
not to miss important features. We claim that an interactive visual
aggregation procedure before starting the actual analysis of the data
can be useful, analogous to interactive flow feature extraction.

Often, information describing interesting features is not directly
available in the data set. They are more easily found in some trans-
formed or derived version of the data. Do current visual analysis
tools offer adequate support for interactive definition of transfor-
mations of the data set?

Proper handling of erroneous or missing data is still not widely sup-
ported [Roberts 2007], even though it is essential for the analysis of
data acquired via measurements. In fact, measurement data can
pose further challenges. Real-time processing and visual analysis
of streaming data from test bed systems, for example, is an interest-
ing topic.

The management and visualization of the analysis workflow are es-
pecially important in collaborative analysis. They facilitate the re-
production and documentation of the analysis procedure. Further-
more, they allow the efficient sharing of analysis workload and also
the exploration and comparison of different analysis paths. Under-
standing the analysis results is also made easier if the path leading
to them is represented. Do we provide consistent solutions for that?

Finally, we claim that professionals working on systems that sup-
port visual analysis must never forget the utmost importance of co-
operation and communication with the experts of the specific appli-
cation domain—the potential users. Visual analysis tools should be



smoothly integrated in their workflow and existing software suites.
This is the only way to build really usable advanced visual analysis
solutions.
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GRAČANIN , D. 2005. Interactive visual analysis and explo-
ration of injection systems simulations. InProc. of the IEEE
Visualization 2005, 391–398.
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