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Today’s networked business environments re-
quire adaptive and easily integrated systems. 
Event-based systems control business pro-

cesses with loosely coupled systems. They enable the 
processing of large amounts of events, using them 
to monitor, steer, and optimize business processes 
with minimal latency. Typical application areas 
require fast decision cycles based on a large num-

ber of observable business events 
that can be used to discover ex-
ceptional situations or business 
opportunities. Typically, these 
areas include financial market 
analysis, trading, security, fraud 
detection, customer relationship 
management, and logistics such 
as tracking shipments and com-
pliance checks.

The success of event-driven 
business solutions depends on 
ongoing learning. It’s an iterative 
cycle, including the analysis and 
interpretation of past process-
ing results and the conversion of 
these results into event-processing 
logic. Analysis tools tailored to 

the characteristics of event data answer questions 
such as

Where did irregularities occur in my business? 
Did processes change over time? 
Upon which data were past automated decisions 
made? 
Did errors occur in the automated decision  
process? 
What happened at a certain point in time at a 
certain location, and who was involved? 

■

■

■

■

■

To answer these questions, business analysts must 
have extensive retrieval tools to extract required 
data sets. They also need expressive visualizations 
to navigate through event data and recognize re-
curring patterns and irregularities that influence 
the business performance. We developed the Event 
Tunnel system to address these needs.

Data integration and retrieval
Continuous capturing and processing of events pro-
duces vast amounts of data. Efficient mass storage 
is required to store all events and prepare the data 
for later retrieval and analysis—in the following we 
refer to this storage as the event space. During event 
processing in our event-based system, an auditing 
service captures and stores events in the event space. 
Furthermore, the Event Tunnel’s back-end system in-
dexes events for quickly retrieving correlated events, 
and it precalculates metrics. (For further informa-
tion on other event-based systems, see the “Related 
Work” sidebar.) Figure 1 (page 48) illustrates the 
overall architecture and data-integration process.

For maintaining information about business 
activities, events capture attributes about the con-
text when the event occurred. For example, a typi-
cal order event could have the following attributes 
as context information:

customer name (string),
order ID (string),
product ID (string), and
price (numeric).

This attribute template defines the structure of a 
certain class of events and is called an event type. 
It indicates the underlying type of state change in 
a business process that the event reflects.

■

■

■

■

Event-based	systems	monitor	
business	processes	in	real	
time.	The	event-tunnel	
visualization	sees	the	stream	
of	events	captured	from	such	
systems	as	a	cylindrical	tunnel.	
The	tunnel	allows	for	back-
tracing	business	incidents	
and	exploring	event	patterns’	
root	causes.	The	authors	
couple	this	visualization	with	
tools	that	let	users	search	for	
relevant	events	within	a	data	
repository.	
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Event-based systems and applications are starting to 
be employed in industrial settings. However, event 

data-specific visualization and analysis tools are still in 
their infancy. In the business intelligence domain, many 
approaches exist, from online analytical processing 
(OLAP) to data-mining techniques. These technologies 
are applicable for the analysis of event-based opera-
tional business data as well, but they don’t consider the 
nature and special characteristics of events. Compared 
to OLAP analysis,1 our approach consciously omits an 
abstraction of the data into a set of multidimensional 
key figures and focuses instead on the events as the 
data points for the visual data representations. Visual 
patterns and clusters provide high-level views of the 
data, and drill-down operations are possible down to 
the level of a single event.

Ming Hao and colleagues propose VisImpact to reduce 
the complexity of business data by extracting impact fac-
tors that identify either single nodes or groups of nodes 
from business flow diagrams that influence business 
operations.2 VisImpact finds relationships among the 
most important impact factors and supports an immedi-
ate identification of anomalies. Our approach doesn’t 
depend on process models, and it visualizes process-
behavior patterns based on events generated from IT 
systems. It doesn’t reduce the complexity of the data but 
allows the investigation of causal dependencies of events 
in a business environment. By extracting and visual-
izing manageable data sets, users can discover (hidden) 
relationships between events as well as impact factors for 
business operations.

The event-tunnel visualization displays search results 
from event-data queries. Szabolcs Rosznyai and col-
leagues proposed the search engine Event Cloud to 
analyze business events based on event queries.3 The 
system lets users search in large sets of historical events 
and uses a text-based view to display the search results. 
This is supported by the work of Marc Sebrechts and his 
colleagues, who showed that locating a search target is 
fastest in text-based views.4 We argue that for event data 
a visual representation of query results is more valuable 
because multiple data dimensions can be encoded at once 
in graphical features of the rendering and interrelations of 
retrieved events can be displayed as well.

Elke Rundensteiner and her colleagues implemented 
the XmdvTool for multivariate data visualization, letting 
users view data from different perspectives.5 We ex-
tended this approach by a visualization technique and 
show events without further abstraction in the context 
of their occurrence. Condition-based mappings en-
able the encoding of various event-data aspects in the 
rendering.

Polaris, proposed by Chris Stolte and his colleagues 
provides extensive visualization opportunities for multidi-

mensional data, including glyph-based visual mapping 
to shape, size, orientation, and color.6 We have adopted 
several of these techniques and propose a novel way to 
incorporate the time dimension into the visualization.

In information visualization, different approaches 
exist to display the time dimension in the data. John 
Carlis and Joseph Konstan7 and Marc Weber and his 
colleagues8 propose a time spiral, aiming at temporal 
patterns in periodic data. Arranging data in a spiral, 
their approaches provide the user with easy visual cues 
to both serial and periodic aspects of the data along 
with interactions such as the change in period over 
time. Ka-Ping Yee and his colleagues show a visualiza-
tion approach that uses a radial tree layout method for 
supporting the interactive exploration of graphs.9 In our 
approach, we combine and extend these techniques for 
displaying networks of correlated events that occur over 
a certain period of time.
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To back-trace and analyze business-process 
events, it’s important to correlate temporally and 
semantically related events. We can use elements 
of an event context to defi ne a relationship be-
tween events. Chains of correlated events refl ect 
instances of a business process.

The event-tunnel visualization follows a query-
driven approach. We unifi ed the access to event 
data by specifying event fi lters and patterns with 
an event-access (EA) expression language. This 
language lets event attributes be accessed easily 
and supports modeling complex conditions, in-
cluding calculations and aggregations. A typical 
search query is a set of conditions used to fi lter 
the events from the event space. A simple example 
of an EA expression is Order.Price BETWEEN 100 
AND 200 AND OrderDelivered.Status = ‘Delayed’. 
As the example shows, the query model lets the 
user defi ne a search scope for retrieving correlated 
events that match a set of defi ned conditions. The 
Event Tunnel system applies the query model for 
multiple purposes. Conditions separate the event 
data into (eventually overlapping) groups. The sys-
tem can then visually map condition-based coher-
ences to color, shape, spatial proximity, and other 
visualization characteristics.

The event-tunnel visualization
Our event-tunnel visualization technique produces 

interactive, visual depictions of event-space data. 
The visualization is based on the metaphor of see-
ing the past stream of events as a 3D cylinder and 
providing two views of this cylinder: a side view 
plotting the events in temporal order (see Figure 
2a) and a top view that looks into the stream of 
events along the time axis (see Figure 2b).

The event-tunnel top view maps the 3D view 
into the event-stream cylinder to a radial 2D ren-
dering. Events in the tunnel’s inner circles are 
displayed smaller to simulate perspective projec-
tion. The motivation behind this technique is an 
observation we made early in the planning phase: 
The entropy and business value of the most recent 
events are usually higher in comparison to similar 
but older events. This tendency results from the 
fact that the most recent events are more relevant 
for a business analyst and that the fi nal events of a 
business process best characterize the outcome of 
a business case. The perspective projection in the 
event-tunnel top view refl ects this requirement. 
The latest events are visible and appear larger at 
the outer rings.

Following the metaphor of an event-stream cyl-
inder, one axis is determined and occupied unam-
biguously by time, whereas the remaining axis is 
assignable by a placement policy. During the course 
of our work, user feedback showed that integrat-
ing traditional, well-known scatter charts would 
be a valuable extension alongside the time-focused 
event-tunnel visualization we had until then. We 
therefore decided to generalize the approach and let 
users assign different placement strategies on both 
axes. In this way, the side view turns to a freely con-
fi gurable scatter chart (see Figure 2c), while the top 
view becomes a radial layout chart with perspective 
projection of events (see Figure 2d).

Placement policies
As previously mentioned, both axes of the event-
tunnel views are freely assignable. It’s up to the 
users to apply suitable placement strategies. The 
effectiveness of such strategies depends on the us-
ers’ objectives. Possible objectives might be to

avoid overlapping events,
display correlated events close to each other,
emphasize sequences of events to recognize pro-
cess patterns, or
display distributions of attribute values.

It’s hard to fi nd a single strategy that fi ts all re-
quirements at the same time. However, it’s pos-
sible to defi ne specialized policies that concentrate 
on certain aspects and try to optimize the output 

■

■

■

■

Event-based
system

Auditing service

Business
environment

Interfaces to the business
environment

Events

Time

Order placed Transport start Transport end Order received

Order ID: 1234
Customer Name:
John Q. Public
Product ID: 5678
Price: 3000

Order ID: 1234
Transport ID:
XYZ-123456
Duration est.: 3d
Date: 01/01/2000
Carrier: CarryMe
Status: Delayed

Order ID: 1234
Transport ID:
XYZ-123456
Date: 03/01/2000

Order ID: 1234
Date: 03/01/2000
Accepted: True

Event tunnel

...

Figure	1.	
The	system	
architecture.	
The	event-
space	back-end	
system	contains	
processed	
events	for	
analysis	and	
retrieval.
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with respect to these aspects. Ultimately, users can 
switch between placement strategies to fi nd the 
output most effective for their purposes. In the 
following, we propose several placement policies 
and discuss their results.

EA expressions and time placement policy. The EA 
expressions placement policy applies an EA ex-
pression on each event and maps the result to the 
position on the event-tunnel view axis. The EA ex-
pression must be formulated to return a numeric 
value. The simplest EA expressions select attribute 
values directly, such as Order.Price. Complex ex-
pressions allow arbitrary computations on event 
attributes and map the result to the position of the 
event on the axis. In the following example, the 
placement is based on a computation considering 
three event attributes: (Order.ProductPrice*Order.
Quantity-Order.ShipmentCosts)/1.5.

We can extract an event’s occurrence time with 
an EA expression as well. We provide the time as 
a separate placement policy to the user because 
it’s more intuitive to select and can be used as the 
default policy for the x-axis.

Sector placement policy. The sector placement policy 
focuses on distributions of events. It places them 
in nonoverlapping sectors on the axis. Applied to 
the top view’s y-axis, the outcome resembles well-
known pie charts. Conditions defi ne sector mem-
berships, although restrictions must be introduced 
to avoid multiset memberships.

The sector placement policy shows expressive re-
sults on medium to large event sets ranging from 
several hundred to 40,000 events. Combined with 
EA expressions or time placement policy accumu-
lations, leaks and outliers become visible.

Correlations placement policy. This policy places 
correlated events on the same axis position. Com-
bined with the time placement policy in the side 
view, the outcome closely resembles process charts 
such as GANTT diagrams.

Events can be part of several correlations. We 
address this by duplicating such events and placing 
a separate representation in each correlation chain 
to provide a defi nite outcome.

Centric event-sequence placement policy (CESPP). This 
policy extends the correlations placement policy. 
It avoids overlapping events and thereby gains ad-
ditional expressiveness as characteristic patterns 
emerge from the placement. Originally, we de-
signed the CESPP exclusively for the top view, but 
it can be applied in the side view as well.

The algorithm in Figure 3 (next page) avoids 
overlapping events by orthogonal shifts. If nec-
essary, the CESPP moves an event in the positive 
direction of the axis so that it doesn’t overlap its 
predecessor. The algorithm converts specifi c pat-
terns into abstract representations of underlying 
business-process instances. As regular instances of 
a business process proceed more or less according 
to a template, characteristic patterns emerge. This 
enables analysts to derive fuzzy, visual template 
representations for certain business processes. We 
can then assess anomalies by comparing the result-
ing pattern with the expected template. Therefore, 
the CESPP is well suited for analyzing smaller data 
sets to detect fi ne-grained causal relationships. Al-
though most of the emerging patterns are applica-
tion and data specifi c, we can characterize several 
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Figure	2.	The	event-tunnel	visualization	metaphor.	(a)	Side	view	of	the	
event	stream;	x-axis	is	occupied	by	the	time,	y-axis	is	freely	assignable.	
(b)	Top	view	into	the	stream	of	events.	Events	are	perspectively	projected,	
and	the	axis	around	the	tunnel	is	freely	assignable.	(c)	Generalization	of	
the	side	view	to	confi	gurable	scatter	chart	with	both	axes	assignable	by	
user.	(d)	Generalization	of	top	view	to	confi	gurable	radial	layout	chart.	
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basic, high-level patterns. Figure 3 schematically 
shows these patterns for the combination of the 
CESPP and the time placement policy. Table 1 lists 
how these patterns can be interpreted.

Fill-space placement policy. This policy stacks events 
that would overlap on top of each other. In combi-
nation with the EA expression or time placement 
policy, the space-filling mechanism shows distribu-
tions of events similar to a histogram. Because it 
neither requires user configuration nor depends on 
event correlations, it’s well suited as the side view’s 
initial layout.

Combining placement policies. Our model foresees 
the combination of the placement policies men-
tioned previously. In Figure 4, we provide a sche-
matic illustration of possible combinations. Keep 
in mind that certain limitations exist. To gener-
ate reasonable results, CESPP, correlations, and 
fill-space placement policies need to be combined 
with a placement policy that performs a definite 
placement for each single event.

Mapping data to event glyphs
Placement policies map data attributes or correla-
tion group membership to an event’s position in 
the visualization. In addition, an event’s appear-

ance can encode further information. Events are 
represented as glyphs consisting of an inner sur-
face surrounded by a border (see Figure 5). These 
elements’ shape, size, and color encode event at-
tributes. Coding the event glyphs’ size parameters 
is suitable for the mapping of (nearly) continuous 
attributes. For shape and color coding, we follow a 
condition-based approach. Although this provides 
great flexibility, you have to deal with overlapping 
conditions. For color coding, Event Tunnel divides 
the surface into equal-sized colored sectors Shape 
coding, however, is limited. The system can’t ren-
der multiple shapes in a straightforward fashion. 
Each event glyph has exactly one shape.

Data aggregation
The visualization approaches presented so far en-
able data analysis for single events. The necessity 
and usefulness for detailed business-process anal-
yses and back-tracing of business incidents is ob-
vious. However, hundreds of thousands of events 
might stream into the system, and even single se-
quences of correlated events might consist of too 
many events to be displayed independently. To ad-
dress our approach’s scalability and gain additional 
expressiveness, we propose aggregation facilities. 

By aggregation, we mean the process of consoli-
dating a set of events into a single aggregate data 
point. For instance, users can set an aggregation 
for order process correlations to consolidate each 
order process (represented by multiple events) to 
a single data point. After performing the aggre-
gation, the user can map data attributes charac-
terizing the group of consolidated events to the 
aggregate point’s representation. For instance, our 
system can map process measures such as order 
delay, gross order costs and profit, and satisfaction 
status to the data point’s color, size, or shape. 

In other application examples, one correlation 
might exist per customer, which correlates all 
events of a certain customer into a sequence of in-
terrelated events. In such cases, the event sequence 

Table 1. Interpretation of business-process patterns in Figure 3.

Pattern Interpretation

Stair pattern (a) Business process characterized by several idle 
times (potentially exceptional delays).

Noninterfering chain (b) Long-running process in which stages pass 
straightforwardly in regular time steps.

Parallel chain (c) Fast-executing process (automated or machine 
controlled) without idle times.

Acceleration worm (d) Process that accelerates continuously.

Deceleration worm (e) Process that decelerates continuously.

Rattlesnake (f) Reflects one extreme delay in the execution of 
a process.

(a)

(b)

(c)

(d)
(e)

(f)

CESPP(events, axis)

comment : Plot events according to the CESPP

for i  0 to events.length

do

if i  = 0

    then PLOTEVENT(events[i])

else

events[i].Position[axis]  events[i –1].Position[axis]

if OVERLAP(events[i],events[i –1])

     then SHIFT(events[i])

PLOTEVENT(events[i])

Figure	3.	
Examples	of	
characteristic	
business-
process	
patterns	in	a	
combination	
of	the	centric	
event-sequence	
placement	and	
time	placement	
policies.	Table	
1	explains	
the	individual	
patterns.
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might be aggregated to a customer data point, which 
allows visualization and comparisons of customers’ 
key characteristics. The advantage of this approach 
is that analysts can drill down from an aggregate 
point to a single event. In the visualizations, an ag-
gregate point can be collapsed or expanded. In the 
collapsed state, its representation resembles single-
event glyphs. In the expanded state, the events 
contained in the cluster are plotted on a resizable 
circle. The metric determining the events’ distance 
from the center of this circle is customizable.

The analysis framework
The event-tunnel top and side view visualizations 
generate interactive views on the event data. We 
embedded these views into a confi gurable work-
space for event analysis and mining purposes. 
The workspace includes facilities for querying the 
event space, fi ltering, and mapping data to visual 
features in freely confi gurable worksheets. Each 
worksheet might contain several event data visu-
alizations, such as the tunnel views. Other event 
data visualizations are a text-based view resem-
bling the output of common Web search engines, 
a details view listing the attributes of events and 
correlations, and a data-table view similar to 
known spreadsheet applications. 

The concept of worksheets integrates with the 
concept of fi ltering and data selection via EA ex-
pressions. Each tunnel view holds a data fi lter in 
the background, which selects the subset of data to 

be displayed. In this way, our system can modify a 
view’s data set by updating the corresponding fi lter 
expression. It’s possible to do this transparently for 
the user—for instance, when offering drag-and-drop 
operations to add data to a view. 

Figure 6 (next page) provides a screen shot of the 
analysis workspace. The user can add an arbitrary 
number of worksheets. The fi gure shows an exam-
ple of a worksheet containing an event-tunnel top 
view, a side view, a text view, and a data-table view. 
The analysis framework targets business analysts 
and developers of business logic, which is based on 
company-specifi c event processing.
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Knowledge discovery case study
To evaluate the visualization techniques previously 
presented, we applied the analysis framework for 
a business application in the fraud management 
domain. Fraud detection and prevention is a major 
issue in technology-driven business domains rely-
ing on online payment solutions and customer in-
teractions. A market heavily affected by fraud cases 
recently is online betting and gambling. Various 
forms of fraud exist, ranging from physical attacks 
by hackers over money laundering to the abuse of 
insider information about sporting events. 

Event-based systems help detect fraud and proac-
tively prevent it in near real time by using rules to 
continuously evaluate customer interactions. This 
permits an automated intervention in case of suspi-
cious activities. Implementing an efficient fraud de-
tection and prevention event-based system requires 
exhaustive knowledge of the underlying business 
processes and reoccurring fraud patterns. Keep-
ing such systems up to date requires data tracing, 
anomalies discovery, and pattern characterization.

Data tracing is a stepwise reproduction of re-
cent, influential occurrences. Typically, this step 
is triggered by some clue that serves as the start-
ing point for further investigation efforts. Our 
framework’s query-driven visualization approach 
complies well with data-tracing tasks. Analysts 
translate the initial clue into a query to extract 
a limited data set for the visualizations. They can 
then subsequently narrow or broaden the search 
scope to the required granularity level.

For anomalies discovery, our approach is currently 
limited to a manual anomaly-discovery process sup-
ported by the visual accentuation of data charac-
teristics with the application of placement policies, 
glyph mapping, and highlighting techniques.

Making the collected information useful after 
these analysis steps requires generalizing and char-
acterizing the discovered patterns. Pattern charac-
terization includes influential factors (such as key 
figures and threshold levels) as well as behavioral pat-
terns in event sequences whose combination makes 
up a reference pattern. Event-based systems use this 
reference pattern for discovering similar cases.

We used our event-tunnel analysis framework 
to attain this knowledge and evaluated it with an 
event-based fraud detection and prevention system 
for online betting providers. We generated the data 
in the following examples using a simulation model 
that comprises known user-behavior patterns in the 
simulated events. For the evaluation we simulated 
ordinary bet placing, cash-in and cash-out events, 
and randomly added 1 to 2 percent fraud cases from 
several available fraud templates. We parameterized 
the templates to vary in structure and conspicuity.

Tracing customer activities
In a requirements study for an online-betting pro-
vider, we observed that a complete department of 
security analysts was concerned with data tracing. 
For fraud investigations, security analysts had to 
regularly back-trace customer actions in case of 
system alerts. The current practice mainly relies 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)(l)
(m)

Figure	6.	The	analysis	workspace.	(a)	Visualization	worksheet,	(b)	quick-search	editor,	(c)	graphical	query	builder,	(d)	text	box,	
(e)	color	configuration	panel,	(f)	shape-mapping	panel,	(g)	filter	manager,	(h)	correlation	highlighting	panel,	(i)	size	mapping	
editor,	(j)	management	console	for	aggregation,	(k)	snapshot	management	console,	(l)	EA	expressions	editor,	and	(m)	similarity	
highlighting	controller.
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on screening log files, from which experienced 
analysts derive a mental picture of recent occur-
rences and customer behavior. Fraud investiga-
tions target single users, groups of users, or the 
analysis of complete markets and leagues. In the 
following, we assume that an event-driven fraud-
detection system automatically generates alerts 
for users with suspicious behavior. The security 
analysts regularly receive clues (the account IDs 
of users with fraudulent behavior) that serve as 
starting points for a data-tracing-analysis step. 

In Figure 7, we show an excerpt of a stepwise 
tracing and discovery process. We based it on an 
illustrative case that a test user discovered in the 
simulated data set. Figure 7a shows the historical 
events of two user accounts. Both users triggered 
an alert for the same sporting event (see Figure 7b) 
and bet type. The plot shows that they failed to 
place a bet because the system recognized them as 
officials. You can see that the sequences of actions 
of both users strongly correlate. Mapping the event 
attribute bet type to color reveals that both users 
exclusively place “free throws” bets (see Figure 7c).

The example proves that the information density 
in the event tunnel speeds up the reconstruction 
of business cases. Event-tunnel visualizations are 
more efficient compared to text-based output be-
cause they display multidimensional information 
in one view. Although a text-based list of events 
provides one degree of freedom (the sequential 
order), the event-tunnel visualization provides a 
time-based display, two size dimensions (surface 
diameter and border diameter), several color di-
mensions, and shape. The advantage over a text-
based view becomes more obvious when analyzing 
multiple account profiles: The exact temporal order 
of all users’ events is reflected in the visualization, 
and temporal coherences are immediately visible.

Discovering anomalies in betting behavior
Data-tracing activities focus on a specific business 
entity and user and track the events related to this 
entity. A more general approach is to start at a 
higher granularity level and drill down to more de-
tailed data. For instance, to investigate the bet type 
for which both bet placements failed in the previous 
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Figure	7.	Example	of	a	stepwise	investigation	of	online-betting	data.	(a)	Account	histories	of	two	users,	(b)	bet	amount	
distribution	for	a	selected	sport	event	(the	ranges	of	numbers	represent	the	distribution’s	sector	labeling),	(c)	suspicious	
occurrences	at	a	certain	point	in	time,	(d)	a	putter-on	account	profile,	and	(e)	cluster	of	high-stake	bets	with	an	outlier.
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example, analysts can broaden the search scope to 
all recent “free throws” bets in a certain market. 
Figure 7b shows a plot of bet events with the sector 
placement policy. The bets scatter around the tun-
nel according to the bet amount. The bet-placing 
failure events detected in the previous step appear 
in the bulk of average bet amounts. The plot ex-
poses one salient outlier temporally related to the 
detected bet-placing failure events. This data point 
presents a valuable link to conspicuous data. 

In Figure 7c, the account history events of the 
user who placed this bet are plotted in relation to 
the already detected suspicious account profiles. 
From the color and size mapping, analysts can 
conclude that the third user successfully placed a 
high-stake bet equivalent to the bet that failed for 
the two other users. One possible interpretation 

could be that user three is a putter-on who placed 
bets for people who are prohibited to bet, such as 
officials and players. The account profile of user 
three plotted in Figure 7d supports this hypothesis. 
The marked areas represent a recurring sequence of 
bet placing, bet won, and immediate cash-out. This 
sequence characterizes the putter-on pattern. The 
example shows that a single visual clue in a plot can 
lead analysts to immediately navigate to formerly 
unconsidered data. We found that in practice, such 
navigation chains can be followed by analysts over 
more than 10 steps before performing a completely 
new query. For example, the step in Figure 7d could 
lead to a further broadening of the search scope to 
investigate whether the system should have prohib-
ited the high-stake bet of user three. Figure 7e plots 
recent high-stake bets in a cluster. The plot shows 
that one bet is an outlier. This could be a data error 
or failure of the event-processing system.

Applications in online poker
Within the gambling domain, online poker has 
grown to be one of the most popular online games 
during the past couple of years. With increasing 
popularity, the poker domain has also attracted 
a bulk of crooks. The main problem in online 
poker is collusion. Several people on a virtual 
poker table might be in contact, unrecognized by 
the other players, to take advantage of their col-
lective knowledge. The recognition and prevention 
of collusion is challenging, requiring ever-evolving 
mechanisms to cope with continuously changing 
and improving strategies of fraudsters.

Another task for poker providers is proving col-
lusion. The number of customer complaints on 
collusion is increasing drastically. As a result, pro-
viders must be able to trace data and find evidence 
for specific cases. To show how you can effectively 
assess collusion, we used our event-tunnel visu-
alization to display interactions on a poker table 
over the course of several rounds of gameplay. Fig-
ure 8a shows a sequence of events for six players.

On the horizontal axis, we used the correla-
tions placement policy. We correlated the events 
per round so the events of each round are plotted 
on the same x-position. On the y-axis, we used the 
sector placement policy to plot the gain or loss of 
each player per round. Distinct colors distinguish 
the players. In addition, during a preprocessing 
step we assessed suspicious behavior such as a fold 
with a very good hand (irrational fold) or push-
ing with a bad hand. Typically, irrational folding 
is a strong indicator of collusion if another player 
on the table has a strong hand. In many cases it 
means that the irrational folder knows of that 
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Figure	8.	
Sequence	of	
poker	hands	
played	over	
several	rounds	
with	suspicious	
behavior	
highlighted	
by	(a)	shapes	
and	(b)	a	
scatterplot	of	
hands	played	
with	the	stake	
on	the	x-axis	
and	the	card	
quality	on	the	
y-axis.
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hand, which is the reason to fold. Such behavior 
is highlighted by shapes of the events. 

Measures on customers, such as how often and 
how long two or more players play on the same 
table, can be used to calculate a buddy-score. We 
highlighted such buddies in the visualization with 
a colored correlation band. The glyph size is deter-
mined by the accumulated player success in the 
current session. From the plot, you can derive the 
following information: Two players are buddies 
(purple and light-blue glyphs). When the purple 
player showed pushing behavior, the light-blue 
player won. At least in one round the light-blue 
player showed irrational-folding behavior and the 
purple player won. Compared to the other play-
ers, these two players were more successful. Some 
other players showed pushing behavior as well but 
weren’t successful (probably just a bluff).

In Figure 8b, the EA expressions placement pol-
icy occupies both axes. On the x-axis, the played 
amount of money is plotted while the quality of 
the cards is laid on the y-axis. The two identified 
buddies from the first plot are highlighted by col-
ors. The scatterplot shows a slight correlation be-
tween the quality of the hand and the stake and 
an accumulation of high-stake games with poor 
hands, which might be bluffs and pushers. From 
the plot, we can determine the overall behavior of 
certain players among all other players.

Case study results
The visual sequence patterns resulting from place-
ment strategies and glyph-based mapping to ac-
centuate various data dimensions combined with 
query and filter facilities enabled users to continu-
ously detect anchor points in their navigation chain 
through the data. With the ability to store color, 
shape, size, and placement policy configurations, 
tracing becomes more efficient because a visual 
representation of customer activities can be gener-
ated with a few clicks once a template configura-
tion is available. Considering these advantages, the 
event-tunnel visualization outperforms the current 
practice of manual log-file screening. One tradeoff 
in the top view compared to classical methods like 
histograms or scatterplots is the difficulty of label-
ing. We tried to alleviate this problem by showing 
tool tips with event-data information and metrics 
to the user when hovering over an event.

We plan to further extend the Event Tunnel 
system in future projects. For example, con-

dition-based operations (such as shape mapping, 
coloring, filtering, and querying) are limited to ab-

solute matching of event-data attributes. Semantic 
similarity operations would enrich the power of 
these retrieval and highlighting mechanisms. The 
characterization of event-sequence patterns is one of 
the strengths of the event-tunnel visualization. Cur-
rently, we’re elaborating on mechanisms to extract 
data that follow a given visual reference pattern as 
an extension to the current query engine. 
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