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Figure 1: Results of visibility computations after 1 minute of sampling. Visibility errors are marked in red. Left: Traditional per-view cell
sampling. Middle: Adaptive Global Visibility Sampling. Right: Adaptive Global Visibility Sampling with visibility filter. Observe the severe
underestimation of visibility in the left image. The visibility computed by our method in the middle produces significantly less visible artifacts.
To the right, our method with a visibility filter applied is practically artifact-free. Note that during this minute, the potentially visible sets for
all 8,192 view cells in this example model have been generated.

Abstract

In this paper we propose a global visibility algorithm which com-
putes from-region visibility for all view cells simultaneously in a
progressive manner. We cast rays to sample visibility interactions
and use the information carried by a ray for all view cells it in-
tersects. The main contribution of the paper is a set of adaptive
sampling strategies based on ray mutations that exploit the spatial
coherence of visibility. Our method achieves more than an order
of magnitude speedup compared to per-view cell sampling. This
provides a practical solution to visibility preprocessing and also en-
ables a new type of interactive visibility analysis application, where
it is possible to quickly inspect and modify a coarse global visibility
solution that is constantly refined.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface algorithms
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1 Introduction

This paper addresses the problem of computing Potentially Visible
Sets (PVS) for a set of view cells. PVS computation is typically
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carried out as a preprocess in applications that need to know vis-
ibility information in advance and where online visibility cannot
be used. These applications include polygon budget computations,
level design for computer games, line-of-sight analysis, planning
geometry and texture transmissions for networked virtual environ-
ments, acquisition planning for object scanning, or path planning
for artificial intelligence in computer games.

Recently it has been shown that sampling is a robust solution to
PVS computation. In particular the Guided Visibility Sampling
(GVS) algorithm introduced by Wonka et al. [Wonka et al. 2006]
efficiently computes a PVS for a view cell using ray casting. While
GVS is very efficient at sampling from a single view cell, it does
not exploit the coherence among different view cells and does not
work in progressive fashion with respect to all view cells.

In this paper we propose a method which computes from-region
visibility for all view cells simultaneously in a progressive manner.
We build on global sampling strategies [Mattausch et al. 2006] and
use visibility information from one ray for all view cells it inter-
sects. The main contributions of the paper are: (1) We introduce
a set of sampling strategies for global visibility computation which
adapt to the scene geometry and explore the visibility coherence.
(2) We show the first progressively refined global visibility solu-
tion, in which PVS estimates for all view cells are obtained within
seconds or minutes (see Figure 1).

The method achieves more than an order of magnitude speedup
compared to per-view cell sampling. This provides a practical so-
lution to visibility preprocessing and also enables a new type of
interactive visibility analysis applications (see Figure 2), where it is
possible to quickly inspect and modify a global visibility solution.
The proposed algorithm consumes little memory, is easy to imple-
ment, and works on arbitrary input scenes consisting of view cells
and objects intersectable with a ray tracer.

2 Related work

Visibility and occlusion is essential to a wide area of graphics prob-
lems and we refer the reader to recent surveys for a broader dis-
cussion of visibility [Cohen-Or et al. 2003; Bittner 2003]. In the
following we will focus on visibility algorithms that compute visi-



Figure 2: Interactive visibility analysis. Left: A view of the Pompeii model. Middle: The PVS of the corresponding view cell depicted together
with PVS costs of the view cells at the same horizontal level (warmer colors correspond to higher costs). Right: Interactive exploration of
visibility hot spots. Note that in this scene the hot spots correspond to view points above the roofs in the central part of the scene.

bility from one or multiple regions in space as opposed to calculat-
ing visibility from a single point.

Geometric solutions. First, it is important to study exact solu-
tions to the visibility problem [Duguet and Drettakis 2002; Niren-
stein et al. 2002; Bittner 2003; Haumont et al. 2005]. These al-
gorithms are an important inspiration, but it is currently unclear
if exact algorithms can be extended to handle large scenes ro-
bustly. Therefore, many authors set out with simplifying assump-
tions to make the problem more tractable. Interesting simplifica-
tions are 2.5D visibility [Wonka et al. 2000; Bittner et al. 2001;
Koltun et al. 2001], architectural scenes [Airey et al. 1990; Teller
and Séquin 1991], the restriction to volumetric occluders [Schaufler
et al. 2000], or the restriction to larger occluders close to the view
cell [Durand et al. 2000; Leyvand et al. 2003].

Visibility Sampling. A popular concept in visibility computation
is to sample visibility interactions on a regular grid using graphics
hardware, giving an approximate solution. Conservative algorithms
attempt to interpret a pixel as a small subset of ray space [Durand
et al. 2000; Wonka et al. 2000; Koltun et al. 2001; Leyvand et al.
2003] and record occlusion information only if all rays correspond-
ing to the ray space subset are blocked. These algorithms are not
able to handle complex visibility configurations within the subset of
ray space defined by a pixel and basically require a single occluder
to block all rays [Cohen-Or et al. 1998]. As computing power in-
creased, it became feasible to avoid conservative algorithms and
just sample ray space very densely. A conceptually elegant idea is
to shoot either random rays from a view cell [Airey et al. 1990], or
to first sample the boundary of the view cell with points and then
sample visibility from each of these points [Levoy and Hanrahan
1996]. Recent algorithms try to address the question on how to best
position new samples based on visibility information from previ-
ous samples [Gotsman et al. 1999; Pito 1999; Wilson and Manocha
2003; Nirenstein and Blake 2004; Wonka et al. 2006].

Sampling in other fields. Sampling has been widely used in
global illumination to calculate the illumination integral [Dutré
et al. 2003]. In contrast to global illumination, it is not an integral
that is evaluated in visibility computations, but the maximum set of
different values of the visibility function. Related to our technique
are the VEGAS algorithm [Lepage 1980], which adapts the sam-
pling distribution based on an estimation of the integrand from pre-
vious samples, and Metropolis sampling [Veach and Guibas 1997],
where a new sample is generated by displacing the previous one
randomly. A similar strategy is known as mutation in genetic al-
gorithms [Goldberg 1989]. Analogous to genetic algorithms, we
start with a random sampling step and then generate new samples
by mutation. In sampling theory, this strategy is also called adap-

tive cluster sampling [Thompson and Seber 1996], and it is used to
sample rare populations.

3 Overview

3.1 Problem Statement

We consider visibility problems of the following form: given a view
space as a set V of view cells v∈V , and a set O of objects o∈O, we
are interested in which objects can be seen from which view cell.
More formally, let a ray r = (xr,dr) be defined by a ray origin xr

and a ray direction dr. The ray casting function h(r) ∈ O assigns
each ray the first object hit by the ray. Then the desired visibility
solution is the exact visible set EV Sv for each view cell. It is defined
as the actual set of objects that can be seen along some ray from v:
EV Sv = {h(r)|xr ∈ v}.

The potentially visible set PV Sv of a view cell is an approximation
to EV Sv determined by a particular visibility algorithm. Conserva-
tive algorithms overestimate the visible set (PV Sv ⊇ EV Sv), while
aggressive algorithms underestimate it (PV Sv ⊆ EV Sv). Sampling
algorithms such as the one described in this paper provide an ag-
gressive solution. We also describe a visibility filter to extend PVSs,
which makes the solution approximate (PV Sv ∼ EV Sv).

A global visibility solution is simply the set {PV Sv|v∈V}. A global
visibility algorithm is progressive if at each step i it computes a so-
lution {PV Si

v|v∈V} with PV Si−1
v ⊆PV Si

v ⊆EV Sv. Loosely speak-
ing, we only call a solution progressive if it is so globally, i.e., the
ratio |PV Si

v|/|EVSv| increases for all view cells v simultaneously
during the runtime of the algorithm (in particular, sequential view
cell evaluation is not a progressive solution).

3.2 Algorithm Overview

The Adaptive Global Visibility Sampling (AGVS) algorithm uses
sampling to determine visibility. We assume the availability of a
ray tracing algorithm [Shirley et al. 2006] that can evaluate h(r),
and in addition r∩ v for any view cell v.

At the core of our algorithm is a global visibility sampler (Sec-
tion 4.1), which casts bidirectional rays to determine maximal free
line segments in the scene, and then determines their contribution
to all view cells. Thus a single visibility sample can contribute to
many view cells.

The second part of the algorithm generates the samples. The 5D
sampling domain is too large to quickly capture all important rays
by regular sampling. Therefore we use different heuristical distribu-
tions which are combined in an adaptive mixture distribution (Sec-
tion 4.2) that takes into account their success in discovering new
PVS entries. The sampling uses several ray distributions that are



suitable for a global visibility algorithm. Stationary distributions
(Section 4.3) sweep visibility globally and seed the mutation-based
distributions (Section 4.4), which focus the sampling at places of
visibility changes and allow adapting the sampling rate to the dis-
tance of visible objects.

We present visibility filtering (Section 5), which counteracts errors
due to undersampling in early stages of the algorithm by includ-
ing in the PVS also objects that are likely to be visible based on
the sampling density. We also describe a quick algorithm to dis-
cover areas affected by scene edits, thus allowing dynamic edits to
the scene without having to recompute the whole visibility solution
(Section 6).

4 Adaptive Global Visibility Sampling

In this section we describe novel sampling strategies that are well
suited to the global computation of visibility.

4.1 Global Visibility Sampling

Visibility sampling relies on ray tracing to obtain visibility infor-
mation. One main reason for the efficiency of our approach is the
use of spatial coherence in visibility. In contrast to a per-view cell
algorithm, where each ray can only contribute to one single view
cell, we determine all view cells the ray encounters, as was pro-
posed in the context of view-cell optimization [Mattausch et al.
2006], and calculate the contribution to those view cells. For this,
we use visibility samples created from rays.

Visibility sample definition. In visibility sampling algorithms, a
sample ray r is usually defined to start in a view cell (xr ∈ v) and
with a direction dr. A visibility contribution is then determined by
shooting the ray using a standard ray tracer and determining the
closest object h(r). We define the contribution of a ray as

H(r) = {h(r)} if h(r) ∈ O (object hit)
= {} otherwise (no object hit)

(1)

In global visibility, however, we are not only interested in the visi-
bility contribution of the hit object to the view cell at the ray origin,
but to all view cells pierced by the ray along an unobstructed path
from the hitpoint. This path is equivalent to the maximal free line
segment defined by r. To obtain this line segment, we not only
shoot the original ray, but also the ray in the opposite direction, i.e.,
−r = (xr,−dr), and obtain a second hit h(−r). Our sample s is thus
a line segment associated with zero, one or two visible objects at its
endpoints, with contribution H(s) = H(r)∪H(−r). A sample with
one or two visible objects (|H(s)| > 0) is a valid sample.

Updating view cells. The view cells affected by a valid sample
are determined by intersecting the line segment with the data struc-
ture containing the view cells. The objects associated with the sam-
ple are then added to all view cells pierced by the line segment.

Sample contribution. During this process, the contribution of
the sample is evaluated in order to distinguish between samples
which give us valuable information about visibility and samples
which either hit no object or hit objects already discovered as visi-
ble. This measure will be used to drive the sampling process (Sec-
tion 4.2).

The local contribution of the sample to a particular view cell equals
the number of objects associated with the sample that are added to
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Figure 3: Left: This figure shows the creation of visibility samples.
The scene objects are shown in blue. A sample point (see p1 and p2)
is generated together with a direction vector. A ray is cast from the
sample point in the generated direction as well as into the opposite
direction. Right: A ray associates all its points with visibility of
object(s) on its endpoints. These objects are added to all PVSs of
view cells pierced by the ray.

the PVS of the view cell (and have not already been included in the
PVS in previous steps of the algorithm): c̄(s,v) = |H(s)\PVS(v)|.
Note that c̄(s,v) yields a value of 0, 1 or 2. The total contribution
c(s) of the sample is simply the sum of contributions to all view
cells V (s) which are pierced by the sample:

c(s) = ∑
v∈V (s)

c̄(s,v) (2)

4.2 Adaptive Mixture Distribution

In addition to the explicit use of spatial visibility coherence, the
most important novel contribution of our global visibility algorithm
is the ability to adapt to the visibility structure in the scene. This
is achieved in two ways: first, by choosing sample distributions ac-
cording to previous visibility contributions, and second by using a
ray mutation strategy which places samples near visibility events
and thus adapts to the required sampling density in ray space (de-
scribed in Section 4.4).

We have found that no single sampling strategy is efficient for all
types of scenes, as the efficiency of a sampling strategy depends on
the scene properties and its visibility characteristics. We therefore
employ a probabilistic approach based on a distribution mixture: we
allow the use of several different distributions to generate visibility
samples. The success of previous samples generated by each distri-
bution is used to drive its selection probability, thus automatically
adapting to the scene visibility properties. This strategy is reminis-
cent of VEGAS importance sampling [Lepage 1980], although we
do not try to compute an integral here.

More specifically, the contribution C(D) of a sample distribution
D at a specific point in time is defined as the sum of contributions
c(s) of all samples s in a reference set S(D). The reference set is
typically the set of rays generated by the distribution D in a certain
time window:

C(D) = ∑
s∈S(D)

c(s). (3)

Next we compute the average contribution per sample from D as
cs(D) = C(D)/|S(D)|. To account for the fact that samples from
different distributions have different processing costs (e.g. a dis-
tribution need not be very succesful per ray, but the rays are gen-
erated and cast very quickly) we compute the weight w(D) of the



distribution D as its average contribution per time unit: w(D) =
cs(D)/ts(D), where ts(D) is the average time for processing a sam-
ple from the distribution D. ts(D) is measured for each distribution
in a calibration pass by generating and processing a sufficiently
large number of samples (e.g. 100k) from each distribution. Note
that w(D) can slightly change over time, so we repeat the calibra-
tion passes during the computation (e.g. after each 100M samples).

The probability for drawing a sample from distribution Di in the
mixture distribution is then set to:

p(Di) =
w(Di)

∑D w(D)
. (4)

The following two subsections describe the distributions which we
use in the algorithm. Three of these distributions are stationary,
while two mutation-based strategies adapt to the actual visibility
contributions.

4.3 Stationary Ray Distributions

A distribution is stationary if each sample is independent of previ-
ously drawn samples. These distributions are used to provide an
initial efficient covering of ray space and to seed the more adaptive
mutation-based strategies described below. The stationary distri-
butions explore the whole ray space and therefore guarantee the
progressivity of the algorithm.

In contrast to per-view cell visibility, there is no obvious “uniform”
sample distribution. Instead, the best strategy to discover new vis-
ible objects depends on the visibility configuration of the scene.
We list three distributions which we have found to work well. All
rely on low-discrepancy series like the Halton sequence to generate
samples. We use independent random variables ψ1,ψ2, . . . in the
range [0,1).

View space-direction distribution. This distribution makes sure
that all view cells are sampled in all directions. We generate a ran-
dom point x in view space using a uniform distribution and a ran-
dom direction d using a uniform distribution in the directional space
with spherical coordinates φ = 2πψ1, θ = arccos(1−2ψ2).

Object-direction distribution. This distribution makes sure that
all objects are sampled in all directions (note that this can be in-
efficient if the view space does not fully include the object space).
We generate a random point x on the surface of a randomly chosen
object, and a random direction d using a cosine-weighted uniform
distribution on the hemisphere erected over the tangent plane of x.
The spherical coordinates of d are: φ = 2πψ1, θ = arccos

√
ψ2.

Two-point distribution. This distribution focuses on the most
probable visibility interactions between objects and view cells. It
can be seen as a combination of the previous two strategies which
considers only the points generated by them and not the directions.
So from a point o on a random object and a point v in view space,
the ray generating the visibility sample is r = (v,o− v). The most
important feature of the two-point distribution is that it adapts to
the shape of the scene. For example, typical urban scenes are much
wider than they are high. This fact is taken into account in the
two-point distribution so that most samples are cast in a roughly
horizontal direction. For this reason, the two-point distribution is
typically the most successful stationary sampling strategy.

4.4 Mutation-Based Distributions

Even using an optimal mix of stationary sample distributions, the
size of ray space that needs to be sampled is prohibitively high.
The required sampling density is very non-uniform: for a particular
view cell, far away regions need to be sampled more densely than
near regions. Furthermore, Wonka et al. [2006] have shown that the
efficiency of visibility sampling can be vastly improved by trying
to sample near possible changes in visibility. We exploit these two
observations using mutation-based sampling distributions: a two-
point mutation distribution and a silhouette mutation distribution.

Mutation candidate maintenance. Both strategies are based on
the following principle: During the sampling process, each sample
with non-zero contribution c(s) (regardless of which distribution
generated it) is stored as a candidate for mutation. In case the vis-
ibility sample has two objects associated with it (|H(s)| = 2), and
both objects actually generated a contribution in at least one cell,
we generate two mutation candidates from it, as we distinguish be-
tween the segment termination point (where the object under con-
sideration is hit) and the segment origin (either the intersection with
an object or a view cell). These two points and the object id of the
object are stored with the sample.

All mutation candidates for a strategy are collected in a buffer.
When a new sample is requested from a mutation-based strategy, a
candidate is chosen from the buffer. However, instead of choosing
randomly from the buffer, we observe that the history of mutations
conveys important information about the possible importance of a
candidate: If a candidate has received a large number of mutations
already, it is likely that its neighborhood is already well explored.
On the other hand, new mutation candidates have not received any
mutations so far, and especially after sampling has been running
for some time, new mutation candidates represent more “difficult”
cases of visibility. We therefore count the number of mutations gen-
erated from each candidate. This mutation count is used to sort the
buffer and we always select the candidate with the lowest mutation
count value. If the buffer is full, the candidate with the highest value
is dropped.

Two-point mutation. The aim of the two-point mutation is to
adapt the sampling rate of visibility to the complexity of ray space.
More specifically, given a segment s = (so,st), the segment termi-
nation point st is mutated so as to discover nearby objects, while
the segment origin so is mutated so as to discover nearby view cells
(note that it is entirely due to the global nature of the algorithm that
a strategy for discovering new view cells is possible at all).

Let o(x) be the object or view cell (in case the reverse ray generating
the segment didn’t hit an object) associated with point x ∈ {so,st},
and r(o) the radius of the bounding volume of object or view cell
o. Then we construct a plane perpendicular to the segment, and
mutate x by drawing a new point x′ from a two-dimensional Gaus-
sian distribution on this plane centered at x with standard deviation
σ = r(o(x)) (see Figure 4, left).

Note that for both mutation-based strategies, once we have obtained
the new segment (s′o,s

′
t), a visibility sample is generated from this

segment by creating a forward ray r′ = (xr′ ,dr′) together with the
reverse ray −r′ with xr′ = (s′o + s′t)/2 and dr′ = s′t − s′o. The new
ray origin is chosen at the center of the new segment so as to avoid
local occlusion at the start or termination points of the segment.

Silhouette mutation. The silhouette mutation adapts the deter-
ministic adaptive border sampling strategy proposed by Wonka et
al. [2006] for a progressive setting. This strategy places samples



Figure 4: Left: The two-point mutation moves both start and
endpoints according to Gaussian distributions. Right: Silhouette
search.

near the silhouettes of newly discovered objects, where changes in
visibility are most likely to occur. However, deterministically sam-
pling the whole silhouette of an object is not only computationally
expensive, but would also quickly saturate the list of mutation can-
didates.

Therefore we chose a probabilistic approach that randomly selects
one silhouette point. As in the two-point mutation, a plane perpen-
dicular to the segment is placed at st . On this plane, we choose
a random direction d. Then we shoot “discovery rays” with end-
points s′t along the segment (st ,r(o) ·d). The closest discovery ray
that does not intersect the object is chosen as a silhouette ray and
the mutation point s′t is used to construct a new visibility sample
(see Figure 4, right).

Note that for most ray tracers, these discovery rays can be evalu-
ated much faster than ordinary rays. First, the region of interest
can be restricted to the bounding volume of the object so that the
ray does not need to be intersected with the whole scene. Second,
the segment origin remains fixed for all rays, so that ray packet op-
timizations can be exploited. For example, shooting packets of 4
rays, a quaternary search of depth 3 provides a ray very close to the
object silhouette.

Important visibility events also appear at possible depth disconti-
nuities discovered by the silhouette sample. For this, we adapt the
reverse sampling strategy described by Wonka et al. [2006]. When
the silhouette ray r = (so,s

′
t −so) is cast, a depth discontinuity is re-

ported if the distance between mutated segment endpoint s′t and the
actual hitpoint h(r) is larger than k times the original object radius:
s′t − h(r) > k · r(o), where k is a user supplied constant (we used
k = 3). This margin is intended to avoid situations where a closer
hitpoint on the same object could be interpreted as a depth discon-
tinuity. Now instead of looking for the exact depth discontinuity as
in reverse sampling, we do a new silhouette mutation as described
above using the segment (s′t ,h(r)), and store the resulting ray along
with the original silhouette ray.

4.5 Termination of the computation

An important problem of previous visibility preprocessing tech-
niques has been choosing the parameters of the method in order
to achieve a good solution. For conservative methods, the parame-
ters need to be set so that the PVS is not too overestimated, whereas
for aggressive methods the final pixel error needs to be controlled.

The fact that our method is based on sampling allows us to devise
a very elegant way to estimate an average pixel error on the fly.
The estimated pixel error serves as a measure of the quality of the
current solution and also as an intuitive termination criterion.

We define the average pixel error as the average number of rays
from a randomly positioned and oriented camera with a given reso-

lution (number of rays) which hit a different object when using the
PVS related to the camera position compared to the situation when
using all scene objects.

The distribution of rays covered by randomly positioned cameras
corresponds exactly to the view space-direction distribution of rays
described above. Thus we evaluate the ratio of contributing rays
generated by the view space-direction distribution. As a contribut-
ing ray we count a ray which generated a new PVS entry with re-
spect to the view cell contaning the origin of the ray. The average
pixel error ε is given as ε = resolution ·Nc/N, where N is the num-
ber of rays generated by view space-direction distribution and Nc is
the number of contributing rays.

In order to obtain a sufficiently large N we use a time window con-
sisting of rays recently generated using the view space-direction
distribution. We adapt the size of the window following the ratio of
Nc to N: in the beginning of the computation a small window is suf-
ficient, whereas in the nearly converged state, when the pixel error
is small (1 pixel / 1M pixel image), we need to collect many rays
in order to estimate the pixel error with reasonable precision. By
following the weak law of large numbers for binomial distributions
we get:

N ≥ 1− ε

k2ε(1−P)
, (5)

where P and k are constants such that P represents the desired prob-
ability with which the absolute difference between the estimated er-
ror and the real error is smaller than kε . We observed that a good
tradeoff between the size of the window and the accuracy of the
estimation is achieved using P = 0.9 and k = 0.5.

4.6 Putting It All Together

The complete Adaptive Global Visibility Sampling algorithm
works in a loop as follows:

while (!terminate)

{

select distribution

draw a sample from selected distribution

cast forward and reverse rays

if (hit)

{

update view cells

if (contribution > 0)

store sample as mutation candidate

}

update distribution probabilities

}

Note that since the solution is progressive, it can be inspected at
any time, and if it is not satisfactory, the algorithm can easily be
resumed.

Loop optimization. In practice the loop is not carried out for in-
dividual rays, but for larger batches of rays (e.g., 1M). This allows
reordering the samples so as to achieve better coherence for the ray
tracer. In addition, if the window used for calculating ray distri-
butions is chosen to be exactly one batch, the update of the distri-
bution probabilities C(D) (see Section 4.2) needs to be carried out
only once per batch.



5 Visibility Filtering

While Adaptive Global Visibility Sampling is an aggressive algo-
rithm (i.e., each PVS only contains a subset of the exact visible
set), the sampling strategies described in the previous section aim
to approach the exact solution as quickly as possible. However,
especially in the initial phases of the algorithm, visible errors will
appear.

To cope with this problem, we introduce the so-called visibility fil-
ter, which extends the computed PVSs by additional objects which
are likely to be visible. The main novelty is that we take into ac-
count the visibility error expected from the sampling density. This
means that PVSs for regions which have been sampled densely will
not be extended significantly, whereas undersampled regions will
have more objects added. The visibility filter fills gaps in “visible
fronts” that appear when the sampling rate in a region is lower than
the object density. It cannot discover objects that are visible in an
isolated manner (i.e., objects smaller than the sampling density that
have no already discovered visible neighbors).

The visibility filter can be applied as a postprocess to all PVSs af-
ter running the main algorithm, or it can be evaluated lazily during
walkthrough for the current view cell. We present an object space
filter, which adds objects in proximity of already visible objects,
and a view space filter, which merges visible objects from neigh-
boring view cells.

Figure 5: Illustration of the object space visibility filter. Objects
originally in the PVS are shown in blue. The extended bounding
volumes are shown in black. Objects added to the PVS by the filter
are shown in red.

Object space filter. The object space filter works on a view cell
v and its potentially visible set PV Sv. For each object o ∈ PV Sv,
the size of extension e(o) is calculated as the estimated distance to
a visibility sample in the vicinity of the object. The object space
filter is then applied by extending the bounding volume of each ob-
ject o by e(o) (e.g., the radius of a bounding volume or the axes of a
bounding box), and adding to PV Sv all scene objects that intersect
one of the extended bounding volumes (see Figure 5). The exten-
sion e(o) can be calculated either from the density of all visibility
samples intersecting the view cell (global extension eg(o)), or from
the density of samples that hit the object (local extension el(o)).

To estimate the global extension eg(o), we assume that nv visibility
samples are uniformly distributed on a sphere of radius d(o), which
is the distance of the object from the view cell. As extension we use
half the approximated distance between two neighboring samples
on this sphere: eg(o) = 2d(o)/

√
nv.

To estimate the local extension el(o), we assume that the nv(o) vis-
ibility samples which hit the object are uniformly distributed on a
disk of radius r(o), which is the radius of the object bounding vol-
ume. As extension we use half the approximated distance between

two neighboring samples on this disk: el(o) = r(o)/
√

nv(o).

Note that both estimations are not accurate: the global estimation
ignores that rays due to the mutation-based strategy are not dis-
tributed uniformly, while the local estimation ignores that parts of
the object may be occluded from the view cell, leading to an overes-
timation of el . In practice we therefore choose the minimum of the
two estimations, and allow the user to increase or decrease the fil-
ter size with a constant k for more conservative or more aggressive
results: e(o) = k ·min(eg(o),el(o)).

View space filter. The view space filter is useful if the size of the
view cells is relatively small (i.e., comparable to size of the objects).
This filter is very simple: it merges the PVS of the given view cell
with the PVSs of neighboring view cells, for example those with
the most similar PVSs.

6 Dynamic Updates

Previous PVS-based methods were not applicable in interactive sce-
narios in which the scene gets manipulated. Our method can work
in interactive sessions and so we also propose a method for updating
the global visibility solution after scene edits.

Scene edits are implemented as follows: (1) When deleting an ob-
ject, we remove it from the PVSs of all view cells. (2) When in-
serting an object O, we need to remove all objects from the current
visibility solution that might be hidden by O: For each view cell v
we construct a penumbra shadow volume of O and remove all ob-
jects of PVSv which intersect the shadow volume (see Figure 6).
(3) When editing an object (e.g. scaling, translation, mesh modifi-
cation), we perform subsequent deletion and insertion of the object.

Note that before we continue with the visibility computation, we
also need to update the ray casting data structures in order to reflect
the scene edits.

Figure 6: Dynamic visibility updates: One object has been inserted
(in blue). For a given view cell (in orange) the PVS objects inter-
secting the penumbra of the inserted object are removed from the
PVS (in red). The remaining PVS objects (in green) can not be
affected by the insertion operation.

AGVS is suitable for dynamic edits because the visibility solution
gets constantly refined, even without explicit treatment of the edits
in the sampling process. The removed entries are quickly reinserted
by our visibility sampling strategies (if they are still visible); in
particular the mutation-based strategy will automatically focus on
places in which the entries have been invalidated.

Dynamic updates are an important tool in global visibility analysis:
a user can tentatively insert or edit an object (e.g., a wall or other
blocker) and observe the effect this object has on the visibility so-
lution and on render cost. This can be used to remove visibility
hotspots in large scenes.



7 Results

We have evaluated the proposed method on five different scenes,
which are depicted in Figure 8 (top row). Statistics including the
number of triangles, objects, and view cells are shown in Table 1.
The view cells are represented as kd-trees, the objects as bound-
ing volume hierarchies (BVH). The view space kd-tree is generated
according to the optimized construction described in [Mattausch
et al. 2006]. The object BVH is built using the surface-area heuris-
tics. The batch size for the computation was set to 1M samples, the
buffer size for the mutation candidates was 2M samples.

The results were measured on a server with two Intel Xeon E5440
2.83GHz quad-core CPUs with 32GB of RAM. We used a custom
BVH-based ray tracer which provides between 0.1M and 1M rays/s
on the tested scenes. The ray tracer is about 30% slower than the
state-of-the-art [Reshetov et al. 2005], but has very fast setup times
(a few seconds for building a kd-tree for Arena, about 1-2 minutes
for Powerplant), which is important for visibility analysis appli-
cations. Note that in the plots in this section, one sample always
corresponds to two rays being cast, the forward and the reverse ray.

Scene triangles objects view cells

Vienna 3,609,675 6,156 8,192

Arena 4,528,160 7,804 8,192

Pompeii 5,646,041 12,288 8,192

PowerPlant 12,748,510 10,150 8,192

Boeing 777 337,000,000 130,000 8,192

Table 1: Statistics for all scenes.

We have implemented the presented method in a multi-threaded ap-
plication. Visibility is computed in the background by the visibility
computation thread, while the GUI thread allows interactive ma-
nipulation/walkthrough using the current visibility solution. Fig-
ure 7 shows a small subset of the samples generated by the AGVS
algorithm and demonstrates how the samples adapt to the visibil-
ity structure of the scene. Figure 2 shows an example how AGVS
could be used for interactive visibility analysis. The accompanying
video shows a real-time capture of such an analysis using our tool.

Figure 7: Subset of rays generated by the AGVS algorithm after
about 20M samples have been cast. Left: Vienna, Right: Pompeii.

Progressive sampling efficiency. We are not aware of any pub-
lished method that is able to compute global visibility progressively.
Therefore as a basic reference technique (REF) we use a method
which randomly selects a view cell and then casts a ray from a ran-
dom point inside the view cell into a random direction. If an object
is hit, we add this object to the PVS of the view cell. Similar to our
new method, REF is fully progressive; as we cast more and more
rays the PVSs become more accurate.

As a second reference we implemented a GPU-based method
(GPU-REF), which is similar to the techniques used in indus-

try [Hastings 2007]. This progressive method selects a random view
point, renders the scene into a z-buffer of 1,024×1,024 pixels for
six directions of the surrounding cube, and uses occlusion queries to
discover visibility of the objects. NVIDIA’s depth clamping func-
tionality was used to avoid problems with the near clip plane. We
evaluated the GPU-REF method on all but the Boeing 777 scene,
as our GPU renderer is in-core and we can only run it on desktops,
which do not have sufficient memory to store the Boeing 777 scene.

As a third reference, we use a global method that uses only the
view space-direction distribution for sampling (SGVS for station-
ary global visibility sampling), similar to [Mattausch et al. 2006].
SGVS shows how much of the benefit of our method is due to the
global view cell evaluation (when comparing to REF), and how
much additional benefit is gained by the adaptive mixture distribu-
tion and the mutation-based sampling strategies (when comparing
to AGVS).

Convergence. Figure 8 compares the convergence behavior of
the four methods on our test scenes. We show the progressive evo-
lution of the PVS size (measured as the average number of triangles
in a PVS) with respect to the running time. Using the PVS size to
compare the methods is a compromise: ideally, one would like to
compare to the exact solution, and plot |PV S|/|EVS|. However, we
are not aware of any algorithm that can provide an exact solution
for the scenes we tested in reasonable time, and as shown by Wonka
et al. [Wonka et al. 2006], the exact solution suffers from numerical
errors similarly to the ray tracing solution. Therefore we believe
that PVS sizes are a good measure for comparing the relative effi-
ciencies of algorithms. As an alternative evaluation, we provide a
comparison of pixel error later on. Note that we do not use visibil-
ity filtering in this test, so the AGVS curve does not overestimate
the PVS.

The most important observation from these plots is that our pro-
posed AGVS method is much more efficient in determining the
PVS than the other methods. The AGVS method provides a PVS
significantly larger than SGVS and GPU-REF, and 2-4 times larger
than the one provided by REF. Note however that the factor between
the PVSs provided by the method is not an indicator of the speedup
or benefit of AGVS. Instead, one has to compare how much time it
takes the methods to achieve the same PVS size. The curves clearly
show that SGVS consistently takes more than one order of magni-
tude longer than AGVS to obtain the same average PVS size. When
compared to REF and GPU-REF, AGVS provides up to two orders
of magnitude speedup. Note that the positions marked by dashed
lines in the plots correspond to a state where AGVS is still in a
phase of steep increase, so if we extrapolated the curves to show
the same comparison for a later phase, the benefit of AGVS over
REF and GPU-REF would probably exceed two orders of magni-
tude. The figure shows clearly that convergence of the reference
method compared to AGVS is so slow that it is almost impercepti-
ble in the duration we have run the tests.

An interesting observation follows from the comparison to GPU-
REF. Although in the same time the GPU-REF method is able
to process more than one order of magnitude more samples
than AGVS, the overall convergence of GPU-REF is significantly
slower. The samples produced by GPU-REF are highly correlated
(6M samples always intersect at a common view point) and thus
they do not easily discover some difficult visibility interactions such
as objects occluded from a view cell by nearby occluders. This can
also be observed in the pixel error analysis shown later.

Influence of distributions. Figure 9, left, shows the mixture of
distributions actually selected by the adaptive mixture distribution
algorithm (Section 4.2) according to previous success rates (Vienna
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Figure 8: The tested scenes (top row) and the analysis of the convergenece of the tested methods (bottom row). The dashed lines show
reference points for comparing the benefit of AGVS over the better reference method (REF or GPU-REF), i.e., the factor of time needed to
achieve the same PVS. Visibility filtering is not used in this test.

model). The mutation-based strategies (shown as one curve) are
the most important, closely followed by the stationary two-point
distribution, which works well because it adapts to the shape of the
scene.
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Figure 9: Left: Ratio of distributions actually selected by the adap-
tive mixture distribution. Right: Pixel error estimation. The plot
shows the estimated pixel error in a city scene in comparison with
pixel error measured using 20,000 random views (1,024×1,024 pix-
els each).

Pixel error estimator. A typical curve corresponding to the pixel
error estimator described in Section 4.5 is depicted in Figure 9,
right. For comparison we also show the reference error curve mea-
sured using offline pixel error evaluation using 20,000 cameras.
Please note that the proposed estimator comes practically for free
already during the computation, whereas the camera-based evalua-
tion is a costly computation applied as a postprocess.

The pixel error estimator for the view point-direction distribution
closely follows the measured behavior. The pixel error estimator
for AGVS tends to be conservative as larger time windows must
be used (the number of uniform samples cast is low as these sam-
ples are not very succesful in discovering new PVS entries). Note
that using smaller k smooths the estimator, but makes it even more
conservative as larger time windows extending to the past are used.

Practical behavior. For demonstrating the practical influence of
the average PVS sizes shown above, we have measured the aver-
age and maximum pixel errors (i.e., number of incorrect pixels) for
a subset of viewpoints (more specifically, an actual walkthrough).
Note that there is as yet no feasible way to generate the “actual”

PVS as a reference: exact visibility solvers do not work on scenes
of this complexity, while the convergence of a brute-force reference
solution is simply too slow to be feasible.

Figure 10 shows this for the Vienna scene, with pixel error evalu-
ated using a walkthrough consisting of 1,282 view points. The first
part of the walkthrough corresponds to walking on a street, the sec-
ond part is a flyover sequence. After two hours of sampling, the
average pixel error among all tested view points drops to 10 pix-
els on a 1,024×1,024 screen, while the corresponding maximum
pixel error for the whole scene drops to 501 pixels. Note that these
values were reached even without the visibility filter. The applica-
tion of the visibility filter would typically reduce the error by an
order of magnitude at the cost of increasing the PVS size by 50
to 150%. The increase of PVS size depends on the scene and the
object representation. Although the visibility filter adapts to the
sampling density (it uses a smaller kernel when more samples have
already been cast), it typically does not converge to the unfiltered
solution: if the objects overlap in space, filtering even with no ex-
tension at all adds overlapping objects, including those which need
not be visible. Since the PVS increase can reduce the performance
of the target application, we suggest to use the visibility filter only
in the early stages of the computation to compensate for larger vis-
ibility errors. The decision for using/not-using the visibility filter
can also be based on the estimated pixel error.
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Figure 10: Pixel error measurement for Vienna scene on a resolu-
tion of 1,024×1,024.

Comparison with Guided Visibility Sampling. Guided Visibil-
ity Sampling (GVS) [Wonka et al. 2006] is an aggressive visibility
algorithm that also uses ray tracing to sample visibility. A compar-
ison between AGVS and GVS is difficult because GVS does not



work on object granularity and AGVS does not work on triangle
granularity.

We applied GVS on the view cells corresponding to the walk-
through sequence used for the AGVS pixel error evaluation and
converted the resulting triangle-based PVSs to the object-based rep-
resentation used by AGVS. Note that the conversion of GVS results
to object-based PVSs inflates the number of triangles in the PVS by
about 50% to 100%. There were 33 view cells visited by the walk-
through. GVS took 17 minutes to calculate these 33 view cells us-
ing about 500M samples. The termination criterion in GVS was set
to a threshold of 50 triangles per 1M rays [Wonka et al. 2006]. The
error evaluation of the GVS solution lead to an average pixel error
of 5.4 and a maximum pixel error of 424. Extrapolated to 8,192
view cells, GVS would have taken 62 hours to calculate visibility
for the whole scene.

For pure AGVS, we have higher pixel errors after 17 minutes of
computation (average 123 and maximum 4,519 – see Figure 10),
but at this time the PVSs for all 8,192 view cells are already avail-
able. After two hours of computation the average pixel error of
AGVS drops down to 10 and the maximum pixel error to 501.
This shows that AGVS can also compete with GVS for applications
where a saturated PVS is required.

Comparison with online occlusion culling. We implemented
support for PVSs in a rendering engine. For each view point we tag
objects in the corresponding PVS and use hierarchical view frustum
culling to remove objects outside of the view frustum. As a refer-
ence for the comparison we used the CHC++ algorithm [Mattausch
et al. 2008] – a state of the art online occlusion culling algorithm
based on hardware occlusion queries. A render time comparison
between View Frustum Culling (VFC), View Frustum Culling +
PVSs (VFC+PVS), and CHC++ can be seen in Figure 11, for a
walkthrough in Vienna and a walkthrough in Powerplant.
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Figure 11: Comparison of View Frustum Culling (VFC), CHC++,
and View Frustum Culling + PVSs (VFC + PVS) in a walkthrough
in Vienna (left) and Powerplant (right).

We tested the algorithms on an Intel Core 2 2.66GHZ quad-core
CPU (using only one core) and an NVIDIA GeForce 280 GTX
GPU. For all tested scenarios both VFC+PVS and CHC++ are gen-
erally faster than plain VFC, while there are passages where either
CHC++ or VFC+PVS performs better. Note that CHC++ usually
renders fewer triangles since it computes visibility for a set of im-
age samples from a given view point, whereas a PVS is computed
for all view points in a view cell, thus overestimating each individ-
ual view point. It is an interesting topic for future work to analyze
whether splitting view cells on demand during visibility sampling
could improve this overestimation. On the other hand there is an ad-
ditional cost associated with CHC++, which for some view points
becomes more important than visibility overestimation associated
with the view cell. For a reasonable number of view cells, we ob-
served that rendering using precomputed PVSs is competitive to
state-of-the-art online culling algorithms if a slight pixel error is
tolerable. Visibility preprocessing is usually the best choice when
visibility has to be known beforehand or a bound on visibility has

to be guaranteed. We are also interested in combining precomputed
visibility with occlusion queries in future work.

8 Discussion

Memory consumption. One advantage of our algorithm is that it
maintains only a small and easily controllable state. In contrast to
conservative and exact methods, no ray space or scene data struc-
ture is created to represent visibility. The memory consumption
therefore depends on two main factors: 1) The total memory re-
quired for the complete visibility solution (i.e., all PVS entries for
all view cells). This memory is influenced by the visibility structure
of the scene (which cannot be changed) and by the view cell subdi-
vision and object clustering (which can be changed). For example,
in a scene with 4,000 view cells and 1,000 objects visible per view
cell on average, the data structure would require 16MB of main
memory at convergence (using 32 bit object identifiers). There are
also algorithms for compressing PVS data if this becomes an is-
sue [van de Panne and Stewart 1999]. 2) The memory required
by the geometry of the scene and the ray tracer acceleration data
structure. This is the only factor that limits the type of scene our al-
gorithm can be applied to, and depends on the ray tracer being used.
The Boeing 777 model, for example, requires 28GB of main mem-
ory including the BVH. For larger models, out-of-core ray tracing
is an option that needs to be evaluated further.

Visibility coherence. Some recent algorithms have attempted to
exploit the spatial coherence between objects [Nirenstein and Blake
2004; Laine 2005]. The fundamental difference is that these algo-
rithms propagate occlusion, whereas our algorithm propagates vis-
ibility. However, neither hierarchical [Nirenstein and Blake 2004]
nor sequential [Laine 2005] propagation of occlusion information
lends itself to progressive computation, as this requires a com-
plete visibility solution for a particular region to establish occlu-
sion, whereas a single ray suffices to establish visibility. Note that
algorithms that construct the PVS top-down proceed in a depth-first
manner and are thus not progressive in our sense, while breadth-first
traversal is most likely infeasible due to memory requirements.

Object-level visibility. Since AGVS calculates all view cells si-
multaneously, it is sensitive to the total number of objects in the
scene, both in memory consumption for all PVSs, and in conver-
gence speed. Therefore, a triangle-level solution as provided by
Guided Visibility Sampling is typically not feasible. However, any
application that requires a global visibility solution will need to
compress triangle-level visibility into object-level visibility because
of the high memory overhead of triangle-level PVSs. For real-time
rendering applications, object-level visibility is also required be-
cause current graphics hardware works best on batches of triangles
and not on individual triangles.

Accuracy. Wonka et al. [2006] discussed the issue of accuracy
in the context of visibility processing and claim that accuracy is
limited by numerical precision even for exact algorithms. Spe-
cific limitations concern the tendency of current ray tracers to shoot
“through” an object if a ray pierces an edge that does not lie on
the silhouette. We have found that in scenes consisting of closed
objects, this artifact can be reduced by discarding rays that hit a
backfacing triangle, but the development and evaluation of robust
ray casters remains a topic of future work.



9 Conclusion

We described a new visibility algorithm that computes global vis-
ibility in the scene by calculating PVSs for all view cells simulta-
neously in a progressive fashion. The main contribution of the pa-
per is a set of adaptive sampling strategies based on ray mutations
that exploit the spatial coherence of visibility. The mutation based
distributions are mixed with other heuristic distributions using the
adaptive mixture distribution technique. We have shown that our
algorithm achieves more than an order of magnitude speedup com-
pared to sequential per-view cell visibility computation. We believe
that the Adaptive Global Visibility Sampling algorithm breaks new
grounds in the applicability of visibility algorithms. In addition to
making preprocessed visibility feasible for everyday use, it also en-
ables new applications like visibility analysis for level design.
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