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Abstract

Cardiovascular diseases are the major cause of death in the developed world. About
half of these are due to ischemia heart diseases. The high death rate caused by
coronary artery diseases increases the need for preliminary detection. Perfusion
magnetic resonance imaging has turned out to be very promising for this purpose.
A contrast agent is injected intravenously to visualize the perfusion. Due to the
extremely time-consuming manual analysis of these relatively large datasets, efforts
for automatic approaches have been introduced. Most of these proposed methods
focus on parts of the analysis process. The present thesis identifies four steps for
an automatic analysis approach: localization of the heart, suppression of motion
artifacts, segmentation of the myocardium, and perfusion analysis.

This thesis presents a method covering all these subtasks in an automatic manner
with no need for any user interaction. First the acquired MR images are analyzed
to roughly detect the heart. A registration step compensates motion artifacts based
on the breathing of the patient. The segmentation step provides the contour of the
myocardium at every time step. Based on these segmentations the perfusion is
quantified.

This thesis gives a detailed description of the implementation. Furthermore
the algorithm was tested on 11 datasets. The obtained results are presented and
discussed. Inspection of the results indicates that this method is very promising for
an efficient perfusion analysis.





Kurzfassung

Die häufigsten Todesfälle in den Industrienationen basieren auf Erkrankungen des
Herz-Kreislauf-Systems. Davon entfallen in etwa die Hälfte auf ischämische Herz-
erkrankungen. Die hohe Sterblichkeitsrate bei Herzkranzgefäßerkrankungen macht
eine effiziente Früherkennung solcher Krankheiten nötig. Hierfür hat sich die Per-
fusionsdiagnostik mittels Magnet-Resonanz-Tomographie (MRT) als sehr vielver-
sprechend herausgestellt. Um die Durchblutung der Herzkranzgefäße sichtbar zu
machen, wird ein Kontrastmittel intravenös appliziert. Da die manuelle Analyse
solch großer Datenmengen sehr zeitaufwändig ist, wird eine Automatisierung ange-
strebt. Derzeit existieren allerdings nur Teillösungen einer automatischen Analyse.
In dieser Diplomarbeit wurden vier Schritte für die Implementierung einer solchen
Anwendung identifiziert: Lokalisierung des Herzens in den Daten, Unterdrückung
bzw. Kompensation von Bewegungsartefakten, Segmentierung des Herzmuskels so-
wie die Analyse der Perfusion des Herzmuskels.

Im Rahmen dieser Diplomarbeit wurde eine vollständig automatisierte Methode
zur Analyse von Perfusionsdaten entwickelt. Diese Methode berücksichtigt dabei
alle oben angeführten Teilbereiche: Zu Beginn wird durch Datenanalyse das Herz
grob lokalisiert. Ein nachfolgender Registrierungsschritt kompensiert die durch die
Atmung des Patienten entstandenen Bewegungsartefakte. Im Segmentierungsschritt
wird die Kontur des Herzmuskels in jedem Bild bestimmt. Abschließend wird die
Perfusion im segmentierten Bereich bestimmt und quantifiziert.

Diese Diplomarbeit liefert eine detaillierte Beschreibung der Implementierung.
Der vorgeschlagene Algorithmus wurde an elf Datensätzen getestet. Die erzielten
Ergebnisse werden präsentiert und diskutiert. Eine Kontrolle der Ergebnisse läßt
darauf schließen, dass die vorgestellte Methode zur automatischen Analyse von Per-
fusionsdaten geeignet ist.





Acknowledgments

I would like to thank Professor Eduard Gröller for accepting me as his master stu-
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Chapter 1

Introduction

Cardiovascular diseases are the major cause of death (∼40%, [Austria, 2006]).
About half of these are due to ischemia heart diseases. The high death rate caused
by coronary artery diseases leads to an increased demand of preliminary detection.
Myocardial perfusion diagnosis has turned out as a promising tool therefore. This
method of diagnosis allows to identify ischemic areas of the myocardium. Several
imaging methods for myocardial perfusion exist: Single Photon Emission Com-
puter Tomography (SPECT), Positron Emission Tomography (PET), Myocardial
Contrast Echocardiography (MCE), and Perfusion Magnetic Resonance Imaging
(Perfusion MRI). Perfusion MRI has turned out as a very promising method. Un-
like SPECT and PET, MRI does not work with radiation. Additional, attenuation
problems known from MCE do not occur with MRI.

By perfusion MRI the distribution of an injected contrast agent is observed over
a time period (figure 1.1). This distribution is an indicator for the perfusion. Many
different measurements for quantifying the perfusion exist. All these measurements
are based on the progression of the contrast agent in the myocardium. Manual
analysis of the huge perfusion datasets (up to 70 time steps and 5 slices per time
step) is a very time-consuming task. Furthermore, distinguishing between areas

(a) (b) (c) (d)

Figure 1.1: Perfusion MRI Sequence. At the beginning no contrast agent is ob-
served (a). After some seconds it appears in the right ventricle (b). Then it appears
in the left ventricle (c) and finally in the myocardium (d).

1



2 CHAPTER 1. INTRODUCTION

of normal and ischemic tissue is very challenging and an expert is necessary for
analysis of the image data. So the request for an automatic analysis of these datasets
has risen. This thesis presents a method for an automatic segmentation and analysis
of perfusion MRI datasets without any human interaction.

1.1 Problem Statement

Perfusion MRI datasets are mostly four dimensional (3D + time). Manual analysis
of these huge datasets is very time consuming.

This thesis presents an automatic method to analyze these datasets. An auto-
matic analysis method has to deal with several problems:

• Operator: No standards for acquiring MRI datasets are available. Therefore
several parameters for adjusting a MR equipment exist which may lead to
varying results.

• Patient: During the acquisition period the patient is asked to hold the breath.
However, not all patients are able to do so during the whole long acquisi-
tion period (up 40 seconds and more). This causes motion artifacts based on
breathing which have to be detected and compensated.

• Anatomy: The arrangement of coronary arteries varies from patient to patient.

• Pathology: A pathological heart may have another appearance than a healthy
one.

• Imaging:

– Poor spatial resolution

– Noise

– The poor contrast between myocardium and surrounding tissues makes
it difficult to distinguish between them.

– The Contrast Agent leads to varying intensities.

This work addresses all of these problems and presents a method to analyze the
perfusion in the myocardium. At the beginning a region of interest (ROI) covering
the left cardiac ventricle (LV) is determined. Rigid image registration is performed
to minimize motion artifacts. The myocardium is segmented at all time steps. Fi-
nally the contrast agent distribution in the myocardium is analyzed based on the
segmentation.



1.2. THESIS OVERVIEW 3

1.2 Thesis Overview

This thesis shows a fully automatic method for the analysis of perfusion MRI
datasets.

First a detailed overview of the anatomy, physiology, and pathology of the hu-
man heart and the coronary arteries is given in chapter 2. Furthermore this overview
includes therapeutic interventions and early diagnosis methods for coronary artery
diseases. Additional an overview of perfusion MRI and analysis methods for the
perfusion are given.

Chapter 3 shows a summary of related work dealing with perfusion MRI
datasets. Furthermore related work dealing with non-perfusion MRI datasets is
shown which can be adapted to perfusion MRI datasets by considering some re-
strictions.

Chapter 4 gives a detailed description of a method for a fully automatic analysis
of perfusion MRI datasets. This chapter is divided into the four major tasks of the
analysis process:

• ROI Selection

• Registration

• Segmentation

• Analysis

Chapter 5 illustrates the results obtained from the presented method. This chap-
ter shows the results separately for the four tasks and gives a performance analysis.

Finally a conclusion and a discussion for future work is given in chapter 6.



Chapter 2

Medical Background

For a better understanding how perfusion images are generated and why the analysis
is so important an overview of the anatomy, physiology and pathophysiology of the
heart is given in this chapter. Furthermore an overview of perfusion analysis is
given.

2.1 Anatomy

Heart

The heart is the pump of the human body. It is a rhythmically contracting muscle
which pumps blood all over the body supplying all body parts and organs with
oxygen. It is shaped like an upside down cone with rounded off apex. The anatomic
axis of the heart looks sloping down. It runs relatively to the patient from the top
right back side to the bottom left front side of the thorax. As illustrated in figure 2.1
the heart is in the direct neighborhood of the lung. Due to breathing both position
and shape of the heart are changing. The weight of the heart is about 250-300g for
women and about 300-350g for men [Lippert et al., 2002]. The size corresponds
approximately to that of the fist.

The heart is divided by the septum into a left and a right part. Every part con-
sists of two chambers. The smaller chamber is called atrium and the bigger one
ventricle. The ventricle and the atrium are separated by an atrioventricular valve. In
addition both chambers are closed by a valve. These valves define the flow direc-
tion of the blood and prevent a backward flow. The inner surface of the ventricles
is irregular and can be covered by spongy muscle bars (trabeculae carneae). In ad-
dition the papillary muscles extend into the ventricle. Figure 2.2 shows a schematic
illustration of a cross-section of the heart.

Cardiac Wall

The cardiac wall consists of three layers: endocardium (inner layer), myocardium
(center layer) and epicardium (outer layer). The thickness of the cardiac wall varies

4



2.1. ANATOMY 5

Figure 2.1: Heart Location. [refer health, 2008] Spatial relation of the heart and
the lung.

Figure 2.2: Cross-section of the heart. [refer health, 2008]
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Figure 2.3: Coronary arteries. [Thews et al., 1999] Schematic illustration of the
coronary arteries.

for the four chambers. The cardiac wall of the ventricles is thicker than the wall of
the atria. Furthermore the cardiac wall of the left ventricle is thicker than the wall of
the right ventricle. This is a consequence of the higher activity of the left ventricle
which pumps the blood into the circulation. The myocardium is the muscle layer of
the cardiac wall and therefore it represents largest part of its mass.

The heart muscle fibers are arranged facilitating concentrical contraction. This
concentrical contraction maintains the circulation of blood. The myocardium re-
quires large amounts of oxygen and nutrients. These requirements are supplied by
the coronary arteries. To keep the heart fully functional an adequate blood circula-
tion (perfusion) of the coronary arteries is required.

Coronary Arteries

The heart itself is supplied with oxygen by the coronary arteries which have its
origin in the aorta. They are divided into a left (A. coronaria sinistra) and a right
(A. coronaria dextra) coronary artery. The left coronary artery splits into Ramus
circumflexus and Ramus interventricularis anterior. Both branches achieve approx-
imately the same thickness as the right coronary artery.

The left coronary artery provides about 80% of the total heart supply [Thews et
al., 1999]. It supplies the bigger part of the left ventricle wall, the left atrium wall, a
small part of the right ventricle wall, and large areas of the septum. The right coro-
nary artery supplies the bigger part of the right ventricle wall, right atrium wall, and
a small part of the septum and the left ventricle wall. A schematic illustration of the
coronary arteries is given in figure 2.3. The venous system is like the artery system.
For diagnostic purpose of coronary artery diseases both branches of the left coro-
nary artery are considered as separate vessels. Therefore coronary artery diseases
are divided into one, two, or three vessels diseases. The distribution pattern of the
coronary arteries have a high variation between different persons. Accordingly an
assignment of vessels to myocardial areas is only possible to a limited extent.
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Figure 2.4: Schematic illustration of the blood flow. [Allyn & Bacon, 2004]

2.2 Physiology

The blood flow is generated by rhythmic contraction and relaxation of the heart
muscle. The direction of blood flow is regulated by the valves. First the atrium con-
tracts and the blood is pushed into the ventricle. Then the ventricle contracts and
ejects blood into the arteries. In one cycle the oxygen poor blood flows from the
cava (vena cava superior and vena cava inferior) into the right atrium. By contrac-
tion of the right atrium it is pumped into the right ventricle which ejects the blood
into the truncus pulmonalis. In this vessel the blood flows to the lung and becomes
oxygenated. After passing the four lung veins the blood enters the left atrium. It
is pumped into the left ventricle and afterward it is ejected into the aorta. Starting
from the aorta the oxygen rich blood reaches all regions of the human body. The
blood flow is illustrated in figure 2.4.

Under stress e.g. physical strain more energy and thereby more oxygen is
needed by muscles and organs. For providing more oxygen heartbeat and stroke
volume have to increase. Accordingly the heart has to work harder and needs more
oxygen too. To compensate this requirement the coronary arteries dilate. The coro-
nary reserve measures the possibility of compensating oxygen requirement. It is
defined as [Thews et al., 1999]:

coronary reserve =
O2 usagemax −O2 usageact

O2 usageact
(2.1)

WhereasO2 usagemax is the maximal possible andO2 usageact the actual available
O2 usage. A fully adaptive heart under rest conditions has a coronary artery reserve
of about 4.5.
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Figure 2.5: Progressive build-up of Plaque. [refer health, 2008]

2.3 Pathophysiology

Like other arteries coronary arteries can get arteriosclerosis. This is called a coro-
nary artery disease. Arteriosclerosis is an accumulation of plaque at the vessel wall
(figure 2.5). This accumulation causes a narrowing of the vessel and leads to re-
duced blood flow. The coronary reserve offers a compensation of this reduced blood
flow. It is possible to compensate a stenosis of 85-90% under rest and a stenosis of
50-85% under stress conditions [Thews et al., 1999]. If the reduction of the coro-
nary flow reserve is too large no more compensation is possible. Risk factors for
coronary artery diseases are:

• hypercholesterolemia

• smoking

• hypertension

• overweight

• tautness and stress

• sleep apnea

• heritable handicap

• diabetes

By a coronary artery disease a imbalance between delivered and needed oxygen
may occur. Such a imbalance leads to angina pectoris which is classified into four
types [Thews et al., 1999]:

• stable angina pectoris
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• unstable angina pectoris

• rest angina pectoris

• mute myocardial ischemia

Symptoms for an angina pectoris [Pschyrembel, 2002] are a suddenly beginning
pain in the chest radiating to the left shoulder, arm, neck, hand, and back. Often a
tightness in the chest combined with choking fit and dyspnea to the point of agony
occur.

The characteristic of a stable angina pectoris is that the symptoms are stress-
dependent. For unstable angina pectoris the symptoms sometimes occur at stress
but can occur at rest too. If the symptoms occur already at rest it is called rest
angina pectoris. Sometimes it is possible that a bad blood circulation of the heart
does not cause any specific symptoms. This is called mute myocardial ischemia.

Angina pectoris is the preliminary stage of a heart attack. A heart attack has
similar symptoms like the angina pectoris. Unlike an angina pectoris in case of a
heart attack the artery is completely barred (e.g. by a thrombus). So the imbalance
of delivered and needed oxygen becomes that big that an irreversible myocardial
damage occurs which leads to necrosis. (A necrosis is an accidental death of cells.)
The size of the necrosis depends on the area which was supplied by the blocked
vessel. Early complications of a heart attack are [Thews et al., 1999]:

• cardiac arrhythmias

• mechanical collapse of the myocardium

• mitral regurgitation

Cardiac arrhythmias may cause cardiac death based by ventricular fibrillation. A
mechanical collapse of the myocardium may cause a pulmonary edema or a cardiac
shock. Later complications of a heart attack are [Thews et al., 1999]:

• myocardial aneurysm

• myocardial rupture

• papillary muscle rupture

A formation of myocardial aneurysm can lead to a stroke. A myocardial rupture is
mostly lethal. A rupture of papillary muscles leads to a mitral regurgitation and an
impossible treat of pulmonary edema.

If such complications do not occur or are survived the necrotic area scares over.
Such scares can shorten the functionality of the heart. The limitation depends on
the size of the scar. If a large area is concerned a heart failure emerges.

A heart failure causes a steadily insufficiently oxygen and blood supply to the
human body. The WHO (World Health Organisation) [WHO, 2007] defines heart
failure as follows: A person has heart failure when his heart is unable to pump
enough blood around to supply the oxygen the body needs. In succession a pul-
monary edema or a cardiac shock can appear.
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2.4 Therapy

At an early stage of coronary artery disease a medical treatment is induced. Sec-
ondary to a medical treatment a behavior modification is advised. If advanced
stenosis exists an intervention is necessary to avoid a possible heart attack. This
intervention may be a balloon angioplasty, a stent implantation, or a bypass opera-
tion.

2.5 Early Diagnosis

Diseases affecting the blood circulation system are the major causes of death. The
following statistics are collected by Statistik Austria [Austria, 2006] in the year
2006 and are valid for Austria. About 40% of all cases of death result from diseases
of the blood circulation system. About half of these are caused by ischemia heart
diseases. 8% of all cases of death are caused by a heart attack. Due to this high death
rate the elimination of the risk factors and an early diagnosis for angina pectoris are
desirable. First order risk factors are smoking, hypertension, hyperlipoproteinemia,
diabetes mellitus, homocysteinemia and overweight. Secondary order risk factors,
like lack of physical movement, stress, or psychological frustrations, can also pre-
fer coronary heart diseases. Because coronary artery diseases may cause cardiac
arrhythmias an electrocardiogram (ECG) is the first choice for detection. But ECG
under rest conditions only leads to significant results if the coronary artery disease
is advanced. So a rest ECG is not suitable for an early diagnosis. Better results
are achieved by using a stress ECG. Therefore the patient is requested using an er-
gometer during the ECG measurement. Modifications in the ECG may indicate a
coronary artery disease. Although this kind of examination delivers a high false
positive rate, it indicates this disease. This means that many people with a positive
coronary artery disease diagnosis do not have one. Therefore further examinations
should be performed.

A coronary angiography leads to a certain diagnosis but it is an invasive exami-
nation method which can lead to complications. Therefore some other image based
examination methods exist to validate or exclude a possible coronary artery disease.
If still a coronary artery disease is indicated a coronary angiography can be applied
to detect the location of the stenosis. Some image based examination methods are
[Bogaert et al., 2005]:

• Single Photon Emission Computer Tomography (SPECT)

• Positron Emission Tomography (PET)

• Myocardial Contrast Echocardiography (MCE)

• Perfusion Magnetic Resonance Imaging (Perfusion MRI)

All these methods enable myocardial perfusion measurement.
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Generally, perfusion is the flow of liquid through a hollow organ or a blood
vessel [Pschyrembel, 2002]. The amount of blood flow per time unit in a body
tissue is also called perfusion. The perfusion has a dimension of ml

g·min .

SPECT

SPECT is a nuclear medicine tomographic imaging technique. The radionuclides
are injected intravenously. The administered radionuclides decay and emit gamma-
rays which are detected by a gamma-camera (figure 2.6(a)). Lower counts of
gamma-rays indicate an abnormal myocardial perfusion. If the patients have a bal-
anced ischemia it can not be detected, because of the constraint that only the relative
distribution of radionuclides can be obtained. On the other hand this method can
also fail to distinguish between viable and nonviable myocardium tissue. An addi-
tional problem is the lack of spatial resolution.

PET

PET is like SPECT a nuclear medicine tomographic imaging technique. Radionu-
clides are injected intravenously. Unlike SPECT radionuclides emitting positrons
(β-radiation) are used. A positron interacts with an electron in the human body and
emits two photons moving in opposite directions. These photons are detected and
show the distribution of the radionuclides (figure 2.6(b)). PET has a higher spatial
resolution than SPECT and the absolute myocardial perfusion can be measured. So
it is possible to detect balanced ischemia. Due to the use of radionuclides with very
low half-life (down to minutes and seconds) they have to be produced locally. This
makes the method so expensive and therefore not widely available.

Both methods (SPECT and PET) belong to functional imaging techniques. That
means only information about the metabolism and not about morphology will be
received. So no spatial relationship between the position of the emitted radiation
and the different tissues exists. To overcome this problem SPECT and PET are
combined with computer tomography (CT). The radiation on the patient represents
a big disadvantage of these techniques which may lead to long-term consequences.

MCE

MCE is a real-time imaging tool. It allows to observe the heart function at real-
time. An intravenous of intracoronary injection of micro bubbles is applied. The
echo characteristics are different for the micro bubbles and the tissue and therefore
they can be visualized (figure 2.6(c)). The echocardiography can lead to shadowing
artifacts. They can be reduced by using a low dose of echo contrast agent. The
advantages of this method are the real-time mode, the good spatial resolution and
the absence of radiation.
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(a)

(b)

(c) (d)

Figure 2.6: Different Series of Perfusion Images. (a) SPECT [Graf et al., 2006]
and (b) PET [Graf et al., 2006] shows a whole serial. (c) [Mulvagh et al., 2000]
shows only one snapshot a MCE real-time measurement. (d) shows some samples
of a perfusion MRI serial.

Perfusion MRI

Perfusion MRI is very similar to MRI, but uses a contrast agent to visualize the
blood circulation (figure 2.6(d)). Therefore the contrast agent is injected intra-
venously and then catabolized by the body. Advantages are the possibility of multi-
slice measurements along different axes, no radiation exposure, no attenuation prob-
lems and the wide availability of MRI.

Figure 2.6 shows results obtained from the different methods explained above.
Table 2.1 gives a summary of the most important characteristics of the different
methods to measure myocardial perfusion.

This work focuses on the analysis of cardiac perfusion images obtained by per-
fusion MRI. Therefore the next sections will go into detail how the images are
acquired, what kind of problems occur, and how the images can be interpreted.
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SPECT radiation exposure
only relative distribution
low spatial resolution
only functional measurement

PET radiation exposure
higher spatial resolution than SPECT
expensive
only functional measurement
not widely available

MCE cheap
no radiation exposure
real-time mode
shadowing artifact
good spatial resolution
attenuation problems

perfusion MRI better resolution than PET and SPECT
no radiation exposure
widely available
slices along different axes
no attenuation problems

Table 2.1: Characteristics overview of different perfusion measurement techniques

2.6 Cardiac perfusion MRI

Physical Background

Cardiac MRI is fundamentally the same as MRI techniques at other body parts.
MRI is a technique based on the physical fundament of nuclear magnetic resonance.
The fact that elementary particles have a magnetic momentum and an angular mo-
mentum is essential. Particle systems, like atom nuclei, have an intrinsic magnetic
momentum and angular momentum if they have an odd number of protons and/or
neutrons. As a result of this property the atom nuclei rotate around their axes (figure
2.7(a)) and generate an intrinsic low magnetic field. Applying an external magnetic
field causes the rotation axes of the atom nuclei align in a precession (2.7(b)). The
alignment can be either in the same direction (figure 2.7(c)) or in the opposite di-
rection of external magnet field. The frequency of the precession f0 is proportional
to the applied magnetic field B0 and the gyro-magnetic ratio of the element:

f0 =
γ

2π
B0 (2.2)

Where γ is the gyro-magnetic ratio of the element and is a constant for every iso-
tope. These properties allows to measure the distribution of the different elements.
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(a) (b) (c)

Figure 2.7: Precession. Atom nuclei with an odd number of protons and/or neu-
trons have a magnetic momentum and therefore rotate around their axes (a). After
applying an external magnetic field the axes align by a precession (b) to the direction
of the external field (c)

Measurement Procedure

In the human body the directions of the low magnetic fields are random and com-
pensate each other. Therefore, no magnetic field can be measured. When the body
is brought into a high magnetic field B0 all rotating axes of the atom nuclei get
aligned either the same or the opposite direction of B0. Oppositely aligned atom
nuclei compensate their magnetic field. The magnetic field measured along B0 is
called longitudinal magnetization.

A second (high-frequency) magnetic field B1 is applied perpendicular to B0.
Atom nuclei precess away from the longitudinal alignment to the direction of B1.
Therefore, the longitudinal magnetization decreases and the transversal magnetiza-
tion increases. Turning off B1 effects the atom nuclei to precess back to the longitu-
dinal alignment until the equilibrium is reached. During the relaxation - precession
back to the equilibrium - two measurements can be carried out:

• T1-Relaxation

• T2-Relaxation

T1-Relaxation defines the time until the equilibrium is reached. In the ideal case all
atom nuclei precess synchronously (in phase). After turning offB1 the rotations de-
phase and the strength of the transversal magnetic field decreases. If all of the atom
nuclei precess independently the transversal magnetization becomes zero. The time
until the transversal magnetization becomes zero is defined as T2. T2 is significantly
shorter than T1.
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Imaging

The resonance signal needed for the imaging process is measured by coils. This
signal is a high-frequency magnetic signal occurring after turning off B1. It has the
same frequency as B1. The strength is proportional to the number of excited atoms
whereby a conclusion to the density is possible. The length of the resonance signal
gives information about the physical interaction between the atoms. Due to the
fact that different atoms have different T1 and T2 times it is possible to distinguish
between different tissues. For a better contrast between interesting tissues a pulse
repetition of B1 can be applied (e.g. at moments where T1 is only reached for one
tissue). This leads to T1 and/or T2 weighted images.

Organs can often be visualized better with MRI than with other imaging tech-
niques. For some tissues like nerves and the brain a suitable visualization is only
achievable with this technique. The adjustment of the repetition time allows to vi-
sualize interesting details. Thereby no standards for the measurement exist. This
leads to varying results depending on the operator. This fact makes it difficult to
realize an automatic interpretation of the results. A very big advantage of MRI is
the possibility to acquire images of slices of arbitrary directions.

Cardiac Perfusion MRI

The goal of cardiac perfusion MRI is to visualize and analyze the perfusion of the
myocardium. For getting an overview of the blood flow a contrast agent is injected
intravenously. As a result of the blood flow (described in a previous section) the
contrast agent first appears in the right ventricle then in the left ventricle and finally
in the myocardium. Some images of a perfusion MRI serial are shown in figure
2.6(d). Figure 2.6(d) shows a so called short-axis view. This work focuses on such
short-axis views. A short-axis view is a slice perpendicular whereas a long-axis
view is a slice parallel to the anatomy heart axis. Figure 2.8 shows different slices
of the heart.

All images of a serial are acquired at corresponding points in time of a heart cy-
cle. This is called ECG-gated and prevents motion artifacts based on the heart beat.
To minimize the motion artifacts based on respiration the patient is asked to hold
the breath. Acquiring images under rest conditions only allows to detect advanced
vessel narrowings. Small narrowings can be compensated because of coronary re-
serve and therefore they can not be detected. For still seeking out small narrowings
the images must be acquired under stress conditions. Furthermore a comparison of
the rest and stress results may indicate a preliminary perfusion reduction.

The next section shows how to make use of perfusion data to detect myocardial
areas with diminishing perfusion.

2.7 Analysis of perfusion data

To analyze perfusion data the progress of the contrast agent has to be examined at
every position. Typical curves of the progress are shown for the right ventricle, left
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(a) (b)

Figure 2.8: Difference short-axis long-axis view. Different slices of the heart in a
short-axis (a) and long-axis (b) view

(a) (b)

Figure 2.9: Progression of contrast agent. (a) ideal case [Spreeuwers and
Breeuwer, 2001] (b) a real case.

ventricle, and the myocardium in Fig. 2.9. The left figure shows the ideal case.
The right figure shows example curves. These example curves were obtained from
a dataset analyzed in this work.

There exist different measurements to quantify myocardial perfusion. All of
them are based on the curve of the contrast agent progression (intensity time curve)
of the myocardium. These measures are:

• Peak Enhancement (PE): Maximum value normalized with the baseline [Al-
Saadi et al., 2000; Oeltze et al., 2007].

• Contrast Appearance Time (CAT): Time difference between contrast agent
(CA) arrival time in the left ventricle and in the myocardium [Al-Saadi et al.,
2000; Oeltze et al., 2007].
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Figure 2.10: Signal Intensity Time Curve measurements. [Oeltze et al., 2007] A
typical signal intensity time curve for myocardial perfusion and possible measure-
ments.

• Time To Peak (TTP): Time until PE is reached starting from the contrast agent
arrival time [Al-Saadi et al., 2000].

• Integral: Area under the curve between CA arrival time and the end of the
first pass [Oeltze et al., 2007].

• Mean Transit Time (MTT): Time until the half of the Integral is reached
[Oeltze et al., 2007].

• Upslope: Steepness of the curve before PE [Al-Saadi et al., 2000; Schwitter
et al., 2001].

• Downslope: Steepness of the curve after PE [Oeltze et al., 2007].

Figure 2.10 shows a typical signal intensity time curve for a single voxel belong-
ing to the myocardium. Furthermore some possible measurements for myocardial
perfusion are included.

These measurements allow a diagnosis. It turns out that regions with dimin-
ishing perfusion can be identified by upslope and peak enhancement. Furthermore
the upslope of the signal intensity time curve linearly fits to the myocardial perfu-
sion reserve [Al-Saadi et al., 2000; Al-Saadi et al., 2001; Christian et al., 2004;
Schwitter et al., 2001; Nagel et al., 2003].



Chapter 3

Related Work

The previous chapter has given an overview of the anatomy, physiology and patho-
physiology of the heart. Additional methods for detecting coronary artery diseases
prematurely were presented. Furthermore therapeutic interventions for coronary
artery diseases were discussed.

This chapter will give an overview of related work in the area of segmentation
and analysis of perfusion MRI data. For detecting coronary artery diseases based
on perfusion MRI data various key issues have become apparent:

• Region of Interest (ROI) detection

• Registration

• Segmentation

• Analysis

Now an overview of related work dealing with these key issues is given.

3.1 Region of Interest (ROI) detection

The ROI is the region covering the examined anatomical structure. There exists no
related work focusing on the automatic ROI detection in cardiac perfusion MRI. In
many published methods - focusing on the segmentation of cardiac perfusion MRI
- the ROI has to be defined manually. Sometimes some assumptions are made like
that the interesting structures are located in the center of the images.

However, some methods exist focusing on automatic ROI detection in non-
perfusion MRI. Non-perfusion images are taken at different stages of the cardiac
cycle. Furthermore at least one cardiac cycle is imaged.

Sörgel et al. [Sörgel and Vaerman, 1997] have shown a method to localize
the heart in non-perfusion MRI. This method is used to initialize an active contour
approach for segmenting the heart. The images show the heart at different stages
of the cardiac cycle. By observing gray value variations over time it is possible to

18



3.2. REGISTRATION 19

detect the heart. Areas with high variations can be identified as belonging to the
heart. Their method works as follows: First the gray value variances are calculated
for every voxel over time. This leads to a variance volume. Second a threshold is
applied at every slice. This threshold is defined to keep at least a given amount of
voxels. Third a morphological cleaning is applied. Fourth all slices are summed up
and a thresholding is applied again. Finally the remaining area is identified as the
region covering the heart.

Zambal et al. [Zambal et al., 2008] have adapted this method to initialize an
Active Appearance Model (AAM). Gering [Gering, 2003] has shown a very similar
approach to initialize a Contextual Dependency Network (CDN).

There are fundamental differences between perfusion and non-perfusion MRI.
Nevertheless the above approaches can be adapted to work for perfusion MRI as
well. In perfusion MRI no heart motion is present, but the contrast agent leads
to high gray value changes were it passes. Therefore the gray value variations of
perfusion MRI and non-perfusion MRI are very similar. So it is possible to use the
above-mentioned methods for perfusion data.

3.2 Registration

Different registration methods for perfusion images were presented.

Yang et al. [Yang et al., 1997] have presented a method for compensating trans-
lational motion. They conclude to the translational motion using phase differences
between successive images.

Approaches based on Active Appearance Models (AAMs) were presented by
Stegman et al. [Stegmann and Larsson, 2003; Stegmann et al., 2005] and Ólafsdóttir
[Ólafsdóttir, 2004; Ólafsdóttir, 2005]. They analyze the variances and cluster an
annotated training set off-line. Additional image intensity changes caused by the
contrast agent are modeled by a slice coupled AAM. These approaches do not only
focus on registration. They are a combination of registration and model based seg-
mentation.

Wong et al. [Wong et al., 2005] have shown a registration method based on nor-
malized mutual information. Milles et al. [Milles et al., 2007] use an independent
component analysis approach to extract image features for registration.

3.3 Segmentation

Automatic segmentation of the myocardium in perfusion images is a quite difficult
challenge. The complexity of this task is based on a wide range of image vari-
abilities which are caused by patient movement, anatomical variations, pathologies,
imaging noise, limited resolution, as well as artifacts.

There exist only a few methods for segmenting the myocardium in cardiac per-
fusion MRI. All of them ignore some variabilities or require some human interven-
tions.
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Spreeuwers and Breeuwer [Spreeuwers and Breeuwer, 2001] have presented a
method detecting myocardial boundaries based on image gray values. This method
assumes that no motion artifacts are present or that the images are already registered
to each other. They are searching for local maxima in time and space to detect pix-
els identifying the left and right ventricle. Afterward region growing is applied to
extract areas for both ventricles. Then two maximum intensity projections (MIPs)
are determined: One for the images before the contrast agent appears in the my-
ocardium, and the other one for the rest of the images. Then these MIP images
are subtracted and the myocardium appears as a bright region. Then the image is
transformed into polar coordinates and a five node snake is fitted to maximize the
contrast ratio.

Spreeuwers et al. [Spreeuwers et al., 2002a; Spreeuwers et al., 2002b] have
further presented a method to improve the myocardial contour. Therefore they vary
the contours of the segmented myocardium. Then they analyze the upslope of the
intensity time curves of myocardial segments and compare them to the original. If
there are significant differences adaptations are applied.

Pluempitiwiriyawej and Sotthivirat [Pluempitiwiriyawej and Sotthivirat, 2005]
have presented another method for segmenting the myocardium in perfusion MRI
data. This method ignores heart motions too. It is based on active contours and ex-
tracts an initial contour which is passed to their so called Stochastic Active Contour
Scheme (STACS) [Pluempitiwiriyawej et al., 2005]. First they calculate difference
images for adjacent images in the whole dataset. After thresholding these images
they apply morphological closing to merge pixels that are close together. Then a
median filter is applied to remove scattering pixels. The largest area is determined
and two concentric circles centered on the largest area are created. These circles
are the initial contour for the myocardium. Finally STACS is applied. STACS uses
an energy minimization approach to segment the heart and its structures. The used
energy function consists of four different terms:

• region based term

• edge based term

• global property term

• local property term

The global property term defines the global contour shape which is an ellipse. The
local property term defines the smoothness of the contour.

Adluru et al. [Adluru et al., 2006] have shown another method. This method is
based on level sets including an image registration step to reduce motion artifacts.
This method however assumes that the heart is roughly located at the center of the
images. The registration step uses the temporal center of the sequence as reference
image. Then all other images are registered to this reference image by minimizing
the mean square difference. A Hanning-Window filter is used to penalize the center
region of the image more than the outer region. A variance image is generated to
locate the heart. The highest value in the variance image is used as a seed point
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for the left ventricle. Then the original image is transformed into polar coordinates
according to this seed point. This polar map is thresholded and seed points for the
myocardium are defined. These seed points have to lie three pixels outside of the
left ventricle. The seed points are converted back into cartesian coordinates and
used as an input of a level set based framework.

Sun et al. [Sun et al., 2004] have presented a combination of contrast-invariant
affine registration and segmentation. This method requires human intervention to
select a region of interest (ROI) and a reference image. The registration step is
based on edge informations. Therefore edge informations (gradient direction, gra-
dient magnitude) are extracted inside the ROI. A similarity measurement based on
these informations is minimized and leads to the final registration. Then for every
image the gray value differences to the reference image are calculated. This leads to
difference images. Only the ROI is used to gain these difference images. Finally an
energy minimization approach is applied to extract the contours of the myocardium.

Postiano et al. [Positano et al., 2003] segment the myocardium at a single slice.
A user has to select the ROI where the myocardium is located. Furthermore the slice
has to be selected where the myocardium should be segmented. Then a registration
using Mutual Information is applied. The myocardium is segmented at the selected
slice using a gradient vector flow approach ([Xu and Prince, 1997]). Finally the
intensity time curves for the myocardial segments are determined which can be
used to analyze the perfusion.

There exist many other approaches for segmenting the heart but they are de-
signed for non-perfusion MRI data. However, some of them can be applied on
perfusion MRI data if some restrictions are introduced. Especially, perfusion im-
ages with contrast agent appearing in the left and right ventricle but not yet in the
myocardium, can be segmented similar to non-perfusion MRI images. If such im-
ages are identified, one of the following methods can is applicable: Active Contours,
Active Shape Models, Active Appearance Models. This is outlined in the following:

Active Contours

Active contours are only based on image features and shape-constraints. The goal
is to place a contour gaining a trade-off between shape-constraints and edge infor-
mation.

Luuk Spreeuwers and Marcel Breeuwer [Spreeuwers and Breeuwer, 2001;
Spreeuwers and Breeuwer, 2003] have introduced a method to extract the myocar-
dial boundary using coupled active contours. In contrast to active contours a cou-
pled active contours approach evaluates two contours simultaneously. This method
needs a good manual initial definition of these contours at a single slice. Then the
initialization is propagated to the other slices. Furthermore this method needs a
good contrast between the segmenting tissues because active contours are an edge
based approach.

Pluempitiwiriyawej et al. [Pluempitiwiriyawej et al., 2005] have introduced an
extended version of active contours. This method combines stochastic-region based
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and edge-based information with shape priors of the heart and local properties of
the contour. The stochastic-region information allows to segment images with low
texture contrast. Additional the combination of region and edge information leads
to a higher robustness to noise and the initial contours. The initial contours still
have to be defined manually.

Yeh et al. [Yeh et al., 2005] have introduced a branch-and-bound dynamic pro-
gramming approach to reduce the high computational costs for extracting the en-
docardial boundary. After manually defining a ROI by a circle that includes the
whole left ventricle the region is converted into polar coordinates. The axes of this
retrieved polar map are: the distance from the center and the radial direction. For
extracting the endocardial features (edges) a Prewitt-operator is applied. Afterward
a network is generated ensuring that the detected border is a closed curve. Then a
dynamic programming approach is applied to the network. Thereby the endocar-
dial boundary that optimizes the objective function within specified constraints is
determined. Finally, the determined contour is mapped back to the original image
data. This approach only deals with the task of segmentation of the left ventricle
at a single slice whereby no registration is needed. Additional the ROI has to be
defined manually and the features for detecting the contour of the left ventricle are
only based on edges.

Active Shape Models

Active Contour is a segmentation technique only based on image features. Better
results can be established by using prior knowledge about the shapes of the interest-
ing structures. Therefore some methods based on ASM were suggested for cardiac
perfusion segmentation.

2D-ASMs were introduced by Cootes et al. [Cootes et al., 1995] for the first
time. For ASMs a model comprises a set of landmark points. Therefore a training
set is segmented manually by placing points on the boundary of the interesting
object. Then all images of the training set are aligned. Statistics for the training set
are calculated such as the mean shape and the principle components. The principle
components are calculated by the principle component analysis (PCA) and gives
the ’mode of variation’. Only the principle components with the highest ’mode of
variation’ are kept to reduce the model complexity without loss of highly significant
information. Now this model can be used to find similar shapes in unseen images.

This 2D-ASM approach inspired the extension to 3D-ASM. Van Assen et al.
[van Assen et al., 2003a] and Kaus et al. [Kaus et al., 2004] showed such 3D-
ASMs and their matching based on edges. Van Assen et al. [van Assen et al.,
2003b] presented an extended approach leading to better results. This approach
uses fuzzy interference for the edge detection. They [van Assen et al., 2005] also
presented a 3D-ASM dealing with sparse and arbitrarily oriented cardiac MRI data
and called it SPASM.

There exists an approach of 4D models too presented by Montagnat et al. [Mon-
tagnat and Delingette, 2005]. This 4D deformable model contains all stages of a
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cardiac cycle with temporal constraints. This model was used to segment synthetic
SPECT datasets.

Active Appearance Models

AAMs are an extension of ASMs [Cootes et al., 1998]. Additional to contour infor-
mation, texture information was taken into account. The shape model is calculated
in the same way as ASMs. After obtaining the mean shape of the model, all training
datasets are warped to the mean shape so that the control points matches. Then gray
values are sampled over the whole region covered by the shape and PCA is applied
to get the principle axes. So the model exists of two parts: one for the shape and
one for the gray values. Because of possible correlations of these models they are
combined and PCA is applied again. This model allows to find objects with similar
shapes and gray values in unseen images. Mitchell et al. [Mitchell et al., 2002]
extended this approach to a 3D-AAM.

Alternative Approaches

Additional to these three methods alternative approaches exist. A virtual exploring
robot traveling around the left ventricle was presented by Behloul et al. [Behloul et
al., 2001]. The start position of the robot has to be defined outside the left ventricle.
The target position has to be defined inside the left ventricle. The robot navigates
around the left ventricle in a wall tracking mode to find a way to the target position.
If no path to the target is found the robot accomplish a complete loop which leads
to the contour of the myocardium.

An automatic segmentation approach using a contextual dependency network
(CDN) was presented by Gering [Gering, 2003]. This work also contains an au-
tomatic search of the ROI. Thereby the variance for every voxel is calculated and
thresholded. After applying morphological operations the greatest three dimen-
sional structure is identified as the ROI where the CDN is applied.

3.4 Analysis

Some work exists focusing on the analysis and visualization respectively of the
perfusion.

As introduced in the previous chapter the analysis is based on the intensity
time curve of the myocardium. Different measurements as mentioned in the previ-
ous chapter are (figure 2.10): Peak Enhancement (PE), Contrast Appearance Time
(CAT), Time To Peak (TTP), Integral, Mean Transit Time (MTT), Upslope, and
Downslope (section 2.7).

To visualize these measurements and retain a spatial correlation different tech-
niques are introduced. These techniques visualize perfusion data in combination
with morphological image data [Oeltze et al., 2006]. Figure 3.1 illustrates a method
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Figure 3.1: 2D-Perfusion Plot. [Schwitter et al., 2001] Color-coded upslope of a
single slice. Blue indicates a small upslope which indicates a low perfusion. Red
indicates a normal perfusion.

(a) (b)

Figure 3.2: Two parameter visualization. (a) Three dimensional visualization of
upslope (color) and PE (height) (b) Visualization of upslope and PE as color icons.
[Oeltze et al., 2007]

to visualize the upslope in a 2D-plot. Figure 3.2 illustrates two techniques visu-
alizing two different measurements concurrently. This leads to better results if a
combination of these two parameters indicates a bad perfusion.

The above-mentioned techniques are voxel based. Therefore for each voxel the
measurements are calculated and visualized separately. If the images are very noisy
or not registered to each other wrong measurements may be obtained. A common
technique is to average the gray values over the segments and then calculate the
measurements.

For a treatment plan it is important to identify the vessels causing a bad perfu-
sion. Therefore the American Heart Association (AHA [AHA, 2007]) has defined a
standardization for myocardial segmentation [Cerqueira et al., 2002] which divides
the myocardium into 17 segments (figure 3.3). The heart is divided into three slices
(basal, mid-cavity and apical). The basal and mid-cavity slices are divided into six
and the apical slice into four segments. The 17th segment is the apex. Projecting
all segments into a single plane leads to the so-called bull’s eye plot. The bull’s eye
plot is shown in figure 3.4. It also shows the supply areas of the coronary branches
which are coded by different colors.
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Figure 3.3: Standardized myocardial segmentation. Short axis views of the seg-
ments. The apex (the 17th segment) is not visualized. [Kuß, 2006]

Figure 3.4: Bull’s-Eye Plot and AHA-conform nomenclature. 1. basal anterior
2. basal anteroseptal 3. basal inferoseptal 4. basal inferior 5. basal inferolateral 6.
basal anterolateral 7. mid anterior 8. mid anteroseptal 9. mid inferoseptal 10. mid
inferior 11. mid inferolateral 12. mid anterolateral 13. apical anterior 14. apical
septal 15. apical inferior 16. apical lateral 17. apex. The segments are colored
according to the supplying coronary branch (LCX - left circumflex artery, LAD -
left anterior descending artery, RCA - right coronary artery) [Kuß, 2006]
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Figure 3.5: Refined Bull’s-Eye Plot. Every segment is divided into two segments
and visualizes the perfusion under rest and stress conditions. [Oeltze et al., 2007]

To visualize the perfusion difference between rest and stress condition Oeltze
et. al. [Oeltze et al., 2007] have introduced a refined bull’s eye plot. This is shown
in figure 3.5. This refined bull’s eye plot divides every segment into two separately
parts, one for rest and one for stress conditions. So it is possible to identify re-
gions with a different perfusion under rest and stress conditions. This leads to an
indication of preliminary perfusion reduction.

This chapter has given an overview of related work focusing on different tasks in
the analysis process of cardiac perfusion MRI. The next chapter will give a detailed
description of how these tasks are realized in this thesis.



Chapter 4

Image Processing Pipeline

Cardiac perfusion MRI was identified as a promising approach for preliminary de-
tection of coronary artery diseases [Al-Saadi et al., 2000; Al-Saadi et al., 2001;
Edelman, 2004; Kaiser et al., 2003; Wilke et al., 1997; Wolff et al., 2004]. Cur-
rently the analysis of such perfusion images is done by manual inspection which
is a very time-consuming and tedious task. Therefore a need for a robust and au-
tomatic analysis tool exists. Such a tool first has to segment the myocardium in
all images and then to calculate meaningful parameters quantifying the perfusion.
Automated segmentation of the myocardium in perfusion images is quite a difficult
challenge. The complexity of this task is based on a wide range of image vari-
abilities. These variabilities are caused by patient movement, anatomy variations,
pathologies, imaging noise, limited resolution, as well as artifacts.

An automatic analysis tool has to cope with all these difficulties to provide ac-
ceptable and significant results. This work presents a method for automatic analyz-
ing cardiac perfusion MRI data. The designed method is divided into four parts.
These parts identify the main issues for analysis of cardiac perfusion MRI data:

• Region of Interest (ROI) Selection

• Image Registration

• Segmentation

• Analysis

Every single task is based on the output of the preceding task. This composition
represents an image processing pipeline which is illustrated in figure 4.1.

First this pipeline locates the heart and defines a ROI covering it (section 4.1).
Therefore two approaches are investigated: a variance based approach and a model
based approach. The variance based method is adapted from Sörgel et al. [Sörgel
and Vaerman, 1997] whereas the model based method represent a novel approach
for locating the ROI.

After locating the ROI a rigid registration is applied to minimize artifacts caused
by patient motion (section 4.2). The registration uses Mutual Information [Viola and
Wells, 1997] and is like other methods restricted to the ROI.

27
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Then the contours of the myocardium are extracted at every single time step
(section 4.3). Therefore a new two step approach is introduced. It first extracts char-
acteristic intensity time curves for the different regions (LV, RV and myocardium)
and then determines myocardial boundaries for every single time step based on these
curves. This approach uses an adapted algorithm for finding a path with minimal
costs in a polar map [Yeh et al., 2005].

Finally, the perfusion of the myocardium is quantified and visualized (section
4.4). The quantification is done as recommended by Al-Saadi et al. [Al-Saadi et al.,
2000]. The results are visualized in a bull’s eye plot [Cerqueira et al., 2002] which
is extended by the characteristic intensity time curves.

All these steps are performed automatic without any user interaction. Now this
chapter goes into detail how these issues are treat in a fully automatic manner with-
out any user interaction.

4.1 ROI Selection

The first key task is to determine the region of interest (ROI). The ROI considered
here is the image region covering the left ventricle and the myocardium.

As mentioned in the previous chapter (chapter 3) ROI selection is often done
manually. Typically the user has to define an area including the left ventricle by
drawing a contour around it. The problem of automatic localization of the heart in
non-perfusion MR images has been tackled by several authors by exploiting gray
value variation over time [Gering, 2003; Sörgel and Vaerman, 1997; Zambal et al.,
2008]. In this thesis experiments were performed using gray value variances on
perfusion data. For some datasets the method operated very well. However it failed
when larger motion artifacts appeared.

Therefore a new approach for detecting the heart in perfusion MRI is introduced.
This novel method is based on a incremental pattern matching approach of a very
simple pattern of the left ventricle and the myocardium. By observing each time
separately motion artifact problems are avoided. This method identifies possible
candidates in every single time step using only spatial information. In a final step
the most likely candidate is identified.

Then the successive tasks (registration and segmentation) are exclusively per-
formed on this ROI. This leads to better results and saves computation time.

A detailed discussion of the two investigated methods for ROI selection follows
in sections 4.1.1 and 4.1.2.
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4.1.1 Variance based ROI Selection

This method is based on the related work of Gering, Sörgel et al., and Zambal et
al. [Gering, 2003; Sörgel and Vaerman, 1997; Zambal et al., 2008]. These meth-
ods operate on non-perfusion functional MR heart datasets containing at least one
cardiac cycle. The motion of the heart causes very high gray value variations over
time. Therefore the heart can be located by using information of these variations.

Perfusion studies differ from functional MR because the heart is captured at
equal stages of the cardiac cycle (the imaging sequence is ECG-gated). Thus no
heart motion based on the heart beat appears. However, the injected contrast agent
causes high gray value changes in areas where it passes. So, it is possible to identify
the heart as the region with maximum variation of the gray values.

The method works as follows: At the beginning all images are filtered by a 5×5
mean filter (figure 4.2(a) to suppress noise. Then the gray value variance for every
single voxel is calculated as follows:

σ2(x, y, z) =
1

N − 1

N−1∑
t=0

(I(x, y, z, t)− µ(x, y, z))2 (4.1)

where I(x, y, z, t) indicates the gray value at spatial position (x, y, z) at time step t.
µ(x, y, z) represents the mean value of a voxel at position (x, y, z). N indicates the
number of time steps. The mean value for a voxel is calculated as:

µ(x, y, z) =
1

N

N−1∑
t=0

I(x, y, z, t) (4.2)

The calculation of the variances for every single voxel over time leads to a so-called
variance volume (figure 4.2(b)). To achieve the heart region which is identified
by high variances a threshold operation is applied (figure 4.2(c)). The threshold is
adaptively selected so that the summed area of all voxels makes at least 80cm2. This
corresponds to the area of an average human heart in the datasets considered in this
thesis. This threshold is applied to every slice of the variance volume.

The heart region is assumed to be a single connected area. Therefore the largest
four-connected components are identified and extracted in each slice (figure 4.2(d)).
It can be observed that this leads to good results. Anyway, it is still possible that
misleading pixel sets appear in some slices. To increase the robustness all slices
are summed up (figure 4.2(e)) and again the greatest component is extracted (figure
4.2(f)). Finally, the bounding box containing the whole extracted area defines the
region of interest (ROI) (figure 4.2(g)). Algorithm 1 outlines the whole procedure
as pseudo code.

Datasets containing huge motion artifacts or datasets with misaligned image
sequences may lead to a false identification of the ROI (figure 4.3(g)). To overcome
this problem a new method based on pattern matching was developed.
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Figure 4.2: From the filtered images
(a) the variance volume (b) is cal-
culated. After thresholding this vol-
ume (c) the greatest connected com-
ponents are extracted (d). Afterward
the slices are summed up (e) and
again the greatest connected compo-
nent is extracted (f). The bounding
box covering this component identi-
fies the ROI (g)

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

Figure 4.3: This dataset contains
huge motion artifacts. Therefore
large areas with high values appear
(b) where no perfusion occur. This
results in a wrong extraction of the
greatest connected component (f) and
therefore to an incorrect ROI (g).
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Algorithm 1 Variance based ROI detection
1: input: 4D dataset
2: output: ROI
3: filter every image by a 5× 5 mean filter
4: calculate variance volume
5: for every slice of the variance volume do
6: threshold image
7: extract greatest connected component
8: end for
9: accumulate all slices

10: extract greatest connected component
11: identify bounding box

4.1.2 Pattern Matching

In experiments it was observed that motion artifacts and misaligned datasets are
the major reasons disqualifying the mentioned variance based method for locating
the heart in cardiac MRI perfusion data. Therefore an alternative method is intro-
duced. This new method does not rely on gray value variations over time. Instead,
it tries to locate the heart in separate time steps. First the method filters out multiple
candidates at every time step. Then the best matching candidate is determined.

Pattern Definition

The new approach is based on pattern matching and pattern searching respectively
in the whole dataset. The pattern, the algorithm is looking for, represents the region
of left ventricle and myocardium. Basically the pattern is a circle of homogeneous
gray values surrounding a homogeneous region with different, brighter gray values.
The myocardium is seen as a circle with a range of possible diameters. It is assumed
that the circle that has to be detected has a diameter between 40mm and 80mm.
This reflects the range of possible diameters for the left ventricle as observed in the
available datasets. The inner area of the circle represents the left ventricle.

Both areas - myocardium and left ventricle - are homogeneous regions and
therefore it is assumed that the according gray value variances are minimal. To
ensure that these two homogeneous regions have different gray values an additional
constraint is added: the inner area has to be brighter than the circle itself. This leads
to a detection of candidates where the contrast agent appears in the left ventricle
and not yet in the myocardium.

Pattern Matching (Multiple Candidates)

An exhaustive search of such a pattern would lead to unacceptable computation
time. To reduce computational time the pattern matching algorithm is designed in a
hierarchical structure. This hierarchical structure constricts the given pattern bit by
bit and the amount of possible candidates decreases at every step.
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(a) (b) (c) (d) (e)

Figure 4.4: Pattern Matching. Pattern to match LV candidates. First the most left
point of the model is fixed (a). Then corresponding most right points are located
(b). After identifying corresponding highest and lowest points (c) candidates with
a high texture variance within these four points are discarded. For the remaining
candidates the inner area is observed (d). Finally, more points on the circle are
considered 4.4(e) to refine the texture variance measurement.

The individual constraints which are checked one after the other as the algorithm
proceeds are:

1. At the beginning every possible circle with a diameter between 40mm and
80mm is treated as a candidate. First the most left point of a candidate is
fixed (figure 4.4(a)).

2. The fixed point is compared to the most right point (figure 4.4(b)). If the
texture difference between these two pixels is lower or equal a given threshold
(1% of gray value range) the candidate is kept otherwise it is discarded.

3. Now the highest and lowest pixels of the candidates are considered. Since the
left ventricle is not necessarily a perfect circle some variations of the position
of the highest and lowest pixels are allowed. A 3 × 3 neighborhood of these
pixels is taken into account and the pixel with the highest similarity to the
most left and most right pixel is treated as highest and lowest pixel respec-
tively (figure 4.4(c)). The most left and most right pixels as well as the deter-
mined highest and lowest pixels define the outer samples of the candidate. If
the texture variance of these outer samples lies above a given threshold (0.1%
of gray value range) the candiate is discarded.

4. After inspecting the contours of the candidates the inner areas are considered:
samples in the neighborhood along the horizontal and the vertical axis are
selected (figure 4.4(d)). These sample points (inner samples) must have a very
high texture difference to the mean value of the outer samples to guarantee a
good contrast.

To fulfill the constraint that the inner area (left ventricle) has to be brighter
than the contour (myocardium) all candidates having a smaller texture mean
value of the inner samples than the outer samples are discarded. To satisfy the
other constraint - the inner area has to be homogeneous - all candidates with
a high texture variance of the inner samples are discarded. This threshold is
set to 0.5% of the gray value range which is clearly higher than the texture
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variance threshold for the outer samples. Due to the fact that the inner area of
the matching model may include papillary muscles appearing darker than the
contrast enhanced left ventricle.

To further reduce the amount of candidates the difference between the texture
mean values of the inner and outer samples has to be greater than a given
threshold (30% of gray value range). Otherwise the candidate is discarded.
This threshold seems to be very high but therefore only candidates having
a very high contrast between outer (myocardium) and inner (left ventricle)
samples will remain.

5. After identifying possible candidates more samples on the circle are taken
(figure 4.4(e)). The texture variance of these outer samples is recalculated to
get a more robust measurement of the texture variance. This texture variance
is used to indicate how well a candidate matches the pattern. A lower texture
variance indicates a higher probability for being the correct candidate.

Figure 4.5 shows the progress of the candidates reduction when the model is
restricted step by step.

This hierarchical procedure filters out multiple candidates for each time step.
Some of them do not represent the left ventricle correctly due to misleading appear-
ances of the pattern in the dataset (figure 4.6). Therefore all candidates are sorted
according to the texutre variance of the outer samples and the ten candidates with
lowest texture variance are kept (4.7). Typically some false positives remain.

Pattern Matching (Best Candidate)

To finally identify the correct location of left ventricle and myocardium, a model
matching approach is used introducing additional anatomical information. The
shape of the model is defined by properties observed in the available datasets. The
model consists of two concentric circles and an attached circle segment (figure 4.8).

The area inside the inner circle represents the left ventricle. The area between
the two concentric circles represents the myocardium. The attached circle segment
represents the lung and has an opening angle of 90◦.

This model is placed on every candidate to identify the best one. It is placed
in such a way that the centers of the candidate and the left ventricle of the model
match. The radius of the model’s left ventricle is set equal to the radius of the
candidate. The thickness of the myocardium is chosen as half the radius of the
candidate and the radius of the circle segment is set to 2.5 times the radius of the
candidate. These model parameters are chosen based on the observed properties in
the available datasets.

To compare the candidates a difference measurement has to be defined. The
error rate according to the following classification is used: The assumption is made
that the placed model correctly defines the different regions (classes) in the unseen
images. The probabilities for gray values observed in a certain class is calculated.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Candidates Reduction. A red pixel indicates the center of a remaining
candidate. At the beginning every pixel represents a center of a possible candidate.
First, the most left point of the candidate is fixed. (a) shows remaining candidates
after inspecting the most right point. (b) shows remaining candidates after inspect-
ing the highest and lowest point. Then it is checked if the inner area is brighter
than the circle (c). Afterward the requirement for a homogeneous inner area is con-
cerned (d). Finally, the difference of the gray values of the inner and outer points
is checked if it is above a given threshold. (e) shows the remaining candidates. (f)
shows the contours of the ten candidates with minimal gray value variance of the
outer points.

Afterward for every pixel under the model the expected class based on the prob-
abilities of the gray values is determined. For each pixel this gray value based
classification is compared to the classification according to the region of the model
that overlaps the pixel. All pixels for which the two classifications differ increase
the difference measure between model and data. The error rate is defined as:

error rate =
#falsely classified samples

#samples
(4.3)

Considering only one of the three different regions ci and the gray values of
pixels observed there, the probability of a gray value gk observed in this region is
defined as:

p(gk|ci) =
Hci(gk)∑N
j=1Hci(gj)

(4.4)

where Hci(gk) is the absolute frequency of the appearance of the gray value gk in
the region of ci and N indicates the number of available gray values. For a specific
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Figure 4.6: Multiple Candidates for different time steps. In cases where the
contrast agent neither appears in the left ventricle nor in the right ventricle only
false candidates are identified (a). If the contrast agent only appears in the right
ventricle, it may be identified being a possible candidate (b). Correct candidates are
identified if the contrast agent appears in the left ventricle (c). Sometimes still false
candidates are found if the contrast agent appears in the left ventricle (d), (e). If
no more contrast agent appears in the left ventricle, again only false candidates are
identified (f).

gray value gk the maximum likely assignment to a class c∗ defines the gray value
based class:

c∗ = arg max
ci

p(gk|ci) (4.5)

To deal with rotation the model is placed on the candidates and rotated in 20◦

steps. Finally the candidate with the lowest error rate is identified as the best can-
didate. The bounding box covering the whole candidate is defined as the region
of interest. Algorithm 2 outlines the method for ROI extraction based on model
matching.
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Algorithm 2 Model based ROI detection
1: input: 4D dataset
2: output: most probably candidate
3: for all time steps do
4: for all pixel do
5: for all pixels along horizontal axis within distance 40-80mm do
6: if gray value difference ≥ 0.01 then
7: discard candidate
8: else
9: locate upper and lower pixel

10: if gray value variance of outer pixels > 0.01 then
11: discard candidate
12: else
13: locate inner pixels
14: if inner pixels darker than outer pixels then
15: discard candidate
16: else if gray value variance of inner pixels > 0.05 then
17: discard candidate
18: else if difference of inner and outer gray values < 0.3 then
19: discard candidate
20: else
21: recalculate outer variance with more pixels
22: end if
23: end if
24: end if
25: end for
26: end for
27: end for
28: sort candidates by outer gray value variance
29: keep 10 candidates with lowest variance
30: for all candidates do
31: initialize model
32: for all 20◦ model rotation do
33: calculate error rate
34: end for
35: end for
36: sort candidates by error rates
37: keep candidate with lowest error rate
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Figure 4.7: Most probably candidates. Ten candidates with lowest variance of
the outer points. There still exist some false positives.

Figure 4.8: Model. Left ventricle (black), myocardium (gray), lung (white)

4.2 Registration

The relative long data acquisition time of perfusion data - up to 40 seconds and
more - leads to one major problem in the segmentation process: breathing artifacts.
During the data acquisition process the patient is asked to hold the breath. However,
not all patients are able to do so during the whole acquisition time. Breathing causes
the lung to expand and contract. Due to the fact that the heart lies directly next to the
lung it will change its position and shape. Since the following segmentation step
relies on spatial and temporal information, it is essential to correct these motion
artifacts as much as possible.
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In order to eliminate motion artifacts the images of different time steps need to
be registered. For this a similarity metric is required. Gray value difference, mean
square error, or cross correlation only lead to good results if all images exhibit sim-
ilar gray values in corresponding regions. Perfusion images have time-dependent
gray values due to the enhancement caused by the contrast agent. For such images
mutual information [Viola and Wells, 1997] as difference measure is much better
suited. Mutual information of two discrete random variables X and Y is defined as:

I(X, Y ) =
∑
y∈Y

∑
x∈X

p(x, y) · log
p(x, y)

p(x) · p(y)
(4.6)

Here the two random variables X and Y are the two images to be compared. p(x)
and p(y) are the marginal probability distribution functions of the gray values of
X and Y. They are defined as the normalized histograms for each of the two im-
ages. p(x, y) is the joint probability distribution function for the gray values of both
images and is defined as the normalized two dimensional joint histogram of the
images.

The higher the mutual information, the higher the probability that the two com-
pared images are well aligned. To minimize the computational costs and get better
results the mutual information is not calculated for the whole images, but only at a
discoidal region covering the candidate identified in the previous step (section 4.1).
A reference image is chosen to which all other images are registered. This refer-
ence image is defined as the image at the time step where the previously detected
candidate is located.

All other images, the so-called floating images, are placed on the reference im-
age and shifted in all directions. The mutual information is calculated at every
shifted position. The shift that leads to the maximum mutual information is con-
sidered as the optimal registration. The shift of the floating images is restricted by
±2r whereas r is the radius of the candidate. The registration process is outlined in
algorithm 3.

Algorithm 3 Registration
1: input: Reference Image R, Floating Image F, Candidate x, y, r
2: output: x-Shift, y-Shift
3: for dx := −2r to dx ≤ 2r do
4: for dy := −2r to dy ≤ 2r do
5: mi(dx,dy)←MutualInformation (R(x,y), F(x+dx, y+dy))
6: end for
7: end for
8: [x-Shift, y-Shift]← arg min(mi(dx,dy))
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4.3 Segmentation

After registration the segmentation is performed: the goal is to detect the inner and
outer boundaries of the myocardium in each time step. The fact that the contrast
agent arrives at different anatomical regions at different times allows to separate the
myocardium from other tissues.

The segmentation is done in two steps. In the first step characteristic intensity
time curves for four different regions (left ventricle, myocardium, right ventricle,
and background) are calculated (section 4.3.1). In the second step these curves are
used to derive contours for the individual time steps (section 4.3.2).

4.3.1 Estimation of characteristic intensity time Curves

In perfusion images four regions can be identified by their characteristic intensity
time curves: left ventricle, right ventricle, myocardium, and background. The goal
is to estimate these four characteristic intensity time curves. Therefore, four steps
are carried out to estimate them:

1. Initial Estimation

2. Classification

3. Classification Refinement

4. Final Estimation

Initial Estimation

Based on the model fitted to the data in the localization step and the rigid registration
an initial estimate for the characteristic intensity time curves is made.

The outline of the initially detected circular candidate (section 4.1) identifies
pixels of the myocardium. By observing the intensities of these pixels over time an
initial approximation of the characteristic intensity time curve of the myocardium
is set up (figure 4.9 (a)).

The characteristic intensity time curve of the left ventricle is considered next.
To do so the pixels inside the circle defining the myocardium are observed. It is not
guaranteed that the whole inner area of this circle corresponds to the left ventricle.
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Therefore only pixels lying within a disc of half the myocardium’s radius are used
for a more robust estimation of the curve. Within this region fewer misleading
pixels (as caused by papillary muscles) disturb the result. This leads to an initial
characteristic intensity time curve of the left ventricle (figure 4.9 (b)).

Algorithm 4 Right Ventricle Detection
1: input: Candidate (x, y, r), Characteristic LV Curve c
2: output: RV Mask
3: create ring shaped mask with radii 3

2
r and 2r centered at (x, y)

4: split mask into 8 segments with same size
5: determine characteristic intensity time curves for all segments
6: t← maximum upslope of c
7: determine maximum upslope for every segment before time step t
8: RV Mask← segment with maximum upslope

To estimate the characteristic intensity time curve for the right ventricle a rep-
resentative region has to be identified first. Therefore the moment of contrast agent
arrival in the left ventricle is needed. The greatest intensity increase in subsequent
time steps indicates the moment of contrast agent arrival. For better results a linear
fit of the gray values of three subsequent time steps is calculated. The slope of the
resulting regression line (y = mx+ b) defines the intensity change. The parameters
(m, b) of the regression line are calculated as follows:

m =
n

∑
xy −

∑
x

∑
y

n
∑
x2 − (

∑
x)2 (4.7)

b =

∑
y −m

∑
x

n
(4.8)

To roughly locate the right ventricle the fact is used that contrast agent first ap-
pears in the right ventricle and then in the left ventricle. To locate the right ventricle
a circular area around the myocardium is selected and divided into eight segments.
For every segment the characteristic intensity time curve is determined (figure 4.9).
The curves are determined by calculating the mean gray value of the whole segment
for every single time step. The largest intensity increase before contrast agent ar-
rival in the left ventricle is calculated. The segment where this increase is largest is
considered to overlap with the right ventricle. Algorithm 4 outlines the procedure
for the RV detection. The characteristic intensity time curve of this segment is then
a representative curve of the right ventricle (figure 4.9 (c)).

The intensities of the background are assumed to be nearly constant over time.
Therefore the characteristic intensity time curve of the background is defined as a
curve with a constant value.

Classification

Pixels are classified as belonging either to the left ventricle, myocardium, right ven-
tricle, or background. The characteristic intensity time curves of individual pixels
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Figure 4.9: Example of segment curves. Pixels on the circle define the curve of
the myocardium (a). Pixels inside the circle (gray area) define the curve of the left
ventricle (b). Early contrast agent arrival reveals the segment representing the right
ventricle (c).
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(a) (b)

(c) (d)

Figure 4.10: Initial classification. (a) Left Ventricle, (b) Myocardium, (c) Right
Ventricle, (d) Background. Arrows indicates regions not correctly corresponding to
the class.
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are examined therefore. The characteristic intensity time curve which is most sim-
ilar defines the class of the pixel. Differences between curves are measured as the
mean square differences of the angles of the slopes:

d(c1, c2) =
N−1∑
i=0

(α1(i)− α2(i))
2 (4.9)

αj(i) = arctanmj(i) (4.10)

where c1 and c2 identifies the two curves to compare. mj(i) is the slope of curve j
at position i. The decision for a class is defined as:

classv = arg min
i
d(ci, cv) (4.11)

where ci identifies the different previously calculated characteristic intensity time
curves for the classes (left ventricle, right ventricle, myocardium, background) and
cv the characteristic intensity time curve for an individual voxel.

This measurement takes only relative curve changes into account to compensate
different intensity offsets.

Classification Refinement

The classification masks obtained in the previous step still contain regions not cor-
responding to their class (figure 4.10). To get a good final estimation of the char-
acteristic intensity time curves these masks have to be refined. The masks of left
ventricle and right ventricle are simply refined by selecting their largest connected
components.

The mask of the myocardium is improved based on the branch-and-bound ap-
proach from Yeh et al. [Yeh et al., 2005]. It is assumed that the outer contour of the
myocardium has approximately a circular shape. The mask of the myocardium is
transformed into polar coordinates (angle + radius, figure 4.13 (a)) in respect of the
center of the ROI. Every column identifies an angle and every row a radius. A per-
fectly circular boundary of the myocardium would appear as a straight horizontal
line. To find an approximately circular curve a path going from left to right con-
taining every column only once has to be found (figure 4.11). To allow some shape
variations the radius is allowed to change by one pixel between adjacent columns.
To fulfill the constraint of a closed curve the first and last column are considered
adjacent. To find the optimal curve weights are defined for every pixel: At a transi-
tion in one column from the myocardium to a different type of tissue the weight is
set to zero, from a different tissue to the myocardium to two and in all other cases
to one (figure 4.12(b)). Then the path with minimum costs fulfilling the constraints
is calculated (figure 4.13 (b)) and the optimized area is extracted (figure 4.13 (c)).
Algorithm 5 outlines the process of finding a path with minimal costs in a polar
map.
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(a) (b)

Figure 4.11: (a) shows all possible connections between adjacent columns. A col-
umn identifies an angle and the rows identifies the different radii. The last column is
the same as the first column. Fixing a start point constricts the possible paths from
left to right (b).

Algorithm 5 Find path with lowest costs in polar map
input: polar map
output: Pi path with lowest costs
append first column to the end of the polar map . closed curve constraint
[width, height] = size(polar map)
calculate weights wi,j
for r = 0 ... height do

costi,j =∞∀(0 ≤ i ≤ width, 0 ≤ j ≤ height)
cost0,r = w0,r

for c = 1 to width do
for k = 0 to height do

if k lies on valid path starting from r then
costc,k = wc,k + minpredecessor cost

end if
end for

end for
trace path Pr with lowest costs Cr

end for
determine Path Pi with lowest costs Ci
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(a) (b)

Figure 4.12: For the polar image of the myocardial mask (a) the weights are calcu-
lated (b). The weights are defined as: 2 - black, 1 - gray, 0 - white.

Final Estimation

For the final estimation of the characteristic intensity time curves the refined classi-
fication masks are considered. The mean values of the pixels within the masks are
observed for every time step. These mean values lead to the final estimation of the
characteristic intensity time curves.

4.3.2 Boundary Extraction

In the previous step the characteristic intensity time curves for left ventricle, right
ventricle, myocardium, and background are estimated. This is done by focusing on
the temporal information. In the boundary extraction step the temporal information
is ignored and every individual time step is observed separately. The goal is to
extract the inner and outer boundary of the myocardium at every time step. Based
on motion artifacts it is problematic to extract the boundaries at a single time step
and apply them to the others.

This step has to deal with a great challenge: depending on the progress of the
contrast agent highly varying contrasts are observed for different regions. At the
beginning of the image sequence contrast agent appears neither in the left ventri-
cle, right ventricle, nor in the myocardium (figure 1.1(a)). Therefore the contrast
between these regions is very low. Later the contrast agent appears in the right
ventricle whereby a good contrast appears between myocardium and right ventri-
cle (figure 1.1(b)). Then the contrast agent appears in the left ventricle and a good
contrast exists between myocardium and left ventricle (figure 1.1(c)). Until now the
contrast between myocardium and background especially the lung is very low. If
the contrast agent appears in the myocardium this contrast increases (figure 1.1(d)).
The contrast between left ventricle and myocardium as well as right ventricle and
myocardium simultaneously decreases during contrast agent wash-out. Due to the
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Figure 4.13: Optimization of the myocardial boundary. After transforming the
image into polar coordinates (a), the path with minimum costs (white curve) is
determined (b) and then transformed back to the spatial domain (c).

varying contrast between myocardium and other tissue the inner and outer boundary
of the myocardium are extracted separately.

For extracting the inner boundary a good contrast between myocardium and left
ventricle is necessary. Therefore the inner boundary is only clearly determined in
time steps where the difference of the characteristic intensity time curves of left
ventricle and myocardium is greater than a given threshold (10% of gray value
range). At all other time steps a default boundary is assigned. The default boundary
is determined at the time step with highest contrast between left ventricle and my-
ocardium. This time step is derived from the characteristic intensity time curves of
these regions.

For extracting the outer boundary a good contrast between myocardium and
surrounding tissues (right ventricle and background) is necessary. However there
exists no image providing this requirement. Therefore the outer boundary is first
determined for all time steps and then further refined.

To determine the boundaries the same algorithm as in the previous section
(4.3.1) - finding a path with minimal costs - is used. However, the assignment of
weights has to be done differently since individual time steps and no time varying
gray values are considered now.



48 CHAPTER 4. IMAGE PROCESSING PIPELINE

(a) (b) (c) (d)

Figure 4.14: Thresholded images based on myocardial characteristic intensity
time curve. In (a) contrast agent appears neither in the right ventricle, left ventricle,
nor in the myocardium. (b) contrast agent appears in the right ventricle. (c) contrast
agent appears in the left ventricle. (d) contrast agent appears in the myocardium.

Weight Definition

For each time step t the mean gray values µmyo(t) and µLV (t) and standard de-
viations σmyo(t) and σLV (t) for the regions of myocardium and left ventricle are
calculated. This is done based on the optimized masks as determined in section
4.3.1.

It is assumed that the distribution of gray values for myocardium and left ven-
tricle follow a normal distribution. The intersection point intersection(t) of the
curves representing those normal distributions is determined. Each image is thresh-
olded keeping pixels within a specific gray value interval. The interval for thresh-
olding is determined as:

interval(t) =

{
[µmyo(t)− σmyo(t), intersection(t)], if µmyo(t) ≤ µLV (t)

[intersection(t), µmyo(t) + σmyo(t)], if µmyo(t) > µLV (t)

After thresholding each pixel of the image is assigned either to myocardium
(M) or to other tissue (O). Figure 4.14 shows thresholded images at different time
steps. White pixels indicate pixels assigned to myocardium and black pixels to other
tissue.

Then the thresholded images are transformed into polar coordinates (in respect
of the center of the ROI) to detect the boundaries with algorithm 5.

For detecting the boundary as a path with minimal costs weights are assigned to
pixels. For the inner boundary the weights are defined as follows: M-M: 20, O-M:
5(n-1), M-O:20, O-O: 10. Whereby n indicates the n-th transition from O to M in
one column starting from the center of the left ventricle. This is used to penalize
transitions which are farther away from the center and therefore more unlikely cor-
rect transitions. For the outer boundary a transition from M to O a weight of zero
and for all others a weight of 10 is assigned. To avoid intersections between the
inner and outer boundary all pixels inside the inner boundary are assigned infinity.
Figure 4.15 shows weights for different time steps. In some time steps (4.15(a),
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(a) (b) (c) (d)

Figure 4.15: Boundary Weights. The top row shows thresholded images trans-
formed into polar map. The center row shows the weights for the inner boundary
and the bottom row shows the weights for the outer boundary. The missing two
images in the center row indicate that for these time steps the inner contour is not
calculated. Because of poor contrast between myocardium and left ventricle the
default contour is assigned for these time steps. Black indicates minimal cost and
white maximal cost.
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(a) (b) (c) (d)

Figure 4.16: Optimal Path for Boundaries. Optimal path for inner boundary
(top row) and outer boundary (center row). The bottom row shows the boundaries
transformed back to Cartesian coordinates.

4.15(b)) only weights for the outer boundary are defined. Because of poor contrast
between myocardium and left ventricle the default contour is assigned there for
these time steps. Therefore the inner contour is known and has not to be determined
again.

Applying algorithm 5 to the defined weights leads to paths with minimal costs.
Transforming these paths back into Cartesian coordinates leads to the myocardial
boundaries (figure 4.16). Some of the outer boundaries (figure 4.16(a), 4.16(d)) are
inaccurate and do not reside to the edges in the images.

Outer Boundary Refinement

An additional step to refine the outer boundaries follows. It is assumed that no con-
traction of the myocardium in the perfusion images is observed because the images
are ECG-gated. On the other hand it is assumed that the inner boundaries are suffi-
ciently accurately detected. The thickness of the myocardium is determined along
rays starting at the center of the left ventricle. The rays are positioned at equidistant
angles. This is done separately for every time step. Then the median distances along
the rays over time are determined. The outer boundaries are adjusted to be located
at the median distance to the inner boundaries (figure 4.17). Algorithm 6 outlines
the process for determining the myocardial boundaries.

This section has given a detailed description how the segmentation is performed.
In the first part the segmentation process deals with time-dependent information to
estimate characteristic intensity time curves for different interesting regions (right
ventricle, left ventricle and myocardium). The following part deals with spatial in-
formation for every time step separately. The characteristic intensity time curves of
the left ventricle and the myocardium allow the definition of an individual thresh-
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(a) (b) (c) (d)

Figure 4.17: Myocardial Boundaries for different time steps. Before (top row)
and after (bottom row) refining the outer boundary.

Algorithm 6 Boundary Determination
input: Characteristic intensity time curves for myocardium cmyo and left ventricle
cLV , Registered Images I
output: Myocardial Countours for every time step
for all Time steps t do

Threshold image I(t) according to cmyo(t) and cLV (t)
transform image into a polar map
if |cmyo(t)− cLV (t)| > 10% of gray value range then . contrast sufficient

define weights for inner boundary
find path with minimum costs

else
assign default boundary

end if
define weights for outer boundary
find path with minimum costs
calculate myocardial thickness for different rays

end for
calculate median myocardial thickness over time
add median myocardial thickness to all inner boundaries
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old for every time step. Based on these thresholded images the contours of the
myocardium are extracted.

The following section uses these segmentations to quantify the myocardial per-
fusion. Based on this quantification it is possible to make predictions on the health
status of the patient.

4.4 Analysis

The previous section focused on the segmentation of the myocardium in perfusion
MRI datasets. This section focuses on the analysis of myocardial perfusion based
on the previously segmentation. The goal is to quantify and visualize the perfusion
to offer predictions on the heart functionality of the patient. The quantification is de-
termined for the segments recommended by the American Heart Association (AHA
[AHA, 2007; Cerqueira et al., 2002]) (figure 3.3). The perfusion is then visualized
in a Bull’s Eye plot (figure 3.4). For the analysis and visualization of the different
segments it is essential to identify the areas representing them. This leads to a three
step analysis procedure: segment definition, segment analysis, visualization.

4.4.1 Segment Definition

As introduced previously (sec. 3.4) the AHA has recommended a standard for par-
titioning the myocardium. With this partitioning it may be possible to identify
narrowed vessels. Therefore it is necessary to divide the myocardium into these
recommended segments.

The myocardial area separating left and right ventricle is divided into two seg-
ments at the basal (segments no. 2 and 3) and mid-cavity (segments no. 8 and 9)
slice. Furthermore the two segments bordering the right ventricle have the same
size. The remaining myocardial area is divided into four segments of equal size. At
the apical slice the area separating left and right ventricle is a single segment. The
remaining myocardial area is divided into three segments of equal size.

To obtain a segment definition holding these requirements it is necessary to
detect the area where the right ventricle is attached to the myocardium. After iden-
tifying this area the myocardium can be divided into the recommended segments.

Right Ventricle - Myocardium attaching area

To identify the area where the right ventricle is attached to the myocardium the
previously obtained right ventricle mask (section 4.3.1) is considered. The mask is
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(a) (b) (c) (d)

Figure 4.18: Right Ventricle - Myocardium connection detection. The right
ventricle mask (a) is transformed into a polar map (b). The start and end point
of the right ventricle are determined (c) to locate the attaching point of the right
ventricle to the myocardium (d).

Figure 4.19: Myocardial Segments.

transformed into a polar map (figure 4.18(b)) in respect of the center of the ROI. In
the polar map the width and the beginning and ending point of the area are deter-
mined (figure 4.18(c). Transforming these points back into Cartesian coordinates
the contact area between myocardium and right ventricle is identified.

Segment Partitioning

After locating the area where the right ventricle attaches the myocardium, the my-
ocardium can be divided into its segments. Therefore the attaching area is divided
into two segments with same size. Furthermore the remaining myocardial area is
divided into four segments with same size. Figure 4.19 shows an example of the
determined myocardial segments.

4.4.2 Segment Analysis

After defining the different segments of the myocardium they can be analyzed. For
the analysis the characteristic intensity time curves of the segments are considered.
Based on these characteristic intensity time curves measurements can be evaluated.
As shown in section 2.7 different measurements exist: Peak Enhancement (PE),



54 CHAPTER 4. IMAGE PROCESSING PIPELINE

Figure 4.20: Myocardial Intensity Time Curve. The blue line shows the maxi-
mum slope of five subsequent points. The green vertical lines delimit the determined
contrast agent accumulation period.

Contrast Appearance Time (CAT), Time To Peak (TTP), Integral, Mean Transit
Time (MTT), Upslope, and Downslope. It has been shown that regions with bad
perfusion can be identified by the measurements upslope and peak enhancement
([Al-Saadi et al., 2000; Al-Saadi et al., 2001; Christian et al., 2004; Schwitter et
al., 2001; Nagel et al., 2003]) and that the upslope of the characteristic intensity
time curve linearly fits to the myocardial perfusion reserve. Therefore this thesis
focuses on determining the upslope for the segments.

Oeltze et al. [Oeltze et al., 2007] characterize the upslope as the maximum slope
between two or three subsequent time steps during contrast agent accumulation in
the myocardium. Therefore the period of contrast agent accumulation has to be
identified. After identifying this period the upslope is evaluated for every segment.

Contrast Agent Accumulation Period

To identify the contrast agent accumulation period the characteristic intensity time
curve of the myocardium is investigated. The mean intensity values of the seg-
mented myocardium at every time step define this characteristic intensity time
curve. It is assumed that the maximum slope of five (linearly fitted) subsequent
points of this curve appears during the contrast agent accumulation period. The ac-
cumulation period is assumed to start three time steps before and ends three time
steps after the maximum slope appears. The maximum slope of five subsequent
points and the accumulation period are shown in figure 4.20.

Segment Analysis

After the contrast agent accumulation period (figure 4.20) is identified, the maxi-
mum slope can be calculated for every segment. Therefore the characteristic inten-
sity time curves for every segment are observed. The mean intensity values of a
segment at every time step define the characteristic intensity time curve. To identify
the maximum slope all possible slopes of three (linearly fitted) subsequent points of
these curves within the accumulation period are calculated. The resulting maximum
slopes indicate the perfusion quantification of the segments. They are visualized in
figure 4.21.



4.4. ANALYSIS 55

(a) (b)

(c) (d)

(e) (f)

Figure 4.21: Segment Intensity Time Curves. Segment Intensity Time curves
for all segments of the myocardium at a mid-cavity slice. The curves represent
segments no.7 - no.12. The blue lines show the maximum slopes of three subsequent
points inside the determined accumulation period.
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Figure 4.22: Bull’s-Eye Plot. Black indicates a bad and white a good perfusion.
This Bull’s-Eye plot consists only of one ring because the dataset is only segmented
at the mid-cavity slice.

4.4.3 Visualization

The previous section has quantified the perfusion for the myocardium. This section
will show a method to visualize these quantified measurements to get a visual im-
pression of the perfusion. The quantified perfusion is illustrated using a Bull’s-Eye
plot (figure 3.4). MRI does not provide absolute measurements as CT, so only a
semi-quantitative analysis can be performed. Therefore the previously determined
measurements are normalized by the maximum value. These normalized measure-
ments are then color-coded and illustrated in a Bull’s-Eye plot (figure 4.22).

4.5 Summary

This section outlines the whole image processing pipeline described in this chap-
ter. Two different methods were introduced for ROI selection. One takes only
temporal information into account and the other one only spatial information. The
ROI selection is followed by a registration step maximizing the mutual information.
The subsequent step first estimates characteristic intensity time curves for different
anatomical structures. Based on these curves the myocardial boundaries are ex-
tracted. The analysis of perfusion is performed in a concluding step. Therefore the
perfusion is quantified and visualized in a Bull’s Eye plot. Figure 4.23 outlines this
image processing pipeline.
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Chapter 5

Results

This chapter presents the results obtained with the implementation introduced in the
previous chapter. The chapter is organized as follows:

• An overview of the used datasets is given in section 5.1.

• In section 5.2 the results obtained from the ROI selection step are presented.

• The registration results are presented in section 5.3.

• Section 5.4 shows the segmentation results.

• The final analysis results are presented in section 5.5.

• Finally, an overview of the performance of the method is given in section 5.6.

5.1 Dataset Overview

The presented method was tested on eleven cardiac perfusion MRI datasets from
nine different patients and three different scanners. Five patients were examined

Patient Scanner Resolution R/S Steps Slices
Patient 1 Philips Gyroscan 1.5T NT Intera 128× 128 N/A 17 5
Patient 2 Philips Gyroscan 1.5T NT Intera 128× 128 N/A 27 5
Patient 3 Philips Gyroscan 1.5T NT Intera 128× 128 N/A 18 5
Patient 4 Philips Gyroscan 1.5T NT Intera 128× 128 N/A 29 3
Patient 5 Philips Gyroscan 1.5T NT Intera 128× 128 N/A 43 5
Patient 6 Philips 1.5 Intera 256× 256 R 77 3

S 77 3
Patient 7 Philips 1.5 Intera 256× 256 R 66 3

S 59 3
Patient 8 Siemens Symphony 1.5T 208× 256 N/A 60 1
Patient 9 Siemens Symphony 1.5T 208× 256 N/A 60 1

Table 5.1: Overview of used datasets.

58
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 5.1: Variance Based ROI Selection Results.(a) patient 1, (b) patient 2, (c)
patient 3, (d) patient 4, (e) patient 5, (f) patient 6 under rest, (g) patient 6 under
stress, (h) patient 7 under rest, (i) patient 7 under stress, (j) patient 8, (k) patient
9. The top row shows the determined bounding box (yellow box) around the great-
est connected component (white area). The bottom row shows the bounding box
illustrated on a mid-cavity slice.

with a Philips Gyroscan 1.5T NT Intera with a resolution of 128×128 voxels, three
to five slices and 17 to 43 time steps. Two patients were scanned with a Siemens
Symphony 1.5T with a resolution of 208 × 256 voxels, only one slice and 60 time
steps. Two patients were examined under rest and stress conditions with a Philips
1.5T Intera with a resolution of 256 × 256 voxels, three slices and 59 to 77 time
steps. The datasets are listed in table 5.1.

5.2 ROI Selection Results

Figure 5.1 shows the results obtained from the variance based ROI selection. The
ROI is incorrectly determined for patient 6 and patient 7 under rest as well as under
stress conditions (5.1(f) - 5.1(i)). This results from huge motion artifacts and poor
contrast enhancement caused by the contrast agent.

Figure 5.2 shows the results obtained from the model based ROI selection. The
method only fails for patient 3 (figure 5.1(c)). Instead of the left ventricle the right
is found. This results from the irregular shape of the left ventricle and the very noisy
images.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 5.2: Model Based ROI Selection Results.(a) patient 1, (b) patient 2, (c) pa-
tient 3, (d) patient 4, (e) patient 5, (f) patient 6 under rest, (g) patient 6 under stress,
(h) patient 7 under rest, (i) patient 7 under stress, (j) patient 8, (k) patient 9 The top
row shows the best determined candidate identifying the left ventricle. The bottom
row shows the ROI surrounding the candidate’s left ventricle and myocardium.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17

Figure 5.3: Registration Results for Patient 1.

For further examination (registration, segmentation, analysis) the model based
ROI selection is used for all datasets. For the dataset from patient 3 the ROI was
manually selected to allow a further examination of it.

5.3 Registration Results

Figures 5.3 - 5.13 show the results obtained from the image registration process.
For each time step two images are shown. The upper image shows the candidate -
identified in the ROI selection step - placed on the unregistered image. The lower
image shows the candidate placed on the registered image. For every dataset the
whole image sequence is shown. The registered images are compared with the non-
registered images to determine an improvement or a decline of motion artifacts.
This evaluation is done by visual inspection.

Patient 1 (figure 5.3)

The registration process leads to nearly perfect results and compensates the mo-
tion artifact of one image (4). At time step 3 the registration leads to a better but
not exactly to the expected result. For all other images equal results like without
registration are gained.

Patient 2 (figure 5.4)

The registration process provides better results for three images (3, 15, 27). In
one case (21) the registration fails but leads nearly to the same result as without
registration. For all other images equal results as without registration are gained.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27

Figure 5.4: Registration Results for Patient 2.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18

Figure 5.5: Registration Results for Patient 3.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29

Figure 5.6: Registration Results for Patient 4.

Patient 3 (figure 5.5)

For the first four time steps (1-4) no improvement was achieved although they are
clearly unregistered. In one case (5) a decline and in two cases (6,8) an improvement
occur. For all other images equal results like without registration are gained.

Patient 4 (figure 5.6)

For two time steps (1,2) no improvements were achieved although they are clearly
unregistered. For many other images improvements were achieved (4, 8-29). For
all other images equal results like without registration are gained.

Patient 5 (figure 5.7)

The registration process leads to nearly perfect results and compensates the motion
artifacts in all images. Improvements (16,25,26,36-38) without any declines are
gained.

Patient 6 under rest conditions (figure 5.8)

The registration process leads to nearly perfect results and compensates the motion
artifacts in all images. Improvements (8-10,29-33,38-61) without any declines are
gained.



64 CHAPTER 5. RESULTS

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43

Figure 5.7: Registration Results for Patient 5.
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1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66

67 68 69 70 71 72 73 74 75 76 77

Figure 5.8: Registration Results for Patient 6 under rest conditions.
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1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22
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34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66

67 68 69 70 71 72 73 74 75 76 77

Figure 5.9: Registration Results for Patient 6 under stress conditions.
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Patient 6 under stress conditions (figure 5.9)

The registration process leads to perfect results and compensates the motion ar-
tifacts in all images. Improvements (6,10,24-27,30,33-40,47-49) without any de-
clines are gained.

Patient 7 under rest conditions (figure 5.10)

The registration process leads to perfect results and compensates the motion arti-
facts in two images. Improvements (6,36) without any declines are gained.

Patient 7 under stress conditions (figure 5.11)

The registration process leads to good results. It compensates most of the appearing
motion artifacts (13,14,31-33, 38-59) but at two time steps (8,9) the results became
worse.

Patient 8 (figure 5.12)

The registration process leads to perfect results and compensates the motion arti-
facts in all images. Improvements (36-41, 55-59) without any declines are gained.

Patient 9 (figure 5.13)

The registration process leads to perfect results and compensates the motion arti-
facts in all images. Improvements (26-29) without any declines are gained.

Summary

Overall 533 images were registered. In 109 cases (∼20%) an improvement was
achieved. For three images (∼0.6 %) the registration result was quenstionable. In
these cases no contrast agent is present and a bad contrast between the regions
covered by the ROI exists. Therefore it may be possible that the Mutual Information
gets very similar values at different positions which may lead to a wrongly decision
for the registration shifts. For all other cases neither an improvement nor a decline
were achieved.

5.4 Segmentation Results

Figures 5.14 - 5.24 show the results obtained from the segmentation process. The
top row shows the segmented myocardium without the final refinement step of the
boundary extraction (4.3.2). The bottom row shows the final segmentation of the
myocardium.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40
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Figure 5.10: Registration Results for Patient 7 under rest conditions.
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11 12 13 14 15 16 17 18 19 20
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Figure 5.11: Registration Results for Patient 7 under stress conditions.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40
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51 52 53 54 55 56 57 58 59 60

Figure 5.12: Registration Results for Patient 8.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40
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51 52 53 54 55 56 57 58 59 60

Figure 5.13: Registration Results for Patient 9.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17

Figure 5.14: Segmentation Results for Patient 1.

Patient 1 (figure 5.14)

The inner contour of the myocardium is correctly detected except at three time
steps (11,16,17). For time step 3 the inner contour - which is the default contour
for this dataset - is placed inaccurately. This results from the previous inaccurate
registration. The outer contour is correctly detected at most time steps (2, 8-17).
At the other time steps the contrast between myocardium and background is low.
Therefore the outer contour could not be detected reliably.

The refined outer contours provide nearly perfect results. Only time steps with
an inaccurate inner contour provide an inaccurate outer contour. This results from
the assumption that the thickness of the myocardium is approximately constant over
time.

Patient 2 (figure 5.15)

The inner contour of the myocardium is correctly detected except at three time steps
(11,21,27). For time step 11 the detection of the inner contour completely fails. For
the time steps 21 and 27 the default contour is used. Since the registration for time
step 21 failed, the segmentation is inaccurate. At time step 27 the registration cor-
rects the motion artifact at the best but leads still to an inaccurate result. Therefore
the default inner contour is placed inaccurately. The outer contour is detected very
well except for the three time steps with an inaccurate inner contour.

The final segmentation looks very good except for the three time steps men-
tioned before.

Patient 3 (figure 5.16)

For this dataset the segmentation step completely fails, although at some time steps
8, 9,11,12,16,18) the inner contour was detected correctly. For the first time steps
the segmentation failed caused by inaccurate registration. At the other time steps
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Figure 5.15: Segmentation Results for Patient 2.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18

Figure 5.16: Segmentation Results for Patient 3.
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Figure 5.17: Segmentation Results for Patient 4.

poor contrast between myocardium and left ventricle as well as noise lead to an
incorrect detection of the inner boundary. The outer boundary is correctly detected
at only some time steps (9, 11-13,16). Therefore no satisfying results are gained.

Patient 4 (figure 5.17)

The inner boundary is detected correctly for most time steps. Time step 1 and
2 use the default contour. Because of an imperfect registration they are placed
inaccurately. For time step 27 and 29 the segmentation is not perfect but still a good
result is achieved. The detection of the outer contour provides good results for time
steps where the contrast agent appears in the myocardium.

The final segmentation leads to acceptable results but the thickness of my-
ocardium is mostly too thin. In this dataset the refinement step leads to worse results
than without.

Patient 5 (figure 5.18)

The inner boundary is correctly detected for all time steps except time step 16.
Sometimes the papillary muscles appear inside and sometimes outside the my-
ocardium. The outer boundary is detected very well except in the first time steps
where the contrast between myocardium and background is very low. Due to the
good determination of the inner and outer boundaries the final segmentation leads
to very good results. Only at time step 16 the segmentation is inaccurate caused by
the incorrect detection of the inner boundary.
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Figure 5.18: Segmentation Results for Patient 5.
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Figure 5.19: Segmentation Results for Patient 6 under rest conditions.
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Patient 6 under rest conditions (figure 5.19)

The inner boundary is correctly detected for all time steps. However, sometimes
the papillary muscles appear inside and sometimes outside the myocardium. The
outer boundary is correctly detected for most time steps. At some time steps (11-
13,15,31,32,34,76) a bright structure outside the myocardium is included.

The final segmentation leads to very good results.

Patient 6 under stress conditions (figure 5.20)

The inner boundary is correctly detected for all time steps. The outer boundary is
correctly detected for most time steps. At some time steps (22, 42, 56-66) some
pixels of the bright structure outside the myocardium are included.

The final segmentation leads to very good results.

Patient 7 under rest conditions (figure 5.21)

The inner contour is correctly detected for all time steps. The outer contour is
correctly detected for most time steps. At some time steps (1, 4-6, 13) some pixels
of the bright structure outside the myocardium are included. At other time steps (35-
39) the contour is not correctly determined according to the low contrast between
myocardium and background.

The final segmentation leads to very good results.

Patient 7 under stress conditions (figure 5.22)

The inner contour is correctly detected for all time steps except time step 32. This
is caused by an imperfect registration. At many time steps (1-13, 32) the detec-
tion of the outer contour failed due to bad contrast between myocardium and back-
ground. At some time steps (19, 27) some pixels of a bright structure outside the
myocardium are included.

The refinement step leads to very good results except at two time steps (8, 9).

Patient 8 (figure 5.23)

The inner contour is correctly detected for all time steps except time step 39. The
outer contour is well detected for all time steps. Therefore the final segmentation
leads to very good results.

Patient 9 (figure 5.23)

The inner contour is correctly detected for most time steps. Mostly the papillary
muscles appear outside the myocardium but sometimes they appear inside. At the
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Figure 5.20: Segmentation Results for Patient 6 under stress conditions.
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Figure 5.21: Segmentation Results for Patient 7 under rest conditions.
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Figure 5.22: Segmentation Results for Patient 7 under stress conditions.
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Figure 5.23: Segmentation Results for Patient 8.
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Figure 5.24: Segmentation Results for Patient 9.
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time steps 27-29 and 32 the default contour was placed due to bad contrast between
left ventricle and myocardium. At this time steps motion artifacts - causing ad-
ditional shape variations of the left ventricle - are present. Although the motion
artifacts were compensated the placed contours become inaccurate therefore. At
time step 26 and 35 the detection of the inner contour failed. The outer contours are
detected very well where a good contrast between myocardium and background ex-
ists. The final segmentation leads to satisfying results except when the inner contour
was detected inaccurately.

Summary

The segmentation leads to good results for most datasets. Only for the dataset of
patient 3 completely wrong results were obtained. If the previous registration step
leads to good results, mostly the inner contour is correctly detected. Low contrast
between myocardium and background make it hard to detect the outer contours.
Therefore at many time steps the contours are not detected correctly. However the
refinement step leads to acceptable results.

Overall 533 images were segmented. After visual inspection the following result
has been turned out: About 25 images (∼5%) result in questionable segmentations.
Whereas half of them came from the dataset of patient 3. About 50 images (∼10%)
result in acceptable segmentations. At the remaining images (∼85%) nearly perfect
segmentation results are gained.

5.5 Analysis Results

Figures 5.25 - 5.35 show the results obtained from the analysis step. On the right
side the segments of the myocardium are presented in a bull’s eye plot. They are
color coded according to the maximum upslope in corresponding areas. The color
bar on the left side illustrates which color represents which upslope value. Colors
appearing further up indicate a higher upslope (black: zero upslope, white: max-
imum detected upslope). In this thesis the bull’s eye plot is extended as follows:
The curve in the center of the bull’s eye plot shows the mean intensity time curve
of the whole myocardium. Furthermore the contrast agent accumulation period is
shown (green lines). This period is defined accordingly to the maximum upslope
(blue line) of five subsequent time steps. The other curves show the mean intensity
times curves for every single segment. Furthermore their maximum upslope (blue
line) within the contrast agent accumulation period is shown. At least one segment
appears in white because the values of the upslopes are normalized by the highest
upslope.

Only the segments at the mid-cavity slice were segmented. Therefore the Bull’s
Eye plots only illustrate these segments (segments no.7-12, figure 3.4).
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Figure 5.25: Analysis for Patient 1.

Patient 1 (figure 5.25)

The intensity time curve of segment 8 shows a peak at time step 2. This is caused
by an inaccurate detection of the myocardial boundaries for this time step. The
area corresponding to this segment includes a small amount of pixels from the right
ventricle. Since the contrast agent is present in the right ventricle it causes a signif-
icant increase of the mean value for this segment. There seems to be no significant
perfusion reduction.

Patient 2 (figure 5.26)

The intensity time curves show peaks after the contrast agent accumulation period.
These peaks are caused by inaccurate detection of the myocardial boundaries (time
steps 11 and 21).

There seems to be no dramatic perfusion reduction anywhere. A minor reduc-
tion may be present at segments 7, 8, and 9. This could be caused by a narrowing
of the LAD (left anterior descending artery).

Patient 3 (figure 5.27)

The segmentation of this dataset clearly failed. Hence time-intensity curves are
clearly wrong and the dataset is not analyzed any further.
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Figure 5.26: Analysis for Patient 2.

Figure 5.27: Analysis for Patient 3.
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Figure 5.28: Analysis for Patient 4.

Patient 4 (figure 5.28)

The intensity time curves show some peaks and noise after the contrast agent accu-
mulation period. They are caused by an inaccurate detection of the inner boundaries.
Sometimes a few pixels belonging to left ventricle show up in the myocardium.

There seems to be a highly reduced perfusion at segment 9. This may be caused
by a narrowing of the right coronary artery.

Patient 5 (figure 5.29)

The intensity time curves for the segments 10-12 have high variations. They are
caused by an inaccurate segmentation. There the papillary muscles sometimes ap-
pear inside and sometimes outside the myocardium. The curves for segments 8 and
9 show high peaks. They are caused by a imperfect segmentation where some pixels
of the right ventricle appear in these segments.

When only the color-coded bull’s eye plot is considered there seems to be a
reduced perfusion in all segments except segment no. 9. But this is not entirely
correct. The very high upslope of segment 9 leads to the impression that the others
have a low upslope. When additionally considering the intensity time curves of all
segments no reduced perfusion is indicated.
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Figure 5.29: Analysis for Patient 5.

Figure 5.30: Analysis for Patient 6 under rest conditions.
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Figure 5.31: Analysis for Patient 6 under stress conditions.

Patient 6 under rest conditions (figure 5.30)

The intensity time curves for segment 7 and 12 show some variations. These vari-
ations are caused due to wrongly segmentation of bright regions outside the my-
ocardium.

There seems to be no dramatic perfusion reduction anywhere. A minor reduc-
tion could be present at segments 7, 8, and 9. This may be caused by a narrowing
of the LAD (left anterior descending artery).

Patient 6 under stress conditions (figure 5.31)

The intensity time curves for segment 7 and 12 show some variations. These vari-
ations are caused due to wrongly segmentation of bright regions outside the my-
ocardium. There seems to be no dramatic perfusion reduction anywhere. A minor
reduction could be present at segment 8.

Patient 7 under rest conditions (figure 5.32)

The intensity time curve of segment 8 shows a peak before the contrast agent accu-
mulation period. This is caused by an inaccurate segmentation which causes some
pixels of the right ventricle appearing in the myocardium. The peaks after the con-
trast agent accumulation period in every curve are also caused by an inaccurate
segmentation.

When only the color-coded bull’s eye plot is considered there seems to be a
reduced perfusion in all segments except segment no. 12. But this is not entirely
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Figure 5.32: Analysis for Patient 7 under rest conditions.

correct. The very high upslope of segment 12 leads to the impression that the others
have a low upslope. When additionally considering the intensity time curves of all
segments no reduced perfusion is indicated.

Patient 7 stress rest conditions (figure 5.33)

The intensity time curves show peaks before the contrast agent accumulation period.
They are caused by an inaccurate segmentation of time step 8 and 9. There seems
to be a bad perfusion all over the myocardium. But this is caused by the very high
upslope of segment 7. By observing all intensity time curves there seems to be no
perfusion reduction.

Patient 8 (figure 5.34)

The intensity time curves have some variation after the contrast agent accumula-
tion period. They are caused because for some segmentations some pixels of the
background appear in the myocardium.

There seems to be no perfusion reduction in the myocardium. A minor reduction
may be present at segments 11 and 12. This may be caused by a narrowing of the
LCX (left circumflex artery).

Patient 9 (figure 5.35)

The intensity time curves exhibit some variation after the contrast agent accumula-
tion period. These variations appear because for some time steps pixels of the back-
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Figure 5.33: Analysis for Patient 7 under stress conditions.

Figure 5.34: Analysis for Patient 8.
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Figure 5.35: Analysis for Patient 9.

ground are included in the segmentation of the myocardium. Furthermore higher
variations exist for the curves of segment 7 and 12. They are caused by inaccurate
segmentations.

When only the color-coded bull’s eye plot is considered there seems to be a
reduced perfusion in all segments except segment no. 7. But this is not entirely
correct. The very high upslope of segment 7 leads to the impression that the others
have a low upslope. When additionally considering the intensity time curves of all
segments no reduced perfusion is indicated.

Summary

If the segmentation step provides sufficiently good results the analysis provides
meaningful results. Furthermore, by observing only the color coded bull’s eye plots
incorrect conclusions might be drawn. Therefore additionally the intensity time
curves of the single segments should be considered. Finally, this analysis can give
only an indication of a bad myocardial perfusion.

5.6 Performance Analysis

The previous sections gave an overview of the accuracy of the method. This section
gives an overview of the performance. The tests were carried out on a workstation
with an AMD Athlon 64 3400+ (2.4GHz) processor and 2GB RAM. The imple-
mentation is not optimized with respect to speed. An improvement of performance
should be possible.
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1 Patient 1 4.1 1.9 0.5 0.2 3.4 0.3 0.2
2 Patient 2 3.5 1.4 3.3 0.01 4.5 1.5 0.3
3 Patient 3 2.3 1.2 0.7 0.03 3.6 0.5 0.2
4 Patient 4 2.1 1.8 1.7 0.1 5 0.7 0.3
5 Patient 5 5.4 2.4 1.8 0.1 7.4 0.4 0.4
6 Patient 6 rest 23.0 3.8 53.9 0.5 43 10.7 3
7 Patient 6 stress 24.6 4.2 78.5 0.7 47.2 16 3
8 Patient 7 rest 17.3 3.7 18.2 0.3 36.5 3.9 2.5
9 Patient 7 stress 15.8 3.5 40.8 0.4 33.1 10.1 2.3
10 Patient 8 4.7 1.6 60.5 0.6 29.5 16.2 1.9
11 Patient 9 5.3 2.6 59.3 0.5 30.1 15.8 1.9

Table 5.2: Performance Overview. Duration of different steps at the algorithm in
seconds. The total time of the algorithm for every dataset is shown in figure 5.37

Table 5.2 gives an overview of the performance of the individual tasks of the
processing pipeline. The model based ROI selection is up to six times faster than
the variance based method. This is effected by two aspects: First, the variance based
method deals with the whole 4D-dataset whereas the model based method only op-
erates on a single slice for every time step. Second, the incremental structure of the
model based method discards many candidates at every step which reduces com-
putational costs. Furthermore, the registration process depends on the amount of
images to register to each other. The dataset of patient 7 under rest conditions
seems to be an outlier. The short registration time is achieved by the small ROI
which dramatically reduces computational cost for the registration process. There-
fore the registration time depends on the amount of images and of the ROI size.
The performance for the segmentation depends on the amount of time steps. The
performance of the analysis depends on the amount of time steps too.

Figure 5.36 illustrates the relative performance for every individual task of the
whole processing pipeline. In Figure 5.36(a) the variance based ROI selection is
used whereby in figure 5.36(b) the model based approach is used.

Figure 5.37 illustrates the performance for each individual dataset. The whole
analysis process depends on the amount of time steps for each individual dataset.
Furthermore, the performance also depends on the resolution of each image.
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(a)

(b)

Figure 5.36: Relative Performance. (a) with variance based ROI selection, (b)
with model based ROI selection.

(a) (b)

Figure 5.37: Performance on Datasets. (a) performance for the whole dataset,
5.37(b) average performance per slice (in seconds)



Chapter 6

Conclusion and Future Work

In this thesis the automatic analysis of cardiac perfusion MRI data was discussed.
The importance of automatic analysis of such data for preliminary detection of coro-
nary artery diseases was outlined. An overview of the anatomy, physiology, and
pathophysiology of the heart was given. Coronary artery diseases, consequences,
therapeutical interventions, and preliminary detection methods were discussed. A
short overview of magnetic resonance imaging was presented. Problems of mag-
netic resonance imaging causing high image variabilities was pointed out.

The main focus of this thesis lies on automatic segmentation and analysis of
cardiac perfusion MRI. The new introduced method was divided into four parts:

• ROI Selection

• Registration

• Segmentation

• Analysis

Every part is self-contained and operates on the output of the previous part. There-
fore each part can easily be substituted. This thesis has given a detailed description
of all these parts.

It was shown that for the majority of the eleven cardiac MRI datasets good
results were achieved. Whereas the achieved results were validated by visual in-
spection. It has been demonstrated that the adapted variance based approach for
the ROI detection [Sörgel and Vaerman, 1997] fails if huge motion artifacts are
present. Furthermore it has been demonstrated that the new introduced incremental
approach for the detection of the ROI gave very good results. Despite the strong
intensity variations the left ventricle was correctly detected in all but one datasets.
Mutual Information restricted to the ROI has been applied successfully for com-
pensation of the motion artifacts. A critical task is the accurate detection of the my-
ocardial boundaries which could well be accomplished with the introduced two step
approach using an adapted shortest path algorithm [Yeh et al., 2005]. For the anal-
ysis of cardiac perfusion it is proposed to consider both: bull’s eye plot [Cerqueira
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et al., 2002] and characteristic intensity time curves. For this purpose the bull’s eye
plot and the characteristic curves have been combined in this thesis.

Further improvements of individual steps of the algorithm may be addressed in
future work. Some possible improvements are:

• The use of anatomical information in the registration step: The information
about the position of the lung relatively to the myocardium is known (from the
previous step) and can be used. The similarity measurement of the registration
can be designed as a combination of Mutual Information and Mean Square
Error. Mutual Information can be used for the region of the myocardium and
left ventricle because the gray values changes there over time. Mean Square
Error can be used for the region of the lung because the gray values are nearly
constant there over time.

• Further improvement step after segmentation: By a precise observation of
the regions covered by the left ventricle and myocardium a conclusion of a
correct segmentation may be made.

• Combination of several measurements for the analysis

Furthermore an optimization of the implemented method would be desirable to
speed up the analysis of cardiac perfusion MRI data.

Finally it should be remarked that the interpretation of medical images is a
highly critical task with respect to a patient’s health. Therefore an automatic analy-
sis tool should offer an user interface for the operator to make corrections of auto-
matic generated results possibly at every stage of the process.
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