
Masterpraktikum aus Computergraphik und Digitaler Bildverarbeitung (SS2009)
Martin Kinkelin

GPU Volume Raycasting using Bounding Interval Hierarchies

Martin Kinkelin (0326997)

Abstract

Traditional Direct Volume Raycasting (DVR) on the GPU is limited to uniform voxel grids stored as 3D textures.
This approach is not optimal for sparse data sets or data sets with highly varying frequencies because it requires
a trade-off between data structure size and the maximum reproducible frequency and it lacks implicit empty space
skipping during raycasting.
In this paper we present another approach, applying the Bounding Interval Hierarchy (BIH), a hierarchical spa-
tial subdivision of elements traditionally used to accelerate surface raytracing, to volume raycasting on the GPU.
Although connectivity information between voxels is lost and the texture filtering power of GPUs cannot be ex-
ploited, we show that it may be a viable alternative for DVR and that the approach is generic, allowing all sorts
of renderable voxels (not-overlapping finite volume elements/primitives such as cuboids, ellipsoids and truncated
Radial Basis Functions) for different tasks like rendering point sets as particle systems (e.g. using spherical vox-
els) and rendering volumes derived from traditional uniform grids (with implicit empty space skipping and the
option for different levels of detail).

1. Introduction

Most volume visualizations are currently based on Cartesian
grids of voxels. A uniform grid is a very simple structure
with some nice properties: trivial connectivity between vox-
els, no hierarchical overhead and last but not least hardware
support for GPU-based Direct Volume Rendering (DVR).
They are also very efficient for dense data sets with a small
band of frequencies.

Uniform grids are not optimal for sparse data sets and
large frequency bands though as the grid’s resolution is a
trade-off between memory footprint and the maximum re-
producible frequency. Additionally, a hierarchical structure
is often useful to derive different levels of detail.

Hierarchical structures to accelerate ray-casting have been
extensively analyzed for surface ray-tracing applications, es-
pecially for partitioning triangular meshes. Currently, the kd-
tree is widely considered to be the most efficient structure
for ray-tracing static scenes on the CPU. Due to GPU limi-
tations, Bounding Volume Hierarchies (BVHs) used to out-
perform kd-trees on the GPU though. We focus on a hybrid
structure, combining the advantages of kd-trees and BVHs:
the Bounding Interval Hierarchy (BIH). The structure and
associated algorithms are covered in detail in section 3.

In section 4, we apply the BIH to volume ray-casting. Vol-

ume ray-casting poses some additional challenges compared
to surface ray-casting, as most applications not only require
the first intersection of the ray with an element, but up to all
intersections with hit elements in correct order to allow for a
composite view into the volume.

Some implementation details and optimizations are pre-
sented in section 5. In section 6, we evaluate the hierarchical
BIH structure for different volumetric tasks and see how the
traversal algorithm performs on current GPUs.

2. Related work

Wächter and Keller [WK06] introduced the Bounding Inter-
val Hierarchy and compared it to a state-of-the-art kd-tree
in a highly optimized CPU triangle ray-tracer. They con-
clude that the BIH is vastly more memory-efficient and is
able to rival and even outperform the kd-tree in most test
scenes. Additionally, the BIH’s construction time is signifi-
cantly better, making it suitable for dynamic scenes too.

A similar structure has been proposed by Eisemann et
al. [EWM08]: the single slab hierarchy. It differs by allow-
ing non-parallel bounding planes for both children so as to
trim the child volumes more efficiently. Construction and
traversal are more complicated compared to a BIH though,
the latter preventing us from chosing it for a GPU renderer.

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

They compare the single slab hierarchy to the Bounding Vol-
ume Hierarchy (BVH) in a CPU-based triangle ray-tracer
and conclude that their structure outperforms the BVH by a
large margin both in memory footprint and achieved frame
rates. They also list some other related structures.

Thrane and Simonsen [TS05] developed a GPU trian-
gle ray-tracer and compared different acceleration struc-
tures: uniform grids, kd-trees and BVHs. They conclude that
the BVH was the most memory-efficient structure and that
it yielded the best frame rates too. Their implementation
is now 4 years old; their results are based on a Geforce
6800 Ultra card. Current GPUs offer more flexibility (uni-
fied shader model 4.1 vs. 3.0) and vastly more performance,
partly due to a unified shader architecture.

3. The Bounding Interval Hierarchy

The Bounding Interval Hierarchy (BIH) [WK06] is based
on two different partitioning approaches: the kd-tree and
the Bounding Volume Hierarchy (BVH). Although it is an
object-partitioning scheme and therefore resembles more a
BVH, the construction and traversal algorithms are very sim-
ilar to those employed for kd-trees.

A kd-tree is a binary space partitioning (BSP) tree - each
inner node in the hierarchy splits the space it contains into 2
disjoint halves and assigns them to its 2 children. The split is
performed by a (k− 1)-dimensional hyperplane (e.g. a line
in 2D, a plane in 3D) perpendicular to one of the k principal
axes. Such an aligned splitting plane is compactly defined by
an axis (e.g. x, y or z in 3D) defining the normal vector and
an offset defining the distance from the origin. More impor-
tantly, the space contained by kd-tree nodes is enclosed by an
axis-aligned box, a straightforward and intersection-friendly
primitive.

The tricky part during the creation of the kd-tree is find-
ing an optimal splitting plane. The Surface Area Heuristic
(SAH) is widely used to construct efficient kd-trees for sur-
face ray-tracing, e.g. to partition triangular meshes [WK06].
Ideally, both following criteria should be met:

• No elements intersect the splitting plane.
Intersecting elements need either to be subdivided into
subelements or to be assigned to both children and hence
need to be further partitioned in both subtrees. This results
in increased tree depth and size and likely in multiple, re-
dundant intersection tests of an element with a ray.
• The probability of a random ray to hit elements in the left

child equals that of hitting elements in the right child to
optimize traversal.

The essential splitting part is handled differently by BIHs.
Instead of specifying 1 splitting plane per inner node, an in-
ner BIH node stores 2 planes parallel to the splitting plane:
1 bounding plane for each child, based on the axis-aligned
bounding boxes (AABBs) of the children separated by the

splitting plane (see figure 1). This means that empty space
along the splitting axis inbetween the children is eliminated
early and that the children may also overlap. Handling ele-
ments intersecting the splitting plane is hence very simple
compared to kd-trees: each element is assigned to exactly 1
child, e.g. by classifying the center of an element’s AABB
into the positive or negative half-space defined by the split-
ting plane. For these reasons, a much simpler heuristic for
the optimal splitting plane may be used, e.g. an intuitive one
independent from the contained elements and based solely
upon trying to keep a node’s shape as compact (cubic) as
possible, e.g. by splitting in the middle of a node’s longest
axis.

3.1. Construction

1. Calculate the axis-aligned bounding box (AABB) of all
elements and use it as the box enclosing the root node.

2. Does the current node (enclosing box + contained ele-
ments) fulfill the leaf criteria? Then store a leaf and stop
the current recursion, otherwise continue with the next
step.

3. Select a splitting plane (axis and offset) for the inner
node.

4. Assign each contained element to exactly 1 child (e.g.
to the left child if the AABB center is on or on the left
side of the splitting plane, to the right child if on the right
side), generating 2 disjoint lists and calculating the cor-
responding bounding planes at the same time.

5. Store both bounding planes in the inner node as well as
the pointer(s) to the children.

6. Process the children recursively (back to step 2 with the
corresponding enclosing boxes and element lists).

The construction of a BIH is similar to that of kd-trees.
Elements intersecting the splitting plane do not need to
be treated differently though; additionally, the construction
is augmented by the partial computation of the children’s
AABBs (maximum extents for the left child, minimum ex-
tents for the right child, along the parent’s splitting axis).
The idea is borrowed from Bounding Volume Hierarchies
(BVHs), an object-partitioning scheme where each node
stores the complete bounding volume of its contained ele-
ments. Due to partitioning of the elements being analog to
the quicksort algorithm (pivot element = splitting plane off-
set, partitioning into left and right elements), its average time
complexity is O(N logN), N being the total number of ele-
ments. The bounding planes of the children are computed
as part of partitioning the elements by simply storing the
maximum coordinate (along the splitting axis) of all left el-
ements’ AABBs and the minimum coordinate of all right
elements’ AABBs.

Because the boxes enclosing BIH nodes are only trimmed
on 1 side per tree level instead of all 6 sides per BVH node,
BIH nodes may contain empty border spaces. Hence one of
the children may be empty, containing no elements if the

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

Figure 1: Partitioning 5 elements (illustrated by their light-grey AABBs) in 2D using a BIH by splitting in the middle of a node’s
longest axis and stopping as soon as a node contains a single element. The splitting planes are depicted as dark-grey dashed
lines, the bounding plane of a node’s left child as a red line and that of the right child as a blue line. The root node’s splitting
plane is the central vertical one, assigning 3 elements to the left child and 2 elements to the right one; the children overlap. The
left child is partitioned into the bottom-left leaf and another inner node separating both top-left leafs. The right child’s children
are both leafs.

splitting heuristic does not directly depend upon the con-
tained elements or if a node containing a single element is
further split to trim its enclosing box. The intuitive solution
for empty children is to store invalid bounding planes (e.g.
± inf, resulting in non-intersectable children) in the parent
node and not to store empty leaf nodes altogether because
they are never going to be accessed during traversal. A more
elaborate solution consists in using both planes of an in-
ner node as the bounding planes of the single non-empty
child along the splitting axis, trimming the child’s enclos-
ing box on 2 sides per tree level. This may save inner nodes
and hence reduce tree depth and size, at the cost of having
to handle this additional special case when constructing and
traversing the tree.

3.2. Ordered traversal

We focus on the ordered traversal as it allows for early
ray termination and ordered leaf intersections. The ordered
traversal of a BIH, depicted in algorithm 1, is very similar to
that of a kd-tree. The only differences are:

• the necessity to intersect the ray with 2 planes instead of
1 per hit inner node,
• an additional intersection case (no child hit in case the ray

only intersects the empty space inbetween the children),
and
• the possibility that elements contained by the second hit

child intersect a ray before elements contained in the first
hit child. This can only occur in space shared by both chil-
dren and thus only if children overlap.

Algorithm 1 Traversing the BIH tree for a given ray.
1: push the root node onto the empty stack
2: while there are nodes on the stack, i.e. subtrees to be

traversed do
3: pop the topmost node from the stack, representing the

root of the deepest subtree
4: while the node is an inner node do
5: intersect the ray with the children
6: if no child is hit then
7: continue the outer loop with the next subtree
8: else if only one child is hit then
9: descend to that child

10: else
11: push the second hit child onto the stack
12: descend to the first hit child
13: end if
14: end while
15: render the leaf
16: end while

The complete intersection algorithm is illustrated in al-
gorithm 2. BIH construction and traversal are numerically
stable due to the comparison and min/max operations used
when partitioning the elements and calculating the bounding
planes (and hence the enclosing boxes too) as well as the
(tin, tout) intervals. The intersection algorithm relies on the
IEEE 754 floating-point standard because rays perpendicu-
lar to the splitting axis cause a division by 0, which is defined
as inf · sign(dividend) in the aforementioned standard.

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

Algorithm 2 Intersecting the children of an inner BIH node
with a given ray~r(t) =~o + t~d. The node’s axis-aligned Box
(consisting in a Min and a Max corner) as well as the entry
and exit distances of the ray (tin and tout) are known (from
the top-down traversal).

1: // compute the boxes enclosing the children’s volumes
2: // axis is the index of the node’s splitting axis
3: Box0← Box;Box0.Max[axis]← planeO f f sets0
4: Box1← Box;Box1.Min[axis]← planeO f f sets1
5:
6: // intersect the children’s bounding planes with the ray
7: t0←

planeO f f sets0−~o[axis]
~d[axis]

8: t1←
planeO f f sets1−~o[axis]

~d[axis]
9:

10: // determine the traversal order depending upon ~d
11: f irstIndex← ~d[axis]≥ 0 ? 0 : 1
12: secondIndex← 1− f irstIndex
13:
14: /* compare the first child’s intersection to the entry point

of the parent */
15: if t f irstIndex > tin then
16: the first child enclosed by Box f irstIndex is hit
17: its exit distance is min(tout , t f irstIndex), the entry dis-

tance is still tin
18: end if
19:
20: /* compare the second child’s intersection to the exit

point of the parent */
21: if tsecondIndex < tout then
22: the second child enclosed by BoxsecondIndex is hit
23: its entry distance is max(tin, tsecondIndex), the exit dis-

tance is still tout
24: end if

Algorithm 1 uses a stack to store the root nodes of the
subtrees which are hit by the ray but need yet to be traversed
(immediately after the first hit sibling’s subtree has been tra-
versed). The entry and exit distances tin and tout need to be
stored for each root to be able to continue intersection test-
ing from that node. If leaf rendering depends upon a leaf’s
enclosing box, the roots’ boxes need to be stored on the
stack too, although in that case the (tin, tout) interval may
be derived by a full ray-AABB intersection test. To cover
the worst case, the stack needs to be able to hold a num-
ber of elements that equals the maximum depth of the tree.
Although stackless solutions exist (at least for kd-trees: kd-
restart and kd-backtrack [HSHH07]), these approaches are
work-arounds for temporary GPU limitations. If the stack
itself (i.e. a local array for every ray) is not a bottleneck,
employing a stack is the most elegant and theoretically most
efficient method for tree traversal as both other approaches
result in high additional traversal cost, and kd-backtrack ad-
ditionally in increased memory footprint.

3.3. Memory layout

Inner BIH nodes are defined by a splitting axis, the offsets
of both children’s bounding planes and the pointer(s) to the
children. By using 16-bit fixed-point values for the plane off-
sets, 2 bits for the node type (3 splitting axes + leaf node)
and 30 bits for a single pointer/index, an inner node requires
only 8 bytes. A single pointer to one child suffices in case the
pointer to the other is implicitly derivable, e.g. by storing the
tree in pre-order layout (depth first: root, left subtree, right
subtree), where the left child is stored right after the parent
and only a pointer to the right child is required.

The definition of a BIH leaf node is flexible and depends
upon the application. All parent nodes’ bounding planes de-
fine a leaf’s enclosing box, therefore an axis-aligned box is
implicitly given. The node type is a common field for all
nodes, hence 2 bits are reserved. If leafs contain multiple el-
ements, a pointer to a elements list may suffice. On the other
hand, elements may be stored directly in the BIH tree if the
elements are fully partitioned so that every leaf contains a
single element. If nodes containing a single element are fur-
ther split (generating empty children) until a leaf’s enclosing
box is trimmed on all 6 sides, the element’s AABB equals
the leaf’s implicit enclosing box and does therefore not need
to be stored. In our example, there are 62 bits available to
store an element’s additional attributes if the size of a leaf
node should equal the size of an inner node. The 62 bits may
be subdivided in 3 · 16 + 14 bits to store 4 scalar attributes,
e.g. color and opacity or a scalar density and an associated
3D gradient (see table 1).

In a perfect binary tree, where every inner node has
2 (non-empty) children, the total number of nodes is
2· #leafs −1. As discussed earlier, BIH leafs may be empty
though, so the total number of nodes cannot be derived a
priori from the number of non-empty leafs. The stated for-
mula resolves to the lower bound for the total number of
BIH nodes, every empty node increases the number by 1 (if
empty nodes are not stored). The number of empty nodes
depends upon the splitting heuristic and the data set; some
examples are presented later on.

3.4. Comparison between kd-tree, BIH and BVH

The main difference between a BIH and a binary BVH (of
AABBs, split by aligned planes) is the node definition. A
BIH node’s enclosing box is trimmed on 1 side per tree level
and therefore requires 1 plane offset to be stored. A BVH
does not exploit likely coherence of the other 5 bounding
planes between the AABBs of parents and children: a BVH
node stores all 6 plane offsets of its contained elements’
AABB. During traversal, each node is independently inter-
sected with the ray by a full ray-AABB intersection test.

BVH nodes are usually at least twice as large as BIH
nodes. E.g. when using 6 · 16-bit fixed-point values for the
AABB coordinates and 2 bits for the node type, there are

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

Inner BIH node left plane offset right plane offset index splitting axis in-
dex ∈ {0,1,2}

16 bits 16 bits 16 bits 14 bits 2 bits (node type)
BIH leaf node 1st attribute 2nd attribute 3rd attribute 4th attribute 3 (leaf node)

Table 1: Memory layout of BIH nodes. Each node consists in 4 · 16 bits = 8 bytes.

kd-tree BIH Binary BVH
Typical node size 8 bytes 8 bytes at least 16 bytes
Typical tree depth rather high: elements inter-

secting a splitting plane are
duplicated, potentially lots
of empty leafs if empty
space is eliminated

rather low: some empty
leafs

low: no empty leafs

Construction costly, as the efficiency
greatly depends upon an in-
volved splitting heuristic

cheap, as simple splitting heuristics already deliver satisfy-
ing results; a BIH splitting heuristic may be even simpler
than a BVH’s (by not computing the full AABB but us-
ing only the enclosing box), at the cost of potentially more
empty leafs

Intersection/traversal fast, both children are in-
tersected at once per inner
node by intersecting a sin-
gle plane

minimally slower than the
kd-tree (2 planes per in-
ner node, additional inter-
section case), but flatter tree

slower due to full ray-
AABB intersection test per
node; independent from the
parent (no enclosing box
and/or (tin, tout) tracking)

Leafs containing a sin-
gle element and im-
plicitly representing its
AABB by its enclosing
box

not possible unless no ele-
ments intersect any splitting
plane at all; even so, many
empty leafs may be needed
to trim the enclosing box

trivial: partition until a
node’s enclosing box
equals the single contained
element’s AABB, at the
likely cost of a deeper tree

trivial: partition until a node
contains a single element

Table 2: Comparison between kd-tree, BIH and BVH

30 bits left if using 16 bytes per node. The 30 bits may
be used for either a pointer (inner nodes) or leaf attributes
(while our proposed BIH implementation allows 62 bits for
the attributes). Splitting a BVH node always results in 2 non-
empty children, so the number of BVH nodes only depends
upon the number of leafs and the hierarchy may be flatter
than an equivalent BIH. It must be noted though that the
number of empty BIH leafs can be reduced by employing a
BVH splitting heuristic, e.g. by computing the full AABB of
the contained elements (instead of a single bounding plane)
and splitting in the middle of its longest axis. In this case,
empty leafs are only generated when trimming nodes con-
taining a single element. The BVH splitting heuristic how-
ever may cause very unbalanced trees because the volumes
of two children can differ greatly.

The main difference between kd-trees and the other 2 hi-
erarchical structures is that kd-trees partition space, not ele-
ments. An involved splitting heuristic is of key importance
for good efficiency; the longer construction times still do not
prevent the kd-tree from consisting in more levels and nodes
than BVHs and BIHs. Additionally, empty leafs cannot be
simply omitted in the memory layout of the kd-tree unless

using tricks to indicate empty children in the parent node and
watching out for them during traversal. A general compari-
son of the 3 hierarchical structures is presented in table 2.

4. Application to volume ray casting

Most volume visualizations rely on ordered intersections be-
cause most applications make extensive use of alpha blend-
ing to allow for a composite rendering of the volume. The
blended color contributions need to be gathered either in
back-to-front or front-to-back order, the latter allowing to
terminate a ray as soon as the overall opacity exceeds a cer-
tain threshold (early ray termination). Rasterization-based
approaches are not suited for complex semi-transparent tasks
because the rasterized primitives need to be sorted by their
distance from the view-point beforehand while ray casting
offers implicit sorting.

We briefly mentioned that elements contained by the sec-
ond hit child may intersect a ray earlier than elements in
the first hit child; this is a common issue of all object-
partitioning approaches. Figure 2 illustrates an example of
such cases which can occur in the space shared by both chil-

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

a) b)

Figure 2: Examples of disordered intersections when traversing a BIH (a) and a kd-tree (b).
a) Due to the positive ray direction along the splitting axis (x), the left leaf is traversed before the right one. The left leaf contains
the upper element, the right child the lower one, hence the element intersections are not processed in the correct order.
b) An analog problem may occur when using kd-trees and assigning elements intersecting the splitting plane simply to both
children. The left leaf contains the upper element, the right child both elements. The right child is further partitioned into the
bottom-right and top-right leafs. The traversal order is as follows: left leaf (top element), bottom-right leaf (bottom element),
top-right leaf (top element again).

dren. It also shows that this problem concerns kd-trees too,
as long as elements intersecting the splitting plane are not
subdivided but assigned to both children. There is a solution
for kd-trees though: only element intersections in the leaf’s
(tin, tout) interval, i.e. inside the leaf should be considered
valid so as to simulate a subdivision of elements.

In surface ray-tracing scenarios, only the first intersection
of the ray with an element is required. In this case, after find-
ing an intersection, the subtrees stored on the stack need to
be checked for earlier intersections as long as there are nodes
which are hit before the first intersection so far. So the poten-
tially disordered intersections in the overlapping space of 2
children do not represent a serious issue. They pose a prob-
lem for most volume visualizations though unless ordered
traversal is not required. Possibilities to circumvent this is-
sue include:

• No overlapping children: this condition is satisfied if the
elements are positioned on a Cartesian grid and the dis-
tance between 2 neighboring grid points is at least as long
as the maximum size of all elements.
• Ignore: allow potentially disordered intersections in over-

lapping space if it is rather small and artifacts are therefore
barely noticeable.
• Construct a kd-ish BIH: either by splitting elements into

sub-elements or by setting both bounding planes to the
splitting plane and assigning overlapping elements to both
children. In the latter case, the boxes enclosing the BIH
nodes are no longer guaranteed to contain the contained
elements’ AABB. Obviously a more elaborate splitting
heuristic needs to be employed to minimize the number
of overlapping elements, analog to kd-tree construction.

Such a kd-ish BIH still provides the advantage of elimi-
nating empty space and of being able to omit empty leaf
nodes altogether.

By traversing a BIH for a given ray, all leaf nodes pierced
by the ray are visited in a specific order (usually front-to-
back to exploit early ray termination, with the just men-
tioned possibility of slight disorders). In volume visualiza-
tion applications, the leafs are rendered in some way. Each
leaf needs to be renderable independently as there is no real
connectivity between leafs - a leaf and its nearest neighbor-
ing leaf may already be separated by the root node’s splitting
axis. The only form of potentially useful connectivity is the
ordered traversal of the leafs, i.e. a connection between a hit
leaf and the previously hit one. So each leaf needs to con-
tain volumetric primitives which are intersected with the ray
when the leaf is rendered.

4.1. Empty space skipping for Cartesian grids

In traditional Direct Volume Rendering (DVR) on the GPU,
a 3D texture representing a Cartesian grid of voxels is re-
sampled along an intersecting ray segment in steps of fixed
length. If the volume is sparse, there are lots of transpar-
ent voxels and hence many unnecessary samplings are pe-
formed. Octree- and BVH-based empty space leaping tech-
niques have been proposed to skip samples in transparent re-
gions (empty nodes), but we do not know of any GPU-based
implementation.

BIHs are also suited for this task because empty space is
implicitly eliminated. A coarse BIH may be used to identify
non-empty cells in the Cartesian grid. A cell pierced by a

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

ray is then regularly resampled. The BIH leafs do not need
to map 1:1 to cells in the grid; a leaf’s box can be mapped
to an arbitrary cell in the grid by specifying only a 3D offset
and the extents. Therefore different regions of the volume
could use different resolutions, based on the frequencies in
the regions.

Inner BIH nodes could also store some additional at-
tributes like the minimum and maximum density of all con-
tained voxels. This may be useful for rendering iso-surfaces
as large regions may be skipped if the requested iso-value is
outside a node’s density interval.

4.2. Semi-transparent particle systems

Particle systems are often rendered by exploiting the GPU’s
point-sprites rendering or geometry shader capabilities: the
center point is expanded to a billboard, texturized and ras-
terized. The restriction of this rasterization approach is that
the particles should be opaque, otherwise the points need to
be sorted by their depth from the current view-point to allow
for correct blending.

Ray-casting techniques offer implicit sorting and are
therefore well suited for semi-transparent particle systems
too. [KAH07] propose to treat each point as a spherical par-
ticle with a specific radius. The weight of a particle’s color
contribution to a ray depends upon the absolute distance d
of the point from the ray, relative to its radius r:

α(d,r) =

{
exp(−κ(d

r)2), if d ≤ r
0, if d > r

A set of spheres is easily subdividable into a BIH. Each
leaf may represent one sphere so that its implicit enclosing
box defines its position and its size. The remaining 62 bits
may be used for additional attributes like color and opac-
ity. When a ray hits a leaf, the distance of the center from
the ray is computed to obtain the weight of the color contri-
bution. [KAH07] shows how particle systems can be com-
bined with structured grids, e.g. for cosmological simula-
tions where particles represent galaxies, stars or planets and
the grid encodes gas, fog etc.

4.3. Completely BIH-based DVR

A BIH is also able to represent a discretized, continuous
volume. For example, a BIH may be based on the non-
transparent cuboid voxels of a Cartesian grid, e.g. by em-
bedding a single voxel into every BIH leaf. This approach
offers some advantages over traditional DVR:

• Required memory for the volume may be reduced signifi-
cantly if there are lots of transparent voxels.
• Transparent regions of the volume are not taken into ac-

count during rendering.
• All voxels hit by a ray may contribute to the final pixel

color. In traditional DVR, the precision depends upon the
length of a sample step.

• The hierarchical structure allows to easily derive different
levels of detail.

The BIH has one big disadvantage over a uniform grid
though: we lose the connectivity between neighboring vox-
els, i.e. there is no trivial/fast way to find a voxel’s neighbors.
This leads to 2 disadvantages compared to traditional DVR:

• There is no hardware filter support, i.e. voxel attributes
cannot be interpolated trilinearly.

• Gradients cannot be computed on-the-fly using the central
difference algorithm.

There is at least a partial solution for the first issue. Firstly,
the voxel gradients can be precomputed, e.g. by using the
simple central difference. The gradient can then be embed-
ded in every BIH leaf. This does not allow for smooth sur-
face shading, but the gradient~g can also be used to trilinearly
approximate the density d at a point ~x inside a leaf with the
central density dcenter, the center point~c and the size~s:

~o(~x) = ~x−~c
~s . . . offset of~x from~c in [−0.5,0.5]3

d(~x) = dcenter +~g ·~o(~x)

Rendering the leafs can be accomplished in multiple
ways:

• Multi-sample BIH-DVR: sampling the ray segment in
equidistant steps, just like traditional DVR but on a per-
leaf basis. Care needs to be taken to ensure equidistant
steps between leafs consecutively hit by a ray, i.e. starting
to sample at tin for every leaf is not going to work; sam-
pling may start at multiples of the sample step length, for
example. If a ray segment inside a leaf is shorter than the
sample step length, the leaf may not contribute to the final
pixel value at all, analog to traditional DVR.

• Computing the densities at tin and tout as well as the ray
segment length and then using a pre-integrated transfer
function [EKE01] (3D due to the variable ray segment
length) to look up the overall color contribution.

• Single-sample BIH-DVR: Computing the average density
along the ray segment and using it as constant density
along the whole segment. As the density is approximated
trilinearly, the average density is the density in the mid-
dle of the segment, so a single sample per leaf is enough.
To account for the variable segment length l (relative to
the sample step length), the color contribution (with base
opacity α ∈ [0,1]) is weighted by the opacity correction
formula:

α
′(l,α) = 1− (1−α)l

To yield plausible results, the transfer function (TF)
should not include high frequencies and it should be ap-
proximately piece-wise linear (especially along a ray seg-
ment inside a leaf), so that the average density maps ap-
proximately to the average TF classification (i.e. color and
base opacity) along the segment.

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

5. Implementation details

Our approach consists in 2 stages:

1. Preprocessing: constructing the BIH and deriving levels
of detail (LoDs) from it

2. Rendering: ray-casting on the GPU by traversing the BIH
LoD and rendering the leafs

5.1. BIH

After computing the AABB of all elements, the elements
are recursively partitioned into a BIH. The splitting plane
is placed in the middle of a node’s longest axis, trying to
keep the node shapes as compact as possible. The bound-
ing planes are calculated while assigning the elements to the
children, saving redundant memory accesses compared to a
two-pass approach. The assignment is accomplished by in-
place partitioning (i.e. operating on the original list), swap-
ping pairs of elements until the left and right ones are sep-
arated. The recursion is stopped if a node’s enclosing box
equals the single contained element’s AABB.

To provide enough precision, the 16 bits per plane offset
are used as fixed point values, 0x4000 representing 0 and
0xC000 representing 1 in normalized volume-space [0,1]3.
Precision is reduced to 15 bits (32768 uniform steps per axis)
to represent ± inf as 0x0 (-0.5 in normalized volume-space)
and 0xFFFF (1.5) for the bounding planes of empty chil-
dren. This allows to offset the bounding planes on-the-fly in
the shader program, e.g. to adjust the size of spherical parti-
cles (and hence all nodes) interactively. The additional range
results in the bounding planes of empty children remaining
invalid (outside the volume’s AABB) as long as the offset
value is < 0.25 in normalized volume-space.

5.2. BIH Level of Detail (LoD)

One advantage of the hierarchical BIH structure is the abil-
ity to easily derive different levels of detail, e.g. by limiting
the tree depth or the minimum node size. It also allows for
compression by merging subtrees under certain conditions,
e.g. if a node contains a dense set of elements with similar
attributes to compress larger solid volumes.

To exploit these options, we calculate some statistical
characteristics for each BIH node, including the attribute
means and associated variances as well as the density of con-
tained elements. These characteristics are computable in a
bottom-up approach (i.e. the parent node combines the char-
acteristics of its children to compute his own), thereby not
affecting performance severely during tree construction.

The statistical characteristics associated with each node
are evaluated when selecting a static level of detail to be ren-
dered. A static LoD is a trimmed-down version of the BIH
specialized for rendering on the GPU. During creation of the
BIH LoD, each BIH node is checked against the LoD’s leaf
criteria:

• maximum depth in the tree,
• minimum element density ∑Velement

Vbox
, and

• maximum standard deviation of the contained elements’
normalized density.

If a BIH node fulfills the leaf criteria, it is used as LoD
leaf node, discarding its subtrees. Figure 3 demonstrates the
impact of the 2 latter LoD parameters on the Vertebra data
set.

LoDs might also be derived dynamically in the shader
program, possibly using an adapative method, e.g. by limit-
ing the descend depth with increasing pixel opacity because
further color contributions need not be as precise as the re-
sults of the first hits.

5.3. Rendering

To allow for high performance, several aspects of current
GPU architectures need to be regarded. Firstly, GPUs of-
fer enormous computing power for parallelizable tasks like
raytracing compared to generic CPUs. This is achieved by
executing the same instructions on a large group of stream
processors. The instruction set is a lot smaller than those of
CPUs but equipped with some specialized 3D instructions.
The first bottleneck arises with branching (if, while etc.) be-
cause the simultaneous threads may differ in the branch be-
ing taken. Currently there are two approaches to solve this
problem: predicated branching, which consists in all threads
evaluating all branches and hence useful for small branches,
and dynamic branching, which allows to skip the wrong
branch if the simultaneous threads are all coherent, i.e. take
the same branch.

Another limitation of current GPUs are indexable tempo-
rary registers per thread. The number of these registers, us-
able for local arrays, is very low, especially for lower-end
graphic cards. We need them for the per-thread stack, which
in turn needs to be as large as the maximum tree depth to
cover the worst case. If the available registers are too few,
main memory is used (so-called scratch registers), hurting
performance extremely. In any case, the stack occupies many
registers and therefore the number of parallel threads on the
GPU is decreased (due to a limited number of registers),
which results in decreasing the GPU’s ability to hide laten-
cies.

We decided to use the programmable 3D pipeline (Di-
rect3D 10) instead of taking a GPGPU approach, mainly
due to the OpenCL standard not being supported by both
NVIDIA (CUDA) and ATI (Stream) yet. Using the tradi-
tional pipeline allows to render directly to the framebuffer
and to process only pixels actually intersecting the volume.
A GPGPU approach might offer the flexibility to place the
per-thread stack into shared memory, which is supposed to
be only slightly slower than registers. That would reduce the
number of required registers per thread significantly, so that
more threads may be managed simultaneously and memory

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

a) b) c)

Figure 3: Impact of 2 LoD parameters on the Vertebra data set, using all voxels with normalized density above 0.125 as BIH
elements. The first parameter, the minimum density, controls how much empty space is tolerated inside an inner BIH node to
be considered as LoD leaf candidate. If the standard deviation of the contained voxels’ values is additionally less than the
maximum standard deviation, the second crucial parameter, the inner BIH node is used as LoD leaf node, pruning its subtrees.
a) Graph illustrating the impact on the LoD size using various combinations of the two parameters. b) Difference of the DVR
reference frame and the BIH-DVR frame using a min density of 60% and a max std. deviation of 1.5%. c) Difference of the
reference and the default LoD configuration: min density of 75%, max std. deviation of 1%.

latency may be hidden more efficiently. On current ATI hard-
ware, each thread may write to a maximum of 4 · 16 bytes,
restricting the stack size extremely, so this is currently not
an option.

To rasterize only pixels intersecting the volume covered
by the BIH, the volume’s axis-aligned bounding box is ren-
dered as proxy geometry (using front-face culling). The ver-
tex shader simply transforms the vertex position into clip-
space and computes the vector from the eye-point to the ver-
tex in object-space. This vector is then interpolated across
the fragments. The pixel shader normalizes it to obtain the
ray direction and transforms it to normalized volume-space
[0,1]3. After precomputing some often used values (recip-
rocals etc.), the BIH is traversed for the ray and the color
contributions of hit leaf nodes are accumulated. The ray is
terminated early once the accumulated opacity reaches a cer-
tain threshold near 1. To be able to use bit-wise operations
and to rely on IEEE 754 floating point behavior when di-
viding by zero, the GPU needs to support shader model 4.0,
supported by all DirectX 10 compatible graphic chips.

The traversal algorithm 1 for the GPU has been slightly
modified to replace both loops by a single one. This in-
creases performance due to the branching limitations men-
tioned previously. The stack size is adapted for the tree (i.e.
set to the max tree depth). The roots on the stack are com-
pactly defined by their enclosing boxes (6 · 16 bits packed
into a uint3) and their node index (another uint, therefore an
element fits nicely into a uint4, i.e. exactly one register).

5.4. Memory layout of the BIH tree

The memory layout of the BIH structure to be used by the
GPU needs to be chosen carefully. Firstly, GPUs support less

memory than CPUs and required memory bandwidth should
be minimized. Therefore the structure should be as compact
as possible. Additionally, it should be usable as a texture to
use it in the graphics pipeline. This requires all fields of a tree
node to be of the same data type (integer/floating point, 16 or
32 bits) and poses restrictions on the number of fields (e.g. 3
for an RGB texture, 4 for an RGBA texture, or multiples of
these values when using more than one texel per tree node).

We use a 4-component (RGBA) texture buffer and 16 bits
(interpreted as unsigned integers) per component, resulting
in 64 bits per texel. The nodes defined in table 1 therefore fit
perfectly into a single texel. A texture buffer is a (large) read-
only 1D array of texels, comparable to a 1D texture without
severe size limitations (up to 227 texels vs 214 for 1D textures
in Direct3D 10) and no filtering and floating point indexing
options. Using a texture buffer instead of a 2D texture elim-
inates the overhead of converting indices to 2D coordinates
and allows for a sequential caching behavior.

Traversing a BIH is a memory-intensive task. Exploiting
caches is a necessity to hide memory latencies, therefore one
should try to keep the children close to the parent. The pre-
order tree layout (root, left subtree, right subtree) allows se-
quential memory access, but only if the left child is always
the first one to be traversed. This constraint is only satisfied
if all ray direction components are positive and is therefore
inherently view-dependent.

Another possibility is to store both children of a node se-
quentially as a pair, so that the parent points to the left child
and the right child’s index is simply the next one (assum-
ing the same node size for inner nodes and leaf nodes). We
generalize this concept to tree chunks: the subtrees of a node
pair are followed until some maximum relative depth, and

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

Figure 4: Serialization of a tree into 3 tree chunks (blue,
red and green) with a maximum tree chunk depth of 1. The
number of each node represents its index in the final array.
A tree chunk contains some levels of two subtrees and stores
the contained nodes in breadth-first order. The child chunks
are processed in depth-first order.

the nodes are stored in breadth-first order. The rest of the
subtrees are processed as child chunks in depth-first order
(see figure 4). The advantage is that this way, the nodes in the
next few levels should be already cached, independent from
the traversal order. For example, if we use a chunk depth of
2, 3 levels of both subtrees (up to 23+1− 2 total nodes) are
stored tightly as one chunk, a contiguous block in memory.
The goal is to minimize latencies due to frequent jumping
in the serialized binary tree and to rival octrees, whose inner
nodes synthesize 3 levels of a binary tree.

6. Evaluation

6.1. BIH construction and storage efficiency

In the previous section, we mentioned that our implemen-
tation does not compute directly a BIH to be rendered. In-
stead, we compute an intermediate BIH, where all elements
are partitioned until every leaf node’s box equals the axis-
aligned bounding box of the contained element. Addition-
ally, every node is associated with statistical characteristics.
This intermediate data structure is then used to quickly de-
rive different static levels of detail for rendering. This is use-
ful to find appropriate parameters and to experiment, but the
intermediate BIH also requires a lot of storage, as our imple-
mentation of a full BIH node requires 40 bytes (compared
to the 8 bytes of a LoD node). The intermediate BIH might
also reach a high depth because nodes containing a single
element are trimmed until the enclosing box equals the ele-
ment’s AABB (worst case: 5 additional levels).

Our primary data sets are popular uniform grids. The ele-
ments partitioned by the BIH are a subset of the grid’s vox-
els: all voxels with a configurable minimum normalized den-
sity value (usually 0.1 to remove most of the noise). The gra-
dients are obtained by central differencing.

The test system is a regular desktop PC equipped with
a Phenom X4 9950 CPU @ 3 GHz, 4 GB of DDR2-1066
RAM and a single Radeon HD 4850 (GPU @ 725 MHz, 512

MB GDDR3 memory @ 1.1 GHz). The machine is running
the Windows 7 RC and using the Catalyst v9.6 driver. The
software is based on native C++ core algorithms and a .NET
GUI.

Table 3 lists various measurements regarding BIH con-
struction and memory footprint obtained from different uni-
form grid sources. Our first observation is that the BIH con-
struction is quite quick considering the number of elements
and that the default LoD’s final footprint is usually signif-
icantly smaller than the uniform grid’s. To be fair, not all
source grids contain 16 bit values (some store the density in
8 bits), so the ratio depends upon the precision too. On the
other hand, the LoD uses 14 bits for the density as well as
3× 16 bits for the precomputed gradient for each element.
The number of elements could be further reduced if the fo-
cus is on material borders - by not importing voxels with
small gradient magnitude.

The memory reduction is high if:

• the volume is sparse and most voxels are considered noise
(and hence not used as BIH elements), and/or if

• the volume contains regions of low frequency whereby a
single LoD leaf node may represent a neighboring set of
similar voxels. This applies especially to large grids.

Another observation is that the number of inner BIH
nodes with a single child (i.e. a regular child and an empty
leaf) is usually quite small, although it may get large (espe-
cially for non-uniformly positioned and sized elements). A
large number results primarily from trimming a node con-
taining a single element until its box equals the element’s
AABB. This trimming occurs in the deepest tree levels and
hence the number of empty leafs may get large. This is
mostly an issue for our implementation of the intermediate
BIH (causing a large memory footprint) but not for the LoD:
if the box enclosing a node with a single element is only
slightly larger than the element’s AABB, the node will be
used as LoD leaf node (depending upon the LoD’s element
density parameter).

The BIH is a very compact data structure for general el-
ements in space. Our implementation requires 64 bits per
node; the number of inner nodes is usually only slightly
larger than the number of leaf nodes, depending upon how
exact the element AABB is to be approximated by the leaf
boxes. If there is only a single empty leaf, the number of to-
tal nodes is 2 times the number of leaf nodes. In that case,
one might say that an element consumes 2×64 = 128 bits in
the BIH structure. 62 bits are available for element attributes.
The remaining 66 bits are not simply overhead since the in-
ner nodes define (or approximate) the element’s AABB. A
full AABB in 16 bits precision would require 2×3×16 = 96
bits. So in case most of the 62 attribute bits can be exploited,
the BIH’s footprint may actually be smaller than a flat array
of elements - while providing a hierarchical spatial subdivi-
sion.

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

Lobster Engine Skull Abdomen and pelvis Head aneurysm

Grid Dimensions 301× 324× 56 256× 256× 128 2563 512× 512× 174 5123

Size in KBytes (16 bit density) 10,667 16,384 32,768 89,088 262,144
Number of BIH elements 341,256 1,352,439 2,058,103 16,183,116 16,481,795
(voxels with normalized density≥ 0.1) (6.25%) (8.06%) (12.27%) (35.48%) (12.28%)

BIH

Construction time in ms 702 2,777 4,633 35,646 40,435
Number of nodes 726,844 2,780,802 4,680,234 32,833,739 39,012,660
% nodes with single child 6.1% 2.73% 12.05% 1.42% 15.51%
Max tree depth 24 23 24 26 27
Size in KBytes 28,393 108,626 182,822 1,282,568 1,523,933

Default LoD

Construction time in ms 78 281 546 858 1,982
Number of nodes 515,349 1,367,240 3,318,436 5,063,523 11,931,875
Max tree depth 24 23 24 26 27
Size in KBytes 4,027 10,682 25,926 39,559 93,218
Size relative to uniform grid 37.75% 65.2% 79.12% 44.4% 35.56%

Table 3: Various measurements regarding BIH construction and memory footprint for 5 uniform grid sources. The default LoD
is based on the following criteria: a leaf node’s voxel density is ≥ 75% and the allowed standard deviation of the contained
voxels’ density is ≤ 1%; the maximum tree chunk depth is set to 2.

6.2. BIH-based DVR performance and rendering
quality

We implemented a flexible renderer, capable of using tra-
ditional DVR or BIH-based DVR methods. We focus on
the comparison between traditional DVR and the single-
sample BIH-based DVR described in subsection 4.3. Multi-
sample BIH-based DVR is obviously slower than the single-
sample version and does usually not enhance visual qual-
ity, but rather introduces additional ring artifacts just like
traditional DVR in regions where the sampling step is too
small for high-freqency regions. Although these artifacts are
not produced by single-sample BIH-DVR (there is no un-
dersampling as the ray segment’s central sample is consid-
ered as uniform sample along the whole segment inside the
leaf node), visual quality is degraded compared to traditional
DVR because true trilinear filtering is only approximated by
a single gradient for each leaf node. Pleasing results are ob-
tained if either the gradient is small and hence if the grid’s
frequency is low, or if the opacity of each leaf’s color con-
tribution is rather low and artifacts are hidden.

The visual quality of BIH-based DVR therefore primarily
depends upon the frequency of the uniform grid as well as
the employed transfer function. The performance is affected
primarily by the sparseness of the volume and the grid’s fre-
quency (regions of low freqency are compressed by larger
leaf nodes). The transfer function also has a strong impact
on the performance of both traditional DVR and BIH-DVR
as high opacities lead to early ray termination.

Before moving on to the first comparisons, we need to
describe our traditional DVR implementation. Traditional
DVR is quite straight-forward: a ray segment inside the vol-
ume is resampled at equidistant steps. Our sampling step size
relates to 1,024 steps along the longest axis of the volume (in
object-space) to reduce the ring artifacts. Zero-density sam-
ples are skipped to increase performance. If the gradient is
required, it is computed on-the-fly by sampling the 6 direct
neighbours of each sample - using a filtered precomputed
gradient would increase the grid’s memory footprint by a
factor of 4. The transfer function is a 1D RGBA texture,

256 texels wide and using 8 bits per component. Gamma-
correction is applied (automatically by Direct3D 10 if using
appropriate texture formats).

The performance of our single-sample BIH-DVR ap-
proach does not depend upon the sampling step size (the
accuracy is fixed by the leaf nodes, there is no under- or
oversampling) - it only affects the weight of each leaf’s
color contribution. The precomputed 16-bit gradient can be
stored for free in the leafs, together with the 14-bit den-
sity, so the performance is not affected in case the gradient
is required (for shading and/or assigning material borders a
greater weight). In all tests, we used the default LoD param-
eters described in the previous subsection. The frame rates
(fps) are included in the screenshots and obtained from the
Fraps utility. The viewport resolution is 760x640 pixels (al-
most half a million pixels, i.e. almost twice as many pixels
as the popular 512x512 viewport).

6.2.1. The engine data set

Our first test data set is the popular Engine in 2563 resolu-
tion. It is not extremely sparse if discarding voxels whose
normalized density is below 10% and is composed of many
round shapes. These provide a challenge for the BIH-DVR
approach as it is based on rendering the cuboid leaf nodes
(single voxels or dense blocks of voxels with similar density)
independently from each other. The volume is quite noise-
free and therefore suitable for nice renderings.

Looking at the first results, it became pretty obvious that
the frequency of the data is too high - the density approxi-
mation using the gradient is not precise enough to compete
visually with traditional DVR unless using very low opac-
ities. Therefore we use an additional BIH for comparison,
based on a supersampled version of the source grid. For this
data set, we selected a resampling factor of 1.5 for every
dimension, resulting in 1.253 = 3.375 as many voxels and
potential BIH elements. This obviously increases BIH con-
struction time and tree size. To be able to compare the visual
results, the precomputed gradients also need to be scaled by
the same factor as they are based on a nearer neighbourhood.

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

BIH-DVR 1 BIH-DVR 1.5 DVR
Resampling factor 1 1.5 1
BIH construction 2,762 ms 10,218 ms -
Max LoD depth 23 25 -
Data structure size 10,682 KB 32,769 KB 32,768 KB

Table 4: Characteristics of the 3 sources for the engine renderings. Please note that the nearly identical size of the BIH-DVR
1.5 LoD and the original uniform grid is pure coincidence. This demonstrates the storage efficiency of a BIH: it is based on
3.375 times as many voxels as the original grid and additionally contains a precomputed gradient per leaf node, which would
increase the grid’s size by a factor of 4.

BIH-DVR 1 BIH-DVR 1.5 DVR

αbase = 0.05

αbase = 0.10

αbase = 0.25

Figure 5: Comparison of single-sample BIH-DVR to traditional DVR using the engine data set. In these screenshots, shading
is disabled and material borders are not emphasized, hence the gradient is not used (except for approximating the density for
BIH-DVR) and traditional DVR does not have to sample the local neighbourhood to compute the gradient.
We focus on the visual quality’s dependency upon the overall opacity (αbase is the weight of a unit sample) and the grid’s
frequency. The heavy artifacts produced by BIH-DVR 1 are hidden quite well when using a low base opacity. The supersampled
grid’s frequency is significantly lower and hence BIH-DVR 1.5 can visually compete with traditional DVR. Performance is also
comparable, although BIH-DVR profits more from early ray termination.

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

BIH-DVR 1 BIH-DVR 1.5 DVR

Figure 6: Comparison of single-sample BIH-based DVR to traditional DVR using the engine data set, including shading and
adjusting the opacity of a color contribution based on the gradient magnitude to emphasize material border surfaces.
BIH-DVR 1 exhibits typical BIH artifacts due to imprecise density approximation. BIH-DVR 1.5 looks a lot smoother and is still
rendered at 75% of the original BIH’s speed although the LoD’s tree is more than 3 times as large. The DVR reference exhibits
some ring artifacts due to undersampling. The frame rates are comparable: 9-12 fps.

The sources for the following engine renderings (figures 5
and 6) are summarized by table 4.

6.2.2. The head aneurysm (vertebra) data set

The second data set is a rather large grid consisting in
5123 voxels. The volume is quite noisy; to remove most of
the noise, we discarded all voxels whose density is below
12.5%. The effect of these additional 2.5% is illustrated in
table 5. The volume’s frequency is rather low, i.e. the higher
resolution allows us to use the original grid for the BIH in-
stead of a supersampled one. The renderings are presented
in figure 7.

6.2.3. The aneurysm data set

The next data set is another aneurysm. It is stored in a 2563

grid and is not very noisy. It resulted in very bad initial re-
sults due to high frequencies, therefore we tested two addi-
tional BIHs based on different supersampled grids. See ta-
ble 6 and figure 8.

7. Conclusion

We analyzed the BIH data structure and found it to be a
well-performing hierarchical partitioning scheme for sparse
spatial elements. It combines many advantages of both the
Bounding Volume Hierarchy and the kd-tree, resulting in
a very memory-efficient structure with advantageous con-
struction and traversal performance.

We have applied the BIH to uniform grids of voxel data,
using voxels with a minimum density value as BIH elements
and therefore discarding many noisy voxels. The sparse re-
maining voxels are partitioned hierarchically in a BIH struc-
ture. Neighboring similar voxels are merged when creating

the BIH level-of-detail to be rendered, compressing the vol-
ume further. In most cases, the resulting BIH LoD’s foot-
print is significantly smaller than the uniform grid’s while
providing implicit memory for additional attributes such as
the precomputed gradient.

Rendering the voxels using Direct Volume Rendering in-
volves traversal of the BIH on the GPU. We have presented
an efficient and GPU-friendly memory layout for the serial-
ized BIH tree. The traversal of a BIH is a recursive operation
and hence needs a stack. Ordered traversal of a purely hierar-
chical structure for an arbitrary ray direction as required by
volume ray-casting requires a stack anyway, so the primary
advantage of the BVH (stackless fixed-order traversal) can-
not be exploited for most volume visualizations. We have
shown that stack-based traversal on the GPU can be quite
fast, although there is still vast room to optimize the GPU
for such tasks too. The dynamic branching granularity still
needs to be optimized and the shared cache needs to be more
flexible to place the stack there, freeing registers to increase
the number of parallel threads and hence hide memory la-
tencies more effectively. The latter point is addressed by fu-
ture Direct3D 11 compatible hardware (supporting compute
shader model 5.0): the shared cache is doubled to 32 KB,
every thread may access the full memory (as atomic opera-
tion if needed) and so-called append/consume buffers may
be used to build and access lists and stacks.

By partitioning the voxels hierarchically, we lose the im-
plicit connectivity information of the uniform grid. There-
fore trilinear filtering and on-the-fly gradient computation is
not possible anymore - every BIH element needs to be ren-
dered independently. To allow for direct volume renderings,
the voxels need to define a scalar density value accompa-
nied by a gradient. The gradient is used for shading (for the
whole leaf) as well as for approximating trilinear filtering of

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

BIH used in table 3 BIH used for rendering DVR
Resampling factor 1 1 1
BIH elements 16,481,795 (12.28%) 2,346,996 (1.75%) -
BIH construction 40,435 ms 5,586 ms -
Max LoD depth 27 27 -
Data structure size 93,218 KB 22,152 KB 262,144 KB

Table 5: Vertebra data set: comparison of the BIH based on the upper 90% of the density range and the one based on the upper
87.5% which has been used for rendering. The LoD requires less than a tenth of the uniform grid’s size.

BIH-DVR 1 DVR

Figure 7: Vertebra data set: comparison of single-sample BIH-based DVR to traditional DVR. The top image is a rendering
of the full volume, the bottom image of a zoomed central region. Differences are hard to spot, and the BIH is clearly rendered
faster, although it still only achieves interactive rates when zooming.

BIH-DVR 1 BIH-DVR 1.5 BIH-DVR 2 DVR
Resampling factor 1 1.5 2 1
BIH elements 113,453 409,511 976,669 -
BIH construction 267 ms 930 ms 2,221 ms -
Max LoD depth 24 27 27 -
Data structure size 1,841 KB 5,944 KB 13,079 KB 32,768 KB

Table 6: Aneurysm data set: comparison of different BIH sources for the renderings.

c© ICGA/TU Wien SS2009.

Martin Kinkelin / GPU Volume Raycasting using Bounding Interval Hierarchies

BIH-DVR 1 BIH-DVR 1.5 BIH-DVR 2 DVR

Figure 8: Aneurysm data set: comparison of single-sample BIH-based DVR to traditional DVR using a high base opacity.
The top image is a rendering of the full volume, the bottom image of a zoomed central region. The effect of basing the BIH on
supersampled versions of the original grid is evident. The performance of BIH-DVR 2 is almost identical to traditional DVR
and visual quality only slightly worse, but its LoD requires only 40% of the uniform grid’s size.

the density values inside the voxel. The precomputed 16 bit
gradient can be stored for free in our BIH implementation.
Our simple scheme does obviously not work well for high-
frequency data. In that case, we have shown that by super-
sampling the source grid (using trilinear filtering) and using
the interpolated voxels as BIH elements, the visual quality
can be greatly improved.

The performance of the presented BIH-DVR method sur-
passes traditional DVR in case the volume is very sparse,
e.g. for aneurysm data sets (in some scenes by more than
a factor of 8). More dense data sets are usually rendered
somewhat slower on current GPUs, although the rates are
still well-interactive for moderately sized data sets and view
ports. The primary advantage though is the vast potential
for memory footprint reduction, allowing to render very de-
tailed, sparse grids on the GPU which would otherwise not
fit into GPU memory or be rendered too slowly. The higher
the grid resolution, the lower the frequencies, therefore the
implicit degradation in visual quality compared to traditional
DVR may be negligible.

The BIH-DVR method is just an example for possible
BIH usages in volume applications. Instead of rendering
blocks, one may use ellipsoids of different shapes and col-
ors as BIH elements to render a volumetric particle system.
A BIH may also be used to partition a volume adaptively
in coarse blocks, especially if the volume is sparse so that
empty regions can be eliminated implicitly.

References

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-Quality
Pre-Integrated Volume Rendering using Hardware-
Accelerated Pixel Shading. In HWWS ’01: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware (New York, NY, USA, 2001), ACM,
pp. 9–16.

[EWM08] EISEMANN M., WOIZISCHKE C., MAGNOR

M.: Ray Tracing with the Single-Slab Hierarchy. In Proc.
Vision, Modeling, and Visualization (VMV’08) (Konstanz,
Germany, 10 2008), pp. 373–381.

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M.,
HANRAHAN P.: Interactive k-d Tree GPU Raytracing. In
I3D ’07: Proceedings of the 2007 symposium on Interac-
tive 3D graphics and games (New York, NY, USA, 2007),
ACM, pp. 167–174.

[KAH07] KÄHLER R., ABEL T., HEGE H.-C.: Simul-
taneous GPU-Assisted Raycasting of Unstructured Point
Sets and Volumetric Grid Data. In Proceedings of
IEEE/EG International Symposium on Volume Graphics
2007 (Prague, Czech Republic, 2007), A K Peters, pp. 49–
56.

[TS05] THRANE N., SIMONSEN L. O.: A Comparison
of Acceleration Structures for GPU Assisted Ray Tracing.
Master’s thesis, University of Aarhus, Denmark, 2005.

[WK06] WÄCHTER C., KELLER E.: Instant Ray Trac-
ing: The Bounding Interval Hierarchy. In In Rendering
Techniques 2006 - Proceedings of the 17th Eurographics
Symposium on Rendering (2006), pp. 139–149.

c© ICGA/TU Wien SS2009.

