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Abstract

Although there has been a lot of research in synthesizing textures, it is still difficult

to design an algorithm that is both: efficient and capable of generating high quality

results.

Today it is impossible to imagine 3d rendering without using textures. Textures add

details to models without increasing their complexity. Textures also have a wide range

of application. They represent color, geometry, material properties, light and shadow

and even natural phenomena like rain, smoke, fire, etc.

The creation of visually convincing textures always is a tightrope walk between per-

formance and quality. Depending on whether one is doing implicit or explicit texture

synthesis, performance might or might not be the decisive criterion. Furthermore fac-

tors like the type of texture being synthesized as well as given constraints may have an

important impact on both: performance and quality of the synthesized output.

Synthesized textures however should never look as synthesized to the observer.

Various techniques for synthesizing textures along with several acceleration methods

are investigated in this thesis.
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Kurzfassung

Obwohl im Bereich der Texture-Synthese bereits großer Forschungsaufwand betrie-

ben wurde, ist es nach wie vor schwer einen Algorithmus zu finden der sowohl effizient

als auch im Stande ist qualitativ hochwertige Ergebnisse zu erzeugen.

Heutzutage ist es undenkbar 3d rendering ohne Texturen zu betreiben. Texturen fü-

gen Modellen Detailinformationen hinzu ohne dabei deren Komplexität zu erhöhen.

Texturen haben darüber hinaus ein breites Anwendungsspektrum. Sie repräsentieren

Farben, Geometrie, Materialeigenschaften, Licht und Schatten und sogar natürliche

Phänomene wie Regen, Rauch, Feuer. etc.

Die Erzeugung von visuell ansprechenden Texturen ist ein Drahtseilakt zwischen gu-

ter Performance und Qualität. Je nachdem ob jemand implizite oder explizite Texture-

Synthese betreiben möchte, spielt die Performance selbst eine entscheidende oder

aber untergeordnete Rolle. Davon abgesehen können Faktoren wie die Art der zu

synthetisierenden Textur oder definierte Rahmenbedingungen entscheidenden Ein-

fluß sowohl auf die Performance als auch die Qualtität der synthetisierten Ausgabe

haben.

Synthetisierte Texturen sollten in keinem Fall synthetisiert aussehen.

In dieser Diplomarbeit werden mehrere Techniken zum synthetisieren von Texturen

zusammen mit einer Vielzahl an Beschleunigungsmethoden untersucht.
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Chapter 1

Introduction

Figure 1.1: Example of a synthesized texture using our implementation of [KSE+03].
More information about this image can be found in Chapter 7

One of the oldest tricks in 3d computer graphics is texture mapping. Pioneered 1974

by Edwin Catmull in his Ph.D. thesis [Cat74], textures add details to models without

increasing their complexity. Texture mapping itself is straightforward and important for

a wide variety of applications in computer graphics and image processing. Textures

can be subdivided into five categories: regular, near-regular, irregular, near-stochastic

and stochastic. Figure 1.2 shows examples for all five categories.

Depending on the type of input texture, there are different approaches to synthesize a

larger output, where all algorithms at least aim the following requirements:

1. Similarity between the input and the output image

1



Chapter 1 Introduction

Figure 1.2: Classification of textures. The image was created as part of [LLX+01].

2. Non-repetitive production

3. No visible artifacts (like seams, blocks, etc.)

While earlier approaches in texture analysis and synthesis tried to directly simulate the

physical generation process (e.g. weathering and mineral phenomena) or by modeling

biological patterns (e.g. fur, skin, etc.), all algorithms dealt within this thesis start with a

given input sample and synthesize a texture that is sufficiently different from the given

input. Nevertheless as stated above, the output texture has to appear as generated by

the same underlying stochastic process.

Preserving local features of the input image while at the same time avoiding repetitive

structure in the output image is a key aspect of synthesis strategies.

Various different texture synthesis techniques evolved over the years. There are a

number of distinctive features that can be used to categories the different approaches.

Some of those features are listed in Chapter 1.2.

The main differentiating factor this work concentrates on is the sampling method. The

two main categories we concentrate on are pixel- and patch-based algorithms. We will

have a closer look at different approaches in those two categories.

2



Chapter 1 Introduction

Figure 1.3: Detail Hallucination, Artifact Removal and Image Editing. The images above
can be found on Vivek Kwatra’s homepage at http://www.cs.unc.edu/ kwatra/.

3



Chapter 1 Introduction

1.1 Applications

There is a wide range of application areas for texture synthesis. The first that springs to

mind is game programming with ample levels and huge objects like mountains, rows

of houses, alleys made of cobblestone, . . .

As a matter of fact only a fraction of texture synthesis techniques meet the real-time

requirements crucial to real-time 3-D games. Nonetheless in the range of image pro-

cessing real-time performance is not the decisive factor. The following examples just

give an impression of what can be done with texture synthesis.

1.1.1 Hole Filling or Image Editing

As the name already suggests, Hole filling is a process where missing information can

be generated. Hole filling can be understood as general term for a variety of other

techniques like Detail Hallucination, Object and Artifact Removal or Image Extrapola-

tion.

While Object and Artifact Removal is aimed at erasing data from a given image followed

by reassembling appropriate content, Detail Hallucination is directed at augmenting

images at settled locations. In other words the reason for performing Object and Artifact

Removal is that you have an object in your image you want to remove, whereas your

motivation for Detail Hallucination is missing information.

Another sub-category of Hole Filling is Image Extrapolation, where an image is en-

larged at its borders by sampling from itself. This can be of interest for handling the

boundary problem when convolving images. Typically this is handled using methods

like zero-fill, tiling or reflection. Those workarounds, however, might introduce discon-

tinuities not present in the original image.

1.1.2 Image Combining

Combining two (or more) images with each other is a technique, that naturally arises

from the way patch-based texture synthesis works. The challenge to combine several

4



Chapter 1 Introduction

Figure 1.4: Image Combining: the left image and the image in the middle are com-
bined to form the image to the right. The images above are part of the original
publication [KSE+03].

blocks with each other is very similar to the functioning of [EF01] and [KSE+03]. Image

Combining is an interactive operation, where the user selects a region of image A that

should be preserved and combined with image B. The selected algorithm (e.g. MEBC

or GraphCut) the tries to find an optimum transition between A and B within a preset

overlap region.

In the majority of cases it will make sense that the position of the adopted patch is

specified by the user. After all there is no reason why an algorithm would not be able

to find the best matching offset for a new patch, however the result would rarely be

satisfactory for photographs as for instances for the images in Figure 1.1.2.

1.1.3 Texture Transfer

Texture transfer is the name of a technique introduced in [EF01]. It takes two images

and combines their properties into one final synthesized output. A more detailed ex-

planation how Efros & Freeman achieve their final results is given in Section 2.2.2.

Unlike image combining, texture transfer is not a typical application of patch-based

texture synthesis approaches.

The idea of transferring one texture into another or in other words constraining the

output to possess certain properties or patterns can be found in publications based on

pixel-based synthesis methods as well. [Ash01] for instance describes a technique for

creating user controlled results by providing an additional image, called target image.

Ashikhmin’s approach is described in further detail in Section 2.1.2.

5



Chapter 1 Introduction

a) input b) target image c) output image

Figure 1.5: User controlled texture synthesis by Michael Ashikhmin. The input image
in a) along with the target image in b) forms the output image c). The target im-
age affects the color balance in c). The images are part of the original publication
[Ash01].

Figure 1.5 shows an example of the user controlled synthesis process described in

[Ash01].

1.2 Terminology

1.2.1 Markov property

One of the most elementary insights in texture synthesis is the fact, that textures can be

understood as product of Markov chains.

Markov chains are a special case of stochastic processes. The key aspect of a Markov

chain is, that the description of the present state of a process fully captures all the in-

formation that could influence its future evolution. Such systems are said to have the

Markov property.

In regards to synthesizing textures this property in the broader sense means, that each

pixel of a texture is influenced only by its immediate neighborhood, but not by pixels

6



Chapter 1 Introduction

outside this isolated region. Such systems are also refered to as Markov random fields

(MRF) or Markov networks. The coherence between the primary definition and its us-

age in texture synthesis (or general image processing) is the time limitation first and

the regional interaction second.

The Markov property is the fundament for virtually all texture synthesis approaches,

since all (stochastic) texture synthesis methods strive to preserve local features of a

sample texture in the synthesized output image.

1.2.2 The L2 norm

Most approaches in texture synthesis use the L2 norm, also called Euclidean norm or L2

distance. Given a vector x = (x1,x2, ...,xn) the Euclidean norm determines the ordinary

distance from the origin to the point x, as a consequence of the Pythagorean theorem.

The norm is the intuitive notion of the length of a vector and is defined as follows:

‖x‖=

√
n

∑
i=1
|xi|2

The set of all vectors with norm 1 define the unit circle in R2 and the unit sphere in R3.

Assigned to our problem of comparing color information, given an RGB color space

and two neighborhoods N1 and N2 the similarity between N1 and N2 can be calculated

like this:

D(N1,N2) = ∑
p∈N

(R1(p)−R2(p))2 +(G1(p)−G2(p))2 +(B1(p)−B2(p))2 (1.1)

where R, G and B are the red, green and blue color components at position p. The

Euclidean norm however better applies to the L*a*b color space, since that color space

was designed to better approximate human vision. In CIELAB the length of a vector v

pointing from one color to a second color determines the perceived similarity between

the two colors. CIELAB will be described in Section 3.3.1 in more detail.

7



Chapter 1 Introduction

1.3 Thesis Objectives

There are three objectives pursued in this thesis.

Objective one is to investigate several available algorithms and existing synthesis strate-

gies and analyze the advantages and drawbacks of the different approaches over each

other. Furthermore we are interested in the acceleration methods used in the exam-

ined papers.

Beyond that we want to go into further detail on two advanced approaches, [KSE+03]

and [LH05] and deliver insights into our implementations. We will summarize our at-

tempts to slightly modify their functioning, provide run-time behavior and talk about

adjusting the input parameters to our needs.

Last but not least we want to analyze the aptitude of our implementation of [KSE+03]

and [LH05] to synthesize textures for urban data.

1.4 Examined Papers

A lot of work has been dedicated to the topic of synthesizing textures during the last

decade. The list of interesting approaches is long. As it is impossible to cover all the

literature on this topic, only a handful of publications that appear to be most relevant

will be examined.

As this work concentrates on pixel- and patch-based approaches, we will briefly touch

on Alexei A. Efros and Thomas K. Leung’s work on "Texture Synthesis by Non-parametric

Sampling" [EL99], an early publication in the field of order-dependent pixel-based tex-

ture synthesis.

Based on their work the very popular publication by Li-Yi Wei and Marc Levoy about

"Fast texture synthesis using tree-structured vector quantization" [WL00] will be cov-

ered in more detail for the following reasons: Due to its simplicity it is well-suited to

outline the general functioning of pixel-based texture synthesis methods. It is one of

8



Chapter 1 Introduction

the pathbreaking, early algorithms that is cited by most publications on this topic. Ad-

ditionally it describes two ways to improve and accelerate the basic algorithm, which

are also part of this thesis.

An interesting modification of [WL00] is given by Michael Ashikhmin’s approach called

"Synthesizing natural textures" [Ash01] in which the author concentrates on improving

the quality of the result for input samples with arrangements of small objects that usually

occur in natural textures.

Sylvain Lefebvre and Hugues Hoppe conclude the pixel-based approaches that are

covered here with their order-independent, real-time synthesis strategy called "Parallel

controllable texture synthesis" [LH05]. This publication is also covered in more detail in

Chapter 6 about special aspects of our implementation.

The second main category examined in the course of this thesis are patch-based syn-

thesis methods.

Again we start by summarizing simple ways of doing this, beginning with an approach

by Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo and Heung-Yeung Shum called "Real-

time texture synthesis by patch-based sampling" [LLX+01], which performs simple

blending to hide visible artifacts along patch transitions.

In addition we will have a closer look on "Image Quilting for Texture Synthesis and

Transfer" by Alexei A. Efros and William T. Freeman [EF01] and go into some detail

on their way to find optimum patch borders using an algorithm called Minimum Error

Boundary Cut (MEBC), a similar approach as used in "Graphcut textures: image and

video synthesis using graph cuts" by Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk

and Aaron Bobick [KSE+03].

[KSE+03] is the highlight of the patch-based approaches covered in this work. The key

difference to MEBC is that [KSE+03] can "remember" old seams and therefore is able

to correct bad transitions in later iterations of the algorithm.

Chapter 4 is dedicated to algorithms that neither use pixel- nor patch-based tech-

niques exclusively.

"Hybrid texture synthesis" by Andrew Nealen and Marc Alexa [NA03] take up the idea

of [XGS00] and present a combination of pixel- and patch-based texture synthesis.

9



Chapter 1 Introduction

Michael F. Cohen, Jonathan Shade, Stefan Hiller and Oliver Deussen finally conclude

our survey with their paper about "Wang Tiles for image and texture generation" [CSHD03].

1.5 Structure of this thesis

This work is structured as follows:

Chapter 2 introduces several basic algorithms, pixel- and patch-based. The purpose

of this chapter is to demonstrate the way the two sampling methods work.

Chapter 3 concentrates on two more advanced synthesis techniques, based on con-

cepts elaborated in Chapter 2. In addition, implementation details and issues are

appended to both approaches.

Chapter 4 outlines the ideas of two publications that neither use pure pixel- nor pure

patch-based texture synthesis.

Chapter 5 provides several optimizations for quality improvements and performance

enhancements that are used in the papers elaborated in this work.

Chapter 6 gives an insight in special aspects of our implementations of the publica-

tions presented in Chapter 3, [KSE+03] and [LH05].

Chapter 7 covers various aspects of synthesizing textures for urban data. It shows

a variety of synthesized outputs and gives a brief overview on input parameters

and run-time behavior.

Chapter 8 summarizes the findings of this thesis and gives a brief outlook.

10



Chapter 2

Early Approaches

To demonstrate the general functioning of pixel- and patch-based texture synthesis,

some of the most popular, yet simplest algorithms will be presented in this chapter. We

will start each section by only briefly touching on a publication that explains the basic

idea behind the presented synthesis method and expand the model by having a closer

look on an approach based on the initial paper. Each algorithm covered in this chapter

is order-dependent and therefore not state-of-the-art. By providing a brief overview

of the domain and gaining insight into special aspects of synthesizing textures, pixel-

and patch-based, this chapter is meant as a prequel for the techniques presented in

Chapter 3.

2.1 Pixel-based Sampling

Unlike patch-based algorithms, where whole areas of the input texture are copied to

the output texture (see Chapter 2.2), pixel-based algorithms fill the output pixel-wise

by comparing their neighborhood informations. While most earlier approaches were

order-dependent, there now exist more advanced algorithms that exploit parallelism

with runtime properties close to real-time. One such order-independent pixel-based

synthesis approach, [LH05], will be described later in Section 3.2.

One of the earliest and at the same time simplest pixel-based algorithms is the ap-

proach made by Alexei A. Efros and Thomas K. Leung in 1999 [EL99]. The underlying

idea is inspired by an article published in 1948 by Claude Shannon [Sha01] about

11



Chapter 2 Early Approaches

modeling language as a generalized Markov chain. Shannon’s idea was that by read-

ing in enough data and therefore using large samples of the language, one could find

a matching word when building sentences by using probability distributions.

Broadly speaking Efros & Leung’s approach works like this:

Starting with an initial seed, the algorithm "grows" the texture in an onion skin order

one pixel at a time. It therefore uses partial neighborhood search, where the size of

the neighborhood can be chosen by the user, depending on how stochastic the user

believes the sample texture to be. To grow an output texture from scratch, Efros and

Leung use a 3×3 seed randomly taken from the sample image.

Although Efros & Leung’s algorithm works well for a wide variety of textures ranging

from regular to stochastic, it breaks down for others. Actually the authors admit them-

selves that their algorithm runs the risk of occasionally "slipping" into a wrong part of

the search space and thereupon starts to grow "garbage".

2.1.1 Fast texture synthesis using tree-structured vector
quantization

Wei and Levoy’s approach [WL00] is similar to [EL99], but instead of working with

neighborhood sizes chosen by the user, it works with fixed-sized neighborhoods, which

is essential for their acceleration methods as will be seen later. Furthermore it works

in a scan-line order.

[WL00] starts with a small input texture, the so called exemplar, and generates a (usu-

ally larger) similar output texture. It generates textures through a deterministic search

process which is derived from Markov Random Field models. The search process is

accelerated using tree-structured vector quantization (TSVQ). In Section 5.1 we will

have a closer look at TSVQ.

[WL00] however suffers from the same problem as [EL99], i.e. their algorithm breaks

down for some textures.

The two major components of the algorithm are a multi-resolution pyramid data struc-

ture and a simple search algorithm.

12
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outputinput search  

copy  

Figure 2.1: Basic neighborhood search as used in most order-dependent pixel-based
synthesis approaches. The L-shaped region is used to compare the pixel-
neighborhoods of the input and output images with each other.

The new texture is generated pixel by pixel, where each pixel is determined in a way

that local similarity is preserved between the example texture and the resulting image.

The synthesis process is completely deterministic.

The basic algorithm

The algorithm starts with an input sample image Iin and a random noise output image.

By transforming the output image Iout pixel by pixel, Iout is forced to look like Iin. The

transformation takes place in a raster scan order.

To determine the value of a pixel p in Iout its spatial neighborhood - that is the L-shaped

region in Figure 2.1 - is compared against all possible neighborhoods in the input im-

age. The input pixel with the most similar neighborhood is assigned to p.

To measure the similarity between two neighborhoods the sum of squared differences

is used as a cost function. The goal of this synthesis process is to ensure that the newly

assigned pixel will maintain as much local similarity as possible. This process is re-

peated for each output pixel until all pixels are initialized.

The authors compare this process to putting together a puzzle where the pixels are the

individual pieces and the differences of the surrounding neighborhood pixels form the

fitness between those pieces.

13
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a) input b) 5×5 (single res.) c) 11×11 (single res.) d) 5×5 (multi res.)

Figure 2.2: Results with different sizes of neighborhoods. While the overall structure
is completely destroyed in b), the multi-resolution approach used to synthesize
d) yields even better results than the single-resolution 11× 11 pixels wide neigh-
borhood in c). The images above can be found on Vivek Kwatra’s homepage at
http://www.cs.unc.edu/ kwatra/.

The quality of the synthesized texture depends on the size and shape of the neighbor-

hood. The size of the neighborhood should be (at least) the size of the largest regular

texture structure. Otherwise the structure of the input image may be lost and the result-

ing output image may look too random. Figure 2.2 shows this effect.

The shape of the neighborhood will directly determine the quality of the output image.

It may only contain those pixels preceding the current output pixel (in a raster scan

ordering). The reason for this is to ensure, that each output neighborhood will include

only pixels, that are already initialized.

As one can simply tell, that condition is infeasible for the first few rows and columns.

Those pixels may contain unassigned noise pixels, but as the algorithm processes all

other neighborhoods will be completely valid.

If we would include pixels that were uninitialized, in other words not only use preceding

pixels for calculating the neighborhood, the output image would never look like the

input image.

Thus the noise image is only used when generating the first few rows and columns of

the output image. After this it is ignored.

14
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The Multi-Resolution Approach

One way for both, accelerating the synthesis process as well as improving the out-

put quality of the algorithm, is by using a multi-resolution pyramid. This technique is

also essential for tileablity and edge-handling in general, since the singular resolution

causal neighborhood only contains pixels above a pixel p in a scan-line order. That

is why the vertical tileability may not be enforced. A multi-resolution neighborhood,

which contains symmetric regions at lower resolution levels, avoids this problem.

Another difficulty that can be solved using multi-resolution synthesis is edge handling.

Therefore the image edges are treated toroidally. This means that the first pixel in a row

is treated as the right neighbor of the right-most pixel of the very same row. The pixel

below a pixel in the last row is the pixel in the first row of the same column.

Using multiple resolutions of the input and synthesized output also increases the chance

that the pattern of the input texture will be preserved, while using small neighbor-

hoods.

The problem with the singular resolution approach is that input textures that contain

large scale input structure need to use large neighborhoods. Large neighborhoods

demand more expensive computations. Using multi-resolution pyramids solves this

problem, because large scale searches can be represented more compactly by less

pixels in a lower resolution of the pyramid. Figure 2.2 shows this effect by opposing

two output images created with the single resolution approach to one generated us-

ing multiple resolutions. Notice that the image synthesized with the multi-resolution

strategy uses the same neighborhood size as the first image does. Nevertheless the

produced image looks even smoother than the output synthesized using the relatively

large 11×11 neighborhood.

The extended algorithm

Gaussian pyramids are built by successive filtering and downsampling the original in-

put image. This is done by convolving the image using the bell-shaped gaussian curve.

Each level of the so created image pyramid is a blurred and decimated version of the

original image.
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outputinput search  

copy  

Figure 2.3: Neighborhood search in multi-resolution extension. Not only is the L-
shaped neighborhood of the current level of the image pyramid compared to the
neighborhoods of the input image, but also the square pixel-neighborhood of the
next coarser level.

Two image pyramids are built for the multi-resolution approach: one from the input,

one from the output texture respectively. The pyramid of the output is transformed from

lower to higher resolution, such that each higher resolution level is constructed from an

already synthesized lower level. Apart from that, the pixels are synthesized in a way

similar to the single resolution case. The only modification is that in the multi-resolution

algorithm each neighborhood contains pixels in the current resolution as well as pixels

in a lower resolution. Figure 2.3 illustrates this process.

Wei and Levoy accelerate their algorithm furthermore by using tree-structured vector

quantization (TSVQ), which will be described in Section 5.1.

Conclusion

Since the algorithm is order-dependent, a different order leads to a different result.

There is no chance for parallelism. Using multiple-resolution pyramids and TSVQ

speeds up the algorithm somehow. The paramount benefit for this thesis however is

the simplicity of the algorithm, that depicts how synthesizing textures using pixel-based

methods works.
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Wei and Levoy, aware of the limitations of their order-dependent algorithm, improved

their initial work and published a new approach named "Order-Independent Texture

Synthesis" [WL03] which was submitted to, but rejected by SIGGRAPH in 2003.

2.1.2 Synthesizing natural textures

Ashikmin’s publication, "Synthesizing Natural Textures" [Ash01], is a modification of

Wei and Levoy’s basic algorithm. It enhances their strategy at two points: first by im-

proving the quality of the output for specific types of textures, second by enabling direct

control over the texture synthesis process by accepting a user defined target image.

Ashikmin’s synthesis strategy not only yields better results for quasi repeating patterns

of irregular size, like flower-fields, bushes, etc., but is also significantly faster than Wei

and Levoy’s basic algorithm.

The difference between two neighborhoods is expressed using the L2 distance norm,

which already has been defined in Section 1.2.2.

The size of the neighborhood is crucial to the quality of the generated output. On the

other hand it critically effects the run-time performance of the algorithm.

Textures created with Ashikhmin’s approach consist of irregular shaped patches of

the input sample that are not so obvious to an observer. The key difference between

[WL00] and [Ash01] is that Wei and Levoy start a new neighborhood search for each

new pixel, while Ashikhmin keeps track of similar neighborhoods that are used as

valid candidates. By starting the search process from scratch for each new pixel, it

is garantueed that the copied pixel matches the given neighborhood best.

Ashikhmin’s way to find candidate pixels is to re-use the neighborhoods of already

synthesized pixels. This is done by storing the offsets of pixels within the input sam-

ple along with their color information. When synthesizing a new pixel, the informa-

tion of the already synthesized pixels is extracted and the new neighborhood is com-

pared with the neighborhoods of the stored offsets in the input image. While other ap-

proaches treat input images toroidally and thereby solve the problem of border pixels,

Ashikhmin only stores the offsets of pixels thats neighborhoods completely lie inside

17
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Figure 2.4: Basic Ashikhmin search. In addition to the color information Ashikhmin
stores the original offsets of the synthesized pixels and uses those offsets when syn-
thesizing subsequent pixels to find the new candidates.

the input image. If the stored candidate has a neighborhood not completely in the in-

put image, the candidate will be replaced by a new pixel at a random position. The

algorithm therefore works somehow similar to k-coherence search, which is described

in Section 5.4. Figure 2.4 shows the process using the stored offsets to find the best

matching neighborhoods.

In the beginning of the algorithm the array holding the offset locations of the pixels

already used is initialized to random positions before the synthesis process begins.

Extending the algorithm to use the multi-resolution synthesis strategy of Wei and Levoy

is of limited use in Ashikhmin’s approach. While the multi-resolution extension in Wei

and Levoy allow us to use smaller neighborhoods to obtain the same or better quality

than with a large neighborhood, Ashikhmin’s publication hardly benefits from using

multiple resolutions.

The algorithm

1. Initialize the array of pixel offsets to random positions inside the input image

2. Apply an L-shaped neighborhood to the next uninitialized pixel of the output tex-

ture

3. Read the offset from the offset array for each pixel of the neighborhood to gener-

ate candidate pixel locations

18



Chapter 2 Early Approaches

4. Remove duplicate candidates

5. Compare the neighborhoods of each candidate and choose the candidate with

the most similar neighborhood

6. Copy the just calculated candidate pixel to the output image and store the offset

in the offset array

7. If the output image is not fully initialized, jump to step 2

Ashikhmin furthermore describes an interesting way of manipulating the generated

output texture by including a user defined image mask in the initial algorithm. Image

masks can be hand-drawn images that outline general properties the resulting texture

should have. The beauty of Ashikhmin’s approach for giving the user control over the

synthesis process lies in its simplicity.

To realize user control, we first need to change the shape of each pixel neighborhood.

That means instead of using the L-shaped neighborhood known from [WL00], we now

use a complete square neighborhood. Finding a candidate pixel now is done in two

steps: step 1 equals the process described before, where the L-shaped neighborhood

in the upper part of the neighborhood were compared pixel-wise using the L2 norm. In

step 2, however, we now add the L2 difference between the bottom L-shaped neighbor-

hood of our candidate pixels in the input texture and valid pixels of the bottom half of

the L-shaped neighborhood of our output texture. For this second step of the algorithm

we only accept pixels created by the user. Hence the algorithm does exactly the same

things as before for regions without user input. In other words: using an empty image

for the now modified algorithm results in the same synthesized texture as before with-

out the modification. Figure 2.5 illustrates the process of using a target image to control

the synthesis process.

The degree of similarity between the user input mask and the created output image can

be controlled by using multiple iterations. Instead of initializing the array of candidates

in each new pass as we did before, the offsets stored in these arrays are now used

for each new iteration. After running the algorithm one time, each pixel in the output

image is treated as a valid pixel. Thus the selection process for candidate pixels is

solely based on square neighborhoods in each successive pass.

Figure 1.5 shows a result of this procedure.
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Figure 2.5: User controlled sampling uses a square neighborhood instead of the com-
mon L-shaped neighborhood. The thereby added pixel neighborhood is compared
against the corresponding parts in the input image, whereas only valid user input is
considered.

Conclusion

The goal of Ashikhmin’s publication was to develop a special-purpose algorithm that

yields better results for input textures consisting of arrangements of small objects of

familiar but irregular shapes, often found in "natural" textures.

As any other synthesis method, Ashikhmin’s technique to synthesize textures is far from

being a general-purpose tool for texture synthesis. Considering the special purpose

of his publication, however, it is a very interesting, yet very simple modification of the

very popular algorithm of Wei & Levoy. Furthermore it shows impressively that even

small and sometimes simple modifications can lead to much better results provided

that one knows for what domain he wants to use an algorithm for.

2.2 Patch-based Algorithms

All patch-based algorithms have one thing in common: instead of finding one perfectly

matching pixel within the input sample texture Iin, whole texture patches are used as

building blocks for synthesizing an output texture Iout . The major difference between
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Figure 2.6: Evolution of patch placement. While the first output image uses a random
arrangement of patches from the input image, the second output already choses
patches that fit best when slightly overlapping. The rightmost image extends this
strategy by finding an optimum cut in the overlapping area.

the different approaches lies within the placement strategy as well as the treatment of

the occurring patch-boundaries.

The problem with most patch-based algorithms is that seams primarily run horizon-

tally or vertically, which makes the artifacts more noticeable. Thats why using textures

showing brick walls, as done in many publications, is not really a prove for the strength

of a patch-based algorithm.

The "evolution" of patch-based algorithms could be thought of as follows:

Given an input texture one could copy square blocks of fixed size randomly from an

input sample to the output image. As a first improvement, the blocks chosen from

the input sample could be restricted to blocks that somehow match a cost function for

an overlap region. In other words: only patches with a good match are chosen. As a

second refinement step instead of just shifting the selected input patch over the existing

output, one could try to find a optimal transition between the two overlapping patches.

These three ideas for placing and selecting patches are illustrated in Figure 2.6.
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[EF01] and [KSE+03] try to contribute to this third placement method, with their "Mini-

mum Error Boundary Cut" strategy and the "Graphcut" algorithm respectively.

We will start with two basic algorithms and go into further detail on [KSE+03] later.

2.2.1 Real-time texture synthesis by patch-based sampling

Liang et al. [LLX+01] try to avoid mismatching features across patch boundaries by

using square patches of a prescribed size wB x wB, where each new patch is sim-

ply blended over existing ones. The new patch Bk is chosen based on the patches

B0, ...,Bk−1 already pasted into Iout and constrained by a user defined maximum dis-

tance δmax.

Formally expressed, this means:

Let IR1 and IR2 be two texture patches of the same shape and size and let d define a

distance function that measures the difference between those patches. We then say, that

IR1 and IR2 match if and only if d(IR1, IR2) < δmax where δmax is a prescribed constant.

Each patch has an overlap region of size wOR. When placing a new patch Bk into Iout

the boundary zones of the already existing patches (B0, ...,Bk−1) partly overlap with the

boundary zone of the new patch. Two boundary zones are said to match if they match

in their overlapping region. For the sake of randomness a set of all matching overlap

regions is formed before one patch is randomly chosen to be pasted into Iout .

The algorithm

Let B(x,y) denote a patch at position (x,y) in an input image Iin to be copied to an output

image Iout . Let further be OBk be the overlapping region of Bk, the k-th patch selected

from the input image with a width of wOR. Each patch already pasted into Iout also has

a boundary zone, identified as Ok
out , where k again denotes the k-th patch. Using a

distance function d that calculates the Euclidean distance as described in in Section

1.2.2, the following definition forms a set of patch candidates to be copied to Iout in the

next iteration:

ΨB =
{

B(x,y)|d(OB(x,y),O
k
out) < δmax, B(x,y) ⊆ Iin

}
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wER

wB

wOR

Figure 2.7: Three patches of the input image meet the distance tolerance condition.
One of them is randomly selected to be copied to the output.

where δmax is the predefined maximum distance between two boundary zones. Having

this set of possible patches, one element of the set is chosen randomly and copied to

Iout as the k-th patch.

Depending on δmax, ΨB might also be an empty set. In that case the patch with the

smallest distance d(OBk ,O
k
out) is chosen as Bk from the input sample Iin.

Step-by-step the algorithm can be summarized as follows:

1. Copy a randomly selected patch from Iin to Iout and place it to the upper left

corner

2. Calculate ΨB

3. If no patches have been found that meet the condition in ΨB, add Bmin, the patch

with the smallest distance d(OBk ,O
k
out) to the set ΨB

4. Randomly select an element of ΨB and copy it to Iout

5. If Iout is not fully initialized yet, continue at step 2

6. Perform a blending operation for all overlap regions
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The blending of the overlap region can also be performed immediately after copying

the new patch to Iout .

In the algorithm above the order of arranging patches has been changed to better

match the other patch-based algorithms covered in this work. Liang et al. start in the

lower left corner and work their way up the image, which actually makes no difference

to our modified version. The new order has just been introduced to be able to compare

the different approaches with each other more easily.

Figure 2.7 shows an example of ΨB containing three patches.

2.2.2 Image Quilting for Texture Synthesis and Transfer

In "Image Quilting for Texture Synthesis and Transfer" [EF01] Efros and Freeman not

only describe a technique for patch-based texture synthesis, but also for performing

texture transfer as mentioned in Section 1.1.3.

The main idea of the algorithm is to synthesize a new texture by stitching together small

patches of a given source texture in a consistent way. Efros and Freeman believe that

during the synthesis process pixel-based approaches waste a lot of time for neighbor-

hood search for pixels that are determined by what has been synthesized so far. They

suggest to enlarge the unit of synthesis to whole patches and thereby transforming the

challenge of synthesizing the new texture into a jigsaw puzzle like problem.

As in [EL99] the user has only one parameter to control the synthesis process. While

it is the size of the neighborhood in [EL99] it is the size of the block in this publication.

The balancing act is to make the block big enough to capture the relevant structures

in the texture while keeping it small enough so that parts between these structures can

be varied by the algorithm.

Efros and Freeman’s way of stitching together several patches to form a larger output

is a very naive, as the authors admit themselves.

Their algorithm calculates the transition path between patch A and patch B by using a

method called "Minimum Error Boundary Cut" (MEBC) to reduce artifacts. The MEBC

can easily be calculated using dynamic programming. As most texture synthesis ap-

proaches, [EF01] calculates the similarity between two patches using the L2 norm.
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To find the optimal cut through the overlap region, the following recursive formula is

used:

Ei, j = ei, j +min(Ei−1, j−1,Ei−1, j,Ei−1, j+1) with i = 2, ...,N

where N is the user-defined size of the patch copied from the sample in each iteration

of the algorithm and ei, j is the squared difference of pixel (i, j) in the overlap region

of patch A and patch B. When the algorithm reaches the last row, the pixel with the

minimum value is one end of the MEBC. Tracing back, the whole transition between

A and B can be found by always selecting the minimum value. A similar procedure

can be applied for horizontal cuts. If the patch overlaps vertically and horizontally, a

combination of both approaches is used.

The algorithm

The algorithm is quite simple and rather similar to other patch-based synthesis sam-

pling strategies.

1. In each iteration go through the output image in raster scan order in steps of one

block, minus the size of the overlap region

2. Search the input image for a set of blocks, that differ in their overlap region only

by a preset amount and finally choose one of those blocks randomly

3. Use the MEBC to find an optimum cut and make that cut the boundary of the new

block

4. Copy the block to the output texture

5. If the output is not fully initialized, jump to step 1

Similar to pixel-based algorithms, where the user usually can control the size of the

neighborhood, Efros and Freeman engage the user to set the size of the block. As with

the size of the neighborhood in pixel-based approaches, the block size in patch-based

algorithms is critical for the success of the algorithm, as the block must be big enough

to capture the relevant structure in the given sample. Efros and Freeman state that using

an overlap region that was 1/6 of the block size worked best for them.
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Texture transfer

A common way to extend user control over synthesis algorithms is to accept a target

image as user input. To account for this input image, Efros and Freeman modify their

cost function as follows: they introduce a weighting factor α to calculate the weighted

sum of α times block overlap matching error (as before), but now they add the amount

of (1−α) times squared error between the pixels of the source texture and those of the

given user image mask. α thereby defines the trade-off between the regular texture

synthesis process and the likeness to the user image mask. Because a cost function is

only applied to the overlap region while initializing the output, several iterations need

to be applied to yield good results. In each iteration Efros and Freeman reduce the

size of a block and in addition now calculate the error between two patches not only for

the overlap region, but also for the inner region. Efros and Freeman claim that at most

5 iterations are sufficient to get good results, where in each iteration the block size is

reduced by 1/3. They calculate the weighting factor α in each iteration i as:

αi = 0.8∗ i−1
N−1

+0.1

where N is the number of total iterations.

2.3 Summary

In this chapter the differences between pixel- and patch-based approaches have been

elaborated. The theoretic framework built in Chapter 1 has been emphasized by some

basic, yet very popular and path-breaking algorithms for both kinds of texture synthesis

strategies.

We have seen early approaches of:

Efros & Leung who describe a naive method that uses exhaustive search for each

synthesized pixel

Wei & Levoy with a technique based on Efros & Leung that has been advanced by

using a multi-resolution strategy and performing TSVQ for runtime acceleration
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Ashikhmin with a clever modification of Wei & Levoy’s publication that not only re-

duces search space, but also yields better results albeit just for natural textures

Liang et al. as a first patch-based texture synthesis approach, where new patch off-

sets are chosen to slightly overlap already existing patches to avoid artifacts by

cross-fading

Efros & Freeman and their innovative Minimum Error Boundary Cut method to de-

fine the transition between two patches as well as their popular approach con-

cerning texture transfer
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State-of-the-art Algorithms

The algorithms covered here build upon the concepts and publications presented in

Chapter 2. The following sections examine an interesting patch-based approach by

Kwatra et al. as well as an order-independent way to synthesize a texture pixel-based

by utilizing parallelism of modern GPUs.

3.1 Graphcut textures

In this approach patch regions from a sample image are transformed and copied to the

output, where they are stitched together along optimal seams that are found using a

maximum-flow/minimum-cut algorithm. The patches that were stitched together form

a new and (particularly) larger output.

Kwatra et al. [KSE+03] however first search for an appropriate location in the output

image Iout to place the patch, then select a patch from the input image Iin and finally

find the best transition between the patch taken from Iin and already initialized pixels

in Iout by creating a graph that is cut into two parts. This operation is also responsible

for the name of the algorithm: Graphcut. The calculated minimum-cut determines the

parts copied from Iin over Iout and the parts kept in Iout . Using additional blending like

feathering as in [LLX+01] is possible of course. See Section 3.1.5 for further information

on this topic.

Again, we want the generated texture to be perceptually similar to the sample texture.
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3.1.1 Definitions

There are some terms and definitions that need to be introduced before the algorithm

can be examined in detail.

Error Region. The error region is the inner part of a patch. It meets two require-

ments. It is the region of the input patch that is always copied to the output, on the

one hand, and is used on the other hand during the correction steps to define the next

position in the output image that needs to be updated. The size of the error region

has a huge impact of the synthesized texture. Not only it is responsible for maintaining

patterns of the input sample, but also for finding regions that most urgently need to be

revised after the output texture has been initialized. The size of the error region not

only is important for the performance of the algorithm, but also for the quality of the

result.

Overlap Region. The overlap region is the outer part of a patch. Unlike the error

region, the overlap region is not always copied to the output texture. Instead it defines

the area that is represented by the undirected graph used to find the optimal transition

between two or more patches. The overlap region has a great impact on the quality of

the synthesized texture. Having a large area for a transition between patch A and patch

B, increases the chance of finding an inconspicuous seam. The size of the overlap re-

gion, however, is decisive for the performance of the algorithm. The larger the overlap

region, the longer it takes to find the minimum cut.

Patch Offset. The patch offset declares where the new patch selected from the input

image should be placed in the final output image. The offset highly depends on the

chosen placement strategy. During initialization of the output image, the patch offset

is chosen differently than during the refinement steps and generally serves a different

purpose: it is chosen in a way that it contains both, initialized and uninitialized pixels

of the output image. The reason for this is, that a new patch should do both, add new

pixels to the output and be consistent with already existing, initialized pixels. After the

whole output image has been initialized, the patch offset should be chosen in a way,
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that a new patch covers the error region with the largest error, i.e. the region with the

most expensive patch transitions.

Patch Seam. Patch seams define what parts of the input texture should be copied to

the output texture. They denote the cut in the created undirected graph that causes the

minimum costs. The algorithm used to calculate patch seams is the max-flow min-cut

theorem, a statement in optimization theory about maximum flows in flow networks. It

states that "the maximum amount of flow is equal to the capacity of a minimal cut".

One of the benefits of the Graphcut approach is, that it can "remember" where patch

seams were defined and therefore correct suboptimal crossovers in later iterations. Fur-

thermore Kwatra et al. suggest two methods to blur patch seams, which are described

in Section 3.1.5.

3.1.2 How to find the perfect cut

The core of this approach is an algorithm, that computes the best seam between sam-

ple patches after finding the desired patch offset.

To find the optimum intersection between existing pixels of the output image A and the

new Patch B the transition problem must be formulated into a common graph problem.

In this (indirected) graph each node represents a pixel of the overlap-region, while

edges hold the transition costs between those pixels. In other words: the higher the

edge costs between pixel p1 and pixel p2 are, the less you want this edge to be cut

by the graphcut algorithm. To be able to create our transition graph we need a cost

function that calculates the edge costs.

A simple cost function could look like this:

M(s, t,A,B) = ‖A(s)−B(s)‖+‖A(t)−B(t)‖ (3.1)

where A and B are the two patches and s and t are adjacent positions in A and B, re-

spectively.
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The success of the algorithm highly depends on the quality of this cost function, i.e.

how good it represents the given transition costs. Equation 3.1 obviously is not a per-

fect cost function, as it only measures color differences (as, however, most algorithms

do by simply using the L2 distance norm). Nevertheless showed Ashikhmin in his pub-

lication about synthesizing "natural textures", that even a simple cost function can lead

to impressive results as long as you know the domain you use an algorithm for.

With our simple cost function in Equation 3.1 we can now build our indirected graph

to find the transition between an existing patch A and a new patch B. This is done

by seeking the minimum cut of the graph that separates node A from node B. The

algorithm for finding this cut is a classical graph problem called min-cut or max-flow

[Sed90].

The only constraint we have is, that after running the min-cut/max-flow algorithm, some

pixels must be connected to patch A while other pixels must still be connected to patch

B. The cuts may only run between those constrained pixels. In Figure 3.1 we force

pixels 1, 2, 3 to keep connected to patch A while we constrain that the pixels 7, 8, 9

have to be taken from the new patch B. That means that in the output image the pixels

represented by the nodes 1, 2, 3 will not be overwritten by pixels from patch B, while,

no matter what, the pixels represented by the nodes 7, 8, 9 will always be copied from

patch B over the output image.

Accounting for old seams

One of the advantages of the graphcut approach over algorithms using dynamic pro-

gramming, as for instance [EF01] does, is that the costs for old seams can be remem-

bered and thereby corrected in one of the following iterations. To build a model that

accounts for old seams however, tends to result in a less intuitive graph representa-

tion. Old cuts are now introduced as seam nodes between regular pixel nodes. The

previously outlined algorithm therefore has to be extended as follows:

1. Introduce seam nodes where a seam has been drawn earlier

2. Connect each seam node si with an arc to the new patch node B

3. Assign old transition costs along with the new costs for patch B
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Figure 3.1: After applying edge costs to the graph that is formed by the pixels overlap-
ping each other the new cut can be found using the max-flow min-cut theorem.

There are three scenarios for this extended graph now:

Scenario A The edge between the old seam node an the new patch is cut. In this case

the old seam remains in the output image

Scenario B The edge between the old seam node an the new patch is not cut: in this

case the old seam needs to be overwritten by new pixels, thus the old pixel values

are replaced and the old seam costs are discarded

Scenario C One of the edges between the old seam node and the pixel node has

been cut: in this case a new seam is introduced, the new pixel values copied to

the output and the costs for the new seam are added to the already existing costs

of the old seam

Figure 3.2 illustrates the extended graph representation that is needed to account for

old seams.
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3

4

2

1

Figure 3.2: When the algorithm accounts for old seams, additional nodes need to be
inserted into the graph. Those nodes represent the preceding cut. Including this
information in subsequent passes might eliminate former suboptimal transitions.

3.1.3 Increasing the quality

Apart from placing new patches over existing pixels and placing new patches over old

seams, there is a third configuration one must bear in mind, namely placing patches

over a fully initialized output image. The main purpose to continue placing patches over

initialized output images is to overwrite potentially visible seams with the new patch.

The number of patches applied like this can either be automatically determined by a

calculated error inside a defined error region or interactively by the user. In either way

patches are placed as before when we defined how to deal with old seams. The only

difference now is, that all pixels in the border region of the new patch are constrained

to come from pixels from the output image. To guarantee that at least one pixel is taken

from the new patch, an edge with infinite costs is inserted between an arbitrary pixel

somewhere in the middle of the graph and the new patch B.

3.1.4 Placement strategies

Choosing the offset within the sample image and finding the best new cut in the created

graph highly depends on the chosen placement strategy as well as whether or not the

output is fully initialized, yet. There are three different placement strategies: Random

placement, Entire patch matching and Sub-patch matching. We will now have a closer

look at those placement strategies.
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Random placement. In this approach the entire input image is taken as the input

patch and is translated to a random offset location. The only constraint is, that during

initialization the new patch must overlap initialized and uninitialized pixels (except for

the very first patch, of course). After initializing is done, any offset is as good as the

other. This means, that no pixel comparison needs to be done which makes random

placement the fastest placement strategy by far. As for the other methods, the graphcut

algorithm tries to find the optimal seam, which in this approach naturally only works

satisfactory for non-regular textures.

Entire patch matching. As random placement, entire patch matching also uses the

entire input image as the input patch. The offset within the output texture however is

chosen by calculating the sum-of-squared differences of all pixels in the overlap region

of the input image Iin overlapping exiting pixels of the output image Iout . The total costs

of each translation is calculated as:

C(t) =
1
|At | ∑

p∈At

|I(p)−O(p+ t)|2 (3.2)

where At is the number of pixels in the overlap region of Iin overlapping initialized pixels

in Iout at translation t. Unlike random placement, entire patch matching also works good

on regular textures.

Sub-patch matching. In contrast to random placement and entire patch matching

sub-patch placement only uses a small sub-patch that is usually the same size or slightly

larger than the error region. The offset in the input texture is chosen by a sum-of-

squared differences.

C(t) = ∑
p∈SO

|I(p− t)−O(p)|2 (3.3)

where SO is the output-sub-patch. All other variables have the same meaning as in

Equation 3.2.
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Sub-patch placement is the most general of all 3 techniques. At the same time it is the

slowest.

3.1.5 Hiding seams

Graphcut does its best to hide artifacts caused by image transitions along the seams.

Provided that the defined cost function and the used color space approximate human

vision the calculated minimum cut runs along the optimal path. However, quite often

none of the possible cross-fades is smooth enough, because overlap regions are too

small or image content simply does not match at one or more borders of the selected

patch.

Kwatra et al. suggest to use either multi-resolution splining or feathering in that case.

After implementing both techniques the result was sobering:

Multi-resolution splining would need much larger overlapping regions than usally

used. As Kwatra et al. state themselves, the size of a typical overlap region is

8 pixels wide. Moreover multi-resolution splining should not be used excessivly

during the synthesis process, since it tends to reduce the contrast of the image.

Feathering is a quite simple and rather cheap operation. After determining all adja-

cent patches near a seam, a gaussian filter is applied to the pixels close enough

to the seam. Feathering works fine, but smudges the image visibly.

Both operations should therefore be handled with care and better be used selective.

3.1.6 Extended cost function.

As mentioned in Section 3.1.2 using a representative cost function to label the edges of

the graph is essential for the final result, i.e. for the transitions of the different patches.

Based on the fact that possible discontinuities are less visible in high-frequency re-

gions, a way to extend the trivial cost function defined in 3.1 could be to incorporate

the gradient of the image.
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The new cost function, introduced by Kwatra et al., takes this into account by scaling

the previously calculated costs based on the vertical and horizontal gradients of both

patches:

M′(s, t,A,B) =
M(s, t,A,B)∥∥Gd

A(s)
∥∥+

∥∥Gd
A(t)

∥∥+
∥∥Gd

B(s)
∥∥+

∥∥Gd
B(t)

∥∥ (3.4)

where Gd
A(x) indicates the gradient in direction d, vertical or horizontal, of patch A at

pixel x. To calculate the gradient we used the Sobel operator in our implementation.

3.2 Parallel controllable texture synthesis

In 2005 Lefebvre and Hoppe published a paper called "Parallel controllable texture

synthesis" [LH05]. It concentrates on two things: efficient, parallel synthesis and intuitive

user control. The algorithm is based on [WL03], an extension of [WL00], and thus

order-independent. One significant change in [LH05] is the use of texture coordinate-

over color space.

Given an Exemplar E Lefebvre and Hoppe build a gaussian stack, which is used later

to successively upsample the synthesized image. The process used to generate the

output is similar to the method used in [WL03]. Starting with a small texture window of

size 1×1, successive layers are calculated by applying three steps:

1. Upsampling

2. Jittering

3. Correction

Each of these steps can be performed to all pixels in parallel and thus utilize the paral-

lelism of multi-core CPUs or modern GPUs.

In "Appearance-Space Texture Synthesis" [LH06], Lefevbre and Hoppe extend their

own approach by encoding additional information into each pixel. They add feature

distance and radiance transfer along neighborhood and pixel color information into

high-dimensional vectors. These vectors are then reduced to lower dimensions using
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a) Traditional image pyramid b) Gaussian stack

Figure 3.3: Traditional image pyramid vs. gaussian stack. The red dots in the stack
mark invalid pixels. The blue path symbolizes the fact, that a gaussian stack is a set
of nested gaussian pyramids. To create the highlighted gaussian stack of size m×m
one needs an input image of size 2m×2m.

principal components analysis (PCA). Section 5.5 is dedicated to how dimensionality

reduction can be achieved.

3.2.1 Downsampling the exemplar

As a first step, the given exemplar image is downsampled using a gaussian stack,

whereas the word downsampling is actually wrong. In fact, Lefevbre and Hoppe intro-

duce a new data structure named gaussian stack that actually just blurs the image. The

major feature of a gaussian stack is, that it has the same size in each level. Strictly speak-

ing it is a the sum of all possible gaussian pyramids, where each pyramid is shifted by

one pixel at the finest level, as can be seen in Figure 3.3.

The gaussian stack is comparable to the quadtree pyramid of [LLX+01], which is de-

scribed in detail in Section 5.3. The main difference lies in the representation of the

data. While gaussian stacks consist of one image per level, quadtree pyramids are

stored as arrays of images.

To create a gaussian stack with a size of m×m, an image twice as large in both, width

and height, is required. For this reason we either have an input image that is 2m× 2m

pixels large or need to augment the exemplar at all sides, which can be achieved in

one of two ways:

1. by tiling (if the input image is toroidal)

37



Chapter 3 State-of-the-art Algorithms

2. by mirroring (if the input image is not toroidal)

In case 2, when missing information is supplemented by mirroring the input image,

we need to invalidate some of the potential candidates in the candidate set created

for k-coherence search, which is used later during the image composition. Using this

information in the correction step would result in synthesis artifacts.

Figure 3.3 shows the difference between a traditional image pyramid and the gaussian

stack. The red dots in Figure 3.3b represent the invalidated pixels mentioned above.

The blue path exemplifies the the concept of shifting gaussian pyramids into each other.

The gray dot in the lower right symbolizes that this pixel is unused.

For further details on k-coherence search refer to Section 5.4

3.2.2 The algorithm

Synthesizing the final is done by successively upsampling, jittering and correcting the

initial 1×1 output texture. The factor by which the upsampled texture is perturbed is a

user-specified value and can vary from level to level.

Formally expressed, what the algorithm does is to synthesize an image S that stores the

texture coordinates of an exemplar image E. Thus S[p] holds the texture coordinates u

of a pixel p in E. In mathematical terms this means u = S[p]. The actual color value can

be retrieved by E[u] or E[S[p]] respectively.

Starting with an exemplar image E of size m×m a gaussian stack with L levels is cre-

ated, where L = log2 m.

Upsampling

In this step the texture is enlarged and therefore doubled in both, width and height.

Upsampling is a simple operation. Depending on the underlying concept, gaussian

pyramid or gaussian stack, one of the following two formulas is applied to the output at

level l:

Sl[2p+∆] := (2Sl−1[p]+hl∆) mod m (3.5)
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Texture Coordinate 
Space

Color Space

Upsampling Jittering Correction

Figure 3.4: Steps performed during synthesis. In each iteration the image in the next
coarser level is upsampled, jittered and finally corrected. This operation is done in
texture coordinate space.

Sl[2p+∆] := (Sl−1[p]+
⌊

hl(∆−
(

.5

.5

)
)
⌋
) mod m (3.6)

where hl denotes the regular output spacing of exemplar coordinates and is defined as

hl = l for Equation 3.5 and hl = 2L−l for Equation 3.6.

Jittering

Jittering introduces spatially deterministic randomness to the upsampled texture. Given

a jitter function and a user specified per level randomness parameter, jittering is de-

fined as follows:

Sl[p] := (Sl[p]+ Jl(p)) mod m where Jl(p) =
⌊

hlH(p)rl +
(

.5

.5

)⌋
(3.7)

with H : Z2 → [−1,+1]2 defining a hash function and rl representing the user-defined

per-level randomness parameter, where 0≤ rl ≤ 1.
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Correction

Correction is by far the most complicated of all three steps. For each pixel we gather a

5× 5 neighborhood of the upsampled output texture and compare this with all neigh-

borhoods from the exemplar. To accelerate this process we use k-coherence search.

The formula for correcting a pixel p in S is defined by Lefebvre and Hoppe as follows:

Sl[p] := Cl
imin

(Sl[p+∆min]−hl∆min) (3.8)

where Cl
1..k(u) is the previously created candidate set of pixel u in level l with k can-

didates. The first candidate in C is the identity Cl
1(u) = u. imin and ∆min are defined

as:

imin,∆min = argmin
∥∥∥NSl(p)−NEl(C

l
i (Sl[p+∆]−hl∆))

∥∥∥ϕ(i)

with i ∈ 1..k, ∆ ∈
{(
−1
−1

)
,

(
−1
0

)
, ...,

(
+1
+1

)}
and ϕ(i)

1 i = 1

1+κ i > 1

where NSl(p) is the neighborhood of pixel p in level l of image S and κ is a parameter

that penalizes jumps for all candidate sets, except for Cl
1.

Basically this quite complicated formula finds the best matching neighborhood in the

exemplar E for pixel p of the synthesized texture S, while favoring patch formations by

using κ to penalize jumps.

An important issue of the correction pass is the order in which pixels are adjusted.

Calculating pixel values based on neighborhoods changing simultaneously can lead to

slow convergence or even cyclic behavior.

Lefebvre and Hoppe therefore suggest a clustering into a sequence of subpasses, each

subpass correcting only non-adjacent pixels. This clustering is illustrated in Figure

3.5a. Although increasing the number of correction passes along with the number of

subpasses per correction pass leads to better results, there is a limit for both. While too

many subpasses are simply worthless as the quality does not further improve, doing
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a) Fragmentation of the output into 4 subpasses b) Pixels resorted by subpasses

Figure 3.5: To avoid branches in the shader, the pixels of the four subpasses are re-
sorted into four quadrants.

to many correction passes might result in an output texture, that looks less like the

exemplar.

3.2.3 Implementation Details

Several optimizations recommended by Lefebvre and Hoppe have been adopted into

our implementation. Most of them result from the architecture and limitations of modern

GPUs.

Avoiding branches. As Lefebvre and Hoppe state in their publication, it turns out

that a setup of two correction passes, each consisting of four subpasses, yields best

results. In a naive approach one would correct the pixels of a subpass by using if-

statements to reject the pixels not being updated in the current subpass of the pixel

shader. As modern GPUs (still) do not support efficient branching, in such an imple-

mentation subpasses would take as long as a full pass, since all branches would have

to be evaluated by the GPU.

In our implementation we therefore use an optimization suggested by Levebvre and

Hoppe, that devides the subpasses into several sub-textures. This way the four sub-

passes together take not much longer than one full pass except for the calls to SetRen-

derTarget, which are insignificant compared to the naive approach however.
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Dimensionality reduction of pixel neighborhoods. With a neighborhood of 5×5
pixels, each neighborhood would have a dimension of 75, i.e. 25 pixels, each consist-

ing of R, G and B channel. With the introduction of a feature distance as Lefebvre and

Hoppe outline in [LH06] the dimension would grow to 100. To speed up the process

of neighborhood comparison, all neighborhoods of the sample texture are explored

in each level and a matrix P6 holding the 6 principal components is generated. Us-

ing P6 each neighborhood can be projected as ÑEl(u) = P6NEl(u), where NEl(u) is the

calculated neighborhood at position u with a dimension of 75, respectively 100. This

projection can be done as a preprocess.

During the correction step each pixel’s neighborhood NSl(p) then is projected using

ÑSl(p) = P6NSl(p) likewise. Similarity once again is measured using the Euclidean dis-

tance, now in 6-d instead of 3-d as we did so far however.

Bandwidth optimization

While Levebvre and Hoppe suggest an abundance of data compression and therefore

bandwidth optimization operations, our implementation only concentrates on the fol-

lowing two aspects:

Color caching: since operations in this algorithm are not carried out in color but tex-

ture coordinate space, each color fetch in the pixel shader would result in two

texture lookups, namely one for getting the texture coordinate of the pixel in the

exemplar Sl[p] and one for actually looking up the color value El[u]. This can

be avoided by storing a tuple for each pixel Sl[p], that is (u,El[u]) instead of just

u. Unfortunately this tuple would require 5 channels (2 for u, 3 for E[u]), so we

make use of PCA once more and reduce the color information to its two principal

components.

Channel quantization: since we always use k=2 for our k-coherence search, we only

have Cl
1(u) and Cl

2(u) for each pixel in each level. Furthermore we calculated the

projected neighborhood ÑEl(u) for each pixel. Overall we have 10 channels to

store, which can be stored as an RGBA and two RGB textures. Beyond that, it is

possible to spare one texture lookup by directly storing the neighborhoods of

the candidate sets, similar to the technique used for the tuple we used for color
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caching. This quadruple would look like this: (Cl
1(u), ÑEl(C

l
1(u)),Cl

2(u), ÑEl(C
l
2(u)))

and could be stored using four RGBA textures, two for each pair of candidate set

and neighborhood.

3.3 Novel extensions

Apart from the optimization ideas mentioned in the publication of Kwatra et al. we

experimented primarily with three ideas.

One idea was to avoid the widespread and very popular RGB color space, since RGB

does not match the human perception of colors and luminance very well. Especially

comparing two or more colors with each other is not conclusive in RGB.

Our second effort was to modify the algorithm to create tileable textures. Tileable

textures have great benefits for a wide range of applications, not least they create better

results when used as input to our implementation of [LH05].

Our third novelty contributes to eliminate the shortcoming of simply comparing color

values to find optimal transitions between patches, as used in the default approach out-

lined in [KSE+03]. The method for determining seams between patches described by

Kwatra et al. does not (and cannot) account for any kind of structure within the sample.

This situation, however, leads to unsatisfactory behavior in many cases. Our attempt

adds a simple way of prioritizing marked regions over other, untagged blocks.

3.3.1 Using L*a*b*

Our first approach was to verify the impact of the used color space, by converting RGB

into grayscale and thus compare the image values mainly based upon their luminance.

The results were, hardly surprising, unsatisfactory.

Thanks to the extended cost function introduced in Section 3.1.6, the shapes and ob-

jects of the textures, i.e. the shapes and objects crossing the seams, more or less fit

together. Their colors however did not match at all.
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Figure 3.6: CIELAB color space

The common way to measure similarities is by using the L2 norm, which certainly is

not a good measurement of perceptual similarity in RGB. Our visual system recognizes

edges and other high-frequency features very easily. This behavior is not reproduced

by simply calculating the euclidean distance between two RGB values.

CIE L*a*b, also known as CIELAB or simply Lab, was specified in 1976 by the Com-

mission Internationale d’Eclairage (CIE). CIELAB, unlike RGB, attempts to approximate

human perception. As a result perceptual differences between any two colors can eas-

ily be measured. For this purpose each color is treated as a point in 3-d space. Using

the Euclidean distance between two or more points, as formulated in Equation 1.1 in

Section 1.2.2, can be used as a degree of relative perceptual discrepancy.

CIELAB better maps the way we perceive things, but due to our imperfect understand-

ing of the human visual system, it is not completely reliable either.

The positive impact of our modification was rather limited.
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3.3.2 Tileable textures

The second modification we gave a try was to create tileable textures. Formally ex-

pressed, this means if Iout(x,y) denotes the pixel at position (x,y) in the output image

Iout , then Iout(x,y) ≡ Iout(x mod M,y mod N), where M and N are the number of rows

and columns, respectively.

While having textures that tile seamlessly is advantageous in many situations, extending

the original approach to generate tileable textures is also problematic. To be precise,

forcing the algorithm to synthesize textures that tile seamlessly might propagate and

therefore increase errors with each iteration of the algorithm.

The reason for this behavior is intuitively obvious: imagine a near-regular sample tex-

ture as the basket image in Figure 3.7. The sample itself is not tileable. Highly depend-

ing on the placement strategy used and the parameters for the size of the overlapping

and error region, a situation in which the left part of the patch might fit perfectly and

the right part does not fit at all might occur. In this case the near-regular patterns of the

basket in Figure 3.7 are displaced along (at least) one seam of the patch.

In the original version of the algorithm this is no big deal, since the error can be shifted

stepwise to finally be no longer within the boundary of the output image.

In our modified version of the algorithm this self-correcting property does not exist. As

an input patch is wrapped around both output image boundaries, the introduced error,

i.e. the displacement of the near-regular texture patches, is too high to be corrected in

following iterations. As a matter of fact in our test series the visible artifacts got even

worse.

There are configurations where creating tileable textures work better, of course. It

turned out that when using a large overlapping region and an irregular, near-stochastic

or stochastic texture, the synthesized result is mostly satisfying. Increasing the overlap-

ping region, however, extremely slows down the overall performance of the algorithm

as discussed in Section 7.9.

As texture synthesis is far from being a fully automated process today and input proper-

ties along with parameter setup form the most crucial factors for each individual case,

it can be said that extending Graphcut to produce tileable textures was a success.
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Input Result with visible seams Result (ER: 70x70, OR:12px)

Input Result with visible seams Result (ER: 62x62, OR:36px)

Input Result with visible seams Result (ER: 86x86, OR:24px)

Input Result with visible seams Result (ER: 110x110, OR:12px)

Figure 3.7: Results of our implementation with different error regions (ER) and overlap
regions (OR). The images show the results of our extension to create tileable outputs
for different types of sample textures. All input images can be found at the graphcut
project’s webpage at http://www.cc.gatech.edu/cpl/projects/graphcuttextures/.
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Figure 3.7 shows some examples of synthesized textures with different types of input

samples.

3.3.3 Weighting factors

One of Graphcut’s major shortcomings is the missing information that goes beyond

the color difference of currently compared pixel-pairs. The algorithm cannot deduce

between more and less important regions or deduce where objects begin or end. In

other words, it does neither have the ability to preserve the structure of simple objects

or dominant regions nor does it provide a way for the user to prioritize certain pixels,

objects or regions manually.

In addition to extending the cost function as described in Section 3.1.6, it turned out

that there are situations where it is useful to weight selected areas in the input image.

To introduce weights to our implementation we provide an optional grayscale image

as second input texture. The brighter a pixel in that image is, the more important it is

to have neat transitions at the corresponding pixel of the input texture. In other words,

color differences between patches are penalized more the brighter their correspond-

ing regions in the grayscale image are.

In formal mathematical terms, this means that the cost function changes as follows:

M′(s, t,A,B) =

[
M(s, t,A,B)∥∥Gd

A(s)
∥∥+

∥∥Gd
A(t)

∥∥+
∥∥Gd

B(s)
∥∥+

∥∥Gd
B(t)

∥∥
]
∗WA(s)∗WB(t)

where WA(s) and WB(t) identify the weighting factors in patch A at position s and in Patch

B at position t respectively.

The idea behind this extension is, that by penalizing bad transitions at some positions,

the user has the ability to brand regions that could lead to bad results in a very straight-

forward and intuitive way.

The effect of introducing weighting factors is first and foremost to reduce the negative

impact of dominant regions from the input. By applying weights to regions where erro-

47



Chapter 3 State-of-the-art Algorithms

neous transitions would be particularly apparent, we instruct the algorithm to do one of

three things:

1. Find a nearly perfect seam for the prioritized region

2. Copy the whole region as it is to the output

3. Avoid copying the region (or parts of it) at all

Each of the three options above is acceptable. The major difference to the input modi-

fication described in [LH05] is, that the algorithm can decide which option best fits the

current situation, while Lefebvre and Hoppe’s extension forces their algorithm to keep

the tagged blocks as they are to be kept in the output by constraining the jitter ampli-

tude for that regions. This constraint however is predestined to lead to visible repetitive

patterns. Depending on the size of the labeled areas, the modification might even pro-

duce outputs that are similar to simply tiled versions of the input as will be seen later in

Section 7.

Furthermore Lefebvre and Hoppe’s extension does not guarantee the preservation of

marked regions as their approach only affects the amount of modulation caused by

jittering the image after upsampling took place. During correction, tagged areas might

be scrambled nonetheless. Figure 7.21 gives an example of this situation.

In Chapter 7 the effect of introducing weighting factors to Graphcut as well as mod-

ulating the input of PCTS is evaluated by synthesizing outputs with and without those

extensions.

3.4 Summary

In this chapter we have analyzed two state-of-the-art texture synthesis methods:

Method 1 was a patch-based method by Kwatra et al. that handles patch transitions

similar to the MEBC strategy used by Efros & Freeman in Chapter 2. The main

difference between the two strategies, however, is that the algorithm based on

Graphcuts "remembers" old seams and therefore has the ability to correct former
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suboptimal seams that might have caused visual artifacts. Moreover three place-

ment strategies have been introduced: Random placement, Entire patch place-

ment and Sub-patch placement.

Method 2 a pixel-based method by Lefebvre and Hoppe that is order-independent

and therefore enables outsourcing expensive calculations to the GPU. To achieve

texture variations several steps of the algorithm are performed in texture coordinate-

rather than color space. The functioning is encapsulated into three parts: Upsam-

pling, Jittering and Correction. A new data structure, the gaussian stack, has been

introduced for exemplar matching. We have seen several methods for packing

information into vectors and textures to facilitate data transfer between the pixel

shader and the CPU.

Moreover the impacts of our novel ideas have been outlined. Using CIELAB, producing

tileable textures and introducing weighting factors to [KSE+03] improved the original

attempt of Kwatra et al. to different extents. None of our novelties can replace the

burden of analyzing the input texture before running the algorithm. Nonetheless it gives

the user more control over the synthesis process and thereby leads to better results.

More details about special aspects of our implementation of both approaches exam-

ined above will be given in Chapter 6.

An elaborate evaluation of both algorithms is given in Chapter 7.
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Alternative Sampling Methods

So far the most popular ways to synthesize textures is by either using pixel- or patch-

based approaches. However while patch-based texture synthesis algorithms are good

in preserving global structure, they often produce visible seams along patch bound-

aries. On the other hand pixel-based algorithms often tend to lose small texture pat-

terns and therefore although producing a consistent impression do not resemble the

input texture.

To improve the quality of the resulting texture, there are approaches that are based on

pixel- or patch-based algorithms, but extend those ideas. Although pixel- and patch

based algorithms are most popular at the moment, reasoning that textures synthesis

can only be done in this manner is wrong. To emphasize that, two different approaches

shall be presented subsequent in a nutshell.

4.1 Hybrid Texture Synthesis

Andrew Nealen and Marc Alexa from the University of Technology in Darmstadt, Ger-

many, try to combine the benefits of pixel- and patch-based algorithms into one tech-

nique called "Hybrid Texture Synthesis" [NA03]. They try to exploit the speed and

structure preserving properties of patch-based algorithms and switch to the blurring

kind of pixel-based approaches when errors in the overlapping regions become too

obvious.
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a) Synthesize white region b) ∆p > ∆max → split patch a) ∆p <= ∆max

Figure 4.1: The figure shows the patch-based synthesis part of the algorithm where the
new patch does not meet the condition ∆p < ∆max and therefore needs to be split

The algorithm starts by placing patches as all patch-based algorithms do. Instead of

blending, feathering, etc., however, it computes the error for each pixel in the overlap

region and uses a pixel-based synthesis strategy to synthesize erroneous pixels.

4.1.1 The algorithm

The algorithm works as follows: in each step a patch fitting the target region best is

selected from the sample texture and placed to the output image with an overlapping

region of ov pixels in each direction. If the overlap error ∆p exceeds the maximum

overlap error ∆max, the search process is repeated using smaller patches. This process,

which the authors call splitting, is repeated until the overlap error in the overlap region

is below the maximum overlap error ∆max or the size of the patch reaches a lower

limit.

A second constraint δmax is used to measure each pixel error within the overlap region.

If the pixel error is above the threshold δmax, it is marked as invalid and the pixel is

re-synthesized afterward.

The exact formula for calculating the pixel error is of no further interest for this work as

this section is just meant to give a gist of alternative texture synthesis methods.
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Figure 4.1 shows the process of placing and thereby splitting a new patch to the out-

put.

4.2 Wang Tiles for Image and Texture Generation

Wang Tiles are not limited to be used in texture synthesis. They may also contain pat-

terns or geometry to create new tiles in a non-periodic way. This creation process can

be done very efficient once the tiles are filled with data.

Wang Tiles are squares where each edge is encoded by a color. Only when all edges

of a tile match with the colors of the edges the tile is connected to, the tiling is said

to be valid. Before Wang Tiles can be used for texture synthesis, the tiles need to

be filled with 2D-texture information. This can be achieved in two ways, manually or

automatically.

Cohen et al. show that using 8 tiles is sufficient to non-periodically tile the plane us-

ing Wang Tiles. However just encoding the North, South, East and West edge, is not

satisfactory when features cross more than one edge. To maintain coherent patterns,

additional informations need to be encoded into the tiles. This is known as the Corner

Problem and will be covered in a later section.

The idea of using Wang Tiles for texture synthesis first came up in [Sta97]. Wang Tiling

itself was first proposed by Hao Wang, a chinese mathematician, in 1961 and therefore

is named after him.

The elements in a Wang tile-set can not be rotated. Wang tiles are always squares.

4.2.1 The algorithm

The stochastic tiling algorithm designed by Cohen et al. works as follows:

1. Select any tile for the upper-left corner

2. Fill the first row by always selecting tiles thats left edge matches the color of the

right edge of the previously placed tile
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a) 8 Wang Tiles can
stochastically tile the plane

b) Sample tiling
constructed using the set 8 Wang Tiles

Figure 4.2: Example of a set consisting of 8 Wang Tiles

a) 12 Wang Tiles constructed from
two horizontal and three vertical colors

b) 18 Wang Tiles constructed from
three horizontal and three vertical colors

Figure 4.3: Extended Wang Tiles sets

3. For the first tile in a new row select a new tile where the upper edge matches the

lower edge of the tile placed above

4. Fill the row with tiles where the upper edge matches the lower edge of the tile

above and the left edge matches the right edge of the tile to the left

5. Go to step 3 to generate as many rows as desired

As long as there is at least one tile for each upper/left edge combination, the procedure

above creates a valid tiling. Since our set of Wang Tiles contains all combinations of

upper/left and lower/right edges this is always true. The algorithm described above

assumes that the tiles are placed from top to bottom and left to right.
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a) Four subimages are
combined to form each Wang Tile

b) Construction of an eight tile set

Figure 4.4: Creating the tiles

If we use K-colors to encode the edges, we get K2 color combinations for two adjacent

edges of a tile. If our set contains at least two tiles for each such combination at each

step we have at least two choices. If this choice is made with uniform probability each

step reduces to an independent random process (i.e. a coin flip) and therefor the plane

will always be tiled non-periodically.

Using a larger set of tiles has two advantages:

1. it reduces repetition artifacts

2. larger patterns can be introduces to the tiling of the plane

4.2.2 Tile filling

Cohen et al. introduce two methods for filling the tiles within the Wang Tile set, whereas

the first method, Interactive Tile Design, is limited to simple geometry and thus of no

further interest for this work.

The more advance technique to fill the tiles is done automatically. It is based on [EF01].

New tiles are created by putting together four patches. This is done by slightly over-

lapping the samples and finding a cutting path for that overlapping region. Thereafter

the now combined four samples are rotated by 45◦ so that they form a diamond shape

now. The new tile is generated by cutting along the diagonals of the new diamond
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shape. This forms the final tile. The thereby created tile only uses one half of each sam-

ple. This means that the other half is used when two tiles are connected along one edge

having the same color. Therefor the tiles will always fit together. Figure 4.4 illustrates

this process to create on a set of 8 tiles.

Visible artifacts may occur for two reasons:

Reason 1: too view sample patches are used: this problem can be overcome by

increasing the number of tiles

Reason 2: because the errors created by Efros and Freeman’s algorithm (or any

other path-finding algorithm) become even more visible in this approach, since they

are repeated for each tile created. This means that the quality of Wang Tiles can only

be as good as the path-finding algorithm used. To minimize the quiliting errors, Cohen

et al. iterate over large sets of samples and sum all errors that occur along the cutting

path, i.e. for a set of eight tiles 32 paths. If after this process the commulated error is too

high, four new samples are selected, stitched together as before and the new overall

error is computed. This process is repeated until the overall error is small enough

or a pre-set number of iterations have been completed. The creation of the tiles is a

time-consuming process, but has to be done only once before the algorithm starts and

therefor can be precomputed. After the tiles are generated, creating large textures is

very fast.

4.2.3 The Corner Problem

The problem with the so far presented algorithm is, that is does not account for object

that span across the corner of a tile. To cover this case as well, the corners of the

tiles need to store additional information. This leads to a combination of 24 - corner

encoded yes/no for each corner - encodings for each tile. In a set of 8 tiles this means

an enlargement to 8×16 = 128 tiles.

The extended information that is now encoded into the new tiles along with a sample

arrangement is shown in Figure 4.5.

55



Chapter 4 Alternative Sampling Methods

a) Extended Wang Tiles set
b) Sample arrangement

of the extended Wang Tiles

Figure 4.5: Extended Wang Tile sample set with additional information to account for
the corner problem

4.2.4 Further improvement

By using two source images instead of one the synthesis process described above can

be further enhanced. The idea behind this is to exploit the extension devised to solve

the corner problem. Imagine having two images of a hayfield with a different density of

flowers. The previously introduced encoding of the corners can be used to represent

regions of different density. The two images used in this process must fit together via

the quilting algorithm of course.

4.3 Summary

In this chapter two rather unconventional synthesis methods have been summarized.

First, Hybrid texture synthesis by Nealen and Alexa, who try to improve existing texture

synthesis algorithms by combining their strength has been summarized in a nutshell.

The idea behind this approach is to first apply patch-based texture synthesis by step-

wise splitting the input patch until the condition ∆p < ∆max is met. This procedure is

followed by a pixel-based correction scheme that corrects single erroneous pixels.
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The second alternative approach concerned Wang Tiles and has been covered in more

detail, since it is a totally different synthesis strategy than all other methods described in

this work. Using Wang Tiles to synthesize textures is an interesting idea. Although sim-

ilar to tiling, having not one, but many tiles, the algorithm creates much better results in

a high-performance manner. The weakness, which at the same time is a strength of the

introduced method, is the creation process for the tiles. The problem is that the same

visible artifacts are repeated over and over again across the output image in a repeti-

tive way. However, creating the tiles is a pre-process and therefore neither time critical

nor bound to a special way of finding optimal transitions between the patches.
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Optimization Methods

When performing texture synthesis a lot of time consuming operations may occur. To

not waste too much time searching for perfect neighborhoods, overlap regions, etc. a

number of optimization algorithms exist. Some of those algorithms and data structures

along with quality enhancing methods will be examined in this chapter.

5.1 Tree-structured vector quantization

Tree-structured vector quantization (TSVQ) is a procedure that is usually used as a

lossy data compression method. In 1980 Linde, Buzo and Gray (LBG) introduced an

algorithm for Vector Quantization (VQ) that was based on a training sequence. Vector

Quantizations that use this algorithm, like Wei and Levoy’s approach does, are therefore

also referred to as LBG-VQ.

In simple terms: vector quantization is a compression method, that clusters large sets of

vectors into groups of vectors that are close to each other and approximately have the

same number of elements per group. Each group is represented by its centroid point,

also called codevector. The area assigned to codevectors is called encoding regions.

The union of all codevectors is called codebook, the set of all encoding regions partition

of the space.
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Vector quantization consists of two steps. Step one is responsible for creating the code-

book by training the codevectors with a set of sample vectors. Step two assigns the

closest codevector to each new vectors.

In formal mathematical terms, this means:

Let T be a training sequence of M vectors:

T = {v1,v2, ...,vM}

where each of the vectors has a dimension of k

vi = (vi,1,vi,2, ...,vi,k) where i = 1,2, ...,M

Let N be the number of codevectors with

C = {c1,c2, ...,cN}

where each k-dimensional codevector is defined as

c j = (c j,1,c j,2, ...,c j,k) with j = 1,2, ...,N

Let S j denote the encoding region for the codevector c j with

P = {S1,S2, ...,SN}

as partition of the space.

The approximation Q of a given vector xi in the encoding region Sa is then given by

Q(xi) = ca if xi ∈ Sa

Using the L2 norm the average error can be defined as:

Davg =
1

Mk

M

∑
m=1

(xm−Q(xm))2 (5.1)
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The goal is to find a solution for this minimization problem.

The LBG-VQ algorithm

LBG-VQ uses an initial codebook to iteratively solve the optimization problem defined

by the following two conditions:

1. Any encoding region Sn contains all vectors that are closer to cn than to any other

codevector

2. Any codevector cn is the centroid of all training vectors in Sn

The algorithm works as follows:

1. Choose the size of the codebook by setting the number of desired codevectors

N

2. Define an initial codebook by randomly selecting N codevectors

3. Cluster each input vector by determining its Euclidean distance to each code-

word

4. Compute the set of codevectors by obtaining the centroid of the values in each

cluster

5. Repeat step 3 and 4 until the change in codevectors is below a predefined thresh-

old

The TSVQ algorithm

The algorithm used by Wei and Levoy for their tree-structured vector quantization works

similar to the LBG-VQ algorithm described above.

It starts by computing a centroid from the set of given training vectors and uses that

as its root level codevector. As a second step this codevector is split and the initial

codevector along with a perturbed centroid are chosen as initial children of the root. As

before in LBG-VQ the two children are then assigned training vectors to and corrected
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to find the locally optimal codevectors. The training vectors are thereby divided into

two groups based on theses codewords and the algorithm recurses on each of the

subtrees. This procedure is repeated until either a number of predefined codevectors

have been reached or the average error, as defined in Formula 5.1, is below a certain

threshold.

Using the tree

To find the nearest codevector for a given query vector, and thereby the new pixel to

be synthesized, the tree is traversed in best-first ordering. Thus in each level of the tree

the child node with the codevector closer to the input vector is followed until a leaf node

is reached. Although this node in the majority of cases does not hold the best match

available for the given vector/neighborhood, the runtime behavior is much better than

with the exhaustive search. As training data Wei and Levoy use the neighborhoods of

each pixel of the input sample.

A pitfall of TSVQ acceleration is that it tends to blur the output even more as can be

seen in Figure 5.1.

5.2 Optimized k-d tree

Nearest neighbor search is an optimization problem for finding closest points in metric

spaces. Let S be a set of points in M, a d-dimensional metric space, and q ∈ M. We

then want to find p ∈ S that is closest to q.

A k-d tree (short for k-dimensional tree) is a space-partitioning data structure for orga-

nizing points in a k-dimensional space. k-d trees are a special case of BSP-trees and

can be used for nearest neighbor searches.

61



Chapter 5 Optimization Methods

a) Original b) Full Searching Synthesis c) TSVQ Synthesis

Figure 5.1: The images above show the results of images created with and without us-
ing TSVQ. All images of this figure can be found at the project’s web page of Li-Yi
Wei and Marc Levoy at http://www.graphics.stanford.edu/projects/texture/
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a) Points in 2D space b) k-d tree

Figure 5.2: Sample k-d tree dividing space into two parts at each node. Each new plane
is perpendicular to the preceding one.

BSP trees

Binary Space Partitioning (BSP) trees are data structures that recursively divide the

plane into two parts. BSP trees can either be axis- or polygon-aligned, where only

axis-aligned BSP trees will be covered here.

While 3-D rendering for instance uses BSP trees to sort objects from front to back (e.g.

for occlusion culling or transparency) the k-d tree used in texture synthesis is utilized

to perform an approximate nearest neighbor search.

The property that makes a BSP tree a k-d tree is the used splitting strategy. The most

general approach is by starting with a root node that divides the whole space into two

parts. Each node at any recursion level generates a perpendicular plane to the one

used last and again divides space into two boxes. This splitting operation usually is

repeated until the number of data points associated with the node is smaller than a

preset quantity, called the bucket size.

Splitting strategy

A common strategy for splitting a scene into two halves is by cycling through the axis,

i.e. starting by dividing space along the x-axis, its children might be split along the y-,

the grandchildren along the z-axis, and so on. After k-splits the cycle repeats. Points
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a) Problem of
regular image pyramids

b) Quadtree image pyramid

Figure 5.3: Each level of a quadtree pyramid has four children. Thereby each patch of
one level has a corresponding patch in the next lower level.

lying on a splitting plane may be associated with either child, according to a predefined

splitting rule.

As a splitting rule Liang et al. use the sliding midpoint rule for their implementation.

The sliding midpoint rule is a simple modification of the midpoint splitting rule. The

unmodified midpoint splitting rule simply cuts the current cell through its midpoint or-

thogonal to its longest side. This simple rule runs the risk of producing so called trivial

splits, where all points lie to one side of the splitting plane. As a result the depth of the

resulting tree can be arbitrary large. To avoid this degeneration the splitting algorithm

only accepts the midpoint as splitting plane if points of the data set lie on both sides of

the splitting plane.

If this condition is not fulfilled, the splitting plane is moved toward the points, until the

first data point is reached. By "sliding" the splitting plane like this, the partitioning of the

space can never result in any trivial splits. Thus it can be guaranteed that the tree has a

maximum depth of N levels.

5.3 Quadtree Pyramid

Quadtree pyramids (QTP) are data structures similar to gaussian stacks. The idea be-

hind QTPs is to have an extended gaussian pyramid where each patch of one level has

a corresponding patch in a lower resolution. In standard gaussian pyramids this is not

the case as can be seen in Figure 5.3.
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2. build

a) Analysis b) Synthesis

Figure 5.4: k-coherence search is divided into two phases. During analysis k similarity-
sets are built for each pixel. Those similarity-sets are then used to synthesize the new
pixel as shown in b).

The "quad" in quadtree pyramid just says, that each node has four children, and there-

fore holds a corresponding pixel for each set of four pixels in its next, lower level. In

other words: in each level of the pyramid the four lower resolution images are calcu-

lated by shifting by 1-pixel along the x- and y-directions and using a box filter of size

2×2 to downsample the image data.

The resulting image pyramid can be used to get a first approximation of the nearest

neighbors in the lowest resolution level. The reduced set of candidates can then be

improved or further reduced in each higher level of the tree. The speed-up achieved

by this acceleration method naturally becomes more efficient with smaller numbers of

initial candidates, i.e. when the number of candidates m << n, where n is the number

of datapoints.

5.4 k-coherence sets

K-coherence sets establish a basis for k-coherence search, an acceleration algorithm

in pixel-based texture synthesis. The basic idea of k-coherence search is to reduce

the number of pixels covered in search of similar neighborhoods. The k-coherence

algorithm [TZL+02] is divided into two phases:

Analysis. This stage of the algorithm can be pre-computed. When analyzing a given

texture a similarity-set is built for each pixel. This similarity-set contains a list
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of other pixels, respectively their offsets, that have similar neighborhoods as the

current pixel. The size of the set can be chosen arbitrarily, but since k-coherence

search is meant as an acceleration, using similarity-sets with a large number of

elements k would degrade the effectiveness of the optimization. The lower the

number of elements in a similarity-set, the more different the resulting texture

looks compared to the full search. Based on experience a good trade-off between

quality and performance is reached with a k in the range of 1 to 11.

Synthesis. For each new pixel in the output image a set of candidate-pixels is gener-

ated. This is done by adding the similarity sets of all texels in the neighborhood

of the pixel thats new value should be determined. In this list of similarity-sets we

then search to find the best matching neighborhood in the input image. As can

be seen in Figure 5.4 the texels of the similarity-sets need to be shifted to match

the position of the particular pixel in the current neighborhood offset of the output

image.

5.5 Principal Components Analysis

Principal Components Analysis (PCA) is a frequently used operation to reduce multi-

dimensional data sets to their most significant or principal components. Although this

dimensionality reduction is not a lossless data compression, it can be shown, that a high

degree of information content is obtained even with a highly narrowed input. PCA is

often used to accelerate algorithms for pattern recognition. To fully understand what

the PCA does and how it can be calculated, some terms and definitions need to be

introduced.

Standard deviation and variance

The standard deviation of a data set is a measure of dispersion of the values of the given

set. Casually spoken, it is the average distance from the mean to a value of the data set.
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The standard deviation is defined as:

s =

√√√√√ n
∑

i=1
(Xi−X)2

(n−1)
(5.2)

The variance of a data set is simply the standard deviation squared.

Covariance

Standard deviation and variance only specify how data varies in one dimension. To

determine if and how two or more dimensions are related to each other, a new mea-

surement, called covariance, is used. The formula for the covariance is very similar to

the formula of variance:

cov(X ,Y ) =

n
∑

i=1
(Xi−X)(Yi−Y )

(n−1)
(5.3)

As can be seen easily, the only difference to the formula of variance is the second set of

brackets, where the Xs have been replaced by Y s. The result of this replacement is, that

we now measure how much the dimensions vary from the mean, with respect to each

other. Trivially the covariance between one dimension and itself equals the variance

of this dimension. Furthermore is cov(X ,Y ) equal to cov(Y,X), since multiplication is

commutative. The result of covariance is interpreted as follows:

• cov(X ,Y ) > 0: both dimensions increase together

• cov(X ,Y ) < 0: one dimension increases, as the other decreases

• cov(X ,Y ) = 0: the given dimensions are independent of each other
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Eigenvectors and eigenvalues

The eigenvector of a linear transformation is a non-zero vector that, when applied to the

transformation, changes in length, but not direction. Eigenvalues are closely related to

eigenvectors. Each eigenvector has a corresponding eigenvalue which determines the

amount the eigenvector is scaled under the linear transformation. The eigenvalue is a

scalar value.

The following properties apply to eigenvectors:

• eigenvectors can only be found in square matrices

• not every square matrix has eigenvectors

• a m×m matrix has exactly m eigenvectors, if it has eigenvectors at all

• all eigenvectors of a matrix are orthogonal to each other

PCA step-by-step

Doing a principal components analysis is done performing the following steps:

Acquire data This step is self-explanatory, since we want to use the PCA for dimen-

sionality reduction of data in our textures

Normalize data In this step the deviation of each value in each dimension to the mean

value of that dimension is calculated and used for further processing

Ascertain the covariance build the covariance between each given dimension. The

so calculated values can easily be stored inside a matrix, called covariance ma-

trix. The covariance matrix is a symmetric, square matrix, with each dimension’s

variance as the main diagonal.

Calculate eigenvectors and eigenvalues as already mentioned before, the eigen-

vectors are perpendicular to each other. This crucial property allows to express

the collected data in terms of these eigenvectors instead of the standard coordi-

nate system. The new coordinate system now resembles a best-fit straight line.
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In other words: by using the eigenvectors we are able to extract lines that charac-

terize the data

Forming the feature vector is the next step to reduce the dimension of our initial

data set. We now sort the eigenvectors descending by the calculated eigenval-

ues. This results in a list, that reflects the significance of the components. The

first n eigenvectors of the list now form the so called feature vector, where each

eigenvector forms a column.

Calculating the new data set to finally apply the dimensionality reduction we in-

tended to, the following multiplication must be done:

FinalData = FeatureVectorT×DataAdjustT

where DataAdjust is the mean-adjusted data we created in step 2. FinalData now

holds the data items as its columns and the dimensions along the rows. Thereby

the initial data has been transformed into a coordinate system, that better de-

scribes the relationship between the given dimensions of the data set.
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Implementation

While the previous chapters provided an overview on theoretical aspects of several

different ways for synthesizing textures, this section concentrates on implementation

details for the approaches described in Chapter 3.

Several aspects of the software architecture will be described using the Unified Mod-

eling Language (UML) [ZGK04].

6.1 Graphcut textures

Starting with our implementation of the patch-based algorithm of Kwatra et al., we first

and foremost want to concentrate on the way perfect seams are found and managed.

We start this section by providing a coarse overview over the system’s general soft-

ware architecture. Subsequent sections go into further detail on specific parts of the

system. Note that this chapter is not intended to provide an exhaustive specification of

our implementation of the algorithm, but only to highlight some special aspects of it.

6.1.1 System overview

Since our implementation does not utilize the GPU for parallel execution, the applica-

tion is built using a traditional two-tier system, with graphical user interface (GUI) and
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GraphCutGUI

InputImage

NodesPlacement

GUIWrapper

Form1

GCMain

Figure 6.1: System overview

business logic as the two layers. The GUI layer is implemented using Microsoft Win-

dows Forms, while the business logic is written in core C++. Figure 6.1 shows the

different modules.

The module GraphCut contains all worker classes. It contains the placement classes

RandomPlacement, EntirePatchPlacement and SubPatchPlacement and main-

tains the images in InputImage and OutputImage. AbstractNode, OldSeamNode

and RegularNode represent the three types of nodes that occur during the synthesis

process. Section 6.1.3 focuses on the structure of OutputImage and provides a de-

tailed view on the classes used to manage the different types of nodes.

In the second module GraphCut_GUI two classes are of particular interest:

GUIWrapper, which handles the communication between the GUI and the worker

classes and Form1, the main GUI form, which uses the interface of GUIWrapper to

interact with the worker classes. GUIWrapper, as the name implies, wraps the Mi-

crosoft Windows Form class structure around core C++ structures and classes and

vice versa.

The interface between GraphCut_GUI and GraphCut implements the Singleton De-

sign Pattern.

6.1.2 Package ImageData and Placement

There are three packages that play a major role in our implementation. Two of them,

ImageData and Placement will be described in this section, the third Nodes is ana-
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lyzed in further detail in Section 6.1.4.

ImageData

Image

InputImage OutputImage

ImageExRegularNode

Placement

IPlacementStrategy

PatchPlacement RandomPlacement

EntirePatchPlacement SubPatchPlacement

OutputImage Maxflow

a) Package ImageData b) Package Placement

Figure 6.2: The diagrams above show the packages for managing image-information
and handling patch placement

The package ImageData is the simplest of the three packages that will be described

here. The reason for its excessive nesting is the overall structure of the application, i.e.

the interface between GraphCut and GraphCut_GUI. The class Image just stores

color information and thus primarily used to load and save images from and to disc.

ImageEx is the most powerful class in the package. It adds the concept of nodes (and

consequently edges) to the plain color information of Image. It furthermore stores

extended image informations like mean value, variance and standard deviation of the

represented image.

InputImage and OutputImage are the specialized objects for input and output im-

ages. A detailed specification of those two classes is beyond the scope of this work.

The Placement package implements the three different kinds of how new patches

might be selected and positioned. Refer to Section 3.1.4 for a detailed discussion on

all feasible placement strategies. Most of the placement logic is implemented in the

IPlacementStrategy interface. It holds all methods common to each placement

strategy. This includes calculating transition costs, building the input graph for the

Maxflow class, the class that finds the optimal cut for the previously created transition-

graph, interacting with the Maxflow class, updating the output, etc.

The specialized placement strategy classes RandomPlacement,

EntirePatchPlacement and SubPatchPlacement determine the translation and

shape of the selected input patch based on the specification in Section 3.1.4.
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PatchPlacement is another interface that abstracts functionality, that

EntirePatchPlacement and SubPatchPlacement have in common.

6.1.3 Package Nodes

Nodes

Node

AbstractNode RegularNodeOldSeamNode

Edge

Package Nodes

Figure 6.3: The diagram above shows the components that are involved when account-
ing for old seams

The complex structure of the package Nodes results from the ability of the Graphcut

approach to "remember" old seams. This ability forces us to introduce an adapted data

structure to account for the situation outlined in Section 3.1.2. As shown in Figure 6.4

we now need nodes that do not actually represent a pixel itself, but only an old cut. This

kind of nodes are represented by the object OldSeamNode that are connected to two

RegularNode objects and one AbstractNode. The AbstractNode is used as a

placeholder for the new patch. The construct of the three objects in combination with

the regular, undirected graph created according to Section 3.1.2 serves as input to the

maxflow algorithm.

6.1.4 Defining cuts

Kwatra et al. describe two different scenarios for defining transitions between two or

more patches. One for finding a seam between two patches A and B that have not

been cut within their overlap region, yet, and one to cover the case, where two or

more patches overlap along an old edge. Scenario 2 is the rule as Scenario 1 can only

occur during initializing the output texture. Correcting old transitions is by far more
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:IPlacementStrategy
a : RegularNode

osd:OldSeamNodeb:RegularNode

e:Edge x:AbstractNode

:PixelData

1: BuildGraph (list<Node>)

1.1: GetOldSeamData (a)

1.2: GetNextNode (a)

1.3: GetEdge (a, b) 1.4: allocate (x) 1.5: GetCosts (a, osd)
1.6: GetCosts (osd, b)
1.7: GetCosts (osd, x)

1.8: AssignEdgeCosts()

Figure 6.4: Collaboration diagram for building a graph based on existing seams

complicated than just finding a perfect seam between two patches and shall therefore

be explained in more detail now.

There are three different types of nodes implemented: RegularNode, OldSeamNode

and AbstractNode.

RegularNode objects are the most common nodes in the system. Unlike the other two

node types, they represent real image data like color, position, owner, neighborhood

information, etc. An OutputImage therefore is based upon the informations stored in

these objects.

An OldSeamNode on the other hand is a node that is inserted between two

RegularNodes to account for old seams. It is inserted before the mincut/maxflow

algorithm is started. It is connected to two RegularNodes and one AbstractNode

to symbolize the old seam.

An AbstractNode is used to establish a relation between old input patches and the

new patch without loosing information about transition costs for old seams.

Building the graph for finding new transitions is somewhat difficult. At best there are two

patches overlapping without an old seam running through one them. In this case the

graph consists solely of RegularNode and Edge objects. As the algorithm proceeds,

more and more previously defined cuts have to be taken into account. Figure 6.4 shows

the procedure for setting up all required objects.
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6.2 Parallel controllable texture synthesis

Our implementation of [LH05] differs quite a bit from the implementation described

above. This is mainly due to the fact, that it highly exploits the parallelism provided by

the GPU. It is based upon the DirectX Utility Toolkit to interact with the user and uses

Microsoft DirectX 10 and HLSL to calculate major parts during the synthesis process. It

is obvious, that this architecture by far leads to a better performance than the model

we used to implement [KSE+03]. However, the chosen configuration, the choice of

Microsoft DirectX 10 over OpenGL in particular, leads to a less generalized implemen-

tation. In other words: the implementation only works on Microsoft Windows Vista with

GPUs supporting DirectX 10.

6.2.1 User Interface

The user interface of our implementation consists of a single class, that for one thing ini-

tializes DirectX and for another thing handles the interplay between the user input and

the business logic. The user interface is kept simple and realized using DirectX Utility

Toolkit to display some buttons for loading the images and some sliders for controlling

the jitter factor for each of at most eight pyramid levels.

Communication between the user interface and the time consuming tasks in

ExampleUtil are implemented as separate thread to prevent the application from

not responding while the calculations take place. Furthermore the singleton design

pattern is used for realizing some kind of console that renders status messages to the

main application window.

6.2.2 Business logic

The business logic primarily consists of two classes, ExemplarUtil and ResultUtil,

and two libraries, newmat10 and dt.

ExemplarUtil as the name implies, accomplishes all tasks related to the exemplar im-

age. This includes building the gaussian stack, as described in Section 3.2.1,
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reducing color information and feature mask and building similarity sets, men-

tioned in Section 5.4.

ResultUtil is responsible for generating the output pyramid and therefore for control-

ling the three major steps: Upsampling, Jittering and Correction found in Section

3.2.2.

newmat10 is a math library intended for scientists and engineers that supports a

variety of matrix operations. Our implementations uses newmath10 to calculate

the PCA for dimensionality reduction. The library can be found at:

http://www.robertnz.net/nm10.htm.

dt is an image library that implements the fast distance transform algorithm described

in [FH]. It was distributed under the terms of the GNU General Public License as

published by the Free Software Foundation. In our implementation it is used to

calculate the distance for the given feature mask that is stored together with the

color information in the PCA reduced version of the exemplar image.

6.2.3 Rendering

Rendering is, as already mentioned, done via DirectX Utility Toolkit, Microsoft DirectX

10 and HLSL. The time-consuming steps Upsampling, Jittering and Correction, that form

the main real-time algorithm, are implemented in the pixel shader and thus are out-

sourced to the GPU.
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Evaluation

In this chapter an evaluation of our implementations of [KSE+03] and [LH05] is given.

According to the focus of this thesis, this chapter covers a wide range of all kinds of

urban datasets as input textures.

As Michael Ashikhmin criticizes in [Ash01], newly developed algorithms are often cor-

roborated with textures possessing certain properties, gracious to the weaknesses and

strengths of the particular synthesis method.

Using our implementations that are described in further detail in Chapter 3 and 6,

we show the limitations of the algorithms, demonstrate the improvement of introduc-

ing weighting factors and outline the differences between our implemented sampling

methods.

We walk a tightrope by synthesizing facades from extremely regular input textures and

create aerial textures with very limited input data as well as street systems and river

flows.

In Section 7.7 we create walls and pavements, a process exemplified in nearly each

paper on texture synthesis. We will show, that a slight perspective distortion is oblivious

to an observer and see the significance the input texture has on the overall synthesis

process.

Section 7.8 deals with the problem of prominent features.

The chapter is concluded by a runtime analysis of our implementations in Section 7.9.
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For all results presented in this chapter that were generated using our implementation

of [KSE+03] we used sub-patch matching described in Chapter 3.1.4. In addition, all

textures created by that implementation tile seamlessly, as announced in Chapter 3.3.

7.1 Typical parameters

Naturally, a variety of factors contribute to the successful choice of parameters that de-

fine the functioning of the algorithm. As the synthesis process in [LH05] takes place

in real-time, most parameters can be chosen by trial and error. Setting up the basic

conditions for [KSE+03] is a bit more tricky as it is crucial to both: runtime and qual-

ity. Changing values like the dimension of the overlap- or error-region requires the

synthesis process to start from scratch.

Some properties, however, apply to both approaches and are decisive factors for the

synthesis process. Those factors usually embrace the following attributes first and fore-

most:

1. the size of the input

2. the size of the output

3. the size of the patterns within the input

4. the degree of regularity within the input texture

7.1.1 Graphcut

Thinking that only runtime is the limiting factor for selecting endlessly large transition

zones, i.e. overlap regions, is not true. Imagine an error region with a size of 32 pixels

and an overlap region spanning 64 pixels. Such a setup would require an input image

with a dimension of at least 160×160 pixels (32+2∗64).

As already stated above, the placement strategy used in this chapter is sub-patch

matching, which only makes sense if the sub-patch can be chosen from a large set

of possible offsets. That means that the ratio between the size of the input texture and

78



Chapter 7 Evaluation

size of the new patch must be large enough to test the new patch at various different off-

sets of the input texture. The more different offset locations exist in the input image, the

better the final result will be, since that offset is crucial to the final selection of objects

along which the new seam will be drawn in the output texture.

The other extreme are error- and overlap regions that are too small to surmount certain

patterns of the input image. In that case the algorithm gets stuck and starts to produce

garbage.

Both situations are illustrated in Figure 7.1.

Finding the best offset in the input image is a very time-consuming task as will be

outlined in Section 7.9. Setting up large overlap regions in rather big input textures

leads to unsatisfactory runtime behavior.

In our test series we mostly used input images with sizes between 128 and 256 pixels

in both width and height. The usual size used for overlap regions is 16 to 32 pixels.

We also experimented with overlap areas that were 48 pixels wide and even with very

low values as can be seen in Section 7.6, but only to demonstrate some special case

behavior.

The largest error region used had a dimension of 48×48 pixels. Again, the most com-

mon value was a square of 16 to 32 pixels.

7.1.2 Parallel controllable texture synthesis (PCTS)

PCTS depends on a lot of parameters, that in contrast to our implementation of [KSE+03]

can be set on-the-fly however and therefore do not have to be analyzed before starting

the algorithm. As a matter of fact, there are no typical parameters for PCTS. The reason

for that is the different mode of operation and the fact that PCTS works in real-time,

which eliminates runtime as a limiting factor.

PCTS at its heart is based on simple tiling, due to the nature of the upsampling step,

where the texture of the active layer is upsampled from the texture of the previous

iteration, that is only half as wide and half as high. Therefore to eliminate any repetitive

pattern one needs to disarrange the tiles in the first place. This can be achieved by
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a) Input (128×128) b) Output (480×480, ER: 64, OR: 32)

c) Input (192×192) d) Output (320×240, ER: 8, OR: 16)

e) Input (192×192) f) Output (320×240, ER: 8, OR: 16)

Figure 7.1: The images above show the effect of choosing awkward parameters. The
texture in b) was synthesized using too large error- and overlap regions, which pre-
cluded the algorithm to find an optimal offset for the next patch. d) and f) illustrate
the problem where the algorithm gets stuck, because of too small error- and overlap
regions. The input texture in a) originates from a news article at http://derstandard.at.
The images in c) and e) can be found at http://www.aceaerialphoto.us.
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low κ high κ low κ high κ

Figure 7.2: The images above demonstrate the impact of penalizing jumps within the
similarity sets. The higher the value of κ , the more jumps are penalized. Low values
of κ blur the image, but smooth out errors along the borders of the different tiles.

independently setting the jitter amplitudes for up to log2(m) levels, one for the each

upsampling step, where m is the resolution of the exemplar.

Aside from the decisive factors mentioned above that affect the quality of the synthe-

sized output, a key aspect of PCTS is covered by the value κ that penalizes jumps in

the similarity sets calculated from the input texture.

This value, that can be set online during the synthesis process as well, defines the

similarity of the output texture with the input sample by favoring pixels that are spatially

close to each other over pixels with similar colors. In other words, it discriminates the

second candidate in the created similarity sets.

In our implementation the value of κ ranges from 0 to 2,5.

Figure 7.2 demonstrates the impact of κ .

A big drawback of PCTS is that it only works with image dimensions that are multiples

of 2.

Since the size and ratio of the in- and output is no limiting factor for the Graphcut ap-

proach, the texture sizes throughout this chapter used for each implementation were

chosen to best fit the capabilities of the respective algorithm.
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7.2 Synthesizing aerial images

The task of synthesizing textures from aerial images works quite well with both of our

implementations.

As a rule of thumb it can be said that the smaller the single objects in the input texture,

the better the final result. In other words, the more the objects naturally blur by moving

away from the observer, the less we recognize seams between image patches and

distortions. As objects in images move to the distance, details become less prominent,

the object consumes fewer and fewer pixels until it can be represented by a single pixel

in the extreme case. This behavior is usually utilized when working with different levels

of detail in 3-d computer graphics and is extremely supportive for our pixel-based

approach.

Beside the fact that object details become less observable, images holding small ob-

jects work better as input due to the fact, that the objects can be clipped as a whole.

Imagine an input image with an object that consumes 50×50 pixels of the texture. With

typical sizes of overlap regions between 16 and 32 pixels, as defined in Section 7.1,

the algorithm would most likely not preserve the object as a whole and therefore intro-

duce an error that is hard to correct in subsequent passes. Handling large prominent

features will be discussed in Section 7.8 in further detail.

Aerial images with a lot of small, varying objects are optimal for producing convinc-

ing results. Even perspectively distorted images can be used as input for synthesizing

larger outputs as long as the angle between the viewer and the ground is not too acute

and the image is taken from a reasonable distance. Section 7.6 addresses this sub-

ject.

The smaller the objects in the input image, the smaller the input image might be.

As can be seen in Figure 7.3 to 7.5 both algorithms generate pretty good results out of

the given input textures. While Graphcut even manages to synthesize the skyscraper

in 7.4f out of a relatively small input texture, the result in Figure 7.5b looks a little static.

The problem here is, that Figure 7.5b was created from an input texture that is only a

fourth in size and features relatively large objects.
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a) Input (192×192)

b) Output (320×240, ER: 8, OR: 16)

c) Input (128×128)

d) Output (256×256, medium κ)

e) Input (192×192)

f) Output (320×240, ER: 8, OR: 24)

g) Input (128×128)

h) Output (256×256, high κ)

Figure 7.3: The images above show examples of aerial images synthesized with
Graphcut (left) and PCTS (right). The used input textures can be found at
http://www.aceaerialphoto.us.
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a) Input (192×192)

b) Output (320×240, ER: 8, OR: 16)

c) Input (128×128)

d) Output (256×256, low κ)

e) Input (158×192)

f) Output (320×320, ER: 16, OR: 16)

g) Input (128×128)

h) Output (256×256, medium κ)

Figure 7.4: The figure shows how Graphcut (left) and PCTS (right) synthesize aerial
images containing relatively large objects. The input images are appropriate to our
implementation of Graphcut. PCTS has a tough time with the stadium in c). The input
textures can be found at http://www.aceaerialphoto.us.
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a) Input (128×112) c) Input (128×128)

b) Output (480×480, ER: 32, OR: 16) d) Output (512×512, medium κ)

e) Input (128×128) g) Input (128×128)

f) Output (480×480, ER: 8, OR: 8) h) Output (512×512, high κ)

Figure 7.5: The input texture shown in a) (and c)) features rather large objects in
a relatively small image. Image e) (and g) on the contrary includes tiny ob-
jects. The input textures were downloaded from http://leidorf.blogspot.com and
http://www.wien.gv.at respectively
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a) Input (192×192)

b) Output (480×480, ER: 32, OR: 16)

c) Input (128×128)

d) Output (512×512, medium κ)

Figure 7.6: The figure shows an image with semi-regular structure. While Graphcut
(left) handles the task well, PCTS (right) cannot keep the structure up. The input
texture can be found at http://leidorf.blogspot.com.

While the input texture used to synthesize Figure 7.5f is not significantly larger, the ma-

jor difference is the size of the object in the input texture. This allows for smaller error-

and overlap regions and therefore gives more opportunities to arrange the patches.

PCTS on the other hand has a tough time to sustain the structure of the stadium in Figure

7.4c that consumes almost one fourth of the input texture, as preserving structure is not

the strength of pixel-based algorithms. This fact is also illustrated in Figure 7.6d. While

the alignment and structure of the cars is too regular too generate pleasing results,

PCTS does a better job on the houses in Figure 7.5d than Graphcut did. Although the

output is not completely coherent, the objects are jumbled nicely while keeping the

overall impression of the input.
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7.3 Synthesizing facades

Synthesizing facades is a challenging task. Due on the fact that most facades have an

extremely regular structure with objects, mostly windows, of the same size, synthesiz-

ing facades using a pixel-based algorithm is leading nowhere. Variations in height,

width, structure, etc. are easily perceived by an observer.

Therefore synthesizing regular (or near-regular) textures that are intended to stay reg-

ular (near regular), as is the case for facades, is not possible with PCTS.

PCTS introduces variety by jittering the previously tiled input texture. Therefore the

blocks are jumbled and cannot reconstruct a previously existing overall regular struc-

ture as the size of the windows and their alignment exceeds the size of the pixel neigh-

borhood used for correcting the output. As with the example in Figure 7.6 that shows

the parking cars, this sort of input is suboptimal for PCTS.

Synthesizing textures that add enough variations to not look like simply tiled textures

while preserving the overall structure of the regular input image is a task that can only

be done by a patch-based algorithm.

To increase the chance of synthesizing a reasonable output from a regular facade input

image, one should choose the parameters in a way, that the size of the error region plus

the size of the overlap region are at least as large as the largest prominent feature of the

facade.

Figure 7.9d shows the benefit of applying weights to the input by using our novel exten-

sion introduced in Section 3.3. By penalizing errors that occur along the windows, the

algorithm is aimed to find optimal transitions in these areas at the expense of other, less

dominant regions. As can be seen in Figure 7.9d, bad transitions within the brickwork

are by far not as eye-catching as along the windows.

Small features, as the one in Figure 7.7 and 7.8, do not need special weights to keep

there initial structure.
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a) Input (128×128)

b) Output (320×240, ER: 32, OR: 16)

c) Input (128×128)

d) Output (256×256, medium κ)

e) Input (128×144)

f) Output (320×240, ER: 48, OR: 24)

g) Input (128×128)

h) Output (256×256, low κ)

Figure 7.7: The images above show the results of synthesizing different types of facades
using Graphcut in the left and PCTS in the right column. The input textures are freely
available at http://www.imageafter.com/.
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a) Input (123×108)

b) Output (320×240, ER: 32, OR: 16)

c) Input (64×64)

d) Output (256×256, medium κ)

e) Input (128×128)

f) Output (320×240, ER: 32, OR: 16)

g) Input (128×128)

h) Output (256×256, low κ)

Figure 7.8: The images above show the results of synthesizing different types of fa-
cades with a regular structure. While the input is appropriate to Graphcut (left),
PCTS (right) loses the overall structure of the input. The input textures are freely
available at http://www.imageafter.com/.
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a) Input (128×128) b) Weights

c) Unweighted output (320×240, ER: 48, OR: 16) d) Weighted output (320×240, ER: 48, OR: 16)

e) Input (128×128) f) Input modulation

g) Regular output (256×256, medium κ) h) Modulated output (256×256, medium κ)

Figure 7.9: Image c) illustrates the result of the default Graphcut algorithm. d) shows
the impact of our extension. g) is the output of PCTS without input modulation, while
h) modulates the jitter amplitudes using the mask shown in f). The input texture is
freely available at http://www.imageafter.com/.
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7.4 Synthesizing land use maps

The purpose of land use maps is to provide a guide to future growth and development

of a city. Land use maps help to ensure that growing populations will have adequate

housing, employment and recreation opportunities. They can be used as a tool for the

designation of areas.

Land use maps are typically simplified illustrations of reality with different colors iden-

tifying different areas. Synthesizing land use maps can be done with both our imple-

mentations. Depending on whether the output is intended to vary a little or to be rather

regular, one approach might be better suited than the other.

Figure 7.10 exemplify this situation. While 7.10b looks more like a typical American city

designed on a drawing-board, 7.10d resembles a naturally grown old town structure.

The key benefit of using a patch-based synthesis approach again lies within the fact,

that one can restrict the generated output to feature input areas of specified size from

the sample image. Graphcut can be tuned to preserve patterns by defining error re-

gions large enough to keep up an overall structure. Therefore it can be guaranteed, that

the synthesized texture will not switch between the declared areas too frequently. This

advantage, along with another demonstration of our Graphcut extension, is illustrated

in Figure 7.11c and 7.11d.

In contrast, land use maps that look like scatter-plots as the one in Figure 7.12, can be

covered much better by PCTS. For this kind of input texture Graphcut tries to preserve

a structure where no structure exists which results in unwanted repetitive patterns that

can be seen in Figure 7.12b in contrast to 7.12d.

7.5 Synthesizing street systems and rivers

Synthesizing street systems and rivers from regular satellite or aerial images is one of

the hardest things to do.
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a) Input (270×215)

b) Output (480×480, ER: 8, OR: 16)

c) Input (128×128)

d) Output (512×512, medium κ)

e) Input (123×234)

f) Output (480×480, ER: 16, OR: 32)

g) Input (128×128)

h) Output (512×512, medium κ)

Figure 7.10: The synthesized textures above show two proponents of land use maps.
While Graphcut (left) keeps the orthogonal structure of the input, PCTS (right) in-
troduces little variation which causes the output in d) to look more like a natu-
rally grown city. The input images can be found at http://www.east-harlem.com and
http://www.mapwise.com respectively.
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a) Input (192×192) b) Weights

c) Unweighted output (320×240, ER: 8, OR: 16) d) Weighted output (320×240, ER: 8, OR: 16)

e) Input (128×128)

f) Output (256×256, medium κ)

Figure 7.11: The images above show another example of our Graphcut extension.
While c) was synthesized using the default Graphcut approach, d) was generated
using the weighting factors shown in image b). f) is the output created by PCTS. The
used input texture can be found at http://www.mapwise.com.
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a) Input (128×128)

b) Output (256×256, ER: 16, OR: 8)

c) Input (128×128)

d) Output (256×256, high κ)

Figure 7.12: The synthesized land use map in b) does, due to the structure preserving
nature of Graphcut, not look as promising as its counterpart in d) generated by PCTS.
The input texture can be downloaded at http://www.nj.nrcs.usda.gov

Even with minor perspective distortion, street systems and rivers form a special case

of synthesizing textures. The reason for that is that our attention is immediately drawn

to roads and streams that suddenly end or take an unnatural twist.

Synthesizing an output from a texture as illustrated in Figure 7.13e is an exhausting task

and takes multiple attempts to find parameters that do not produce disconnected parts

of the river all over the town.

We experimented with our extension and tried to apply different weights to the image,

but the quality of the output did not turn for the better.

Figure 7.13 to 7.15 again show some results we achieved with both of our implemen-

tations for similar input images. It can be seen, that PCTS produces images that can

keep up with the results of Graphcut.
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a) Input (192×192)

b) Output (320×240, ER: 48, OR: 24)

c) Input (128×128)

d) Output (256×256, high κ)

e) Input (239×208)

f) Output (320×240, ER: 48, OR: 24)

g) Input (128×128)

h) Output (256×256, medium κ)

Figure 7.13: The images above show the attempts to synthesize street systems and
rivers using Graphcut (left) and PCTS (right). The input textures originate from
http://www.wien.gv.at.
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a) Input (128×128)

b) Output (320×240, ER: 5, OR: 16)

c) Input (128×128)

d) Output (256×256, low κ)

e) Input (192×192)

f) Output (320×240, ER: 8, OR: 16)

g) Input (128×128)

h) Output (256×256, medium κ)

Figure 7.14: The input texture shown in a) (and c) is similar to the one illustrated in
Figure 7.6, however not as regular. Thus not only Graphcut (left) but also PCTS (right)
creates promising results. Image f) and h) demonstrate the attempt to synthesize
street systems by using a higher level of abstraction. The used input textures can be
downloaded at http://www.bl.uk and http://www.wien.gv.at respectively.
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a) Input (192×192) b) Weights

c) Unweighted output (320×240, ER: 4, OR: 8) d) Weighted output (320×240, ER: 4, OR: 8)

e) Input (128×128)

f) Output (256×256, high κ)

Figure 7.15: The image in d) is another attempt to improve the quality of the out-
put by using our extension of Graphcut. c) shows the output of the standard
Graphcut algorithm. f) was synthesized using PCTS. Applying input modulation
to e) makes no sense in this case. The used input textures can be found at
http://www.townofplainfield.com.
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7.6 Synthesizing perspectively incorrect images

Apart from images that have an orthogonal view to the ground, like pictures taken

by satellites, photographs like the one in Figure 7.6 and 2-d illustrations as used in

Figure 7.14e, all input images possess a noticeable distortion caused by perspective.

Simply put this means that objects close to an observer appear larger than objects in

the distance.

Although this is an obvious and well-known fact, perspectively incorrect rendering is

surprisingly not evident to our visual perception. Of course there is a threshold where

this statement is not true any more.

Unfortunately using images that have little perspective distortion can sometimes smooth

out unsightly transitions or crossovers that actually do not make sense, like streets sud-

denly ending or houses overlapping each other.

To verify this theory, Figure 7.16 has been synthesized with an overlap region of just 3

pixels, by far the lowest value in our test series (see Section 7.1.1 for more information

about typical parameters for Graphcut). However, due to the perspective of the image

(and other supporting factors like the multitude of small and quite similar object) the

resulting image is satisfactory nevertheless.

7.7 Synthesizing walls and pavements

Synthesizing output images from samples with unbalanced lighting and coarse, irregu-

larly shaped or jumbled patterns as illustrated in Figure 7.17 to 7.19 is a rewarding task.

The algorithm can normally find optimal cuts between the various patches more easily

and possible erroneous transitions are understated. This certainty is somewhat similar

to what we observed in Section 7.2 where images from a distance yielded better results

than close-ups.

Although the input texture in Figure 7.17a has a regular pattern that is out of square, the

cobblestones enable nearly invisible seams when synthesized using Graphcut.
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a) Input

b) Output (ER: 6, OR: 3)

Figure 7.16: [Graphcut] The synthesized result above demonstrates the impact of the
input image on the output image. Although we used an overlap region of just 3 pixels,
the result is quite pleasing. The error introduced by wrong perspective distortion is
not distracting. There are no eye-catchers. Errors in the road system are nearly
invisible.

PCTS on the other hand has a hard time correcting the errors that occur due to jittering

the upsampled portions of the input. To still get an output like the one seen in Figure

7.17d, one has to reduce the value of κ and thereby accept a loss of structure for the

sake of smooth transitions. See Section 7.1.2 for further information about κ .

All other images used in Figure 7.17 to 7.18 are a little more suitable for PCTS than for

Graphcut, as PCTS has the ability to introduce more variation. The strength of Graphcut

to preserve structures is rather counterproductive as it makes way for visible seams

and repetitive patterns, which happened in Figure 7.19f to some extent.
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a) Input (192×192)

b) Output (320×240, ER: 16, OR: 16)

c) Input (128×128)

d) Output (256×256, low κ)

e) Input (192×192)

f) Output (320×240, ER: 16, OR: 16)

g) Input (128×128)

h) Output (256×256, high κ)

Figure 7.17: The images above show road fragments synthesized with Graphcut (left)
and PCTS (right). The lost structure seen in d) is caused by a small value of κ ,
that allows the algorithm to choose the second value of the candidate set. All input
images are freely available at http://texturez.com.
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a) Input (229×243)

b) Output (320×320, ER: 16, OR: 16)

c) Input (128×128)

d) Output (256×256, medium κ)

e) Input (192×192)

f) Output (320×240, ER: 24, OR: 16)

g) Input (128×128)

h) Output (256×256, medium κ)

Figure 7.18: Synthesizing images from input textures as shown above is a rewarding
task with both approaches, Graphcut (left) and PCTS (right). While PCTS slightly
blurs the images, they appears a little smoother than the results generated with
Graphcut. The input images are freely available at http://texturez.com.
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a) Input (192×192)

b) Output (320×240, ER: 16, OR: 16)

c) Input (128×128)

d) Output (256×256, high κ)

e) Input (192×192)

f) Output (320×240, ER: 16, OR: 16)

g) Input (128×128)

h) Output (256×256, high κ)

Figure 7.19: Each of the input images above lead to satisfying results for Graphcut (left)
and PCTS (right). Image f), however, suffers from the introduction of repetitive pat-
terns to some extent. All input images are freely available at http://texturez.com.
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7.8 Problems with eye-catchers

Prominent features of an input texture most often lead to unsatisfying results. Although

one might think, that eye-catchers could distract an observer from shortcomings in the

final output, they rather tend to make the repetitive pattern of the output very obvious.

As an example, have a look at the church in Figure 7.20c. It is the first thing that grabs

the attention of an observer. You can tell from the very first look that those churches do

not look the same although they should. As a result an overall good output becomes

useless because of such objects.

Another common eye-catcher in urban data sets is formed by apparent structures that

are connected to each other like major streets, rivers, telephone lines, electrical towers,

etc. As Graphcut normally assigns the same priority to all features in the overlap region,

the algorithm pays no attention to such objects.

7.9 Runtime behavior

The following system configuration has been used to synthesize the pictured textures:

Operating System Windows Vista 32-bit SP1

CPU Intel Core 2 6600 @ 2.4GHz

RAM 4 GB

GPU NVIDIA GeForce 8800 GTS 640MB

API Microsoft DirectX SDK (March 2008)

Kwatra et al. specify the size of the overlap region in [KSE+03] to typically range from 4

to 8 pixels. They mostly use input textures being 64×64 or 128×128, as this is enough

to synthesize textures with simple, artificial patterns.

As our focus lies on synthesizing textures for urban data, we usually need slightly larger

inputs and transition areas. However, there is a limit where execution time gets out of

hand while results will not get significantly better.

As we used sub-patch matching to select and arrange patches, two aspects are crucial

to the overall execution time:
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a) Input (192×128) b) Weights

c) Unweighted output (320×240, ER: 8, OR: 16) d) Weighted output (320×240, ER: 8, OR: 16)

e) Input (128×128) f) Input modulation

g) Regular output (256×256, medium κ) h) Modulated output (256×256, medium κ)

Figure 7.20: The results above demonstrate the problem arising from input images with
dominant objects. While our extension using weighting factors works quite well, us-
ing the input modulation for PCTS leads to a more or less simply tiled texture in h).
The input image can be found at http://leidorf.blogspot.com.
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a) Input b) Weights

c) Unweighted output d) Weighted output

e) Input f) Input modulation

g) Regular output (256×256, low κ) h) Modulated output (256×256, medium κ)

Figure 7.21: Image d) shows another example of applying weighting factors to the
input (Graphcut). Image g) and h) illustrate the attempt to synthesize an output
with and without input modulation using PCTS. The input images can be found at
http://leidorf.blogspot.com and http://www.aceaerialphotos.us respectively.
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Resolution of input texture OR: 8px OR: 16px OR: 24px OR: 32px
128×128 < 10 sec < 15 sec < 20 sec < 20 sec
192×192 < 30 sec < 50 sec < 1:15 min < 1:30 min
256×256 < 1:00 min < 2:30 min < 3:30 min < 4:30min

Table 7.1: Run-time approximations for one iteration of Graphcut. This includes finding
the best offset within the input texture, copying the patch to the output and calculating
the optimal transition between the new and existing patches. The used error-regions
span between 8px and 32px.

1. the size of the overlap region

2. the ratio between the input texture and the patch size

It is quite obvious that the larger the overlap region, the more pixel comparisons need

to be performed for each possible translation within the input texture. Formally ex-

pressed, this means that for each possible offset 4(OR× ER + ER2) values must be

compared with each other.

The second aspect is less obvious, but has an impact on both, quality and performance.

Patch sizes, i.e. error- plus overlap region, that are small compared to the size of the

input texture in general improve the quality of the synthesized texture, since the al-

gorithm has more options to find perfect matches. However, the larger the ratio, the

slower the performance.

In formal mathematical terms, this means that the number of comparisons necessary

to find the new offset for a patch equals

4(OR×ER+ER2)(Iwidth− (ER+2OR)+1)(Iheight− (ER+2OR)+1)

where ER and OR denote the size of the error- and overlap region respectively. Iwidth is

the width of the input texture, Iheight its height.

Table 7.1 lists typical values for the settings used to synthesize the images of this chap-

ter. The larger the input texture gets, the more the duration for finding a new offset

varies. The values in the table are therefore only coarse benchmarks to illustrate the

abrupt rise in runtime.
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Resolution of input texture (Approximated) duration
32×32 < 2 sec
64×64 < 30 sec

128×128 ~9:30 min
256×256 ~3:00 h

Table 7.2: Approximated durations for creating similarity sets for various input texture
sizes using exhaustive search.

PCTS on the other hand works in real-time. The only time consuming task is the cre-

ation of the similarity sets. Although the time consumed to create this information rises

with larger input textures rapidly as well (see Table 7.2), it can be precomputed and

stored along with the texture. Similarity sets only need to be calculated once for each

input texture and can therefore not be compared with the runtimes listed in Table 7.1.

Loading precomputed similarity sets and computing neighborhood information takes

less than a minute, even for textures on the scale of 256×256.
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Conclusion

The goal of this thesis was to verify the suitability of synthesizing textures for urban

data using state-of-the-art synthesis algorithms. For that purpose we decided to imple-

ment one promising candidate for each of the two most popular synthesis techniques

nowadays, i.e. pixel- and patch-based approaches.

We started by structuring the field of activity, starting with early, pathbreaking algo-

rithms. We summarized the two publications we finally chose to implement, [KSE+03]

and [LH05], and outlined two alternative ways to synthesize textures.

In the course of this thesis we furthermore extended the approach of Kwatra et al. to

better match our requirements. Finally we verified the benefits of [KSE+03] over [LH05]

and vice versa. We created a test series for a whole range of urban textures possessing

all kinds of different properties.

In general, we have learnt that synthesizing urban data with today’s synthesis methods

is not an easy task. Inputs including objects that draw the attention of the observer

should be avoided as far as possible since they most often reveal the repetitiveness of

the created output.

Significant patterns like street systems or rivers need special treatment. It appears

reasonable to extend the basic implementation by some sort of feature map, where

one could weight selective regions of the input texture.

Choosing inadequate parameters or feeding the algorithm with huge input images lets

the performance drop dramatically.
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Graphcut PCTS

patch-based pixel-based
calculations done on CPU calculations done on GPU

offline real-time
structure-preserving correction based on immediate neighbors

Table 8.1: Differences between Graphcut and PCTS

Having an input image of 128×128 to 256×256 pixels and a sub-patch between 48×48
and 96×96 pixels worked best for [KSE+03] in most cases.

Generally speaking, it is a good idea to use an overlap region that is almost as large

or even larger than the biggest prominent feature in the texture. However the most

crucial factor for a successful synthesis process is and remains the input image. Figure

7.16b for instance uses an error region of just 3 pixels to synthesize a formidable output

texture.

While our implementation of [KSE+03] operates on the CPU and therefore allows for

arbitrary input sizes, Parallel Controllable Texture Synthesis (PCTS) working on the GPU

only accepts multiples of 2 as dimension for in- and output textures. This must be kept

in mind when comparing the outputs as well.

As we extended Graphcut to prioritize tagged blocks, we decided to also implement an

extension of [LH05] to constrain the algorithm to preserve objects in marked regions.

Although the two extensions of the algorithms seem similar, they do fundamentally dif-

ferent things. On the one hand, our extension of Graphcut assigns weighting factors to

the input image and thereby forces the algorithm to take special care of regions with

higher weighting factors. This does, opposed to the extension of PCTS, not mean, that

regions with large weighting factors will be used more often than others, but that errors

in that areas are worse than elsewhere.

The input modification of PCTS on the other hand forces the shader to keep marked

regions together by reducing the value of the jitter amplitude. Since PCTS works with-

out the jittering step like conventional tiling, using input modification leads to repetitive

patterns and therefore to less satisfactory results in general.
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Our evaluation and direct comparison of [KSE+03] with [LH05], outlined in Chapter 7,

showed that [KSE+03] creates better results for urban datasets in the majority of cases.

This is due to the fact, that a lot of textures in our chosen domain include rather large

objects, that are not infrequently regular or at least semi-regular. That is a property that

the algorithm used in Parallel Controllable Texture Synthesis is not designed for at all.

PCTS however is great for generating textures with a lot of small elements that are

irregularly arranged. Satellite images, close-ups of pavements, streets, or walls as well

as abstractions like the one seen in Figure 7.12 are situations that best fit PCTS. With

that type of input the algorithm creates better results than Graphcut, since it introduces

a higher degree of variation.

Graphcut on the other hand preserves structures. It is able to keep the regularity of

input samples and, using our weighting factor extension, capable of prioritizing and

thereby keeping up regions of importance. Therefore our results not least in Figure 7.7

to 7.9 or Figure 7.6 are far better than the according outputs generated by PCTS.

Graphcut however is really slow. While PCTS synthesizes textures in real-time and

thereby offering the user a high degree of control and transparency, the runtime behav-

ior of Graphcut rises explosively with larger input images and broader overlap regions.

Sometimes it even gets stuck for no obvious reason and starts to produce garbage due

to awkwardly chosen parameters after doing a great job till then.

However, accepting longer runtimes does not automatically lead to better results. Sim-

ply choosing larger overlap regions or increasing the size of pixel neighborhoods often

even worsens the perceptual coherence as it decreases the number of possible offsets

in the input to choose the new patch from. Knowing the properties of the input sample

is the most important aspect for synthesizing textures.

One of the problems of the algorithm described in [KSE+03] is the fact, that similarity

is only measured by color difference. By introducing weighting factors to the approach

of Kwatra et al. we tried to compensate that shortcoming and thereby provide a simple

way for the user to prioritize objects or whole regions of the input texture.

While our first attempt, changing color space from RGB to CIELAB, was not the ex-

pected success, introducing weighting factors to prioritize special regions of interest
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was. Although our novelty cannot solve the problem of ensuring the overall structure,

like lined up windows for facades, it supports the coherence of tagged areas.

Some problems can be solved by twiddling the parameters. Combinations of keep-

ing a regular structure while taking care of dominant objects is, without our extension,

impossible in the majority of cases.

The beauty of using weighting factors as described in Section 3.3 also lies in its intuitive

treatment. While the user can apply different levels of distinctions, i.e. not only a binary

important/unimportant mask bit, it is mostly sufficient to mark single blocks as regions

of particular importance.

Our third novelty, enforcing tileability for the textures synthesized by our implementa-

tion of Graphcut, can also be considered as major enrichment. In many cases, textures

that tile seamlessly have benefits over those that do not. Our second implementation,

that is based on [LH05], for instance needs tileable textures to create similarity sets for

the pixels at the borders of the texture. If the input texture does not tile seamlessly, the

texture needs to be mirrored to get an approximation of the pixel’s neighborhood. The

latter does not produce as good results, however, by far.

8.1 Outlook

The future definitely belongs to order-independent algorithms, that highly exploit the

parallelism of modern GPUs or multicore CPUs. Real-time performance and memory

efficiency are probably the most essential keywords in this context.

Approaches like [LH05] and [LH06] by Lefebvre and Hoppe already head for that di-

rection. Moreover, Hybrid methods like [NA03] or [XGS00] seem to be promising, as

they may combine best aspects from different approaches.

Future research will have to go beyond the scope of synthesizing pure color informa-

tion, however. The more the algorithms reach real-time performance, the more addi-

tional information such as normal, displacement or radiance maps will play a major

role. [LH06], as an example, already includes calculations like this.
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Other interesting ideas include the synthesis of multiscale textures like in [HRRG08].

[HRRG08] is based on [LH06] and uses a tree-like graph data structure to represent

different scalings as well as self-similarity.

Texture Synthesis is a recent field of research. As creating content becomes more and

more labor intensive and time consuming, and therewith expensive, having suitable al-

gorithms that are able to automate the process of creating general structure preserving,

infinite textures would be of great value.
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