DISSERTATION

The Visible Vortex —

Interactive Analysis and Extraction of
Vortices in Large Time-dependent Flow
Data Sets

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

Priv.-Doz. Dipl.-Ing. Dr.techn. Helwig Hauser,
Institut E186 fir Computergraphik und Algorithmen,

eingereicht an der Technischen Universitat Wien,
Fakultat fur Informatik,

von

Dipl.-Inf. Raphael Fuchs,

Matrikelnummer 0727622,
Harkortstr. 7/3,
A-1020 Wien

Wien, im September 2008



11



The Visible Vortex —

Interactive Analysis and Extraction of
Vortices in Large Time-dependent Flow
Data Sets

Raphael Fuchs, PhD thesis

mailto:raphael.fuchs@VRVis.at
http://www.cg.tuwien.ac.at/ raphael/



11



Abstract

Computational simulation of physical and chemical processes has become an essential tool
to tackle questions from the field of fluid dynamics. Using current simulation packages
it is possible to compute unsteady flow simulations for realistic scenarios. The resulting
solutions are stored in large to very large grids in 2D or 3D, frequently time-dependent,
with multi-variate results from the numeric simulation. With increasing complexity of
simulation results, powerful analysis and visualization tools are needed to make sense of
the computed information and answer the question at hand. To do this we need new
approaches and algorithms to locate regions of interest, find important structures in the
flow and analyze the behavior of the flow interactively.

The main motives of this thesis are the extension of vortex detection criteria to unsteady
flow and the combination of vortex detectors with interactive visual analysis. To develop
an understanding for the simulation results it is necessary to compare attributes of the
simulation to each other and to be able to relate them to larger structures such as vortices.
It is shown how automatic feature detection algorithms can be combined with interactive
analysis techniques such that both detection and analysis benefit.

By extending and integrating vortex detectors into the process of visual analysis, it
becomes possible to understand the impact of vortex structures on the development of
the flow. Using real-world examples from the field of engine design we discuss how vortex
structures can have critical impact on the performance of a prototype. We illustrate how
interactive visual analysis can support prototype design and evaluation. Furthermore, we
show that taking the unsteady nature of the flow into account improves the quality of the
extracted structures.

Kurzfassung

Computersimulation physikalischer und chemischer Prozesse sind ein essentielles Hilfsmittel
zum Verstandnis von Problemen aus dem Bereich der Stromungslehre geworden. Mit ak-
tuellen Simulationspaketen ist es moglich fiir realistische Szenarien zeitabhangige Losungen
zu berechnen. Die berechneten Losungen werden in groflen Gitternetzen gespeichert, sind
haufig zeitabhéngig und enthalten die multivariaten Ergebnisse der numerischen Simula-
tion. Mit zunehmender Komplexitat der Simulationsergebnisse entsteht die Notwendigkeit
geeignete Analyse- und Darstellungswerkzeuge zu verwenden, um aus den erzeugten Daten
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Erkenntnisse zu gewinnen und die gegebene Fragestellung 16sen zu konnen. Dafiir sind
neue Methoden und Algorithmen notwendig um wichtige Teile der Daten zu extrahieren,
wichtige Strukturen in der Stromung zu erkennen und das Stromungsverhalten interaktiv
analysieren zu konnen.

Das Hauptmotiv dieser Arbeit ist die Erweiterung von Wirbelkriterien auf zeitabhangige
Losungen und die Kombination dieser Wirbelkriterien mit den Methoden der interaktiven
visuellen Analyse. Um ein Verstiandnis fiir die Simulationsergebnisse zu entwickeln ist es
notwendig Attribute der Simulation miteinander vergleichen und mit gréferen Strukturen
wie Stromungswirbeln in Verbindung bringen zu konnen. Es wird gezeigt, wie automatische
Wirbeldetektoren und interaktive Analyse kombiniert werden um sowohl Erkennung als
auch Analyse von Wirbelstrukturen zu verbessern.

Indem klassische Wirbeldetektoren erweitert und in die visuelle Analyse integriert wer-
den, ist es moglich die Auswirkung von Wirbeln auf wichtige Attribute der Fliissigkeit und
die Entwicklung der Stromung zu verstehen. Wir zeigen anhand von praktischen Beispie-
len aus dem Bereich der Motorentwicklung, dass Wirbel einen entscheidenden Einfluss auf
anwendungskritische Variablen der Stromung haben kénnen und demonstrieren wie inter-
aktive visuelle Analyse helfen kann diesen Einfluss einzuschatzen. Weiterhin besprechen
wir wie zeitabhangige Groflen in die Wirbelbestimmung einflieBen konnen um die Qualitat
der gefundenen Merkmale zu verbessern.
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Chapter 1

Introduction and Overview

”A beginning is the time for taking the most delicate care that the balances
are correct.” (Frank Herbert 1920 — 1986)

This thesis deals with interactive visual analysis of vortices in computational fluid dynam-
ics simulations. We present novel methods to extract, display and analyze vortical fluid
structures to help engineers and researches deal with the growing complexity of modern
CFD simulations. The introduction is split into three parts: Section 1.1 discusses vortex
features in fluid simulation data sets. Section 1.2 discusses the workflow and basic concepts
of interactive visual analysis. Section 1.3 details contributions of the presented work.

1.1 Vortex Flow

Fluids can show complex three dimensional movements where individual particle paths are
entangled to form intricate spatial structures. Such a volume of complex fluid movements is
difficult to display in a single image or video without loss of much of the information. Still,
as long as the fluid is not chaotic and only statistical properties of the fluid are reliable,
visualizations can give the engineer or researcher valuable insight into simulation results.
Thus, visualizations are a tool to help engineers and scientists understand the behavior of a
fluid. Engineered objects such as turbines or engines are designed to a purpose and within
operational parameters the overall movements of the fluid follow a course intended by the
designer. But even inside operational parameters, the behavior of the fluid is complex and
to improve their designs engineers and researchers want to refine their understanding of
a given problem at hand. The key to optimization of industrial designs is understanding
the behavior of the flow. During the work of this thesis and in cooperation with indus-
trial partners it has become clear that understanding what a simulation result means can
be achieved best in a process where the engineer can interactively analyze the data and
produce new views on the data as his or her understanding develops.

Computer graphics can allow insight into large data sets but it is also widely accepted
that due to the rapid increase in the size and complexity of the data sets produced with
current simulations or acquisition devices we would like to present simplified information
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that helps to understand general properties of the simulation results quickly. From fluid
dynamics theory and experiments we know [21] that fluids often contain regions of coherent
motion, called coherent structures. One of the most important group of coherent structures
are vortices. In this thesis we will discuss how vortex criteria can be included into a
visualization framework and simplify understanding the simulation results for the engineer.

Vortices influence fluid behavior on all scales and the phenomenon of vortical motion
in fluids is well researched. See Figure 1.1 for a some examples. Vortices can be related to
many application critical properties of the flow [32, 29, 86]:

e Vortices can improve mixing of fluids, e.g., the mixing of fuel droplets and air in the
combustion chamber of an combustion engine is driven by a large tumble vortex .

e Vortices can create lift and considered critical in insect flight [].
e Vortices affect the efficiency of fluid transport, e.g., in water pumps or pipe lines.

e Vortices are a major source for material wear and critical pressure fluctuations inside
fluid machinery.

e Vortices can cause high levels of noise, e.g. in wind mills, which often serves as an
argument against widespread use of wind power plants in populated areas.

e Vortices can reduce the effectiveness of turbines and generators.

e Vortices can cause vibrations of engine parts reducing the lifetime and reducing its
profitability.

e Vortices are linked to dangerous difficulties in air travel, including stall, wake turbu-
lence at the wing tips and trailing vortices endangering following aircraft.

Even though many vortical phenomena are well researched, a final understanding of vortical
fluid motion or turbulence in general is not within reach [21]. This is one of the key facts
influencing the work of this thesis: there is no final agreement to what a vortex is and
how it should be defined. Therefore we need a visualization system that is flexible, allows
interpretation of fuzzy information and gives the user the possibility to include his or her
knowledge into the visual analysis process.

1.2 Interactive Visual Analysis

Interactive extraction of information has been a hot research topic in recent years, focusing
on interactive information drill-down [134], visual data mining [167, 66] and visual ana-
lytics [146]. Important issues are advanced interaction concepts as well as procedures and
algorithms to gain access to features and information in the data. In this thesis we will see
that a combination of feature extraction methods with modern interactive visual analysis
approaches is a promising route to gain understanding of simulation results.
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Figure 1.1: Vortices affect fluid behavior on all scales. (a) quantum vortices in a superfluid
[130] (b) bathtub vortex [152] (c) tornado [109] (d) hurricane [106] (e) sun spot vortices
[110] (f) spiral galaxy [105] (numbers approximate)

Interactive visual analysis provides techniques which give the user control over the
visualization such that he or she can display the subset of information most relevant at the
current moment. Analysis of the data is based on interaction metaphors that allow to filter
and select data elements of interest interactively. The most important goal of interactive
visual analysis is not in rendering individual images but enabling the user to gain insight
from a given data set. The work of this thesis is based on the interactive visual analysis
system SimVis [179]. There are three concepts at the heart of the SimVis [25] visualization
system:

1. Linking and brushing allows to select subsets of interest in the data. Visual
representations of the data (e.g., scatterplots, histograms, table views, etc.) provide
individual metaphors to highlight data items of interest. In Figure 1.2 (a) we can see
a brush selecting a subset of elements in a scatterplot. Multiple views can be linked
together to form Boolean combinations of the individual selections of each view.

2. Focus+context visualization shows the relevant selected subset of the data in full
detail while only providing a reduced depiction of the other data items to provide
context to the viewer. In Figure 1.2 (b) we can see the selected attributes with
pressure mapped to color.



CHAPTER 1. INTRODUCTION AND OVERVIEW
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Figure 1.2: Linking and brushing combined with focus+context visualization. The data set
contains a simulation of blood flow through an aneurysm. (a) Data elements are displayed
inside a scatterplot, where the user has selected (brushed) data items of low velocity and
low to medium turbulent kinetic energy. (b) The selected portions of the volume are
rendered with color, while the rest of the data set is opaque and only the boundaries of
the geometry are rendered in grey as context. Here we can see that the aneurysm contains
a large quantity of low velocity fluid cells.

3. Complex feature selection and smooth brushing allows to combine multiple
selections using fuzzy logic combinations of multiple selections. The strength of this
approach lies in the possibility to express partial degrees of interest combined with a
straightforward way to combine multiple partial selections using fuzzy norms. This
approach is extended to vortex analysis in Chapter 3.

Each visualization technique is based on a transformation from raw data values to adequate
representations which allow the user to get a better understanding. In the field of feature
based visualization this approach can be considered to take three steps:

1. Domain specific features are extracted from the data (i.e., mapping raw data to
feature information).

2. Features are mapped to visual representations, such as lines, glyphs or volumes.

3. A final result is rendered by combining all representations into a final image.

In this thesis we present automated feature extraction in combination with interactive fea-
ture analysis as means to understanding complex flow fields that are otherwise difficult
to comprehend. We focus on extracting structures related to vortices in flow data. The
extracted information can improve the analysis process in two ways: first, by including
them into the visualization and second, by including them into the interactive analysis
process. The application studies presented throughout this thesis originate from computa-
tional fluid dynamics (CFD) simulations, but the presented results apply to measured or
synthetic data as well. Based on the realization that understanding is a process requiring
different levels of detail, overview and filtered information we employ interactive visual
analysis.
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1.3 Contribution of this Work

The main contributions of this work are as follows:

e The contributions of this thesis include two mathematical vortex examples that model
real world problems. Based on the results of these examples we derive modifications
of existing vortex core line detection algorithms to extend them to the unsteady flow
domain. Real world applications where the original approaches fail are presented and
it is shown that the results improve using the modified approach. Finally a numerical
study evaluates the impact of time-derivative estimation on the feature extraction
process. In the appendix we give details on implementation details for unstructured
grid data.

e Standard vortex detection criteria are adapted to allow fuzzy logic combinations of
multiple detectors. While most detectors are prone to finding false positives [45],
their numerical and mathematical properties differ. In Chapter 3 we discuss how
the different vortex extraction schemes can be mapped into a common framework
so that the user can analyze how they interact and complement each other for a
given problem. This requires to extend the binary classifiers to generate non-binary
response values. To convey the uncertainty that results from vortex feature derivation
we use transparency coding and direct volume rendering of the selected regions. We
show how derived features integrate into the process of interactive visual analysis.

e The non-binary feature detectors are integrated into a general multi-view where they
can be combined for interactive analysis. This includes the adaption of the PQR
plots to an analytic view based on scatterplots, an extension of classical rectangu-
lar brushing to integrate visual analysis and automated feature detection based on
multiple detectors.

o We suggest an extension (delocalization) of the Eulerian vortex criteria to the La-
grangian point of view. This includes method to interactively control the crucial
integration length parameter interactively in a data-driven way. The process of delo-
calization includes upstream information to deal with the problem of short particle
trajectories. For delocalization a fuzzy accumulation and weighting technique is dis-
cussed, that deals with local numerical instabilities.

1.4 Organization of this Thesis

The second chapter gives an overview of state-of-the-art scientific visualization techniques.
Chapter 3 introduces the notion of non-binary vortex detectors and gives an overview
of previous vortex detection criteria. The non-binary vortex criteria are the basis for the
following chapters: in Chapter 4 we discuss how multiple views can be used to interactively
combine the presented detectors. Chapter 5 presents a filter technique to extend the
local vortex detectors to include spatial and temporal characteristics of the flow into the
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extraction process. In Chapter 6 we focus on line type features and discuss how vortex
core line detection can be improved in the unsteady flow setting.



Chapter 2

State of the Art in Visualization of
Scientific Data

”A process cannot be understood by stopping it. Understanding must move
with the flow of the process, must join it and flow with it.” (Frank Herbert
1920 — 1986)

In this chapter we discuss relevant research works related to the visualization of complex,
multi-variate data. We focus on "non-classical” approaches, i.e. approaches which haven’t
been discussed in previous related reports, and we highlight techniques which potentially
lead towards new directions in visualization research. We discuss how different techniques
take effect at specific stages of the visualization pipeline and how they apply to multi-
variate data sets being composed of scalars, vectors, and tensors. We also provide a
categorization of these techniques in the aim for a better overview of related approaches.
In the second part of this chapter we take a look at recent techniques that are useful for
the visualization of complex data sets either because they are general purpose or because
they can be adapted to specific problems.

2.1 Motivation

In the last decade, there has been an enormous progress in scientific visualization [96], still
the visualization of multi-variate continuous 3D data, especially if the data set is time-
dependent, remains a great visualization challenge. Recent publications have stated a
shift in visualization research from a classical approach dealing with visualization of small,
isolated problems to a new kind of challenge: visualization of massive scale, dynamic data
comprised of elements of varying levels of certainty and abstraction [146]. It is a well
known fact that we are experiencing an increase in the amount and complexity of data
generated that exceeds our ability to easily understand and make sense of it. To address
this development, Lee et al. [89] have indicated the work with multi-variate data sets as
one important task for future visualization research that will require significant advances
in visualization algorithms. Munzner et al. [102] addressed top scientific research problems
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and identified multi-field visualization as one of the central questions for future research.
Therefore, in this article, we give an overview of existing work in scientific visualization
that points in this direction. Intentionally, we leave out a vast amount of work focusing on
solving specific visualization tasks which repeatedly have been discussed in other related
reports.

Even though there is a wealth of algorithms for automated analysis to process data,
these are only applicable when we know what we are looking for in the first place. Auto-
mated processing cannot generate new features and understanding beyond what is already
known and might even remove important features of the data. Ward’s Mantra [155] "T'll
Know it When I See it”, stresses the fact that we often rely on our visual pattern recog-
nition system to help us in gaining knowledge of the data. For this reason we need to
discover new ways to visualize complex scientific data or adapt the existing ones to deal
with the new situation of multi-field data sets.

Different tasks need specific qualities in a visualization method. For example when try-
ing to gain overview of the data a continuous and smooth style might be most appropriate,
whereas for information drill-down a researcher might want a specific feature to be shown
in a way as true to the data as possible. The application of combined hybrid visualization
techniques will increase the value of any visualization application, therefore most of the
techniques discussed in this chapter will be useful for other types of data as well.

By targeting the use of complex visualization techniques we do not speak in favor of a
"more is better” approach, we would rather like to stress the importance of feature- and
knowledge-driven visualization. The aim of this report is to give an overview of current
techniques from various disciplines dealing with complex multi-dimensional scalar, vector
and tensor data sets with the goal in mind to apply them to situations where these types of
data are present at the same time in three dimensions. Kirby [71] defines the development
of a visualization method as breaking the data into components, exploring the relation-
ships among them, and visually expressing both the components and their relationships.
To visualize the complexity of multiple data components and the relationships between
them researchers have sought to find ways to combine the advantages of different types of
visualization techniques. Hesselink et al. [53] give a short overview of research issues in
visualization of vector and tensor fields that is still valid today. They declare four goals
for future visualization research: feature-based representation of the data, comprising re-
duced visual complexity, increased information content and a visualization that matches
the concepts of the application area. According to this, we see the three main advantages
of multi-method visualization: first, improved effectiveness of visualization because each
part of the data can be visualized by the most appropriate technique. Second, the ability
to visualize multi-variate data sets while minimizing visual clutter at the same time. And
third a separation between two questions that are too often intermingled: how to visual-
ize vs. what to visualize. This intermingling is a drawback in the design of visualization
systems featuring a single rendering technique. They very often induce a strong determi-
nation on the aspects of the data the user will be able to see. This does not mean that
it is not possible to generate parameters that will show all the features but that a certain
visualization tool might set the user on a track that hinders a successful investigation.
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Classical
visualization

Figure 2.1: Visualization research is developing from classical 3D structured scalar visu-
alization in different directions. We can see two important developments in visualization
research: on deals with the question how different types of data can be visualized well
(data), while a second trend is to search for ways to extend visualization methods to adapt
them to the requirements of the user (style). The use of techniques that allow the visual-
ization of time-dependent, complex and multi-variate data in a useful way will be a key to
successful visualization applications in the future.

An overview of current work on hybrid- and combined visualization algorithms can be a
starting point for future visualization research in this direction of flexible and user-task
driven visualization.

In the first part of this chapter (sections 1 to 4) we will discuss existing techniques
resulting from applications in various scientific fields such as meteorology, CFD simulation,
medical imaging and geology. Some types of data are of distinguished importance and
appear in so many applications that visualization of these has become a research area
in its own respect. Among these are flow, tensor and (time-dependent) scalar data. We
will take a closer look at techniques that have been developed in these fields to deal with
multi-variate data. In this context we will structure the following discussion relating to the
type of data a publication mainly deals with and focus on scalar data in the first chapter,
vectorial data in the second and tensorial in the third. At the beginning of each chapter we
will give references to survey articles that focus on the classical approaches concentrating
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Figure 2.2: Six examples of how to deal with multi-variate data-sets: (a) traditional (b)
deriving additional quantities (c) linking, brushing and other SimVis related techniques (d)
data intermixing (e) layering rendered images (f) a well-combined visualization technique
using all relevant data and derivations. Within the following sections on scalar, vectorial
and tensorial data we will discuss techniques following the different stages of the visualiza-
tion pipeline. In each section x we will begin with techniques related to data acquisition,
processing and visualization mapping (subsection z.1), discuss techniques based on the
rendering stage in the second subsection (subsection x.2) and techniques working on the
image stage in the third (subsection x.3).

on one or few data items of the respective data type at once. In the second part of this
chapter (sections 5 and 6) we will give a short overview of existing techniques that may
not have been developed in the context of multi-variate visualization but that we consider
as highly applicable for this purpose.

In each chapter we classify techniques dealing with multi-variate data sets according to
the point of the visualization pipeline where the multi-variate nature of the data is being
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tackled (see Figure 2.2). The visualization pipeline is a model that describes how visual
representations of data can be obtained following a procedure of well defined steps. (a)
In traditional scientific visualization most of the acquired information is resampled onto a
structured grid during an preprocessing and data analysis step. During data filtering the
user selects the proportions of the data that will be visualized, e.g. by selecting values
ranges of data attributes to be shown in focus. In the visualization mapping stage the
data elements are mapped to visual representations. In the rendering stage the geomet-
ric information, data values and additional parameters such as viewing parameters and
transfer functions contribute to the resulting image. The resulting image can undergo final
modifications such as color enhancements or overdrawing (e.g. labels) to generate the final
output of the visualization process. (b) Multi-variate visualization using derived quantities
uses additionally computed values to improve the visualization, e.g. by using these values
in the transfer function design [75] or for color assignment [40]. Other important types of
derived features are segmentation data, classification data and cluster information. These
are very often generated in a (semi-)automated fashion that also outputs uncertainty in-
formation for the generated information. These additional fields can be used to improve
the visualization of the data [44]. (c) The linking and brushing concept in SimVis [25]
uses different views and combines the selected features into a visualization mapping of the
multi-variate data set. (d) The fourth type of multi-variate visualization combines the data
coming from different modalities during the rendering step. The opacity is computed by
using a combination operator to integrate the material properties into a single value [13].
(e) Layering renders different data items separately and combines them in an image fusion
step [168]. (f) A goal could be a visualization technique that would collect all relevant
data, derive the inherent information, (interactively) detect all features of interest, match
them to an appropriate rendering algorithm and combine the results cleverly to get the
optimal visualization.

When talking of complex volumetric data we distinguish between different types of
data. We distinguish between multi-dimensional, multi-variate and multi-modal data. We
will refer to multi-dimensional data in the scope of this article as data containing multiple
independent physical dimensions (e.g., three spatial and the time dimension). Multi-variate
data contains multiple variables or attributes, that do not have to be independent of each
other. Multi-channel or multi-modal data is data that was acquired using multiple ways
of measurement or operations. In many respects multi-modal and multi-variate data is
considered equivalent in the context of visualization research. As an example we can think
of a scan of the human chest using combined CT (computed tomography), MRI (magnetic
resonance imaging) and ultrasound. The CT will capture the bones (e.g. ribs, spine)
best, resulting in a single scalar field. The MRI scan is more accurate in measuring soft
tissue, resulting in a second scalar field and with the use of a contrast agent it is possible
to obtain vector information about the blood flow. Using multiple scanning modalities,
we have obtained a multi-variate data set where the data elements are indexed by three
spatial dimensions. At each grid point we have two scalars which describe the same physical
situation and one vector with three components describing the x,y and z direction of the
flow. We see that scientific data has more structure than general multi-variate data sets
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(e.g. census data or questionnaire results).

2.2 Dealing with scalar attributes

Scalar volume rendering is a central issue in medical data visualization. Engel et al.
[30] give an extensive introduction. The acquisition devices used for medical imaging
can be used for other purposes as well (e.g. industrial CT), but medical applications
can be considered a large driving force of this field. Since medical data sets are often
images obtained from different sources, the visualization of multi-valued data sets and their
registration is a tightly coupled research area in medical image processing. Other types of
scalar data result from sources such as numerical simulations, marine sonar, meteorology
radar /satellite scans and photographic volumes. The most common sources for multi-
valued scalar data are scanning devices as used in medial imaging and computational
simulations. Also, scientific data sets are very often segmented or post-processed to extract
regions containing different features which are of varying importance to the user — the
location of a tumor might be of more interest than any other feature in the data set resulting
in additional dimensions. An additional dimension for this kind of high dimensional data
sets results from the uncertainty that comes with automated registration, segmentation
and feature detection algorithms.

2.2.1 Techniques in the processing, filtering and visualization
mapping stage

In this section we discuss visualization techniques that reduce the number of variables
before rendering. Two important approaches are feature extraction methods and region
of interest based methods. Feature extraction methods classify high dimensional data into
features like iso surfaces, topological structures or other domain related features (such as
vortices in flow data). They assign to each point in space a degree of membership to a
feature of interest (e.g. a tumor) that can then be visualized using scalar rendering and
color coding.

The techniques used in SimVis include linking and brushing for interactive feature
selection [26] (see Fig 2.3). The user can specify a degree of interest in a subset of data
items based on their attributes. The degree of interest functions from several linked views
(scatterplots, histograms, etc.) are then accumulated using fuzzy-logic operators [25]. In
the visualization, the flow features are visually discriminated from the rest of the data in a
focus+context visualization style which is consistent in all views. SimVis supports smooth
brushing to enable fractional degree of interest values as well as the logical combination of
brushes for the specification of complex features. Brushing means to select intervals of the
data values. The data elements that have attribute values inside these intervals, belong to
the focus and are highlighted consistently in all views. According to this degree of interest
function data samples are classified as focus or context and colored accordingly. This is an
example of feature and knowledge driven visualization.
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Figure 2.3: A DVR visualization of a hurricane data set using interactive feature specifi-
cation and focus+context visualization [26]. (Image courtesy of H. Doleisch)

Tzeng et al. [151] suggest an intelligent systems approach to brushing. The user brushes
portions of the volume that are of interest. A machine learning classifier (a neural network
or support vector machine) is built from this training set. Based on the classifier the system
then determines for each sample whether it belongs to the region of interest or not.

In the field of medical imaging the integration of different volumes into a single visual
representation is called data intermixing (this compares to data fusion and volume fusion
in other fields). The different modalities (e.g. Computed Tomography (CT), Magnetic
Resonance Imaging (MRI) or Positron Emission Tomography (PET)) can show different,
complementary and partially overlapping aspects of the situation. Therefore most algo-
rithms are designed to allow flexible viewing of the original channels alone and more or
less sophisticated combinations. A standard approach is to combine data sets based on
segmentation information (e.g., the brain is visualized using MRI data, while the skull is
shown based on data from the CT channel) combined with color coding (see Figure 2.4).

[Nlumination stage intermixing takes place in the visualization mapping stage: to com-
bine the different attributes in the multi-valued volume voxel V, a combination function
takes the attribute values aq, ..., a, directly as input:

opacity(V') := opacity(combine(ay, ..., ay))

This way only a single transfer function is necessary, but we have to define a combination
function that deals with the different value ranges of the attributes (e.g., using a multi-
dimensional transfer function). To handle the complexity of higher-dimensional transfer
functions, Kniss suggests the use of (local support) Gaussian transfer functions [76]. Kniss
and Hansen [75] developed a technique for visualization of multi-variate data by applying
multi-dimensional transfer functions and derived quantities. In a case study [74] they apply
this approach to meteorological simulation data using three-dimensional transfer functions
(for instance two axes map data values and the third the gradient magnitude). A drawback
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of this method is that multi-dimensional transfer function design is a complicated task and
the results are hard to predict.

Kreeger and Kaufmann [77] present a hybrid rendering algorithm that combines volume
rendering and translucent polygons embedded inside the volume. They apply their tech-
nique to combine an MRI-volume of a human head with an angiogram that visualizes blood
vessels. Here the 'how’ approach of the visualization (surfaces and volume) is matched to
the 'what’ context of the data (blood vessels and tissue).

Woodring and Shen [169] present a technique to visually compare different time steps
of time-varying data sets using Boolean and other operations. The operators over, in, out,
atop and zor compare two timesteps A and B at each voxel to derive a new field.

Another (rare) source of multi-modal data are photographic volumes. The visible hu-
man male data set contains vectorial (RGB) color information at each voxel taken by
photographing each slice. Volume rendering is difficult in this context, because a high-
dimensional transfer function from 3D to opacity is necessary. Ebert et al. [28] show how
to use a perceptually appropriate color space for transfer function design. Ghosh et al. [39]
render multi-channel color volumes consisting of CT, MRI and color information on the
hardware. Muraki et al. [103] have presented a method to assign color values to voxels
from multi-modal data sets using a neuronal net trained on a photographic volume.

Figure 2.4: Using multiple transfer functions, region selection and color coding to combine
information from multiple channels [93]. (Image courtesy of I. H. Manssour)
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Figure 2.5: A combination of different bump-mapping styles to visualize multiple fields on
the same layer [143]. (Image courtesy of R. M. Taylor)

2.2.2 Rendering stage techniques

Cai and Sakas [13] present a ray casting technique that integrates the information of mul-
tiple volumes during rendering. Data intermixing is done in the rendering pipeline during
accumulation. On the accumulation stage the different modalities are already mapped to
opacity and intensity values by their own transfer functions. This means they have the
same intensity and opacity range ([0, 1]). Intermixing on the accumulation stage can then
be done by defining additional opacity and intensity evaluation function taking as input
the opacities of the different attributes aq, ..., a,:

opacity(V') := combine(opacity(ay), ..., opacity(ay,))

The authors suggest to use linear or boolean operators for combination. Ferre et al. [35]
discuss combination functions that take into account additional values, such as the gradient.
Rossler et al. [121] present a GPU-based implementation of the DVR intermixing technique
working with 3D textures and shader programs. Each data volume is rendered separately
using an individual shader program allowing for different render modes for the modalities.
Then intermixing is done when volume slices are combined in back-to-front order.

The Spectral Volume Rendering Technique [108] displays a multimodal volume using a
physics based light interaction model: each material interacts with the light in its specific
way. For different modalities, the interaction with several materials at one point in space is
simulated. Spectral Volume Rendering is probably the physically most realistic technique
to do illumination stage intermixing in terms of light propagation.

Grimm et al. [43] developed methods that allow efficient visualization of multiple in-
tersecting volumetric objects that is applicable in the situation of multimodal volumes.
They introduce the concept of V-Objects, which represent abstract properties like illumi-
nation, transfer functions, region of interest and transformations of an object connected to
a volumetric data source.

2.2.3 Image stage techniques

Among the visual attributes that can represent data values are color, transparency, contour
lines, surface albedo, texture and surface height. Textures are a versatile medium, that
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Figure 2.6: Combining texture advection and surface based flow visualization. Both the
location of the iso-surface and its texture convey information about the flow [84].

can be computed with approaches such as spot noise, texture advection, bump-mapping
and reaction-diffusion techniques. Shenas and Interrante [133] discuss methods to combine
color and texture to represent multiple values at a single location. Taylor [143] describes
a layering system for visualization of multiple fields on the same surface using data driven
spots. He also discusses problems that arise due to the layering process. Their finding is
that visualizing multiple data sets using a different technique for each layer is limited to
four different fields, since the layers on top either mask or scramble the information below.
Special care must be taken to keep the different layers distinguishable, for example by
keeping the frequencies of the surface characteristics separated enough. In Figure 2.5 we
see an example how bump-mapping and a reaction-diffusion texture are combined (left).
On the right we see a resulting image using data driven spot textures. House et al. [54]
discuss optimal textures for information visualization, including a large user study design,
that investigates layered textures for visualizing information located on a surface.

2.3 Vector Field and Flow Visualization

The velocity of a flow is represented by a vector field and a vector field can define a
flow, therefore in most applications their visualization can be considered equivalent [96].
Nevertheless, flow is more than just a vector field and recent visualization techniques
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Figure 2.7: Enhanced topology visualization combining (a) streamline-based glyphs, (b)
direct flow visualization, (c) solution trajectories and (d) streambands [49].

stressing the importance of the Lagrangian viewpoint address this issue.

Recent surveys and overview articles include: a classification of different flow visual-
ization algorithms and a discussion on derived, second-order data by Hauser [48] and the
state of the art report on flow visualization focusing on dense and texture-based techniques

by Laramee et al. [88]. Post et al. [115] give an overview of feature extraction methods for
flow fields.

2.3.1 Techniques in the processing, filtering and visualization
mapping stage

A basic technique in flow visualization is to match the attributes of a data set to physi-
cally appropriate representations ("how’ matched to 'what’). For example shock waves are
mapped to surfaces, dispersed particles are mapped to particle traces or points. Therefore
we will not repeat every application that uses combinations of standard flow visualization
techniques such as lines [177, 73], surfaces [163], sub volumes [132] or dense techniques
[60].

Laramee et al. [84] discuss the application of texture advection on surfaces for visualiza-
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tion of vector fields defined at the stream surface. In this application tumbling motion of
the flow in the combustion chamber of a diesel engine is visualized by seeding a surface that
depicts the swirling motion of the flow. This is based on work by van Wijk and Laramee
on image space advection [164, 85]. In their approach parametrization of the surface is not
necessary and advection is not computed for pixels occluded by other parts of the surface.
The main steps are:

1. compute flow vectors at vertices of the surface mesh

2. project the vector field onto the image plane

3. advect texture properties according to the projected vector field
4. add shading to the image to convey shape information

This approach allows interactive frame rates for animated flow textures. Both the shape
of the surface and the texture can transport meaning to the user (see Figure 2.6).

Since topology based visualization techniques feature sparse and economic screen usage,
there is ample space left for additional information. Hauser and Groller suggest a two
step approach [49]. In the first step topology information is computed. Examples are
fixed points and their Jacobians and higher order attractors. This is the classical step in
topology visualization and in most cases the second step is not very intricate: different
types of topological elements are visualized by different glyphs representing attracting,
repelling and saddle points and separation lines [52]. This second step is now augmented
by showing a visualization of the flow structure in a neighborhood of the critical point or
visualizing the Poincaré map (see Fig. 2.7).

There is a lot of work in how the components of multi-variate data can be visualized.
Sauber et al.[129] present multifield-graphs that deal with the question how the correlations
between the components in the data can be shown. They introduce derived correlation
fields that describe the strength of correlation between two variables at each point in space.
The user can visualize correlation between scalar fields and vector fields. This also shows
that the inherent information in multi-variate field that groups several variables to vectors
and tensors can be useful when deriving additional information.

2.3.2 Rendering stage techniques

There is a number of flow visualization methods that render multi-valued flow data. Splat-
ting is a very versatile technique that allows to integrate vector fields into scalar rendering
by adding tiny vector particles into the splat texture [18, 19]. The examples by Max and
Crawfis [97] combine surface geometries representing cloudiness with colored glyphs rep-
resenting wind velocity. This is an example, where a single rendering technique shows
different types of data and still uses appropriate visualizations for the components. In a
data type oriented manner the ground is rendered as a surface, while the clouds have a
volumetric look giving a good feeling of orientation in space. Directions and altitude are



2.3. VECTOR FIELD AND FLOW VISUALIZATION 19

Figure 2.8: Direct volume rendering combining both realistic cloud rendering and splatted
directional glyphs and color coding [18]. (Image courtesy of R. A. Crawfis)

visualized as colored glyphs, showing that they do not represent physical objects in space
(see Figure 2.8).

Treinish investigated how specialized visualizations can be used to effectively visualize
weather data using views of varying complexity [148] and presented a multi-resolution
technique for complex weather data [147] (see Figure 2.9).

Since many of the existing flow algorithms are derived from physical models based
on particles, the combination of particle and texture based flow visualization is a natu-
ral approach. Erlebacher et al. [31] developed a spatiotemporal framework that encom-
passes many aspects of time-dependent flow visualization. Weiskopf et al. [159] apply the
spatio-temporal framework to unsteady flow visualization. In the context of dense flow
visualization they identify two important types of coherence within the animation: spatial
coherence, which conveys the structure of a vector field within a single picture and frame-
to-frame coherence which conveys the development of these structures over time. They
employ two steps: the first step is basically a propagation of particles forward in time to
construct a space-time volume of trajectories. The second step applies convolution along
paths through the spacetime volume that is done independently for each time step and
texel. This hybrid particle and texture based approach combines advantages of particle-
based representations with texture-based visualization. Particle systems are computational
and memory efficient and allow accurate Lagrangian integration. Texture-based systems
on the other hand have hardware acceleration for texture lookups and manipulations sup-
ported on modern graphic cards.
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Figure 2.9: A weather visualization combining streamribbons, arrows, slices, contour bands
and isosurfaces [148]. (Image courtesy of L. Treinish)

An approach that achieved not too much attention in the literature is to use more than
one rendering system at the same time. Yagel et al. [172] suggested the use of four different
renderers on a single CFD data set. Each is specialized to a specific task. Interactions
can be visualized using a fast hardware-accelerated algorithm, high magnification images
employ a specialized anti-aliasing technique. They use a ray casting algorithm specialized
for the design of transfer functions while high-resolution and high-quality images are pro-
duced using a volumetric technique. Since today’s computing machinery makes interactive
manipulation of transfer functions, lighting parameters and other rendering attributes pos-
sible, the advantages of multiple combined renderers may be less obvious. Nevertheless an
automatic selection of different rendering approaches and smooth transition between these
would improve the visual experience for the user. This is an open research problem. Also,
the integration of multiple renderers (e.g. illustrative and volumetric) into a single image
at the same time is not investigated in much detail today. New ways to integrate different
rendering algorithms is a promising route for future research. Mueller et al. [138] present
an application that uses several renderers for prototyping, comparison and educational
applications.

Stompel et al. [139] explore the use of illustrative techniques to visualize multi-
dimensional, multi-variate data sets on structured grids. They use silhouette enhanced
shading and depth-based color variation to enhance the 3D results and reduce clutter-
ing related problems. Magnitude of temporal change is integrated using color modulation
and flow properties such as direction, vorticity and velocity can be visualized using brush
strokes.
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Figure 2.10: A layered combination of glyphs, color coding and isolines (left) and a filigreed
layered visualization of flow data combining texture advection and color coding [168].
(Image courtesy of P. C. Wong)

2.3.3 Image stage techniques

Crawfis and Allison [17] very early recognized the power of compositing several images of
rendered objects together to do scientific visualization. Their graphic synthesizer could
combine several images to generate multi-variate representations of two dimensional data
sets. Wong et al. [168] apply image compositing for visualization of multi-variate climate
data. They present three image fusion techniques: opacity adjustments for see-through,
filigreed graphics where portions of each layer are removed and elevation mapping where
one scalar is mapped to the z-axis. In Figure 2.10 we see an example of layered glyph
rendering (left) and a filigreed layering of color coded rendering and advection layered flow
visualization (right).

Kirby [70] gives an introduction to art-based layered visualization in the context of 2D
flow visualization (see Fig. 2.11). A promising approach to visualize multiple aspects of
high dimensional data sets is the combination of illustrative, art- and glyph-based render-
ing.

They introduce the concept of layering in a similar way as done in oil-paintings: un-
derpainting contains a low-frequency and low color-range coloring of a one-dimensional
scalar vorticity value. Then two data layers follow: ellipses and arrows, depicting the most
important aspects of the data. A final mask layer gives black context information (see
Figure 2.11). By carefully selecting the order of layers it is possible to weight different
aspects of the data differently and can suggest a viewing order for different parts of an
image. Sobel [136] presents a descriptive language for modeling layered visualizations, that
allows to design and share visualization parameters for layering algorithms.
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Figure 2.11: An visualization using multiple layers to visualize scalar, vectorial and tenso-
rial information [71]. (Image courtesy of M. Kirby)

2.4 Tensor field visualization

Visualization of multi-variate data containing only tensor information is a difficult problem
already. The interpretation of tensor information suffers if it is reduced to scalar informa-
tion or if parts are visualized separately (e.g. in different images). Tensorial information
has to be visualized fully or meaning and comprehensibility can be lost. When speaking
of tensor field visualization we typically refer to second order tensors (three by three ma-
trices). Depending on the application these tensors can be symmetric or non-symmetric.
A symmetric tensor allows to calculate three orthonormal eigenvectors and corresponding
eigenvalues. Non-symmetric tensor fields can be decomposed to a symmetric tensor and
a vector field. Because of these properties most visualization applications focus on the
visualization of symmetric tensor data — this already involves six variables at each point
simultaneously. Because tensorial information is difficult to comprehend and structure,
multi-style visualization techniques are common in this field. An example would be a
layered visualization combining diffusion tensor glyphs and a CT reference image slice to
show the organ geometry. It is also common to show basic geometry cues (e.g. the shape
of the brain or the kidney) as context information in the form of a wire frame or silhouette
rendering.
Important sources for tensor data are

e medical applications working with measured MRI diffusion tensors. Their visualiza-
tion is the field of Diffusion Tensor Imaging (DTI) and deals with symmetric tensors
with positive eigenvalues.

e materials science and geomechanics working with stress and strain tensor fields. Re-
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lated tensors are symmetric with signed eigenvectors.

e fluid dynamics where several properties are tensor valued. Examples are the rate-of-
strain tensor and the fluid momentum gradient tensor.

e general relativity theory simulations, where gravity is expressed as a rank two tensor
and the electro-magnetic field tensor in special relativity.

Zhang et al. [153] give an extensive introduction and a state of the art overview of
diffusion tensor visualization. Wiinsche [171] gives a basic introduction into stress and
strain tensor fields suitable for the computer scientist.

2.4.1 Techniques in the processing, filtering and visualization
mapping stage

For tensor fields glyph-based visualization is the most common technique. Glyphs of
stresses and strains is surveyed by Hashash et al. [47]. One basic question that many
publications state is ”visualize all the information of one tensor in some places or only
some part of it everywhere?”. The first would lead to some kind of glyph-based visualiza-
tion where the information is visualized using a glyph that can represent all the degrees
of freedom. Glyph-based visualization of tensor fields mainly uses the three eigenvectors
(major, medium and minor) to generate a shape showing the direction of the eigenvec-
tors. The most common is the ellipsoid, since it is possible to include all eigenvectors in a
straightforward manner. Other glyphs are the Haber Glyph and the Reynolds Glyph [47].

A classification of tensor shapes was given by Westin [162]. A diffusion tensor is isotropic
when the eigenvalues are about equal (A; & Ay & A3), planar anisotropic where two eigen-
values are about the same and larger than the third (A & Ay > A3) or linear anisotropic
where one eigenvalue is larger than the others (A; > Ay & A3). The corresponding ellipsoids
are spherical, disk- or needle-shaped respectively. Westin introduced the shape factors to
measure which of these cases is dominant:

D P S ICPEr )
mear A% + )\% + )\g ptanar \/)\%_i_A—M
33

Cspherical =
' NYESYEDY.

The three shape factors sum to one and define barycentric coordinates, that can be used
for glyph geometry assignment [162], opacity mapping [68], color coding, or glyph culling
[174].

One way to get from glyphs to hyperstreamlines [22] is to place ellipsoids close to another
along the direction of the major eigenvector. From any seed point, three hyperstreamlines
can be generated using one of the three eigenvector fields for the streamlines and the other
two for the cross section. This leads to a connected line along the major direction that
encodes the other two eigenvalues in the cross section of the streamline. A hyperstreamline
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Figure 2.12: Sensible layout of glyphs allows to convey the location of fiber structures in
the data. This shows how much automated parameter setting approaches (layouting) can
improve the visualization [69]. (Image courtesy of G. Kindlmann)

visualizing a tensor field can be enhanced to show other properties by coloring. For non-
symmetric tensors, the rotational components can be encoded as 'wings’ along the main
hyperstreamlines [175].

Zhang et al. [174] use stream tubes and stream surfaces for the tensor aspect of the data
and contours and volumes as anatomical landmarks. The authors do not use the different
visualization techniques to visualize different components of the data but show data ranges
differently. Since in the brain, regions of high linear anisotropy very often correlate with
regions containing densely fiber tracks, tensors having high linear anisotropy are adequately
visualized using steam tubes, while tensors of high planar anisotropy are visualized using
stream surfaces. This way both techniques can be used for the type of data they work best
for.

In an adaption of image-based flow visualization Zhang et al. [173] visualize topological
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properties of tensor fields on curved surfaces. They discuss properties of critical points and
an approach to extract flow directions to apply advection vectors. Furthermore they show
applications to painterly rendering of 2D images.

Merhof et al. [98] present a hybrid rendering technique combining point sprites and
triangle strips to display fiber tracts in the brain. They show that combining two rendering
techniques can improve the comprehensibility of the visualization. This is an example how
thinking about the 'what’ part of the visualization (fiber tracts) can give clues to improving
the "how’ approach.

2.4.2 Rendering stage techniques

Visualizing parts of the tensor information in a continuous fashion is done in volume
rendering of tensor fields. Sigfridsson et al. [135] present a dense technique that filters
noise along the eigenvector directions to produce a continuous representation of tensor
fields that produce results similar to LIC. The basic tasks in volume rendering tensor
fields — determining opacity, calculating shading and assigning material color — can be
done by specific mappings of tensor properties based on the shape factors. Opacity is
determined by using a barycentric opacity map (e.g. high opacity for linear anisotropy).
Lighting is determined by using a heuristic that refers to the shape an ellipsoid glyph
would have in the same position: in case of planar anisotropy the lighting model is the
same as with traditional surface modeling, in the linear case the lighting model is similar
to lighting of illuminated streamlines. Cases in between are interpolated. In the simplest
setting color coding is done by using a colored ball and choosing color depending on the
direction of the major eigenvector. This basic setting allows improvement using additional
visualization techniques. Kindlmann et al. [68] present a reaction-diffusion texture that
can visualize a tensor field alone but also integrate it with the volume-rendered tensor-
field visualization (see Figure 2.13). The idea of a reaction-diffusion texture is to simulate
a system of two differential equations. One describes the diffusion governed by Fick’s
second law of two morphogens where the resulting concentration of these morphogens
determines the color at each position. The other differential equation measures how much
the two substances react and neutralize each other. The initial condition is that both
have the same concentration everywhere. Applying diffusion relative to the given tensor
field at each position generates a texture that can show information about the tensor
field in its own right. The authors suggest color modulation or bump mapping to combine
volume rendering and the volumetric texture. The result is similar to a surface rendering of
geometry combined with diffusion glyphs, but has several advantages. The most important
is that the resulting ellipsoids are distributed more naturally and are packed in a way that
represents features of the data. Also the empty space between tensor ellipsoids is reduced.
Furthermore it avoids the common problem of gridded ellipsoid layouting to give the false
impression of structure in the data.
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Figure 2.13: (a) The reaction diffusion texture allows natural glyph placement and geom-
etry. (b) Alternative combined use of the texture for coloring the volume [68]. (Image
courtesy of G. Kindlmann)

Figure 2.14: A visualization of the mouse spinal cord based on artistic techniques using
multiple layers and glyphs [80]. (Image courtesy of D. H. Laidlaw)

2.4.3 Image stage techniques

For tensor visualization an image stage technique has been published by Laidlaw et al. [80].
They show that a lot of information can be conveyed in a single image using brush based
glyphs and layering. Combining varying brush strokes and layering allows to display many
components of the data locally, while the underpainting can show form. Contrast is used
to create depth. Stroke sizes, texture and contrast help to define a focus within each image
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(see Figure 2.14). In a recent publication Wenger et al. [161] combine volume rendering
techniques and layering into a multilayer volume rendering approach. Their method is
related to two level volume rendering [51] which will be discussed in the second part of
this chapter. They combine densely packed threads of colored and haloed streamlines with
direct volume rendered context information. To deal with occlusion problems they designed
interactive controls to change visualization parameters like thread length or opacity. Also,
they heavily use transfer functions. This interesting publication is a good example of how
to layer volumetric rendering successfully to visualize different portions of information.

2.5 General approaches to multi-dimensional visual-
ization

In this section we will give an overview of the techniques we have identified to deal with
complex data sets. It has become a widely accepted perspective to view visualization as
a path from data to understanding [23]. We have identified a wide and diverse range of
general approaches to multi-variate or complex data visualization. The following subsection
cannot give a comprehensive enumeration of all the related work, but is thought to be an
introductory overview. We also do not distinguish between ’how’ and 'what’ approaches,
since several of the techniques can be used both ways.

Derivations or derived quantities are used because visualizing the measured data
directly might not be useful for understanding it. Kirby et al. [71] show that in flow
visualization for example showing additional components, that do not give information
that was not already available from the velocity field, helps understanding the situation.
In flow visualization useful derived quantities are for example vorticity, the rate-of-strain
tensor, the rate-of-rotation tensor, turbulent charge and turbulent current. Smoothing the
data to remove noise or calculating gradients to improve lighting will very often result in
more pleasing visualizations that are easier to work with. Hauser [48] discusses the use of
differential information to improve scientific visualization.

Glyphs (also referred to as icons) are a powerful communication item. A large number
of data dimensions can be incorporated into the attributes of a single shape or symbol
(see Figure 2.15). The particular mappings may also be customized to reflect semantics
relevant to specific domains to facilitate interpretation. Since glyphs are generally not
placed in dense packings, the free space between them allows the visualization of additional
information. They interact therefore nicely with other visualization algorithms and are
frequently added to visualization applications. Wittenbrink at al. [166] suggest glyphs for
uncertainty in vector fields. Kindlmann and Westin [69] have presented a technique for
packing glyphs in a way that their alignment conveys additional information. Hashash
gives an overview of stress and strain tensor glyphs [47]. (See also [67, 155, 78, 165].)

Hybrid rendering is the application of several visualization techniques for the same
image. This is useful especially for segmented data sets where background information
is applicable to choose the appropriate rendering technique for different subregions of the
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Figure 2.15: Advanced glyphs for stress tensor visualization using color and geometry for
information coding (left) and transparency (right) [78]. (Image courtesy of R.D. Kriz)

data [51]. There are many examples for this approach: Jesse and Isenberg [63] describe a
hybrid rendering scheme that combines photorealistic and illustrative rendering to highlight
parts of a volume for presentation. Kreeger and Kaufmann [77] describe a fast method to
combine volume rendering and translucent polygons to render mixed scenes. Laramee et
al. [83, 85] and van Wijk [164] present rendering algorithms to visualize flow on surfaces.
Wegenkittl et al. [156] combine surfaces, tubes and particles to visualize the behavior of a
dynamical system.

Interaction is probably the most important tool for understanding complex data.
Possible interactions are changing viewing parameters, transfer function manipulation,
seeding point selection, streamline culling, streamline queries, graphical model exploration,
region of interest selection and many others. An emerging trend is to use concepts from
interactive visual analysis for data exploration. In Figure 2.16 we see an example of multiple
linked views that work together to help understanding the data. In the attribute view
(c) and (d) linking is helps to understand how different attributes are related: the data
elements selected by the brush are shown red, while the elements selected in the other view
are colored yellow.

Layering and Fusion has been used extensively in scientific visualization to show
multiple items. Fusion-based methods combine different rendering styles in image space
[168]. Layering is a generalization of this approach where multiple layers of information are
visualized on top of each other. This is most applicable for two dimensional visualization
but there is work where transparent stroked textures show surfaces without completely ob-
scuring what is behind them [59, 58]. Several other layering techniques have been discussed
in the first section of this chapter (see [17, 80, 168, 70]).
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Figure 2.16: An example of combined attribute and volumetric views. The 3D view (a)
shows the location of data points in space with pressure mapped to color. A 2D slice
(b) shows the velocity close to the eye of the storm. Two attribute views (scatterplot of
velocity vs. cloud density (c¢) and a histogram of temperature (d)) are used to select which
cells are shown.

Two-level volume rendering Hauser et al. [51] and Hadwiger et al. [44] present
a two-level approach that combines different rendering methods for volume rendering of
segmented data sets (see Figure 2.17). Each of the segmented regions can be rendered using
a specific rendering method like NPR, DVR or MIP during ray accumulation. Since most
users perceive three dimensional scientific data sets as built up from individual objects, the
authors use the segmentation information to generate images that take this into account
(one per object intersection). To compute the representative values for the objects different
rendering techniques can be used, The authors also use the technique to visualize dynamical
systems. This gives a hint at a more general applicability of their approach. Since the
decision what rendering method to choose is given to the user, it becomes possible to use
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Figure 2.17: Two-level volume rendering allows to combine multiple rendering techniques
using different compositing methods locally (left). A multi-level volume rendering of a
human head using tone shading (brain), contour enhancement (skin), shaded DVR (eyes
and spine), unshaded DVR (skull, teeth, and vertebrae) and MIP (trachea) [44]. (Image
courtesy of M. Hadwiger)

the most adequate in the given moment. This approach is well suited to visualize multi-
dimensional data sets by combining different rendering methods that are most appropriate
for different features inside the data. (See also [161].)

Multiple Views present the information in several different views that encourage
comparison, give contrast and help to generate a correct understanding. Roberts [119]
describes the generation and presentation of multi-form visualizations in an abstract way
and gives an introduction to multi-view visualization. Yagel et al. [172] discuss to group
volume renderers that have different quality and rendering speed tradeoffs. Van Wijk and
van Liere’s hyperslicing approach uses multiple views to display a large set of possible
projections of the data [165].

n-D viewing is based on defining hyperplanes on the high-dimensional volume or direct
projection. This is done very often for time-varying data sets, where time-coherency can be
exploited for compression and acceleration. The major issue for projections from n-D is to
determine occlusion because a front-to-back ordering is not clearly defined after projection.
Feiner and Beshers [34] suggest the World within World approach to drill down on the data
by iteratively slicing away dimensions (see also [170, 107, 3, 165] and references therein).
Blaas et al. [8] have developed a framework that uses interactive projection parameter
specification for mapping multi-variate data values to scatterplots.

Probing is a general visualization approach for multi-variate data visualization. The
user can state interest in a specific location or data range. Then a reduced amount of data
is shown everywhere and for subsets of the data a local and more complex visualization
conveys details. This avoids clutter and occlusion, is computationally efficient and helps
the user to focus on specific aspects of the data. Examples for local detail global overview
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Figure 2.18: Visualizing flow data can benefit from using illustrative techniques. The
image shows a closeup of turbulent vortex flow using silhouette and shading (left) and
additionally gradient and depth enhancement (right) [139]. (Image courtesy of Q.-L. Ma)

techniques are: focus and context visualization [25], magic lenses [65], level-of-detail [16],
clipping-probes [158] or zooming.

Reduction Dimension reduction and de-noising can remove unwanted details in the
data and remove obscuring structures that hinder the process of understanding. Also,
presenting views that contain a reduced amount of information and clipping are examples
for data reduction tools. The importance of data reduction is very well expressed in the
saying that in the future the main question will not be what to show, but what not to
show. There is a trend to include attribute views (such as scatterplots, parallel sets, etc.)
for interactive visual analysis of the attributes of the data-set. These views can benefit
strongly from having automated clustering and reduction algorithms available.

2.6 Illustrative rendering

The visualization of multiple features and the accentuation of important structures and in-
formation has gained special attention in scalar volume rendering, especially in illustrative
rendering. Illustrative rendering employs abstraction techniques to convey relevant infor-
mation. In the context of scientific visualization non-photorealistic rendering refers to the
adaption of techniques that have been developed by traditional artists for the generation
of synthetic imagery. In the context of scientific visualization Bruckner et al. [11] have
developed the VolumeShop framework for direct volume illustration.

Depth color Cues Svakhine and Ebert [141] describe depth based color variation. It
gives intuitively understandable cues of the relative positions of different features in the
data set. Distance color blending dims sample colors as they recede from the viewer. At
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the front of the volume, the voxel color remains unchanged. As the screen-depth value
increases the color is gradually blended with the background color:

Color = (1 — depth) - Color origina, + depth - Coloryackground

Silhouette enhancement and boundary enhancement Silhouette lines are par-
ticularly important in the perception of surface shape and the perception of volumetric
features. In order to strengthen the cues provided by silhouettes, one increases the opacity
of volume samples where the gradient is close to perpendicular to the view direction. Using
a dark silhouette color can be effective for outlining of features. Levoy [90] proposed to
scale opacity using the magnitude of the local gradient. Many applications also use the
local gradient as a transfer function parameter [75]. Ebert and Rheingans [27] suggest to
add scaling parameters to boundary enhancement such that the gradient-based opacity of
the volume sample becomes:

0g = 0y(kge + kgS(vaH)];e)

depending on the data o, (original opacity), Vs (the value gradient of the volume at the
sample) and on user specified parameters k,. (scales influence of original opacity), ks
(scales influence of gradient enhancement) and the exponent parameter k,. that allows the
user to adjust the slope of the opacity curve.

Enhanced transparent surfaces and stippling Since many features can be visu-
alized using surfaces, transparent surface rendering offers a good possibility to show the
spatial relationship between two superimposed features. To improve shape recognition, In-
terrante [58] uses principal direction-driven LIC [60]. The surface shape and curvature are
enhanced using a stroke texture. This enables the visualization of additional variables us-
ing colored strokes and varying stroke width and density. The surface information is stored
in a texture and needs recomputation if stroke parameters are changed. Nagy et al. [104]
have developed a technique to do stippling of surfaces in real time using preprocessed prin-
cipal directions. This allows to change stroke positions and appearance interactively but
it needs an additional pass to render the strokes.

Feature halos In line drawings it is common to depict the depth ordering of two
crossing lines by inserting a short gap into the line behind the other such that the lines
do not touch. Therefore halos are an important technique for visualization of stream-
lines. For scalar volumes Ebert and Rheingans [27] propose a method for creating halo
effects for features during the illumination process. Halos are created primarily in planes
orthogonal to the view vector by making regions just outside features darker and more
opaque. They calculate the halo-intensity by weighting the neighbors gradient magnitude
and halo-direction.

Shadows and indirect illumination Even though a feature in the volume (e.g. a
vortex) may not cast a shadow in reality, a shadow can very well show spatial relationships
between features in the data. Especially for glyphs and disconnected features lighting is a
powerful way to provide better perceptual cues [42]. Also, shadowgraphs and schlieren [142]
can depict important structures inside a volume. Conceptually, due to inhomogeneities
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Figure 2.19: (a) Transparent surfaces can allow layered visualization for three dimensional
images [60]. (Image courtesy of V. Interrante) (b) Non-photorealistic rendering of tensor
information using line-glyphs and DVR of context information [161]. (Image courtesy of
A. Wenger)

inside a translucent volume, refraction within the affected region displaces light rays before
they reach the screen. Therefore this is similar to boundary enhancement. The technique
stems from flow photography but is applicable to visualize structures in other volumetric
data sets as well.

Cutaways and Ghosting Feiner and Seligmann [33] introduced cut-away views and
ghosting to 3D visualization. Cut-away views are a common tool of illustrators to show
important structures in a volume that would be occluded otherwise. Viola et. al [154]
introduced importance-driven volume rendering to determine which parts of the volume
are to be cut away (this notion of importance is also referred to as degree-of-interest (DOI)
in other publications). Ghosting [43, 10] is a technique very often combined with cutaway
views. Instead of removing the obscuring region completely they keep the most important
parts (e.g.edges) of the occluding structures to conserve context information.

Motion blur is a widely used technique to show information from time-dependent
data sets. For example Neophytou and Mueller [107] use a motion blurring effect to give
hints on how the data will evolve.

2.7 Chapter Conclusions

We have discussed new developments in visualization research and have outlined recent
trends in the literature. Based on these trends we have presented an abstracted goal for
multifield visualization algorithms that highlights open questions on different stages of the
visualization pipeline:

e How can we capture all the relevant information?
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Figure 2.20: Techniques from traditional illustrative imaging can increase the information
content in volume rendered images. Ghosting can be used to show important features in
detail while cutaway views keep structural information independent of the viewing direction
[10]. (Image courtesy of S. Bruckner)

e How can we combine relevant quantities of information belonging to the same location
in space?

e What quantities can be derived from the data, that will help the user to understand
the data?

e What are the features in the data and how can we combine automated and interactive
techniques for finding them?

e Which visualization technique is most appropriate to the given data?

e How can we combine different visualization techniques for efficient and effective vi-
sualization?

In the first part of this chapter, we have discussed applications and algorithms employing
one or several useful techniques to visualize complex scientific data sets in two and three
dimensions. In the second part we have given an overview of modern approaches to for
multi-variate data visualization and analysis.

Conclusively, in the literature we found researchers taking three general approaches to
deal with complex, high-dimensional data sets. These approaches are highly promising and
research in how these can be combined and improved will increase the value of visualization
systems:
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e Interaction: The connection between elements of the data can be explored interac-
tively. This approach works on the assumption that the user will understand the
configuration of a data set using different views and different levels of detail interact-
ing with visualization parameters. Exploration of correspondence between different
views on the data by visual comparison using the powers of the visual system to see
what the data means. This is probably the most important key to understand com-
plex multi-dimensional data and is used extensively in related fields like information
visualization as well.

e Complexity-adjusted rendering: Due to the growth in computation power a valid ap-
proach to deal with the rising complexity of the data is to increase the computational
efforts put into visualizing this data. Rendering complex visual clues (e.g. lighting
models, shadows and distance clues) can make spatial interpretation easier for the
user. We have seen that visualization research has produced tools to decrease clutter
and to visualize complex and intertwined three-dimensional data features.

e Multi-method visualization: Is the approach to use a visualization technique only
for the type of range of data it works best for. In the scope of this article we
have discussed several publications following this approach and a tight integration of
multiple techniques in a visualization gives a key advantage towards understanding
the data.

e Automated techniques: provide powerful tools when working with complex multi-
variate data sets. Two important types of automated tools are feature classification
algorithms and automated optimizations of visualization parameters. Classification,
feature extraction and segmentation information are useful to render data in a more
appropriate way and to ease the interaction with the data. Also, they may help to
extract information from the data. Automated parameter optimizations (e.g. for
seed point placement, color selection or viewpoint parameters) can reduce clutter,
speed up rendering and help to extract meaning from the data.

This chapter has given an introduction into the field of scientific visualization in general. In
the following chapters we will focus on the field of flow visualization and analysis, with the
goal in mind to visually analyze vortex structures in flow simulation data. We will see that
the four approaches interaction, complexity-adjusted rendering, multi-method visualization
and automated techniques are relevant for understanding vortex features in flow simulation
data. In the next chapter we will focus on interactive techniques combined with automatic
computation of vortex detectors. In Chapter 4 we extend this approach but focus on
attribute views which reduce the complexity of the information in comparison to the three
dimensional renderings of the first chapter. Chapter 5 deals with improving the control
of automated vortex detectors. Chapter 6 deals with vortex extraction in time-dependent
flows improves a widely used vortex detection technique and also combines the visualization
techniques used in the previous chapters with line-type visualizations combining volume
rendering and glyph based visualization.
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Chapter 3

Binary and Non-Binary Vortex
Detectors

"Truth suffers from too much analysis.” (Frank Herbert 1920 — 1986)

The previous chapter has discussed scientific visualization from a more general perspective,
with an emphasis on flow visualization. We have seen examples where feature detection
can be an important tool for understanding scientific data sets. A CT scan of the head can
include information on regions of the brain, while a part of an engine can be displayed in
focus, when it has previously been identified as an important piece or feature of the engine.
The process of feature extraction becomes relevant for flow visualization when vortices have
an influence on the application. In this chapter we present background information and
related work on vortex detection.

The first sections present motivation and an overview of binary vortex detectors. In
Section 3.3 we discuss continuous formulations of common vortex detectors that allow
a seamless integration into the concept of interactive visual analysis of flow simulation
data. We express the originally binary feature detector results as fuzzy-sets that can be
combined using the linking and brushing concepts of interactive visual analysis. Both
interaction and visualization gain from having multiple detectors concurrently available
and from the ability to combine them. An application study on automotive data reveals
how these vortex detectors combine and perform in practise.

3.1 Motivation

There is still no ultimate agreement on how to generally define and detect vortices, even
though the concept of a vortex is common in fluid dynamics and has proven useful to
describe and model the behavior of fluids. Vortices belong to the most important coher-
ent features in flow fields. They influence the behavior of the flow on all scales and are
responsible for phenomena like hurricanes and tornadoes, mixing of fluid materials, have
influence on the effectiveness of engines and machinery, and the drag on moving objects.
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Reportedly local vortex extraction methods fail to find all vortices in real-world data [14].
For example, if there are two axes of swirl, many local detectors will indicate a direction
that is a combination of the two [122]. The relations between the different criteria have been
investigated on a formal basis [20, 15, 114], still the reasons for their different performances
are not fully understood. At the moment, there is no answer to the question which detector
will perform best in a given situation in general. Especially as long as there is no final
answer to the question 'what exactly is a vortex?’, we suggest to use a hybrid approach in
visual analysis that combines the strengths of more than one criterion.

While most detectors are prone to finding false positives [45], they do not share exactly
the same numerical and theoretical problems. In this chapter the vortex detection criteria
are combined into a common framework. This is done by extending the binary classifiers
to generate fuzzy logic response values. Transparency and DVR [24] are used to convey
the uncertainty that results from vortex feature derivation.

3.2 Background on Vortex Detection

In this subsection we give an overview of the most common vortex detectors that serves as
a basis for their continuous counterparts, described right afterwards. Feature-based flow
visualization has been an active field of research for many years and it is beyond the scope
of this chapter to provide a comprehensive discussion of all of this work — we refer to Post
et al. [115], who published an extended overview recently. In this section we focus on
selected pieces of previous work, which are tightly related to this thesis.

From experiments and from literature inspection we have found a series of flow attributes
and notations to be useful for understanding the properties of vortices:

e a point x € R? and an attribute value a(x)

e the data set D and data elements in a r-neighborhood of a point P,(x) = {x €
Da ‘X - y’2 < TZ}

e linear scaling of attribute values a(x) to the interval [0,1] of a subset of data el-

ements x € S C D with minimum ming = min{a(x)|x € S} and maximum
a(x)—ming

maxg = max{a(x)[x € S} as scales(a(x)) = 5 me
e the velocity field u
e curl of u (or vorticity) w=V xu

e the helicity can be defined as w-u, normalized helicity is then w-u/|w|[u|. Normalized
helicity physically represents the angle between velocity vector and vorticity vector.

e the velocity gradient tensor J = Vu is the Jacobian of u

e the rate-of-strain tensor S = $(J + J”)



3.2. BACKGROUND ON VORTEX DETECTION 39

e the rate-of-rotation tensor Q = $(J — J%)
e there are several criteria working on the parameters of a local curvilinear coordinate

system such that J becomes

Vu = [Vrvcrvci] Aer Aci [Vrvcrvci]i1

_)\ci )\cr

With v,, ver and v¢; being eigenvectors of J, A, the real eigenvalue and \.. i)\, the
complex conjugate eigenvalue pair. This differs from the eigenvalues of a symmetric
matrix that has three real eigenvalues \; < Ay < As.

We list the vortex features considered in the scope of this thesis, a more in-detail discussion
follows in Section 3.3.1.

Kinematic Vorticity Number NV is a local measure that gives the quality of rotation in-
dependent of vorticity magnitude. It was introduced by Truesdell [150] as N = [|2||/||S]|-
A value of N, = oo corresponds to solid body rotation and N, = 0 to irrotational motion.
Vorticity magnitude The straightforward way to look for vortices is to search for regions
of high vorticity magnitude. Vorticity magnitude thresholding is often used as a detection
method to mark cells as potential vortex regions and apply local verification using compu-
tationally more demanding methods.

Helicity and Curl Levy et al. propose the use of normalized helicity and curl and search
for regions where u||lw [91]. Even though this may not always correspond to the actual
vortex core line, the authors used this feature with corresponding colors successfully on
meteorological data. Inside streamwise vortices the velocity and the vorticity vector tend
to align themselves parallel to each other. As a result, a normalized helicity value close to
1.0 or -1.0 can be a good detector for streamwise vortices.

Hunt’s Q criterion compares the symmetric strain component (S) and the rotational
component (§2) of J [56] (see definitions above). Hunt combines this with the additional
requirement of a local pressure minimum. In our framework we do not need to do this,
since this additional requirement can be added interactively by brushing a derived quantity
that finds local pressure minima.

’Lambda 2’ introduced by Jeong and Hussain [62], the A\, criterion is one of the most
popular vortex region detectors and has been studied extensively over the years. The cri-
terion involves computing the symmetric matrix S? + Q2 and its eigenvalues A\; > Ay > 3.
A vortex is detected in the connected region where \, is negative.

Chong’s criterion is based on critical point theory and the eigenvalues and eigenvectors
of the Jacobian. A material particle is considered to show spiraling motion if Vu has two
complex eigenvectors [15]. Perry and Chong give a description of the relation between the
Jacobian and its invariants P, ) and R [114].

The swirling strength parameter of Berdahl 7] and related methods [176, 14] derive
values measuring swirling from the imaginary and real parts of the complex eigenvalue
pair. In interactive analysis these methods are useful since they give information on the
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real eigenvector

Figure 3.1: In the locally linearized field, two complex and one real eigenvalue lead to a
spiralling streamline pattern. The complex Eigenvectors span the plane on which the flow
is swirling. The magnitude of the complex Eigenvalue determines the speed of rotation.
(Image edited based on Chakraborty et al. [14])

local strength of swirling motion. Zhou et al. reason that, when J has a real eigenvalue,
then in the locally curvilinear coordinate system (yi, 2, y3) spanned by the vectors vy, Ver
and v¢; and locally translating with the fluid particle, the instantaneous streamlines are

given by
Y1 3) ( ) ATS?

(
ya(s) = e *[y2(0)cos(Aeis) + ys(0)sin(Aes),
ys(s) = e)‘c’“s[yg( )cos(AiS) — y2(0)sin(Ags).

It can be seen that in the time-frozen field the flow is swirling in the plane spanned by
(Ver, Vei). The swirling strength is then the magnitude of \,; and we can use \, as a measure
for stretching or compression along v,. Figure 3.1 gives an illustration.

Some of these feature detectors use the same building bricks as others but calculate the
final result in a different way. Especially the parallel vectors operator [122] and the critical
point criterion of Chong et al. [15] are common ”building parts” for feature detection
algorithms. For example by combining the two we get the detector introduced by Sujudi
and Haimes [140]. This shows how multiple views and brushing can widen the possibilities
of interactive analysis: by implementing the building bricks the user can combine these
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in standard ways using default values or combine them in new ways when the standard
methods do not give satisfying results.

The classical approach to vortex feature detection are the Eulerian quantities stated
above. For a three dimensional velocity field u(z,t), available vortex criteria use the

velocity gradient decomposition
J=5+Q,

where S = £(J + J7) is the rate-of-strain tensor and Q = $(J — J”) is the rate-of-rotation
or vorticity tensor. Hunt et al. [56] define the Q-criterion: an element of the fluid is part
of a vortex if @ = (||Q||* — ||S||?) is larger than zero. That is, the magnitude of rotation
is larger than the magnitude of strain. This criterion is refined by the A, criterion of Jeong
and Hussain [62]. It requires the eigenvalues of the symmetric tensor S? + Q? ordered as
A1 > Ay > A3 to fulfill the condition Ay < 0. Chong et al. [15] introduced the d-criterion,
which requires the complex component A, of one eigenvalue of J to be larger than zero.
We can see that the rate-of-rotation tensor plays an important role for these Eulerian
quantities. Haller [46] describes vortices through the stability of manifold structures which
are related to fluid trajectories. The M, criterion [46] can be considered as an accumulation
of a local measure along a trajectory. Haller suggests to analyze the strain acceleration
tensor

M:=8S+S8-J+J7.9

where S := 9,5 + (VS)v is the material derivative of strain. In simple terms, Haller
proves that a position, where M, is positive definite, indicates this position to belong to
structures which enhance finite-time turbulent mixing. Haller also introduces the notion of
objectivity from continuum mechanics to vortex feature extraction. It has commonly been
stressed that a vortex detector has to be Galilean invariant, i.e., it has to be invariant to
translations of the reference frame (which leads to the rejection of closed trajectories as a
vortex criterion). Haller argues that for special cases, such as strongly interacting vortices,
and special experimental setups, such as strongly rotating fluids in a fast enough rotating
tank, the vorticity tensor €2 will pronounce the whole fluid as a single vortex. Therefore
he requests a vortex detection criterion to be objective, i.e., to be invariant under changes
of frame-of-reference of the form

x = Q(t)x + b(t).

Q(t) is a time-dependent proper orthogonal tensor, and b(t) is a time-dependent translation
vector. Sahner et al.[127] discuss the implementation of the M, criterion and mention a
second problem: since the material derivative of strain is involved we need to estimate sec-
ond order derivatives. This introduces a serious amount of noise and degrades the accuracy
of the detector for non-analytic data. Therefore they suggest to switch to an accumula-
tion step, where the local information is combined along the trajectories by counting the
number of steps where the detector response is positive. Meyers et al. [99] discuss how
objective rates can be constructed for symmetric tensors with focus on Eulerian strain
rates. The fact that ) is not objective motivates focusing on the properties of strain in
the fluid.
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When we extract structures in flow fields from a Lagrangian perspective we can find dif-
ferent approaches: the first is based solely on the analysis of particle trajectories and their
relations. The finite time Lyapunov exponent (FTLE) is an example from this class. In
the field of chaotic systems, Lapeyre [82] studies the Lyapunov vectors and exponents
to understand tracer gradient dynamics. Sadlo and Peikert [126] extract ridges from 3D
FTLE for the extraction of Lagrangian coherent structures (LCS). Garth et al. [37] present
a method for the direct visualization of 2D FTLE information which results in expressive
images of time-dependent flow. In recent work they show how the extraction process for
height ridges of the FTLE field [125] and for direct visualization [37] can be done efficiently.
Cucitore et al. [20] suggest a non-local measure of swirl to extract vortices. Jiang et al. [64]
search for trajectories rotating about a common axis to verify the existence of a vortex
while Sadarjoen and Post [124] compute curvature centers of trajectories. In earlier work
Lugt [92] requires a vortex to be a portion of the fluid moving around a common axis. As
an indicator for such a structure he proposes closed or spiralling pathlines.

Reinders et al. [117] use a graph view to show the development of flow features over
time and to indicate events such as birth, death, and annihilation of features. Bauer et
al. [6] discuss the tracking of vortices in scale space, which improves the consideration of
important features. Garth et al. [38] show the movement of singularities relative to an axis,
which is of special importance compared to the others. Theisel and Seidel [144] introduce
the concept of the feature flow field and use it to improve feature tracking: the paths of
the critical points are tracked as the streamlines of a new vector field, i.e., the feature flow
field constructed from the original vector field.

The idea of considering pathlines when analyzing time-dependent flow data is not new as
such. Theisel et al. [145] present a pathline-oriented approach to extracting the topology of
2D time-dependent vector fields — similar to a streamline-based approach, they distinguish
features according to attracting, repelling, or saddle-like behavior.

In general, we observe a new motivation in the field to approach even very complex
cases in 3D time-dependent flow visualization. Peikert and Sadlo [112] discuss feature-
based visualization for the investigation of vortex rings and vortex breakdown bubbles in
recirculating flow, and Tricoche et al. [149] describe a slice-based visualization for under-
standing intricate flow structures where the slices are placed orthogonal to trajectories of
the flow.

Another interesting class of approaches are physical criteria (instead of geometric ones)
for feature extraction. Banks and Singer [4] propose a method to find vortex core lines
based on a predictor/corrector method that steps through the field in the direction of the
vorticity vector. At each step the normal plane is constructed and the point is reset to the
nearest local pressure minimum. Jankun-Kelly et al. [61] present an improvement of this
approach using a function fitting procedure to locate the extreme values, stepping along the
real eigenvector of the velocity gradient. Stegmaier et al. [137] present an algorithm that
combines the Ay method of Jeong and Hussain [62] with the predictor/corrector method of
Banks and Singer. For growing the skeleton they step in the direction of the vorticity vector.
In this context of physical approaches, several more methods have been presented, e.g.,
the Q-criterion of Hunt et al. [56], also known as the elliptic version of the Okubo-Weiss
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Figure 3.2: The combination of non-binary feature detectors and interactive visual analysis:
(a) The histogram shows that only few data items trigger strong response of the A, feature
detector, (b) a scatterplot of temperature against velocity shows differences between the
detected vortices, (c) a scatterplot of turbulent energy against relative pressure shows
differences between the vortices near the outlet and the inlet (d) a derived distance to
surface measure removes occluding elements located at the boundary. (e) This weak vortex
in an early time step of the simulation would have broken into several parts using iso-value
based visualization; (f) in the 3D overview of the situation we can see how the vortices
differ in rotation speed and direction.

criterion by Okubo [111] and Weiss [160], or the extension of considering acceleration terms
by Hua et al. [55], which includes temporal derivatives and expresses the feature extraction
process from the Lagrangian perspective.

3.3 Non-binary vortex detectors

The basic insight that led to the development of the new interactive feature extraction
framework is that both automated and interactive approaches have their limits that we
can deal with by combining both approaches. On the one hand, interactive extraction and
data analysis is limited in terms of feature complexity. It is simply not possible for the
user to find features that have too many dependencies or involve elaborate computations.
On the other hand, human users are very good in dealing with incoherent information,
uncertainty, and fuzzy concepts. In fact a user will very often not know what he or she
was looking for before he has found it [155]. Automated feature extraction algorithms (in
particular vortex detectors) have received intense attention and it is reported that they are
all able to detect vortices under the right circumstances in a fast and robust manner.

The detectors currently available may fail to detect non-standard features or features that
do not share the same frame of reference as the detector. Furthermore, many feature
detection algorithms still need a considerable amount of parameter tuning (e.g. iso-surface
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values) to get good results. Chakraborty et al. [14], for example, stress the importance
of using appropriate thresholds when trying to find vortices with specific properties like
compactness along the axis or vortex strength. When multiple features are present there
may be no single threshold parameter to detect all flow features at once. Therefore our
main motivation to combine visual analysis and algorithmically derived features is to add
the monitoring and reasoning capabilities of the user to the exactness and computation
power of the computer. See Table 3.1 for an overview.

3.3.1 Derivation of the Continuous Detectors

To investigate flow data using focus+context visualization we need to adapt the criteria
in a way that they express a notion of vorticity as fuzzy-logic attributes. There are some
requirements for properties of our fuzzy sets: they should extend the binary classifiers
(i.e. they are 0 where the binary classifier outputs no vortex and 1 where a vortex would
be detected with full certainty). We do not force a measure to be extensive when it is in
general also used for other purposes and the user expects different behavior. Otherwise we
can often guarantee extensiveness by scaling the output to the [0, 1] interval accordingly.
We do not expect sharp feature boundaries at the scale of typical flow simulations. It is
sensible to expect the classifiers to be continuous. To balance these two criteria we model
the range of values where the detector only partially detects a vortex. Furthermore, the
classifier should be monotonic, since this allows for good intuitive combination behavior
using the classical fuzzy norms to model the Boolean ’and’ and ’or’ operations using the
'min’ and 'max’ functions [72].

e We define a fuzzy local extremum around a point x with numerical attribute a(x)
with minimum min = min{a(x)|x € P,} and maximum max{a(x)|x € P,} in a
neighborhood as

0.5 : maxr =min

eTIremuUm puzz,y(a(x)) :{ scalep, (a(x)) : otherwise

This is, the relative position of the attribute value inside the interval of the minimal
and maximal attribute values in the neighborhood of x. Of course a local attribute
extremum defined like this is dependent on the extent of the neighborhood that
defines localness. This attribute was added because in many typical flow situations
it is possible to find the central regions of a vortex by restricting the detected region
further using the additional condition of locally minimal pressure.

e High vorticity magnitude is the good starting point for analysis of vortex structures.
The actual classifier is ’large vorticity’ and has reportedly been fairly successful in free
shear flows [62], but there is no predefined value from which on vorticity is considered
large, therefore the SimVis approach allows the user to select which values he or she
considers as 'large’.

Wruzzy = Scalep(w)
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Method

Properties

Benefits in combined application

Vorticity
magnitude

fast computation

can be used for preselection of rele-
vant cells in large data sets using a
relaxed threshold, responds to sheer

Ny,

independent of vorticity magnitude

can be used to cross-check regions
selected using vorticity magnitude

Normalized
helicity

signed, gives direction of rotation

combination with other detectors
helps to distinguish between con-
nected regions of counter-rotating
vortices, ignores transversal vortices

Hunt’s Q)

no computation of eigenvalues nec-
essary, in many cases equivalent to

Ao

numerically more stable for noisy
data, comparison with Ay for confi-
dence

A2

based on eigenvalues of a symmetric
matrix, does not distinguish between
connected vortices

very good performance, reliability
confirmed in many publications

Eigenvalue
related
methods

detailed insight into vortex proper-
ties, need eigenvalues and eigenvec-
tors of the rotation matrix, may
introduce numerical issues, more
costly

can restrict detected vortex regions
to portions of fast/slow spiraling
motion, give information on axial
stretching and orbital compactness

Table 3.1: Comparison of detector properties.

e Levy et al. [91] introduced normalized helicity H,,. In the limiting case where u is
parallel to w we have H, = +1 and we do not scale this measure since this is the
expected behavior

Hy(x) =

e The characteristic equation for J is given by

where P, ) and R are the three invariants of J, defined as P = —tr(J), @

u(x) - w(x)

[u(x)[|w ()|

NEPN+QA+R=0

—3(P? —tr(3J)) and R = —det(J). The invariants map both to topological critical
point features and tell about physical properties of the flow (e.g. P = 0 holds for
incompressible flows) and can be a useful addition to the other views.

e Hunt et al. suggest regions of positive () as vortical regions [56] where the magnitude
of the rate-of-rotation tensor € exceeds the magnitude of the rate-of-strain tensor
S. The larger the difference between €2 and S the higher the certainty that we have
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found a vortex:

O ) — 0+ 0l - S| <0
fuzzy scalep(||Q* —|IS||*) : otherwise

The parallel vectors operator was intended to extract vortex core lines and ease
the notation of vortex extraction algorithms [113]. A vortex core has the necessary
condition of two characteristic vectors of the flow to be parallel. Therefore the parallel
vectors operator, similar to local pressure minima, can help to restrict the regions of
vorticity to be closer to the core. The parallel vectors operator uses the flow vector
u and additionally derived quantities, we found ¢ = Vu-u and b = JJu + Tuu
to be the most useful (7" is the tensor of second derivatives). The vector a gives a
formulation of the vortex core line criterion by Sujudi and Haimes [140] using vector
parallelism. The vector b can be considered as a higher-order extension of the Sujudi
and Haimes criterion. For more details and a derivation of the vectors a and b we
refer to Chapter 6. Using a dot product on the normalized vectors we get a measure
of parallelism:

PV(z) =

u()] Ja()]

Complex Eigenvalues: Critical point theory [15] tells us that a particle will show
rotating motion if J has two complex eigenvalues. In the related regions vorticity is
sufficiently strong to cause the rate-of-strain tensor to be dominated by the rate-of-
rotation tensor. This can be tested by checking the characteristic polynomial of J
for a positive discriminant as we know from Cardan’s solution for cubic polynomials.
Berdahl and Thompson [7] used the fact that in a locally curvilinear coordinate
system spanned by the eigenvectors of J the eigenvalues give insight into the behavior
of a fluid particle: If the eigenvalues are complex, then one plane will contain a focus
and solution trajectories will wrap around the one real eigenvector. In terms of the
eigenvalues the criterion of Chong reads as A\, > 0. This criterion was reportedly
successfully combined with others [15, 176, 122].

Complexl pys.,(x) = scalep(Aei(%))

A nice property of this criterion is also that A, directly measures the strength of
radial motion of a fluid element. Chakraborty et al. [14] suggest a combination of
Aei > € and kK > A/, > 0 where €, 6 and k are positive thresholds, to include a
notion of orbital compactness of the vortex. From this results an extension to the
complex eigenvalue criterion:

0 : da(x)<e
Compler2py,.,(x) = scaleD(/\cr(x))

otherwise

>
z

ci (X

We suggest to use the two criteria in combination.
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e Jeong and Hussain [62] proposed the second eigenvector Ay of S? + Q2 as a criterion
for finding vortex regions. A vortex is found in regions where \; is smaller than zero.
We know that )y requires x - Q2x to be greater than x - S?z in one eigenplane of
S? 4+ Q2. This is only critical if \; > 0 since we know that in case A\; < 0 these
two are balanced in all directions anyhow. When A; > 0 the modulus of Ay gives
indication of the balance of x - Q2?x and x - Sz in one eigenplane of S? + Q2.

0 : )\2 (X) > 0
A2Puzzy(X) = L M(x) <0
scalep(—A2(x)) : otherwise

3.3.2 Integration in the interactive framework

The traditional way of integrating feature detectors in flow visualization is to use iso-
surfaces to represent the extracted structures. This is not always appropriate in the case
of a vortex. The notion of a continuous degree of interest function tries to capture two
important properties of features: the first is that flow features are not sharply defined and
the second is the uncertainty that is inherent in feature extraction. Very often we cannot be
absolutely confident that each data element we selected really is part of the feature we are
looking for. This partial inclusion is represented by rendering data elements with opacity
values according to the degree of interest they obtained after all brushes and attributes are
summed up. The features are visually represented with their inherent fuzziness and the
user is not tempted to assume a sharp distinction between laminar and turbulent flow.
SimVis suggests a layered work flow. The information drill-down conceptually starts on
the direct data access level. The user can get an overview of the distribution of attribute
values like temperatures, pressures or flow velocities in the simulation data. This allows
us to gain an intuition on the situation in a straight-forward manner.

The second level is analyzing relations between different attributes and different sub-
volumes of the simulation. This involves using linked scatterplots of different attributes,
interactive brushing and linked views. Feature complexity on this level is still limited
to choosing intervals of attribute values to be part of the feature. The selection of spe-
cific value ranges involves specifying a degree of interest in parts of the data that exhibit
the characteristics selected. In fluid dynamics applications it is very often the case that
combinations of different attributes are of interest. For example, we will see in the next
section that in the design of a cooling jacket very slow or fast portions of the flow are of
critical importance when they have extremely high temperature. The linked aspect of the
scatterplots allows us to get an intuition for the relations between multiple attributes.
The third level involves the computation of derived features from one or multiple at-
tributes. On this level general properties of the data like correlation between attributes,
time-derivatives of attributes, or smoothing operations result in additional synthetic at-
tributes. After derivation, these synthetic attributes behave like the other attributes and
can be brushed, mapped to color, and serve as input information for further derivations. In
an iterative manner the user can now use the operations of the higher levels of inspection
to gain an understanding of these attributes.
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<«— outlet

transversal

cylinder block cylinder head

Figure 3.3: The major components of the flow through the cooling jacket include a longitu-
dinal component from inlet to outlet and a transversal component in the upward-and-over
direction through the gaskets [50].

The fourth level tackles specialized feature extraction. After the user has gained insight
into the features of the flow it is now possible to choose appropriate feature detectors to
extract where and when important events in the flow occur. At this point the interactive
aspect of feature detection comes into play: since the interaction with the derived fuzzy
set is possible in real-time, one can configure the sensitivity and related thresholds of the
detectors interactively. After visual inspection and parameter tuning these features are
ready for access in the higher levels of the work flow. They are ready to be inspected in
detail to understand their properties using the upper levels of the SimVis work flow. The
other way round the extracted features may be useful for exclusion. An engineer looking
for properties of the laminar portions of the low can extract a measure of 'vortexness’ and
brush only those parts that possess low membership values for this fuzzy set.

The possibility to combine different features has the benefit of being able to express com-
plicated vortex criteria using simple combinations. The vortex core extraction operator
of Sujudi and Haimes [140], for example, can be expressed as a combination of the par-
allel vectors operator [113] and the discriminant criterion of Chong [15]. The vortex core
extraction algorithm of Miura and Kida [100] is a combination of local pressure minima
and parallel vectors. Furthermore combining multiple detectors can help to compensate
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Figure 3.4: A feature-based, focus+context visualization showing regions of near stagnant,
hot flow with medium to high levels of the Ay vortex detector. On the left we see the
regions in focus. The zoomed view shows details, especially the extent of critical (red)
volume. The magnification reveals a vortex structure at this point.

unwanted properties of one detector. The Ay method for example does not always distin-
guish nearby vortices. This can often be compensated for by deriving a helicity attribute
to differentiate nearby vortices by means of rotational direction.

In Figure 3.2 we see an illustration of the discussed qualities: in (a) a histogram of the Ay
values (high A, to the left and low Ay to the right) shows that only a small proportion of cells
in the data set exhibit high feature values but a substantial fraction of the data is mapped
to non zero vortex membership values. (b) In the scatterplot — mapping temperature
against velocity — we can see that the cells belonging to vortices (points highlighted in red)
cluster for each vortex. (c) A scatterplot of turbulence against relative pressure shows that
there are two main pressure levels and we can interactively check that pressure is lower
near the outlet.

The derived feature attributes also add value through the linking functionality — selecting
high feature values highlights these data elements in the other views. In part (e) of the
image we can see how the mapping to fuzzy values of featureness changes aspects of the
visualization: the horseshoe vortex is detected with high fuzzy values in the front part
where it is strongest. Near the two ends of the horseshoe it is not very typical and the
cells are assigned values close to zero by the detector. In a visualization using iso-value
surfaces this vortex would break into several parts due to this effect, but it is conceivable
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as a whole as a fuzzy-region. This histogram of distance to surface measure (d) was used
to remove obscuring boundary cells from focus. In part (f) we see the features that were
found in a 3D view color mapped with helicity to display information on the direction of
rotation and its strength.

3.4 Application Evaluation — a Cooling Jacket

In the following we briefly sketch two examples of interactive visual analysis and exploration
of fluid flow through a cooling jacket. Computational fluid dynamics software is used to
inspect and improve the design process and we know that engineers invest large amounts of
time to optimize the geometry of cooling jackets. In this application evaluation we continue
work done by Hauser et al. [50] and Laramee et al. [87] where regions of turbulence were not
considered. For supplementary documentation and results to this case study, in particular
video, high-resolution images and other material, please refer to the web page for this thesis
[1].

The cooling jacket in focus (see Figure 3.3) is used with a four cylinder engine. The
complex shape of the cooling jacket is influenced by multiple factors including the shape of
the engine block and to optimal temperature for the particular engine. The cooling jacket
geometry consists mainly of three components: the cylinder head on top, the cylinder block
on the bottom and a thin component connecting the cylinder head and block, called the
gasket. The cylinder head is responsible for transferring heat away from the intake and
exhaust ports at the top of the engine block. The cylinder block is responsible for heat
transfer from the engine cylinders and for even distribution of flow to the head. Between the
cylinder head and block lies the cooling jacket gasket. It consists of a series of small holes
that act as conduits between the block and head. These ducts can be quite small relative
to the overall geometry but nonetheless are very important because they are used to govern
the motion of fluid flow through the cooling jacket. There are two main components to the
flow through a cooling jacket: a longitudinal motion lengthwise along the geometry and a
transversal motion from cylinder block to head and form the intake to the exhaust side.
Important design goals for the mechanical engineers are to obtain an even distribution of
flow to each engine cylinder and to avoid regions of stagnant flow to ensure good overall
heat transport.

3.4.1 Reduced heat transport due to turbulent motion

In order to find regions of the geometry that might need refinement we search for regions
where slow flow motion and high temperatures come together. The resulting image is
still cluttered from very small regions (that pose no problem to engine operability) and
therefore difficult to understand. A similar situation appears in the earlier investigation
of this property in a recent publication by Laramee [87]. From background knowledge
we know that vortices may diminish heat transport. Figure 3.4 left illustrates regions in
focus after brushing temperatures above the range of optimal conditions around 363° K in



3.4. APPLICATION EVALUATION — A COOLING JACKET 51

flow from gasket

Figure 3.5: (a) We have highlighted the turbulent region of interest. (b) From the top
we can see that a large patch of the surface contains high temperature values. (c) We
additionally include the two regions of turbulence below the surface. The lower one has
smaller extent and not enough cooling fluid is transported to this point. (d) A magnified
view of the lower turbulent structure. (e) The turbulent structure caused by a gasket,
viewed from the side.
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combination with a derived vortex measure. The result is a less cluttered image, showing
larger undesirable regions, where the cooling fluid is less effective in transporting heat away.
There is a large connected region of low heat transport visible in the lower right part of
the overview picture. After zooming in and visual inspection of flow behavior we can
conclude that the unwanted formation of a vortex is probably the cause for this situation.
Fortunately we know from engineers that the region is small enough and operation of the
engine in this state remains safe.

3.4.2 A situation of improved heat transport due to turbulent
motion

Even though the vortex in the preceding paragraph caused problems, there are cases when
engineers intentionally induce swirling motion when designing geometry. In Figure 3.5 we
see a region of turbulent motion that was provoked deliberately by choosing an appropriate
gasket geometry. Why is this so? The parts of the geometry close to the inner boundary
where the engine cylinders are located are critical parts of the volume. Turbulent motion
mixes the fluid and transports the hot portions away from the boundary replacing them
with cooler elements of the fluid. The large overview part of the image (a) tries to give
a feeling for the three dimensional geometry of such a region of high turbulence behind a
gasket. The next part of the image (b) shows a zoomed view from above. The two ring
shaped parts of the geometry hold a cylinder, and we can see that one side has mapped
high temperature values (red) while the other is not in the critical temperature interval.
Now we include the regions of turbulence caused by two of the opposing gaskets into the
view (c¢). It becomes clearly visible that the side with good temperature values is well
covered by the turbulent motion. On the other side the situation is different: the hot parts
are not covered by the turbulent motion and receive not enough cooling fluid. In (d) we
see an enlarged view of the vortical motion. Due to fuzzy-attribute mapping one can get
a good impression of the relative strength of turbulence. The last part of the image (e)
shows another view on the region of turbulence from the side.

3.5 Chapter Conclusions

In this chapter we have shown that feature detection algorithms benefit from continuous
representations in the context of interactive visual analysis — both with regard to effective-
ness and efficiency. We have discussed how the criteria are fitted into the SimVis framework
and contribute to the overall usefulness of the system. Additionally, we have applied this
new approach successfully to data from the engineering domain. The results of this chapter
lead to additional questions which we will focus on in the next chapter. We will go into
further detail on how the different detectors and measures can be combined interactively
and contribute to each other. We investigate the interrelationships of the criteria from the
viewpoint of visualization. We will see how the interactive combination of several crite-
ria can improve the understanding of complicated vortices and other features of turbulent
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flow.
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Chapter 4

Cross-Detector Analysis

”Logic’s useless unless it’s armed with essential data.” (Frank Herbert 1920 —
1986)

In this chapter we discuss the application of multiple linked views for advanced vortex
investigation in flow data. Local feature detectors and additional measures integrate into
an interactive flow feature detection system based on multiple linked views. We discuss
how linking and brushing of derived feature information can lead to increased performance
in interactive feature analysis. In a case study we demonstrate how the possibility to
integrate the information of multiple detectors leads to sound understanding of vortex
type features. Enhanced credibility and combined advantages of several detectors can be
achieved by uniting the results of multiple feature detectors in multiple coordinated views.

4.1 Motivation

Flow is everywhere. Gaseous or liquid flows occur on all scales from capillary flows trans-
porting oxygen to a muscle to the motion of plasma inside the sun. One fundamental
property of flow is the ubiquitous nature of turbulence. A century ago many people be-
lieved there might be some kind of universal theory of turbulence’ that was supposed
to be valid under a wide range of circumstances. It is now generally agreed that such a
theory does not exist [21]. Since there is no general theory that describes turbulent fluids
many engineers do not fully trust automated feature extraction methods. Therefore, in
the context of flow visualization, interactive approaches are an important tool to under-
stand the complex movements inside the flow and the changes of related attributes such
as temperature and pressure.

Computational fluid dynamics (CFD) methods output simulation data with ever in-
creasing complexity. The engineer wants to answer questions like: What is the flow like
now? How does the flow change over time? Where does the flow lead to? As long as
the turbulence is not developed into chaos, there still exist coherent structures that allow
predictions and can give insight in the behavior of the flow [57]. Vortices are an important
structure and by now we know a lot on their behavior. It is widely agreed that vortices
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belong to the most important coherent features in flow fields. Therefore tools that can
help to find and analyze the parts of the fluid that exhibit swirling motion can greatly help
the engineer or physicist to gain insight into the properties of the fluid motion.

There exists a wide range of local and global feature detectors that can find vortices
in the flow under the right conditions [115]. They have individual advantages and can
outperform others in certain situations. Some of the intrinsic properties of a vortex detector
include:

e Representation of the vortex: vortex core line methods extract line type features
giving precise insight into the location of the vortex core. Vortex region extraction
algorithms extract an approximate volume that describes the extent of the connected
region of swirling motion.

e Galilean invariance: a vortex detection algorithm that is Galilean invariant is valid
in all inertial frames of reference [62]. A detector that has this property is able to
find vortices also in cases where a steady current in one direction is added to the flow
field and masks the vortical motion of the fluid.

e Robustness: many detection schemes are considered to be prone to errors in special
configurations of the flow. Robustness can vary with respect to noise in the data and
the size of the grid in unique ways for each detector [118].

In the remainder of this chapter we will see how multiple linked views can give access to
many of the useful properties of the different detectors at once, but in the scope of this
chapter we will limit the analysis to vortex region extraction based approaches. These are
of interest, since vortices are especially difficult to detect and even approved extraction
algorithms can differ in their outputs significantly.

This is also an example on how visual analysis can benefit from multiple views that
allow the user to build a complex mental model of the properties of the flow. Until recently
the rising computing power has led mainly to rising complexities in the data generated.
This is of course a highly favorable development, but with rising complexity of the data
we also wish for more powerful analysis tools to benefit from the information in the data.
In this chapter we suggest interactive visual analysis as a way to to meet the challenge of
rising complexity and suggest to include automated feature detectors into this process.

4.2 On Visual Interactive Analysis

Multiple views and smooth brushing improve the flow feature analysis. In Figure 4.1
we see an example for this approach. The two 3D views show (a) regions of high local
vortex-measure and (b) low velocity and high temperature in focus and serve as reference.
(c) The scatterplot of a vortex detector (A\y) vs. its local extrema can be used to get an
overall impression on the distribution of detector response values and brushing can be
used to select vortical regions. In all attribute views the brushed elements appear in red.
Elements that are colored black are not selected in any of the views. Dots are colored
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Figure 4.1: Multiple views and smooth brushing for vortex analysis. (a) A 3D view showing
regions of high local vortex-measures. (b) A 3D-view with low velocity and high tempera-
ture in focus serves as reference. (c¢) A scatterplot of the Ay vortex detector output vs. local
extrema of Ay. (d) The histogram shows the development of the features selected in the
scatterplots and reveals three peaks of turbulence over time. (e) A scatterplot of velocity
vs. temperature allows to compare attribute values of the selection (red) with those of the
vortex regions (green).

green to show data items that are not selected in the current view but in other linked vies,
i.e. they show the difference between the current selection from selections in other views.
(d) The histogram shows the development of the features selected in the scatterplots (using
color linking between views) and reveals two peaks of turbulence over time. This could
be time steps that qualify for further investigation. (e) In this scatterplot of velocity vs.
temperature we compare attribute values of the selection (red) with those of the vortex
regions (green).

Details on the vortex detectors and references can be found in previous Section 3.2.
The combination of multiple classifiers has received much attention in the machine learning
and and statistic communities. Lam [81] discusses methodologies for the combination of
multiple classifiers to obtain improved recognition results. Roli and Kittler [120] present
an overview on fusion methodologies.

In their standard definition the common feature detectors give a binary classification for
each volume element to the classes 'vortex’ and 'no vortex’. In the previous chapter we
have discussed that it can be more useful to consider the whole spectrum of local feature
detector response instead of using a binary threshold. Especially in combination with
direct volume rendering more information is communicated by also showing the gradient
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Figure 4.2: Combining multiple detectors using linked views: (a) Ay vs. @) shows that the
two are closely related in this data set. (b) The relation between Ay and kinematic vorticity
number is smaller but the sharp ’edge’ in the distribution helps to specify a good threshold
for Ay. (c) The comparison with the swirl criterion verifies that we have selected a good
threshold. (d-e) the pairwise relations of @), the swirl criterion and the kinematic vorticity
number can be used as a sanity check for the detected region.

information in the visualization. Nevertheless, the interaction framework still allows us to
use thresholding and binary brushes.

In Figure 4.2 we see that the different detectors have unique response characteristics
and inspection of their interaction can help visual analysis. Since the detectors are all
based on values computed from the Jacobian there is very often some correspondence.

4.3 PQR Plots

The analysis of critical points of the fluid field has proven to be very useful for understand-
ing the behavior of flow fields. Perry and Chong discuss how critical point concepts can
help understand eddying and swirling flow patterns [114, 15]. They use three invariants of
the Jacobian, P, () and R:

P = —trace(J), Q= %(P2 — trace(J?))

R = —det(J)

The invariants are related to the topology of flow patterns. Therefore they give a useful
complement to the other views. Since plots of P, () and R are traditionally used for
presentation and discussion in the literature and not as vortex extraction criteria we do
not scale or transform them in any way but map them directly to scatterplots. Plotting
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Figure 4.3: A PQ-plot: (a) most of the cells selected by the the OR-combination of the
Ao method and the low-pressure-high-temperature feature lie above the parabola ¢ = E-
in the pg-plot (drawn red over the scatterplot for illustration). (b) The first feature (red)
selects Ao values suggesting a vortex region. We can see where this differs from the second
feature (green). (c) The second feature (red) selects low pressure and high temperature.
We see that most of the cells belonging to a vortex unexpectedly exhibit high pressure
values (green). (d) In the 3D-view we can see the region in space where we have both
features present.

different planes of these invariants is a common tool when discussing flow topology features.
Typically one invariant is held constant (e.g., P vs. @ with R = 0) such that the result can
be visualized using a 2D plot, but to our knowledge this has not been done interactively
using multiple linked views, where it is possible to compare the distribution of points
interactively for different settings. The invariants are related to the eigenvalues of the
characteristic equation by

det(A—=X) =0 XN+ PN+ QA+ R=0

plots of P, () and R give insight into the complex and real eigenvalues of the characteristic
equation and therefore into parts of the flow which show eddying motion.

In Figure 4.3 the PQ-plot shows the spread of cells in the PQ-plane with R selected
to be zero and compares this with the results of the Ay method. In (a) we see that most
of the cells selected by the Ay method and the low-pressure-high-temperature feature lie
inside above the parabola ¢ = % in the PQ-plot. This is the region of stable and unstable
focus flow, that is a pattern of spiralling motion. In (b) the selection (red) is centered at
high Ay values. Through linking we see where this differs from the second feature (green).
(c) The selected feature (red) of low pressure and high temperature can be compared with
the feature from the other views (i.e., b). We see that most of the cells belonging to a
vortex exhibit high pressure values (green). This is an atypical finding, since due to the
centripetal forces necessary for spiraling motion we commonly find lower pressure values
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Figure 4.4: Correlating several detectors: (a) The data set contains a weak and small
vortex in a slow portion of the fluid, that no single method can find satisfyingly. (b)
The Ay method has to be set to very high sensitivity to include the vortex region. (c)
The swirling strength method detects a similar region. (d) The region selected by using
a combined detector that correlates Ao and swirling strength. (e) The rotation of the
points (see text) in the scatterplot is dependent on the slope of the regression line. (f)
After rotation the regression line matches with the x-Axis. (g) A rectangular selection now
contains an inherent measure of correlation of the detectors.

connected with vortices. The 3D view (d) complements the analysis by showing the regions
in space where we have at least one of the features present. The regions match with what
would have been expected, that is to say behind the inlet, at the region on top opposite of
the outlet and around the outlet.

4.4 Correlation Brushing

When trying to understand how several detectors combine we would like to understand
how the response values of two detectors correlate. For this purpose we use a rotation of
the scatterplot to be able to use rectangular brushing to find correlating parts of a feature.
We calculate the offset and slope of the regression line and rotate the scatterplot to match
the regression line with the x-Axis. See Figure 4.4 (e+f) for an example. Let X and Y be
the attributes under inspection in the scatterplot. Then we can compute the mean values
Z, y to translate the points in the plot such that (z,y) coincides with the origin of the
scatterplot. The slope [ of the regression line y = a+ Sz, (o = 0 after translation) is then

2.z =) (i — 9))

R S S
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Figure 4.5: Feature localization analysis in the application case of a 2-stroke engine sim-
ulation: (a) an overview showing the engine geometry. (b) In the first step we select the
parts of the data with the desired oxygen/fuel ratio. (c¢) To find out which portions of the
vortex result in optimal mixing we plot Ay against local extremes of Ao, the optimal mixing
seems to result from medium vortex strength. (d) We check this result by comparing with
a histogram of the kinetic vorticity number and see that the cells under strong rotation
do not show optimal mixing ratios. (e) The resulting mixing vortex region colored by ER
attribute ("ER” measures combustibility).

This gives the angle between the x-Axis and the regression line as arctan((3). After rotating
the points in the scatterplot we can use rectangular brushing to select correlating parts
of the attributes X and Y. Since linear regression using a regression line based on least-
squares-fitting is very sensitive to outliers in the data, we include the option to exclude
a certain percentage of the data from the calculation of the covariance (e.g. the 100th
percentile) in the user interface.

In Figure 4.4 we see an example of this approach. The 3D images (a-c) are different
images from the same viewpoint, while the fourth 3D view (d) has larger zoom for closeup
visualization. The scatterplot (g) and the 3D view (d) are linked such that the selected
cells get full opacity. We study a weak vortex in a region behind the inlet where the flow
is moving slowly close to a stronger main current from inlet to outlet. For this reason the
general direction of the flow from inlet to outlet is difficult to distinguish from the location
of the vortex by local feature detectors. In (b) and (c) we can see that both detectors
tend to include some portion of the curved flow into the detected vortex region. Still, the
strengths of response differ in a systematic way from each other: in the faster portion of
the flow we get detector responses that correlate differently than the responses for fluid
cells inside the weak vortex. Therefore we can select a good approximation to the vortex
region with a single brush. Of course we could have improved the selected region by using
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Figure 4.6: Analysis of the tumbling motion inside the combustion chamber: (a) a 3D view
of the tumbling motion that causes mixing of fuel and oxygen. (b) The selection of high
turbulence measure. (c) A scatterplot showing the distribution of time vs. helicity shows
that the current timestep is of importance for the overall process. (d) A 2D projection of
the engine were the combustion chamber is selected for spatial analysis. (e) A second 3D
view with color mapped to helicity shows that the selected vortex consists of at least two
counterrotating parts.

additional brushes and including other features, but in the image we can clearly see that
in the rotated view a single selection already performs very well.

4.5 Multiple Detector Views

Numerical data visualization aims at supporting the tasks of exploration and analysis to
find out about certain characteristics of the data set. Important tasks are: verification
of simulation results by the experts for sanity, improvement and optimization of shape
and geometry, definition of settings and parameters of controlling hardware (e.g., the chip
controlling injection speed for different engine loads) and prediction of fluid-material inter-
action (e.g., transport of lubrication fluid). All these properties of the data are connected
to a certain extent to the control of vortices and their development over time.

We have identified four important interaction schemes that are often used in interactive
analysis — they all involve the use of multiple linked views:

e vortex and feature localization answers questions on the location of vortices and
related features inside the data. The engineer uses interactive brushing in multiple
views to select ranges of different features that are of interest. Different 3D views
will show where the concerned regions are located and the user can relate regions
and their properties with each other.

For example in a simulation of two mixing fluids the user can search for regions of
turbulent flow by brushing high vorticity values and compare them with regions of
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high concentrations of one fluid to find stable vortices that are interfering with the
mixing process. (See Figure 4.5 for an example and its discussion later in the text.)

e spatial analysis answers questions concerning the properties of a certain subvolume
of the data. The engineer selects the relevant region using projections and 3D views
and uses multiple scatterplots to visualize the situation and compare it to the overall
behavior of the fluid in other views. This kind of analysis is necessary to understand
the situation at important parts of the geometry to find out if the flow behaves as
expected. See Figure 4.6 for an example.

e vortex-feature analysis answers questions on the relationships between vortices
and other features. The engineer uses multiple connected views to gain understanding
on how a selected feature affects other attributes of the data. For example the user
can use several feature detectors to detect all vortices and to exclude false positives.
Afterwards the engineer can analyze how the temperature in these regions compares
to the overall situation. See Figure 4.7 for an example.

¢ time-dependent vortex analysis answers questions on the progression of proper-
ties of the data in time. The engineer uses multiple views that show the situation at
different time steps or the development of a feature over time. For example the user
can select a vortex and analyze its progression in the course of time.

The key to these analysis guides is the linking between the different views. When we need to
interpret data — that is to go from numbers to meaning — we need the built-in connection
between the different views: linked viewing parameters in the 3D views during feature
localization and linked feature brushing for inter-feature analysis and spatial analysis.
This procedural approach to interactive drill-down analysis is based on a combination of
computational, automatic feature detectors that are computed in a pre-processing step
with interactive brushing and attribute selection.

We see that using multiple linked views and complementary feature detectors we can
gain deepened insight of the vortex-type features inside the flow. The analysis involving
several feature detectors gives two opportunities for further inspection. The first way is to
interrelate different detectors to

e increase confidence in the detected region or core [146].

e find false positives and false negatives by comparing where the detectors agree and
disagree.

e limit the response to a certain type of vortex feature. For example this can be
beneficial to be able to discern vortices by the direction or strength of rotation.

These properties are important when dealing with a large number of automatically de-
tected vortices, where it is necessary to analyze only the largest ones or otherwise classified
as ’critical’. The combination of detectors and attributes of the data is beneficial in several
ways:
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Figure 4.7: Further investigation of optimal mixing. (a) The portion of the vortex from
Figure 4.6 where the mixing attribute lies inside the optimal range. (b) In the 3D view
we can see that this region is located at the boundary of the rotating motion. (c¢) Plotting
kinematic vorticity vs. helicity reveals two clusters with a tendency to slowly rotating
motion. (d) In 3D we can see that the region of optimal mixing differs from the main parts
of the tumbling motion (compare Fig. 4.6 (e)).

e We can find vortices that are critical in the context. For example vortices that
hinder mixing, that stall the fluid motion, take away kinetic energy or cause material
wearout.

e We can analyze vortices that are caused by purpose to check their effectiveness and
general shape (e.g., to cause mixing).

e We can understand how the existence of vortices is related to relevant properties
inside the fluid.

All these tasks inevitably involve the use of multiple views, both 2D and 3D, and require
to relate features and detectors to each other.

4.6 Evaluation of the Multi-view approach

Data sets from computational fluid dynamics (CFD) simulation share specific character-
istics: they cover multiple aspects of the simulation related to physical properties of the
material (e.g., temperature, density or strain), the fluid component (e.g., direction, kinetic
energy or pressure) and additional quantities related to the application domain (e.g., rate
of combustion or soot density). In the following we will discuss two examples of interactive
visual analysis of simulation data from the field of automotive research.
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4.6.1 Two-Stroke Engine

The 2-stroke engine data set contains a complete simulation of the injection and combustion
of fuel during one crank revolution. The model is based on a moving volume mesh such
that at every time step a new unstructured grid is introduced. In a previous work, Schmidt
et al. have analyzed this data set with the SimVis approach [131] and compared the results
with a VR/AR method. With the use of CFD simulation initial experiments can be made
without costly production of prototype hardware. In this step, unexpected processes can
be investigated and the course of physical processes can be shaped according to the engine
specifications. One key attribute that is related both to emission and engine performance
is equivalence ratio (ER), which is the relation between fuel and air within a volume
cell. It is crucial that ER lies in the optimal interval between 0.7 and 1.4 for most fluid
cells at the moment of ignition. In Figure 4.5 we inspect the mixing process inside the
combustion chamber — using the approach following a spatial feature analysis process: (b)
in the first step we see the region of optimal mixing in a timestep at the beginning of the
compression process when the reaction has not started yet. (c¢) This region was selected
using a scatterplot showing ER and a reaction progression attribute. (d) A scatterplot
that relates vortex detector output against its local extrema shows that optimal mixing
is related to regions that are not at the peaks of vortex detector response. This could be
related to the ambivalent nature of vortices in relation to mixing: a strong vortex can isolate
portions of the flow inside and hinder mixing while chaotic motion and turbulence tend
to cause full mixing of different fluid materials. (e) The histogram of kinematic vorticity
shows clearly that the parts of the fluid that have reached optimal mixing (colored red in
the histogram) are rotating slower than the rest.

In order to further analyze the connection between turbulent motion and mixing inside
the combustion chamber we continue with a spatial analysis. In Figure 4.6 a measure of
high turbulence is selected and related to the region that exhibits optimal mixing. In (a)
we see a visualization of the rotating motion that is part of the tumbling motion which is
the main force of the mixing process of fluid and oxygen. This first orientation step of the
spatial analysis shows the vortex in nearly full development. This vortex constitutes an
important part of turbulent motion inside the combustion chamber and is essential in the
mixing process during compression resulting from the upward motion of the piston. Even
though we have mapped color to ER, spatial relations do not become immediately clear.
(b) In the scatterplot we can see that ER in the combustion chamber is contained in a very
narrow band (the yellow portion) probably due to the effect of the injection setup. We
have selected high vortex-measure (\2) values. (c) A scatterplot of time vs. helicity shows
a tendency to clockwise rotation in later timesteps. (d) We have used a 2D projection of
the geometry to select the combustion chamber for local analysis. (e) Mapping helicity to
color of the volume cells we can distinguish the main vortex (red) from a smaller turbulent
region (green).

To understand the properties of this vortex we continue with an inter-feature analysis
that relates features of the fluid with ER. This is shown in Figure 4.7. (a) As a first step
we select optimal ER in a scatterplot showing the situation in the current timestep. (b)
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Figure 4.8: One key part of the flow inside the cooling jacket are the vortices caused by
the gaskets between the cylinder block and cylinder head parts. (a) A closeup of one of
the vortices behind a gasket (see also Fig. 4.9 (a) no. 1). (b) The central parts of the
vortices can be selected by combining Ay and high swirl. (¢) When plotting velocity against
temperature the gasket vortices lie inside a single cluster.

The 3D view shows that the portion of the vortex where the mixing attribute lies inside
the optimal range is located at the boundary of the vortex. (c¢) Plotting kinematic vorticity
vs. helicity reveals two clusters, both with a tendency to slower rotating motion. (d) In a
3D view we can see that the region of optimal mixing differs from the main parts of the
tumbling motion (compare Fig. 4.6 (e¢)). We can assume that the second cluster (green)
is a weaker child vortex caused by the main vortex and that the mixing process is related
to the appearance of smaller regions of turbulence caused by the main tumbling motion.

4.6.2 Cooling Jacket

In the second application example we inspect fluid flow through the cooling jacket from
the previous Chapter (see 3.4). In this application evaluation we continue the analysis
from the previous chapter and analyze the regions of turbulence behind the gaskets further
using multiple detectors.

The coolant flow inside the jacket is governed by two major directions — a longitudinal
motion along the cylinders of the engine and a transversal motion from cylinder block to
head. To keep the engine operative it is necessary to obtain an even distribution of flow
to each engine cylinder and to avoid regions of stagnant flow to ensure good overall heat
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Figure 4.9: We analyze the difference between two of the vortices caused by the gasket
geometry: (a) an overview of the gasket vortices in the cooling jacket geometry. (b) This
scatterplot shows that second vortex (red) tends to lower turbulence and velocity but
clear distinction is not possible. (¢) We found the differing attribute: plotting temperature
separates the two regions. (d+e) Both vortices are very similar in the outputs of the vortex
detectors.

transport.

Around the combustion chambers heat is transported away from the surface by a mixing
process that replaces the heated fluid. To this end the shape of the gaskets causes turbulent
regions behind the gaskets. The turbulent regions differ in size and heat transport efficiency.
In Figure 4.8 (b) we see a closeup of a single vortex with color mapped to velocity. (c)
We use a combination of Ay and the swirling strength parameter to select the full region of
turbulence restricted to the parts rotating stronger. In (d) we see a scatterplot involving
all vortices and so far we cannot distinguish between the two vortices in terms of their
attributes.

In Figure 4.9 (a) we see six of these turbulent regions in focus with the rest of the
geometry in shades of gray for context visualization. In scatterplots visualizing detector
outputs ((d) and (e)) we cannot see obvious differences between the turbulent regions 1 and
2. Therefore we switch to analyzing their attribute values using additional linked views.
In a scatterplot (b) of turbulent kinetic energy vs. velocity we see that the second vortex
(red) tends toward slower movements and less kinetic energy. A second scatterplot (c)
now reveals that the two turbulent regions differ in their temperature attributes. Further
analysis shows that they are similar in other aspects. We can conclude that the difference
between the two regions of turbulence stems from the larger temperature of the fluid before
entering gasket 2. This is due to the fact that the fluid arriving at the second gasket has
covered a larger distance from the inlet than the fluid that goes through gasket 1. The
result is therefore that the slightly lower cooling effect of the second gasket is not due to
the gasket geometry but an acceptable effect of the overall situation.
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4.7 Chapter Conclusions

We have presented a case study of vortex feature analysis using combined detectors and
multiple views in the context of CFD data for automotive industries research. Using
multiple views it is possible to compare and weight the response values of several detectors
intuitively by means of interactive visual analysis. Furthermore we have discussed an
extension to brushing features in scatterplots that allows to analyze the correlation of
features using rectangular brushing. It was demonstrated that by correlating two detectors
one can find features that could not be studied before. The case study reveals that the
combination of multiple 2D and 3D views can help understanding complex 3D flow features
when linking and brushing are combined appropriately. We have identified systematic
approaches to study vortex phenomena in multidimensional data sets, based on multiple
views, linking and combined feature detectors.

In the context of real world data the benefits of multiple linked views become clear:
taking advantage of the combined potential of infovis views, 3D graphics visualization and
automated feature detectors allows to understand the situation inside the data. Reading
between the lines and gaining deepened understanding is possible by the streamlined and
integrated approach of coordinated views and multiple detectors.



Chapter 5

Delocalized Detectors

"Most deadly errors arise from obsolete assumptions.” (Frank Herbert 1920 —
1986)

In this chapter we discuss generalizations of instantaneous, local vortex criteria. We in-
corporate information on spatial context and temporal developments into the detection
process. The presented method is generic in so far that it can extend any given Eulerian
criterion to Lagrangian unsteady vortex detection. Furthermore, we present a visual aid to
steer and understand the feature extraction process. We show that the delocalized detec-
tors are able to distinguish between connected vortices and help understanding regions of
multiple interacting structures. The filtering properties of the delocalized detectors extract
smoother structures and reduce noise in the vortex detection result.

5.1 Motivation

Recent research in the field of Lagrangian coherent structures [41, 46, 126, 127] suggests
that we need to refine our approach to understanding fluid behavior. Even though the
local information has shown to be highly valuable when trying to understand the nature of
turbulent fluid movements, we need to look further and find ways to include information
on temporal development and particle movement into the analysis. In this chapter we show
that vortex feature extraction can retain the knowledge that we have on local properties
of the flow and still include the Lagrangian perspective into the analysis.

The Lagrangian approach is based on taking the trajectories of particles into account
for analysis. We can think of the detectors presented in this chapter as criteria where
local detector responses are accumulated along trajectories to achieve both spatial and
temporal coherency. The Lagrangian approach introduces new questions into the analysis.
Since the result of the Lagrangian vortex feature detector is dependent on the length of
the particle trajectories’ analyzed, we get an additional parameter with significant impact

since trajectories are streamlines for steady data and pathlines for unsteady data we will speak of

trajectories when the difference is not relevant
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Figure 5.1: We illustrate the suggested approach. (a) By analyzing Eulerian quantities
along trajectories we can improve the extraction of vortices which we consider as coherent
structures and limit the effect of numerical issues. (b) Using a simple two-dimensional
representation of the detector responses along trajectories we can understand and steer
the locality of the accumulation. (c) The resulting method promotes coherency in space
and time by accumulating information along a trajectory of a fluid particle for each point.

on the results of the analysis. We need a way to control the length of the trajectory that
contributes to the vortex detector response. Recent publications have suggested this as an
important open research question [127, 41, 37]. We present an approach which allows to
control this parameter non-uniformly using an interactive analysis view.

A problem mentioned by several publications dealing with Lagrangian coherent struc-
tures and particle trajectories in general [36, 125, 128] is the fact that particle trajectories
can quickly leave the simulation domain (e.g., through an outlet). In this case we do not
have enough information available to give a good accumulated detector response. The
approach of delocalized Eulerian detectors gives three answers to the problem of short tra-
jectories: firstly, local criteria have been demonstrated to give reliable results on their own,
thus we are less dependent on having long trajectories available to generate good results.
Secondly, we allow to include the upstream information by using backwards integration into
the analysis to compensate for short particle trajectories in forward time. And thirdly, by
taking the proportion of the unknown region into account, the lack of information due to
extremely short trajectories is included into the detection result.

The contributions of this chapter are as follows:

We extend Eulerian vortex criteria to extract coherent structures which improve on
the features detected using Ay, Q or the swirl criterion.

A method to interactively control integration of the detectors along particle paths.

An extension of trajectories to include upstream information to deal with the problem
of short particle trajectories.

e Comparison and evaluation of the results according to numerical issues, smoothness
and separation of vortices.
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Figure 5.2: Accumulation of local detector values along a particle trajectory. The local
values are weighted according to their distance from the seeding point of the trajectory.

In the next section we discuss related work. The third section presents the basic concepts
of delocalized feature detectors and a 2D view of particle trajectories to analyze the local
detector responses. In the fourth section we present evaluation results.

5.2 Delocalized Vortex Detectors

In the following subsection we discuss the non-local extensions of the Eulerian detectors.
In the second subsection we present the line view which helps to steer the extraction. See
Figure 5.1 for an illustration of the delocalized vortex region detectors approach.

5.2.1 New Criterion

For accumulation along a trajectory we mneed an FEulerian vortex detector
E(x,J(z,t),u(z,t)) — [0,1] where x € D C R® is a point inside the simulation do-
main D, u(z,t) is the velocity at point = at time t and J(z,t) is the Jacobian. See Figure
5.1 (a) for an illustration. The criteria we have found to benefit most from delocalization
are A9, (), the swirling strength criterion and vorticity magnitude.

A pathline can be expressed as

t+At
p(t + At) = p(t) + /t u(p(s), s)ds

where p(t) is the position of the particle at time ¢, p(t + At) is the new position after time
At and u(p(t), t) is the velocity of the particle at position p(t) at time ¢. The Runge-Kutta
method (RK4) can be used for numeric integration of these pathlines [116]. Given a vector
field u we call py, 5, the pathline starting at point zy and time t,.
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Now we can define the Eulerian detector response for a pathline py, ,, as

E(pto,:vov t) = E(ptowo (t)v J(ptowo (t)v t)? u(pto,:vo (t)7 t))

if Pto,zo (t) eD. ~ ~
For a pathline we define the two maximal integration length parameters t; and ¢, as
the maximal time this pathline remains inside the simulation domain D during forward
(resp. backward) integration.
In contrast to unsteady flow LIC, where a color pixel value is advected through the flow
field, in the the context of computing a vortex detector value it makes sense to include
the backward direction: the vorticity of a position is not only dependent on its future
contribution to a vortex, but also on its past developments (we can think of a particle
inside the border of a strong vortex region to be justly assigned a high vorticity value).
The delocalized version of the Eulerian detector at position xy and time ¢ finally is

min(t ¢t
I fmax((t{,tbf)) w(s) : E(pto,:voa S)dS

Pt 17) = 7 w(s)ds
tp

with ¢, < to < ty and w(x) a weighting function. Good parameters for forward and
backward integration time, t; and ¢, allow the delocalized detector improve on the local
information. In case the trajectory leaves the domain before the selected integration times
are met (ty > ¢y or t, > ;) we can accumulate the requested information only partially.
Weighting the result with the integral of w(z) over the complete selection [¢,,tf] decreases
the delocalized detector result and incorporates the uncertainty resulting from short tra-
jectories. The formalism does not change for steady and unsteady flows, since for steady
flows the definition of a pathline coincides with the definition for a streamline.

The weighting function should give sufficient control over the accumulation and produce
predictable results for the user. The first option is linear weighting where the weight for a
position on the trajectory is given by the difference in physical time from particle release
time ¢o. That is w(t) :=1— (t —to)/(ty — to) for t >ty and w(t) := (to — t)/(to — tp) for
t <ty with (t, < to < tf). The second option is a an accumulation using a Gaussian filter
w(z) = 1/(0y/2m) - e 0510)/7  See Figure 5.2 for an illustration. The line view presented
in the next section allows the user to determine and specify the relevant parameters, i.e.
o, ty and t,. Using Gaussian weighting, the influence of a sampling point quickly becomes
very small after the inflection point is reached, thus ¢ can be used to control the locality
of the criterion. For brevity we will write E{’ for a delocalized detector using Gaussian
accumulation when ¢y = t, = t. Units are seconds for ¢, and ¢ has unit of "average cell size
times meters’ to simplify the notation for the different data sets.

Filtering a Galilean invariant feature detector along a path line results in a Galilean
invariant detector. This is because the operation of pathline integration commutes with
Galilean transformations. We can understand this intuitively by considering what happens
inside the fluid if the observers speed relative to the fluid changes: the position of a particle
relative to a vortex remains the same as long as the detector itself is Galilean invariant. In

(5.1)
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‘ H Cells ‘ Ts ‘ Type ‘ Grid H ROI ‘ Lines ‘ Acc. ‘ Int. ‘
T-Junc. | 30 K 100 incomp. | struc. all | 137 MB | 0.1 sec | 1 min
Cool. J. | 1538 K | 1 (steady) | incomp. | unstruc. || 95 K | 650 MB | 2 sec | 5 min
2-Stroke || 1156 K 91 comp. | unstruc. || 81 K | 570 MB | 2 sec | 4 min
Rankine | 262 K 1 synth. struc. all | 1.6 GB | 3sec | 3 min

Table 5.1: Comparison of the data sets evaluated in the application study. We have
evaluated a simulation of a pulsating T-Junction, a Cooling Jacket, a 2-stroke engine and
the synthetic rankine vortex model. The region of interest (ROI) showing complex vortical
behavior was always much smaller than the whole data set. (Abbreviations: Ts — time
steps, ROI — cells in region of interest, Acc. — accumulation of delocalized detector, Int. —
integration of trajectories)

case the detector is not galilean invariant the information accumulated along the particle
path may not be correct, but since the delocalization operation commutes, we can argue
that integration does not aggravate this problem.

So far we have not discussed how the integration parameters ¢, and t; can be chosen
appropriately. This will be the topic of the following subsection.

5.2.2 Line View

The purpose of this view is to visualize the computed trajectories in a 2D view as straight
lines. This gives more space to convey visual information and enables easier selection
and brushing operations. The view is related to work of Matkovic et al.[94] that presents
colored lines as an approach to visualize functions as straight lines using color coding.

The delocalized criteria are robust and only in complex flow regions a single threshold
does not perform well. In this case it is necessary to use multiple thresholds, which are
difficult to define using the occluded 3D trajectory rendering. By evaluating the distribu-
tion of local detector values in combination with selective 3D visualization of the relevant
streamlines it becomes possible to select a few suitable integration length parameters to
separate interacting vortices.

The engineers are interested in the relationships between the fluid cells of the mesh,
therefore we seed one trajectory per grid cell. Each trajectory is visualized simply by
placing its segments successively on a straight horizontal line. The resulting horizontal
lines are spaced vertically so that they fill the available viewing space. Our main interest
for the line view is to observe how the vortex classifier response is distributed along the
trajectories. The view works in coordination with the other views in the visualization
framework to allow filtering relevant trajectories. See Figure 5.3 for an illustration. While
selecting integration length parameters in the line view, the currently relevant trajectories
are rendered as lines in the 3D view, conveying the spatial information for these trajectories.
Additionally, a degree of interest (DOI) can be specified by brushing in other views, thus
assigning a DOI value to the sample points in the data set. Lines with zero DOI at their
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Figure 5.3: Linking the Line View. (a) Attribute selection on the multivariate simulation
data set allows to filter the data points of interest. Only the lines seeded at the selected
points are rendered in the line view. (b) The remaining lines are displayed in 2D and the
user can specify integration parameters by drawing line segments onto the view. (c¢) The
view is linked to the 3D rendering. While selecting the forward and backwards integration
length parameters in the 2D view the trajectories below the tip of the cursor are rendered
in the 3D view.

starting positions are filtered out.

Good sorting of the lines is crucial so that trajectories belonging to the same structure
are ordered closely together. For that purpose the view offers a range of sorting and filtering
criteria:

e Key length: is the maximal time interval including ¢, inside which the particle remains
inside a region of positive local detector response without interruption (see Figure
5.2).

e Line length: lines are sorted or filtered according to their length

e Delocalized response: after selection the lines can be reordered according to their
delocalized detector response

Line fusion: line fusion is necessary when more lines are currently in focus than there
are pixels available on the screen. We employ post-classification, by first combining the
detector responses for line segments, and then assigning color to the resulting line by
means of a transfer function. To combine a group of lines into one line, we keep advancing
a vertical scan-line, until all segments are drawn onto a storage texture.

Integration length specification: the selection ranges for the lines can be defined
interactively by drawing two curves on the view. This way, for each group of lines (after
fusion) the user can specify the parameters t; and t,. When Gaussian weighting is selected,
the interaction allows to select the location of the inflection point. It is sufficient to select
the ranges for very large groups of lines and only when this approach fails it is necessary
to zoom in and perform a more elaborate selection. With good sorting parameters the
delocalization is robust, and all figures in this chapter were made without zooming.



5.3. EVALUATION 75

Using linking and brushing the line view allows to select appropriate integration length
parameters for different regimes of the flow, which is necessary to separate interacting
structures. Furthermore, the selective rendering of 3D trajectories using linking between
the line view and the 3D view can serve as a useful analysis tool by itself.

5.3 Evaluation

In this section we discuss vortex feature detection results. Table 5.1 gives an overview of
the evaluated cases. To be able to evaluate at which point higher thresholds start to remove
important parts of the feature we include vortex core lines computed with the approach of
Sujudi and Haimes [140] for the steady cooling jacket data set and its extension for time
dependent flows discussed in the following chapter. These vortex core line detectors can
produce spurious or shifted solutions as well, but for the strongest and largest features
they are a good measure for comparison with the extracted regions.

5.3.1 Value distribution in real-world data sets

When working with CFD data sets we can roughly classifiy them into two categories:
the first are direct numerical simulations (DNS) where a flow problem is solved on a
super computer using the Navier-Stokes equations alone. Using super computers and
sufficiently simple problems it is possible to solve the given problem exactly with very
high grid resolutions. These data sets are commonly well behaved and contain few, well
distinguishable structures [101].

CFD data sets from engineering on the other hand usually deal with problems that
cannot be solved using DNS and need turbulence models to get results in reasonable time.
These data sets tend to contain [2]:

e Large differences in cell sizes (generally three to four orders of magnitude).
e Non-planar faces on the boundary where the shape of the object is modeled.
e Large differences in face sizes within a single cell.

This can lead to extremely large gradients close to the boundary due to the extremely
small cell sizes. Solution errors and non-planar faces additionally cause errors in gradient
estimation. Therefore the cells close to the boundary and especially those near edges of the
boundary can have strong impact on the distribution of vortex detector values. In Figure
5.4 we can see that the non-uniform distribution of detector values has to be considered
during interactive analysis.

The non-uniform distribution of detector values also has to be taken into account when
selecting levels for iso-surface extraction from vortex detector values. A common choice in
DNS data is to use iso-surfaces at a level of 20% of maximal detector response for vortex
visualization (see e.g., [62, 176]). Due to the generally higher and more variable detector
values in engineering problems, appropriate levels for iso-surface extraction have to be
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Figure 5.4: Extremely large gradients can lead to non-intuitive value distributions of the
vortex detection criteria. (a) We can see that a selection of Ay values in the range [—6 -
107, —400k) in a scatterplot. This selects only 4% of the negative Ay values in the volume.
(b) The remaining 96% of Ay values are invisible. (¢) In a zoomed view of the scatterplot
we can see the distribution in the selected range [—400k,0). The linked 3D views give an
impression on the distribution of Ay values inside the data set. (all numbers rounded to
next integer).

selected for each data set individually. For the cooling jacket more than 90% of positive
Q-detector values lie inside the range (0,2 - 10°] and more than 90% of the o-detector
values lie inside the [—-400k, 0) range. We have found iso-values of 1000 for Q) and 5000 for
Ay appropriate to display the geometry of the extracted vortex structures.

5.3.2 Cooling Jacket

The first data set contains a steady simulation grid of fluid moving through a cooling jacket
(see Figures 5.5 and 5.6). In this section we extend the analysis of turbulence inside the
cooling jacket performed in Chapter 3. In Chapter 4.6.2 we have discussed the geometry
of the cooling jacket in more detail. The important part for the following discussion is the
cooling jacket gasket situated between the cylinder head and the cylinder block (see Figure
3.3). The gaskets are small holes that serve as conduits between the block and head. We
focus on a region of interest (see Figure 5.5 (top)) behind one of these conduits used to
control the motion of fluid flow through the cooling jacket. Close to the inlet the flow is
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Figure 5.5: The cooling jacket data set. (top) Overview of the geometry and region of
interest. (bottom) We compare the detector results for Q and delocalized Q using o = 0.8
and 0.1 sec. integration time: large parts of the feature A are removed by the instantaneous
Q criterion, while feature C becomes more localized and connected to the larger region,
which is better in the light of the results obtained using A,.
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fast and the gasket causes strong turbulence.

In Figure 5.5 (bottom) we compare the Q) criterion and the delocalized @ criterion. We
set the threshold to 1000 in order to remove the large amount of tiny structures, such that
three larger structures become distinguishable. We can see that inside the largest structure
(A) half of the length of the core line is removed and large holes appear. While the two
other structures (C+D) contain the same core line features, the delocalized regions appear
much smoother and are disconnected.

In Figure 5.6 we compare the Ay vortex detector at thresholds 1000 and 5000 with the
delocalized version of Ay. The top row shows a side view of the situation, where we can see
turbulent regions appear behind the gaskets. At a threshold level of 1000 all the relevant
vortex core lines are present, but the resulting iso-surface is difficult to understand and we
have a single connected region. At this level the feature A is still present, but if we want
to separate the different structures, we have to set a higher threshold where the core line is
no longer fully inside the selected domain. If we look at the corresponding delocalized Ao
regions, we can see that the feature A remains intact. We can also see that the core line at
position C hints towards the assumption that this is a rather important feature which is
correctly connected to the large region (A). Also the regions (B) and (C) are disconnected.
By comparing the results of the delocalized versions of the Q and the Ay criterion we can
make another finding: the delocalized results are extremely similar for both criteria, even
though the iso-surfaces of the instantaneous versions bear little semblance.

5.3.3 Two-stroke Engine

The two-stroke engine data set contains the simulation results for injection and combustion
of fuel in the combustion chamber during one crank revolution.

In Figure 5.7 we can see the results of the vortex detection in the Eulerian and the
Lagrangian frame. Here we have only one extremely strong main feature and therefore a
single core line is detected. For the main feature (A) the results for the Eulerian and the
delocalized detector are similar. But for a smaller structure (B) we have a similar result
as for the cooling jacket: to keep B intact we have to select a low threshold (swirl > 0)
and the feature (B) is difficult to recognize. (b) At a threshold where the features become
distinguishable, the feature (B) is split in two components.

5.3.4 T-Junction

The t-junction data set is a small unsteady simulation of pulsating flow through a t-
junction. In the center of the domain, behind an obstacle, a small vortex appears. Du to
the good temporal resolution and relative simplicity of the situation we can discuss how
the delocalization process allows to concentrate on different types of features. We can
observe the development of four features in the data set. These are (A) two longitudinal
vortices behind the inlet, (B) a transversal vortex created by the pulsating inflow boundary
condition, (C) a vortex appearing behind the obstacle and (D) a region of turbulence at the
outlet. In (a) we can see that it is possible to select a threshold to separate the structures
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Figure 5.6: The delocalized Ay outperforms \; regarding feature separation and noise
suppression. (a) The delocalized version of Ay extracts three non-connected regions which
contain the strongest and longest vortex core lines. Small features and noise are removed.
(b) At a threshold of Ay < 1000 we get a single connected region and all the vortex core
line features remain intact. We also get a lot of small or weak features which we are not
interested in. (c) At a level of Ay < 5000 different (still connected) features appear, still
a lot of noise is extracted and vortex A breaks in two parts. (d) Smoothing A, using a
Gaussian kernel removes noise, but also feature E.
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Figure 5.7: Two-stroke engine data set. We compare the result of the swirling strength
criterion and the delocalized swirling strength criterion. (a) At a low threshold (swirl > 0)
the two features are not distinguishable. (b) Searching for a better threshold we find that
in order to get a good separation between the two features we have to select a value at
which feature B breaks in two components (swirl > 10000). A visualization including
streamlines seeded at the gap shows that the two components belong together. (c) The
delocalized ¢ detector with o = 0.8 and ¢y = ¢, = 0.01 allows to visualize both features

intact.

| moise [ 1% | 5% | 10% |
A2 0.007 % | 5.734 % | 12.988 %
MF(hy) | 0.007 % | 0.019 % | 7.813 %
Gauss(A2) | 0872 % | 1.1 % | 4.185 %

~ 0.8

A2 0% 0 % 3.002 %

Table 5.2: Numerical evaluation of noise in the Rankine vortex model. The table shows
the error rates of the classification results of the local detector (Aq), after application of a
median filter (M F(Xq)), after application of a Gaussian filter (¢ = 0.8), and the results
for the delocalized Ay detector (o = 0.8).

(A) and (B). In (b) we use streamlines to depict the shape of the feature (C) a the current
moment. We can see that the feature has the same height as the obstacle. From this
we can conclude that in (a) the threshold necessary to separate the features (A) and (B),
removes too much of feature (C). In (c) we can see that the delocalized version of Ay allows
to separate the vortex behind the obstacle and still visualize the full transversal vortex
(B). By selecting specific integration length parameters for each of the now disconnected
regions we have also deselected the turbulent region at the outlet.
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Figure 5.8: Comparison of Ay and the delocalized version of ;. (a) Behind the inlet two
small longitudinal vortices appear (A). When setting a threshold to separate the transversal
vortex (B) from the longitudinal vortices, the third vortex (C) behind the obstacle almost
vanishes. (b) Streamlines show that the vortex C extends to the full height of the obstacle.
(c) Using the delocalized Ay detector we can focus on the transversal vortex and still select
the full vortex C while deselecting A and D.
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5.3.5 Filter Properties

To test numerical stability we use a simple synthetic solution so that we can know where
the vortex has to be detected. A simple model for a vortex is given by the combination
of a rigid-body rotation within a core, and a decay of angular velocity outside [5]. The
Rankine vortex model can be described by

w
Upg =
0 w -

where R is the radius of the vortex, u controls axial velocity and w controls the maximal
tangential velocity. The model has a long history in meteorological studies of tropical
cyclones and can be considered a good approximation of measured data [9]. This is also an
example much in favor of the local detectors since they all have 100% correct classification
in the absence of noise. Nevertheless the delocalized vortex detectors outperform their
Eulerian counterparts consistently. From an image processing viewpoint one can consider
the presented detector as a special case of an isotropic filter. To show that the reasoning
behind the convolution actually improves the detection results, we compare our results to
the error rates after the application of a median and a Gaussian filtering kernel.

In Table 5.2 we can see the results of the numerical study. Noise was added to each cell
using a linear combination of random noise vectors for each cell n; ;; at sample position
(i,7,k) in the regular grid and the original flow value v; ;, such that a noise level of p% is
computed as v; ;x + (p/100) - n; ;5. In the following evaluation we compare the results of
the original Rankine vortex data set and the version with noise added — the two cases are
unrelated and the features are extracted each time only using the respective data set.

We use 0 = 0.8 for accumulation of the delocalized detector values. Changing the ve-
locity vector locally will affect the estimated gradient of all the surrounding cells. Isotropic
filtering therefore cannot deal with noise as well as the delocalized vortex detectors. The
error of the delocalized vortex detectors at a noise level of 10% of the original signal stems
from the fact that we have a very sharp vortex boundary in the model such that a small de-
viation from the correct trajectory can already degrade the performance. A second reason
is that the trajectories at the corners of the rectangular domain have very short integration
times and quickly leave the simulation domain. It is quite unnatural to have such sharp
vortex boundaries and also the large percentage of short streamlines is to the disadvantage
of the delocalized detector. Even though the delocalized detector outperforms the other
methods. The high error of the Gaussian filter stems from the fact that for low error rates
it blurs the errors and can actually increase error.

;T <R

I u, =0 u, =u,
9

3 |l

5.4 Implementation Details

To achieve quick response times appropriate for interactive analysis we need a tradeoff
between accuracy, flexibility and computational cost. In the context of our application
we know that the engineers are interested in understanding the relationships between the
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computed particle

Figure 5.9: (a) A tradeoff between accuracy and interaction time: for interactive analysis
we use particle paths computed offline for each volume cell. To reach interactive response
rates, we restrict the system to one line segment per cell and particle and store the correct
path length in an additional attribute. (b) When the number of pixels available is lower
than the number of trajectories we combine groups of lines using a scan line algorithm.
This can result in a large number of segments for the combined line.

computational cells of the simulation grid. Therefore we seed one path- or streamline per
cell to be able to compute a delocalized detector response for each cell. During interac-
tion the main computational cost lies in the line fusion approach and our prototype can
compute the final texture for small regions of interest with up to 100K cells at interactive
rates (se Figure 5.9). A more efficient implementation could be several magnitudes faster.
Trajectories are computed off line and stored in an additional data set, which takes several
hours for the full two-stroke data set, but for a specific region of interest at a selected time
step only small subset of these lines has to be computed.

Chapter Conclusions

The main drawback of the presented method is that the detected results are no longer
objective in the sense that each engineer will come to exactly the same vortex detection
results. The exact location of the vortex boundary is dependent on the specification of
integration length parameters. These differences are typically small and as long as we
do not have a general definition for what a vortex is, this fuzziness can be considered
appropriate. The second disadvantage of the presented approach is the time consumed
by integrating trajectories through the fluid. We used a rather inefficient implementation
where the timings cannot be considered representative, and GPU-based implementations
are reported to compute trajectories at nearly interactive rates [79]. Another drawback is
that interaction is often a necessity. Using bad integration length parameters, the results
are more blurred and worse than Ay regions, even though the delocalized detectors have
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shown to be very robust in our experience. The approach to use a single trajectory length
parameter as seen in the results presented in Figures 5.5, 5.6, 5.7 and 5.8 only works with
carefully selected regions of interest and even then the line view is necessary to find good
parameters for o and t =ty = 1.

An obvious idea for estimating good integration length parameters automatically is to
search for minima of detector response along the trajectory. This way we could hope to find
the boundary of the vortex region without interaction. This has produced mixed results
for the evaluated data sets. A criterion for good integration length parameters based on
physical principles independent of user interaction would further improve the delocalized
detectors.

In this chapter we have proposed delocalized vortex region detectors. With little inter-
action to determine reasonable parameters, the delocalized vortex detectors improve the
feature extraction process. We have also discussed how the ability to control the range of
integration improves the expressiveness of the detectors over their local counterparts. The
delocalized detectors are a combination of the Eulerian and the Lagrangian approach to
vortex region extraction. The basic message here is that the Eulerian and the Lagrangian
are not different alternatives to vortex extraction, opposite to each other, but that they
can be combined to one technique sharing the benefits of both. The good local vortex de-
tection performance of the Eulerian criteria and the global information of the Lagrangian
view point combine to generate well separated and smooth detection results.



Chapter 6

Parallel Vectors Criteria for
Unsteady Flow Vortices

7

”Often there’s no need to tear off an arm to remove a splinter.
(Frank Herbert 1920 — 1986)

Feature-based flow visualization is naturally dependent on feature extraction. To extract
flow features, often higher-order properties of the flow data are used such as the Jacobian
or curvature properties, implicitly describing the flow features in terms of their inherent
flow characteristics (e.g., collinear flow and vorticity vectors). In this chapter we present
recent research which leads to the (not really surprising) conclusion that feature extraction
algorithms need to be extended to a time-dependent analysis framework (in terms of time
derivatives) when dealing with unsteady flow data. Accordingly, we present two extensions
of the parallel vectors based vortex extraction criteria to the time-dependent domain and
show the improvements of feature-based flow visualization in comparison to the steady
versions of this extraction algorithm both in the context of a high-resolution data set, i.e.,
a simulation specifically designed to evaluate our new approach, as well as for a real-world
data set from a concrete application.

6.1 Motivation

We present a solution to the challenge of feature extraction when dealing with time-
dependent simulation data from computational fluid dynamics. We aim at feature-based
flow visualization with focus on vortices and their central locations. In an extension of
the state of the art we present two new methods for the extraction of vortex core lines
(aka. vortex aves') in unsteady flow which are truthful to the time-dependent nature of the
extracted features.

L Tn other fields, e.g., in fluid mechanics, vortez cores are considered to be of regional type (and not of
line type). We use the term vortex core line for line-type curve features which represent central locations
in vortices.
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A lot of work has been done in the field of feature extraction from steady/time-
independent flow data, especially with focus on vortices. In the context of time-dependent
flow previous work focussed on extracting features from individual time steps by interpret-
ing the flow data as a “stack” of steady flow fields (one per time step) and by applying
extraction methods for steady flow data accordingly. The time-dependent nature of these
features was taken into account by connecting them afterwards over time, e.g., by tracking.

It is favorable to inherently consider time already during feature extraction and not
separately in a second step. Doing so, we find ourselves aligned with others (such as Hus-
sain already in 1983 [57]), who demand the joint consideration of space and time when
investigating features in time-dependent flow data. Accordingly, we propose to formulate
the extraction criterion in a way that temporal derivatives are used for the local characteri-
zation of vortices and not only the Jacobian of the flow. This is synonymous to considering
pathlines for feature extraction from unsteady flow instead of streamlines. Even though
we experienced in exchange with colleagues, reviewers, and others that this extension is
easily and quickly considered to be logical and straight forward, the results improve more
than expected.

Very often, flow phenomena such as gas flow during combustion or air flow around
a vehicle are time-dependent in their nature and steady representations are just an ap-
proximation. Data sets with time-independent flow are useful for domain experts as they
provide information about general or large-scale characteristics of the flow, at a relatively
low cost in terms of data set size, simulation time, as well as analysis time. However, we
still observe a clear trend towards more unsteady flow data in scientific as well as in com-
mercial applications mostly because of better results, especially when doing a more careful
or detailed flow analysis, and also because of the availability of increased computing and
storage resources.

Accordingly, we consider it important to explicitly demonstrate that feature extraction
based on time, is not only logical to do, but indeed yields better results. In certain cases,
we can even observe that the traditional, streamline-oriented approaches lead to displaced
“features”. Furthermore, we can find an improved agreement of the new approach with
physical extraction schemes such as the low-pressure assumption in the midst of vortices
(no need for a correction step). In Sections 6.2 and 6.4 we exemplify our point by means
of selected cases both in analytic and computed form. The need for a new approach is
demonstrated as well as the gain through improved results.

The algorithms, which we take as a basis for developing our new approach, are the
proven method for extracting vortex core lines from steady flow data by Sujudi and
Haimes [140] as well as the related, higher-order method by Roth and Peikert [122]. Both
approaches were successfully applied in many cases, especially when dealing with time-
independent data. As such, we consider them as a strong starting point for approaching
the case of unsteady flow data. To do so, we adopt the principle of the parallel vectors
operator [113] for extracting the vortex core lines in conjunction with modified extraction
criteria that are based on temporal derivatives.

Weinkauf et al. [157] approach the question of vortex core line extraction in a similar
fashion. For finding ”"swirling particle cores” they analyze the real eigenvector of the veloc-
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ity gradient and the acceleration vector. Even though they arrive at a similar extraction
method, they reason differently (and use other, related vectors for their approach). Our
solution, as presented in this chapter, is based on physical principles, resulting in a corre-
sponding modification of existing algorithms. The swirling particle cores method is based
on the space-time framework and builds primarily on a geometric approach. In future
work we plan to evaluate and compare the two approaches thoroughly. We are also able
to demonstrate our work in the context of an application, compare it to other, simulated
quantities related to vortices, and show its good numerical behavior regarding time step
size in the data set.

6.2 Analytic Considerations

In the following, we discuss two analytic examples which can be considered as models for
related phenomena in actual flow data. This way we can concentrate on the demonstration
of the need for a new approach. Looking at analytic cases we can avoid issues related to
sampling and reconstruction. This approach is analogous to the work of others who use
analytic examples for motivation and for demonstration [140, 122, 46].

6.2.1 A Tilting Vortex

To construct our first synthetic vortex example, we aimed at an as simple as possible flow
model that still can demonstrate the difference between a streamline- and a pathline-based
approach. To avoid a simultaneous discussion of whether our approach is Galilean invariant
we decided to go for one simple vortex which tilts over time.

Accordingly, we specify our flow model as

-y +1iz
u(z,y, 2, t) = x—tz
z

The vortex in u is linearly strained in the z-direction and contains a tilt which increases
over time. Considering u in just one time step ¢t = t, and analyzing its — in all locations
equal — Jacobian

0 -1 ¢,
J\t:ta: 1 0 —t, |,
0 0 1

by considering the single real eigenvector (t,,0,1)T of this matrix we observe a virtual?
rotation of the instantaneous flow field around an axis which is aligned with this vector
and which tilts into the positive z-direction. In the top row of Fig. 6.1 this situation is
illustrated for two time steps t, = 0 (left) and ¢, = 0.3 (right).

4

2 We consider this rotation as “virtual” as it only exists for an infinitesimal short moment of time —
the vortex axis which is detected locally in time does not yield any tightly related finite-time rotation of
particles around this axis.
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Figure 6.1: A synthetic example of a tilting vortex is shown before the tilt (at the left) and
a bit later (on the right). The top row shows the vortex core line (grey tube) according to
Sujudi and Haimes [140] and several streamlines — the tilt into the z-direction is obvious.
The bottom row shows pathlines (in color) which exhibit an additional tilt towards the
viewer (yellow vortex core line).
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We abandon the restriction to only consider the flow in just one time step and see a
different picture (bottom row of Fig. 6.1). In addition to the above mentioned z-tilt, there
is another tilt towards the viewer. The corresponding vortex core line illustrated in yellow
in Fig. 6.1 (d) reflects this additional y-tilt.

The design of this flow model allows to analytically find explicit solutions for stream-
and pathlines. If we first consider just one time step t = t,, we derive the streamline for
seed location (g, 4o, 20)" in parameterized form as

x(7) = (zo — ta20) cos(T) — yosin(7) + t,20€7,
yETg = (29 — ta20) sin(T) + yo cos(7),

The t,zpe” term in the z-component of streamlines reflects the above discussed z-tilt. In
the y-component of streamlines we do not see any corresponding tilt term.
Considering pathlines next, we derive the following solution (now parameterized with
time t):
z(t) = (zo + %zo) cos(t) — (yo + %Zo) sin(t) + (t — %)zoet,
y(t) = (zo + 520) sin(t) + (yo + 320) cos(t) — 320¢",
z(t) = zo€".

Now we see corresponding tilt terms in both the x- and the y-components of the pathlines
and the vortex axis is found to be along the vector (¢, —t,1).

6.2.2 A Rotating Vortex Rope

As a second example, we construct a simple synthetic model of a rotating vortex rope that
has characteristics which are related to an important flow phenomenon in the draft tube
of large water turbines. To start, we consider the flow field

—(y—wy)-s
u= (x —x1) s
1

For the degenerated case of 1 = y; = 0, this simply is a rigid rotation about the z-axis.
Assuming that the points (x1, y1, 2) lie on a helix with radius R and pitch Qf, which rotates
around the z-axis with angular frequency w and phase 0, i.e., with

1 = R - cos(kz + wt) and
y1 = R -sin(kz + wt),

we get a rotating vortex, i.e., a time-dependent flow field as desired — see Fig. 6.2 for
selected stream- and pathlines. Note, that we assume |k + w| < s to ensure that the
structure of the helix dominates the rotation about it.

Based on this model, we can analytically derive several variants of vortex core lines
(according to different extraction schemes). In all cases we obtain a helix with the same
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Figure 6.2: Streamlines and pathlines in a model of a rotating vortex rope. (a) The vortex
core line based on streamlines (according to Sujudi and Haimes [140]) is shown as a thick
grey tube (it is the only grey line which also is a helix). (b) The vortex core line based on
pathlines (shown in yellow on the right) has the same pitch but a larger radius (it is the
only helical pathline, shown in thick magenta).

pitch, frequency, and phase, but with different radii. See table 6.1 for an overview of the
results.

The employed methods are three state of the art approaches for steady flow data: the
method proposed by Levy et al. (curl parallel to velocity [91]), the one by Sujudi and
Haimes (parallel first and second derivatives of streamlines [140]), and the higher-order
method by Roth and Peikert (parallel first and third derivatives of streamline [122]). We
apply them to the flow data of individual time steps as discussed above.

We contrast these results with those of our new approach, i.e., the unsteady extension of
Sujudi and Haimes’s (as described in Section 6.3.1) and the unsteady version of the higher-
order approach (as described in Section 6.3.2). We see that the traditional approaches miss
the rotation of the vortex rope (missing '+w’ terms in all cases), since it obviously cannot
be detected from considering an individual time step only.

We also compute a correct vortex core line for this unsteady flow by using a sym-



6.2. ANALYTIC CONSIDERATIONS 91

streamline-based | pathline-based (new)

Levy et al. (14 5)R

Sujudi & Haimes (1+5R (1+H=2)R

higher-order (I+54+(5)HR | (14 52 4 ()R

correct (1—Ee)-1R

Table 6.1: Different extraction schemes all result in helical vortex core lines, but with
different radii. We compare the results for the algorithms of Levy et al. [91], Sujudi and
Haimes [140], the higher-order method by Roth and Peikert [122], and an analytically
determined correct variant.

metry argument. On each slice orthogonal to the z-axis (z = zgopst), there is just one
point (z,y, Zconst)T> with

R - cos(kz)

. and y — R -sin(kz)
1—(k+w)/s

T1-(ktw)/s’

such that a particle which is released from this point at time 0 moves along a pathline of
exact helical shape. Particles that are released from any other location yield pathlines of
more complicated geometry (Fig. 6.2). In this case, we see that the material line (time
line), which consists of all of these special particles, coincides with the correct vortex core
line. This curve has the same radius as the helical pathlines, but exhibits a different pitch
of 27” VS. ]jr—”w We note, however, that the fact that the vortex core line also is a material
line is specific to this example and does not generally hold for arbitrary cases.

By comparing the different radii from table 6.1 with the correct solution and by consid-
ering the geometric series (1—p)~! = (1+p+p*+...), here with p = (k+w)/s, we can see
a nice alignment of our new approach with the correct solution. The modified variant of
the approach by Sujudi and Haimes is the first-order approximation of the correct solution
and the modified variant of the higher-order approach is its second-order approximation.

The deviation of the Sujudi-Haimes lines from the correct vortex core lines is the phe-
nomenon first observed in the ”bent helix” example [123], and it is due to the combination
of a weakly rotating vortex and a strongly curved vortex core line. The error becomes
negligible if |k + w| < |s|, i.e. if the sum of the spatial and the temporal frequency is
much smaller than the parameter s controlling the swirl around the vortex core line. The
higher-order method yields an additional term of the Taylor series in this example.

We have seen that the extension to unsteady flow for both methods results in improved
results in comparison with the time frozen analysis of vortex flow features. To understand
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what is happening with unsteady vortices it is necessary to extend the steady versions of
the vortex extraction criteria.

6.3 Pathline Based Feature Detectors

We can generalize existing feature extraction algorithms to unsteady flow data by replacing
streamlines with pathlines in the underlying model. This way they remain unchanged for
steady flows.

6.3.1 Sujudi-Haimes

In this section we modify the approach by Sujudi and Haimes [140] to include time deriva-
tives.

6.3.1.1 Original Definition

In the original definition the first step is to compute the eigenvalues of Vu per tetrahedral
cell. Only cells where a pair of complex eigenvalues exists are further processed. The
existence of two complex eigenvalues is determined by the discriminant of the characteristic
polynomial [15].

The next step is to compute the single real eigenvector ¢, for the candidate cells to
extract the local direction of the vortex core line. In the final step the algorithm searches
for locations where €, is parallel to u. Linear interpolation is used between the nodes of
a grid cell when searching for parallel locations. A modification in order to get connected
lines instead of disjoint straight line segments is to estimate velocity gradients per node
and compute parallel positions on cell faces.

6.3.1.2 Equivalent Definition

The eigenvector computation required by the original method is quite expensive. A more
efficient method [113] is to compute the matrix-vector product as = (Vu) u instead. Given
that e, is the only real eigenvector of Vu, it is parallel to u exactly if ag is. Hence, Sujudi-
Haimes vortex core lines can be equivalently defined as the locus of points where u and
ag are parallel, restricted to points where the velocity gradient has a pair of complex
eigenvalues. In this context, two vectors are said to be parallel also if one or both of them
are zero.

6.3.1.3 Modification for Unsteady Flow

The original formulation of the Sujudi-Haimes criterion is expressed in terms of the velocity
field and its gradient tensor field. Using this formulation we cannot include the time
derivative information since these quantities are the same for steady and unsteady flow. In
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isesurface of
pressure

Figure 6.3: For the vortex rope in the depicted data set, iso-values of pressure give good
insight on where the vortex core line is located. We can clearly see how the yellow core
line (extracted using the classical approach of Sujudi and Haimes [140]) deviates from the
center of pressure isosurface. The modification to time derivative aware extraction of the
vortex core line improves the results visibly.
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contrast, the parallel vectors formulation allows for a different extension to unsteady flow.
The vector as = (Vu) u can be viewed as the steady case of the acceleration vector

a; = Du/Dt = (Vu)u + du/ot

of a particle. An obvious modification is now to use the true acceleration vector instead of
the vector ag, i.e. to look for points where a; and u are parallel. Besides the justification
as being the natural extension to unsteady flow, this modification is also backed up by the
following observation.

Sujudi-Haimes vortex core lines can be defined in a third equivalent way, namely as the
locus of zero streamline curvature, again constrained to points where the velocity gradient
has a pair of complex eigenvalues. The equivalence is shown as follows. The curvature
of a curve with (time) parameter is x = ||% x %||/||%||> where the dots denote temporal
derivatives. For a streamline, X = u and X = ag, so the streamline curvature is zero
exactly where the Sujudi-Haimes criterion is met. For a pathline, X is Du/Dt so the
pathline curvature is zero exactly where the modified Sujudi-Haimes criterion is met.

In principle, the zero curvature points of streamlines or pathlines could be computed
to yield vortex core lines according to the original or modified Sujudi-Haimes criterion.
However, numerical integration and curvature computation are too expensive operations
to make this a practical alternative to the parallel vectors method.

It was a long standing open question from our application partners why the vortex core
lines resulting from the original algorithm of Sujudi and Haimes very often exhibit a small
phase-shift in relation to regions of low pressure. Therefore it is a common approach to
do a correction step towards pressure minima when extracting vortex core lines [4, 61].
In Figure 6.3 we can see that the yellow vortex core lines extracted using the eigenvector
method are shifted away from the center of the pressure isosurface. Using the pathline
based extraction approach we arrive at a solution located at the pressure minima without
a correction step. Therefore we can assume that the deviation in the unmodified approaches
results from not taking the temporal derivative into account.

6.3.2 Higher Order Vortex Core Lines

In this section we modify the higher order approach to work on pathlines.

6.3.2.1 Original Definition

Roth and Peikert [122] present an extension of the vortex extraction approach by Sujudi
and Haimes to bent vortices. The eigenvector is based on a straight line model for the
vortex core line. In real world data sets we can find many types of bent vortices though.
Common types are hairpin, horseshoe, and ring shaped vortices. Roth and Peikert showed
[123] that the eigenvector method introduces an error as soon as the vortex is bent.

To overcome these drawbacks we can weaken the conditions on a vortex core line such
that we can detect bent vortices as well, but the amount of false positives will increase
significantly. It is not possible to model a curved vortex based on linear fields, therefore
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one has to take into account higher-order derivatives when searching for vortex core lines.
The second derivative following a particle in a steady velocity field is bs = (Va)u.

Based on the torsion of a parametric curve in R?* we can relax the condition on vortex
core lines such that torsion is zero and that zero torsion is preserved as well as possible
when following the streamline. The extraction algorithm is based on the fact that for
the bent vortex model the vector bg at the vortex core line is not only restricted to the
< u,ag > plane but that the best choice is to require that bg is parallel to u. Thus, we
can state the following definition for a vortex core line: the vortex core line is the location
of all points where by is parallel to u.

6.3.2.2 Modification for Unsteady Flow

The problems observed for curved vortices in steady flow data [122] obviously extend to
curved vortices on unsteady flow data. In Section 6.2.2 we have seen that the modified
version of the higher order model will reproduce the correct vortex core line of the bent
time dependent model if we ignore the terms of higher order in the Taylor expansion.
Therefore, we can use the parallel vectors operator to apply the higher-order approach to
unsteady flows.

A criterion based on zero curvature in principle searches for straight vortex core lines.
The line that is classified as the vortex core line by the parallel vectors approach of the
previous section can deviate to some extend from this restriction. But for strongly bent
vortices the result will show the same inconsistencies as observed for streamline based
geometries. For the higher order vortex core line detection algorithm the required mod-
ification is therefore to replace the vector bg by the actual jerk vector (rate of change of
acceleration) by = D?u/Dt2. See Figure 6.7 for an example.

6.3.3 Interactive Vortex Core Line Extraction and Filtering

Both the eigenvector method and the higher order method produce many line segments
that cannot be considered as vortex core lines. For this reason we use the interactive
visual analysis features of the SimVis framework to extract the meaningful vortex core
lines. This way we get confidence in the extracted vortex core lines and can improve their
quality. Here we rely on non-binary expressions of vortex detectors to select the vortex
core lines of interest [12]. The other way round we use the extracted core lines to derive
other attributes in the data. Figure 6.4 illustrates this approach.

To our knowledge there is no fully satisfying approach to extract only the relevant
vortex core lines automatically from the data. The interactive multi-field approach of
SimVis handles this problem using visual analysis. To be able to do this we modify the
parallel vectors algorithm slightly:

1. Generate additional field a; or by (see Section 6.3.1.3, Section 6.3.2.2 and Appendix
A).

2. Compute closed parallel vectors lines without additional criteria (see Section 6.3.4).



96

CHAPTER 6. UNSTEADY PARALLEL VECTORS

Interactive Visual Analysis
Procedure

Vortex Region Specification

Field
Properties b2

Combined angle core
Properties vs. flow

Core Line
Properties

pressure

distance

from core

strength
of rotation

other
attributes

derived
attributes

time
derivative

ElzzyAttribute
Fombination

region of vortex
(EENS region

Alutomated Parallel
\/ectors Liine Extraction

eigenvector higher
method order

Figure 6.4: Interactive visual analysis with vortex core line extraction. After the vortex
core lines are computed we use interaction to remove false positives. (1) The user can
interactively specify the volume of interest in attribute views to select attribute ranges
of interest and another set of attribute selections that control the vortex region. (2) The
selected region of interest is visualized by volume rendering (in this example the volume
selection is defined by Ay < —100) and the vortex region controls which line segments are
visible (we have selected regions that have both complex velocity gradient eigenvalues and
negative Ay values). (3) From the vortex core lines we can derive additional attributes such
as an attribute measuring the distance from the core line for further analysis.
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Figure 6.5: Multiple views and brushing allow the user to apply vortex core line filter rules
interactively. Starting with a large number of spurious solutions we can select the main
part of the largest vortex core line by applying two brushes in two scatterplots of additional
flow attributes.

3. Use interactive region of interest specification to extract correct subsections of the
lines (see Figure 6.4).

The §-discriminant used as an additional criterion both by the method of Sujudi and
Haimes and the higher order method was introduced by Chong et al. [15]. This physics-
based criterion does not take into account the time-dependent components of the flow.
Nevertheless physics-based criteria such as §, (), and Ay are often directly applicable to
unsteady flow, when it is possible to derive them from instantaneous properties of the
flow. The J-criterion is prone to finding false positives in large regions of the flow (e.g.
in the turbine data set it is true almost everywhere). In our experience it has shown to
reduce the number of spurious solutions to use additional vortex core region detectors in
combination with the d-criterion. Another type of additional criteria includes information
derived from the vortex core line [113]. Examples are the angle between flow and vortex
core line, number of core line segments or vortex strength. These are difficult to tune
optimally. By combining multiple vortex region criteria as suggested in [12] we can avoid
criteria involving the extracted vortex core line.

Building on the information we get from the extracted vortex core lines, we get access
to a whole new type of information that we can use in further analysis steps. To include
information on the vortex core line we derive for each cell an attribute that measures the
distance from the final vortex core line in a simple breadth-first traversal starting with cells
that contain a vortex core line segment.
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6.3.4 Pseudocode

The following is a general algorithm outline. The method ’getTriFaces()’ returns a vector
of triangulated faces for a cell. The method ’checkFaces()’ applies the parallel vectors
operator to each face in a list and returns a list of points where v and w are parallel.
The method ’getTets()’ returns a tetrahedralization of a cell using face centers and the cell
center as additional points. The analytic solution of the parallel vectors problem can result
in three result points per face and we can have up to 12 result points per tetrahedron. The
method "connect()’ has to apply a heuristic to connect the result points. Possible heuristics
include minimization of core line curvature, minimal core to flow angles or similar vortex
strengths .

INPUT: unstructured grid
OUTPUT: array of line segments

lines *core = new lines();
//pre-processing
cells *c = grid->getVertexCells();

//check each cell for vortex-core

foreach cell € ¢ {
//quick: check for two face intersections
vector<tri> x*tris = cell.getTriFaces ();
result = checkFaces (tris);

if (result.size () == 2)
core->add (result);
//fallback: check all tets
else {
//get tetrahedralization
tets *t = cell.getTets ();
foreach tet € t
core->add (
connect (
checkFaces (tet) ) );

3

return core;

The following is pseudo code of the parallel vectors operator on a triangle. If the
determinant of incrV is zero, also incrW has to be checked. The method ’inverse()’ returns
the inverse matrix. The method 'realEigenV()’ returns a list of eigenvectors of a matrix
having real eigenvalues. It is based on the nice trick that an analytic solution can be
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computed using matrix inversion and eigenvector computation, published by Peikert and
Roth [113]. Assuming linear interpolation on a triangular face of a cell, the velocity can
be written in local coordinates: v = incrV - (s,t,1)7, where incrV is the Matrix (v2 —
vl,v3 —wvl,vl). The velocity at each point on the triangle is then simply v = vl +s- (v2 —
vl)+1t-(v3—wvl). Two fields are parallel when V - (s, ¢, 1)T = AW - (s,¢,1). If W (or V) is
invertible we can multiply by W~ (or V™) and get an eigenvector problem W~V = \x.

INPUT: triangle (t1,t2,t3),
flow (vi,v2,v3),
accel (wl,w2,w3)

OUTPUT: parallel positions

//compute increments
mat incrV = (v2-v1, v3-vl, v1);
mat incrW (w2-w1l, w3-wl, wl);

//find parallel positions
if (det(inerV)! =0) {

mat inv = incrV.inverse ();
mat sol = inv * incrW;
vector *eig = sol.realEigenV ();

vector *pos,;

foreach e € eig {
float s = e->x/e->z;
float t = e->y/e->z;
if (s>=0 && t>=0 && s+t<=1)
pos.add (tl+s*t2+t*t3);
}

return pos;

6.4 Application Study — Engine Data Sets

We have implemented the presented vortex core line detection algorithms in the SimVis
framework [179] and applied it to two engine data sets to verify the approach on real
world data. For these data sets we have found that using the Green-Gauss approach for
computing gradients gives better results than a least-squares approach (see Appendix A).

The first data set results from a simulation of the compression and combustion phase in
the combustion chamber of a standard engine model. In Figure 6.6 we can see the vortex
core lines based on the original and the modified versions of the parallel vectors criteria.
Obviously the results differ significantly and one of the vortex core lines is not extracted
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Figure 6.6: We compare the vortex core lines found by the original method of Sujudi and
Haimes [140] and the modified version. Two views of the same timestep show the benefits
of the modification. Both views show the same vortex core line and isosurface. (1) In
one case the original method does not detect one vortex core at all. (2) The time-aware
modification traverses the full length of the vortex core and continues into the region of
strong turbulence at the top of the cylinder. (3) The original vortex core line leaves the
core region of the vortex and vanishes in a substantial portion of the vortex region.

at all using the original algorithm.

The second data set is a high-performance two-stroke engine data set, which contains
the complete simulation results from the injection and the combustion of fuel during one
crank revolution. The engine geometry is shown in Figure 6.8. Table 5.1 shows a compar-
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Figure 6.7: In this early timestep of the combustion chamber data set we can see that
the extracted vortex core lines for the modified version of the eigenvector method and the
modified higher order method differ at the weakest part of the vortex. The cutting plane
with color mapped to pressure shows that the modified method of Sujudi and Haimes fails
to detect the exact core line of the vortex in this case.
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Figure 6.8: Overview of the geometry of the two-stroke engine data set.
ison of the data sets discussed in the following sections.

6.4.1 Impact of Time-derivatives

The question remains whether and where the time derivative information has significant
impact on the vortex core line extraction results. In the engine data sets we have found
the vortex core lines extracted by the modified and the unmodified methods to be similar
but shifted for most timesteps. But in Figure 6.6 we can observe that in a timestep shortly
after ignition the vortex core line based on a, and the vortex core line based on a; can
differ significantly. This is due to the strong impact of the time derivative in these time
steps. To illustrate the close correlation between these two vectors in early timesteps and
the large impact of the time derivative after ignition we show the magnitudes of the vectors
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Figure 6.9: Comparison of acceleration vector magnitudes: The scatterplots show that
the magnitudes of the two variants of the acceleration vectors can differ significantly in
the crucial timesteps, i.e., timesteps of major changes over time, after ignition (we have
normalized the magnitudes such that the center of gravity corresponds to the origin).

normalized with mean and standard deviation in scatterplots (see Figure 6.9). Very often
the timesteps that include large changes over time are critical for the application. They
have vital impact on mixing, material wear and engine performance and therefore the
analysis benefits from improving vortex core line extraction in these time steps.

6.4.2 Equivalence Ratio

From the discussion in Chapter 4.6.1 we know that the equivalence ratio (ER) is a key
attribute, related both to emission and engine performance. Equivalence Ratio is the
relation between fuel and air within a volume cell. We have seen that It is crucial that ER
lies in the optimal interval for large parts of the volume at the moment of ignition. The
mixing process happens at earlier time steps during compression when the influence of the
time derivative is less than after ignition. Even though the difference between the core lines
generated by the modified version is smaller it is still not negligible. In Figure 6.10 (a) we
show iso values of the Ay vortex detector and concentrate on the vortex core lines detected
for this vortex. In the center of the combustion chamber of the two-stroke engine we can
see the large vortex region that plays a central role in the mixing process. The question
in this example is, why the vortex core region is not of tubular shape. The second vortex
core line (3) is not detected by the original approach. Combining (1) and (3) we can gain
insight into the controlling skeleton of the main tumble vortex. In Figure 6.10 (b) we can
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Figure 6.10: We compare the computed core lines with respect to Ay and equivalence
ratio. (a) The modified algorithm detects two vortex core lines (red) whereas the original
version only detects the main vortex core line (white). (b) An isosurface of equivalence
ratio at 0.7 containing the region of optimal mixing. (c¢) The surface containing the region
of equivalence ratio of 0.5 and Ay < —1000.

distinguish the regions of sub-optimal and optimal to very high concentrations of fuel at
iso value surface of 0.7. The bend part of vortex core line (3) closely follows the boundary
of this region. In Figure 6.10 (c¢) the surface describes the boundary of the region defined
by slightly sub-optimal to high mixing and high A, values. The core line generated for
this vortex with the original vortex core extraction method (1) and the modified approach
(2) are similar and both traverse the full region detected by the Ay vortex region detector.
Another core line is not detected though. Obviously we miss an important aspect without
the second vortex core line since we can see in Figure 6.10 (c) that it influences the region
of the vortex where non optimal mixing occurs.

6.5 Assessment of Numerical Behavior

In engineering applications it is not common to store all the information computed in the
course of the CFD simulation permanently. Especially time derivative information is not
generally stored in the data. Furthermore, the solver does not include all the timesteps
computed in the solution file. In general we can expect the simulation design regarding cell
types and cell sizes to be adequately chosen by the simulation designer. The simulation
designer considers the necessary resolution for postprocessing such that reliable streamlines
and pathlines can be constructed. From experience we know these settings to work well
for computing vortex core lines in the steady case. Since time-derivative information is not
stored and not all time steps are written out into the final data set we need to evaluate the
impact of larger step sizes on the feature extraction process. Our application partners from
Arsenal Research [178] have computed an unsteady solution to a pulsating flow in a tube
t-junction (see Figure 6.11). Time dependent boundary conditions are used to produce
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Figure 6.11: Impact of time derivative estimation. The different step sizes are measured
in 1000~ !sec. The vortex core lines for stepwidths 1 to 10 do not differ visibly. Color is
mapped to the difference between the time derivative for step size 1, and the respective
step size (for step size 20 we have changed the color mapping by one order of magnitude).

flow separation inside the tube. The total mesh size is about 170000 cells.

During simulation 1570 timesteps have been generated resulting in 26 GB of compressed
information. This is 10 times the temporal resolution our application partners would have
stored usually for this simulation setting. To exclude possible interference from numerical
problems introduced by the plane fitting technique we use to estimate the material deriva-
tives also the Jacobian computed during the simulation have been included in the data set.
This way we can analyze how strong the impact of larger timesteps is when computing vor-
tex core lines. We can use the time derivative computed for step size 1 as reference for the
other step sizes and measure the influence of larger step sizes by computing the difference
between the reference derivative and the respective derivative for the given step size. In
Figure 6.11 the magnitude of this difference is mapped to color. To analyze the impact on
vortex extraction, we focus on a horseshoe vortex directly behind the top inlet. We see the
difference between the acceleration vector from step size of 1 and step sizes 10 and 20. The
vortex core lines resulting from smaller step sizes than 10 do not differ significantly from
each other. This is exactly the default step size resulting from the standard simulation
procedure. For larger step sizes the resulting vortex core line begins to deteriorate due to
the noise introduced by the time derivative component of the acceleration vector. At step
size of 20 we still get a similar but jagged result. At larger step sizes the extracted line no
longer resembles the horseshoe vortex in the data set. At step size 100 the line breaks into
3 unconnected components that follow the vortex core line for some length and then trail
off in random directions.

We conclude that for standard step sizes in well prepared simulations the time-aware
vortex core line extraction method produces reliable results. Both for the especially de-
signed data set and the real world examples (where the Jacobian had to be estimated) we
did not find the estimation of the time derivatives to introduce significant additional noise.
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6.6 Chapter Conclusions

This chapter proposes a new method to find vortex core lines in unsteady flows. Local-
ization of vortices has been shown to be dependent on the temporal developments of the
flow. We have given examples where vortex core extraction on time-frozen fields fails and
have shown how to solve this problem. This result is not only relevant to vortex core
extraction algorithms but to unsteady flow feature extraction methods in general. Since
we could demonstrate that vortex core extraction algorithms have to include the temporal
developments of the flow, it can be expected that similar results can be achieved for other
flow features as well. Therefore we expect to see significant similar results in this direction
in the future.

Based on the insight that it is necessary to include the time-derivative information into
the feature extraction process we proposed a natural extension of the feature extraction
process to unsteady flow data. By changing the underlying geometry from a streamline
to a pathline based approach we can generalize existing feature extraction algorithms
to unsteady flow data in a way that does not change their behavior on steady flows.
We presented an algorithm that follows this approach extending parallel vectors operator
criteria. Due to the consistent extension of the approach the algorithms change in a
natural way and (given an implementation of the parallel vectors operator) the extension
can be implemented quickly. The additional computation cost amounts to computing finite
differences to estimate the time derivatives, therefore the difference to the original parallel
vectors implementation is small.

We could confirm on real world data that the extracted vortices can differ significantly
in position from the method of Sujudi and Haimes and in the large majority of the cases the
extracted core lines are the same or better than those we got with the standard methods.

We conclude that for unsteady data the modified version of the algorithm of Sujudi
and Haimes is the default choice. The higher order method generally performs very similar
to the method of Sujudi and Haimes but it intensifies numerical issues. Also it requires
additional computation. Therefore, only if after inspection of the data the results of the
unsteady version of Sujudi and Haimes does not perform as expected, we suggest to switch
to the modified higher order method.



Chapter 7

Summary

"The beginning of knowledge is the discovery of something we do not under-
stand.” (Frank Herbert 1920 — 1986)

Feature-based visualization is a useful tool in understanding complex computational fluid
dynamics (CFD) results. While we still do not have a generally accepted definition of what
a vortex is, progress is being made.

We introduce several techniques to improve the vortex feature extraction results of clas-
sical vortex detectors. The presented framework is founded on an Integration interactive
visual analysis and automatic vortex detection. In the remainder of this chapter we will
summarize the contributions of this thesis. In the first section we summarize results on
vortex core line extraction from time-dependent CFD data sets. In the second section we
discuss how we can build non-local and non-binary detectors that give stable extraction
results combining classical approaches and interactive analysis. In the first section we dis-
cuss how the formerly binary vortex detectors can be interpreted to produce smooth results
that allow interactive specification of fuzzy thresholds during interactive analysis. In the
second section we discuss how multiple criteria can be combined and how analysis using
multiple detectors at once can improve the extraction results. In the third subsection we
discuss an extension of the Kulerian detectors to the unsteady domain.

In the fourth subsection we continue work on unsteady flow field vortex feature ex-
traction and discuss parallel vectors criteria to improve the extraction of line type vortex
features on unsteady flow data.

7.1 Unsteady Criteria for Vortex Core Lines

Having unsteady region based vortex detectors available, we are interested in extracting
the position of vortex core lines to improve the spatial perception of the structures in the
visualization. The vortex core lines proof to be a very useful feature for understanding
the volumetric nature and help orienting between multiple vortex regions. To extract
meaningful vortex core lines, we need to extend existing methods for vortex core line
extraction. The Sujudi-Haimes vortex core lines can be defined as the set of points where
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Figure 7.1: In this timestep of the two stroke data set, we can see that the vortex core line
computed with the modified approach that considers the temporal developments we get a
result that is in better agreement with the Ay vortex region. This image also highlights
how the comprehensibility of the visualization improves when combining volumetric vortex
region visualization with extracted vortex core line glyphs.



7.2. INTERACTIVE VORTEX REGION ANALYSIS 109

the velocity vector u and ag := (Vu) u are parallel, restricted to points where the velocity
gradient has a pair of complex eigenvalues.

An modification to include the temporal developments is to use the true acceleration
vector instead of instantaneous acceleration vector ag, i.e. to extract points where the Jerk
vector and the velocity field u are parallel. The time-dependent acceleration (or Jerk)
vector is defined as

a; = Du/Dt = (Vu)u+ 0u/ot.

As we have seen in Chapter 6 this natural modification improves the robustness and pro-
duces vortex core line features at very reasonable positions (also see Figure 7.1).

7.2 Interactive Vortex Region Analysis

In Figure 7.2 we can see how we extend the binary classifiers throughout this thesis. In
a first step we extend the classical definitions to compute non-binary vortex criteria that
include a notion of strength or certainty of the result. In a second step we use this feature
to combine multiple criteria and flow attributes into a combined detector interactively.
The third step then extends the criteria using a physically motivated filter to the unsteady
and non-local domain.

7.2.1 Step 1: Non-binary Criteria

Given two fuzzy attributes A and B on the domain D, the a fuzzy set can be defined
as a mapping A : D — [0,1], and the range between the values 0 (false) and 1 (true)
allows to model partial membership to this attribute. We use linear scaling to map the
detector responses to the [0, 1] interval but use percentiles when scaling the detectors
instead of minimum and maximum responses in the data set to improve the robustness
against outliers. Let s; and sg5 be the 5th and 95th percentile of a data set S, then a
robust linear scaling is given by

1 , 595 < 5()
scaleg(s(x)) := s(z) — s5/(895 — 55) 85 < (1) < S5
0 ,s(x) < s5

\

With this scaling function we can scale the detector outputs. Since a fixed threshold
at zero is often not an appropriate requirement, we introduce an additional threshold trsh
for the non-binary vortex criteria Ag, Q, d and vorticity magnitude (|w|).

o \y: B\ (x,J(x),u(z,t)) := scales(—Ay(x) — trsh)
o Q: Eg((z, J(x),u(x,t)) := scales(Q) — trsh)
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multiple vortex delocalized
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Figure 7.2: We illustrate the extensions discussed throughout this thesis. (1) We start
with binary vortex detectors. It is hard to understand where the structures originate and
how they are related to the geometry. (2) Using non-binary vortex detectors we can select
only the parts of the volume that contain strongly vortical movements. (3) By combining
multiple criteria it is possible to refine the selection further and it becomes obvious that
the strongest source of vorticity are the gaskets between cylinder head and body. (4) Using
delocalization we can further refine the selection and remove noise from the results.



7.2. INTERACTIVE VORTEX REGION ANALYSIS 111

context grey

strongly selected

smeoth
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vortex detect

Figure 7.3: Non-binary integration of vortex detectors allows to perform fuzzy set based
interaction and visualization. (a) we have selected values strongly indicating a vortex to
be present fully and use a smoothly decreasing selection for borderline cases. (b) The main
feature is selected with high opacity values. (c) Weaker features as the thin regions on
the boundary of the geometry of the cooling jacket are rendered with high transparency.
Non-selected regions are displayed in grey values and high transparency to display context.

e J-criterion: Ea((z,J(x),u(z,t)) := scales(Ae; — trsh)

e vorticity magnitude: E,((z, J(z),u(z,t)) := scales(|w| — trsh)

Using non-binary criteria allows to specify smooth selections as well and get visual
feedback on the strength of the selected vortex.

7.2.2 Step 2: Multiple combined Criteria

In the second step we have a set of multiple vortex detection criteria available and want to
combine these using interactive procedures. For combining two criteria we rely on standard
fuzzy norm equivalents of the boolean operators.

e ’'A AND B :=min(A, B)
e ’'A OR B':=max(A, B)

e 'NOT A :=1-A
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Figure 7.4: Combination and analysis of multiple detectors. We see the views linked
following the expression '((b) AND (c)) OR (e)’. (a) The selected subset of the simulation
is rendered with temperature mapped to color. (b) We have selected high velocities in
z —direction and see the distribution of x— and y — velocities. (c) In this scatterplot data
items with high vorticity are selected. (d) We can compare the relation of strongly swirling
motion with the selection of Ay < 0 in (e). (f) The FDL-tree controls how the selection
form the different views are linked together.

We can now structure features specified interactively in multiple views by placing them
inside an FDL-tree [25].

In Figure 7.4 we can see an example how multiple vortex detectors and other flow
attributes can be combined. The inter-view linking scheme allows to inspect the relations
between multiple attributes in comparison to each other and in relation to one or multiple
vortex detectors.

7.2.3 Step 3: Delocalized Criteria

Until now we have discussed how multiple criteria can be combined locally to improve
feature detection. This can be considered as the Eulerian approach to feature detection.
In the third step we accumulate non-binary feature criteria along trajectories. The idea
is, that a particle that belongs to a vortex will travel a certain amount of time through a
vortex, if the classification was good.
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A pathline is defined as

t+At
p(t + At) = p(t) + /t u(p(s), s)ds

where p(t) is the position of the particle at time ¢, p(t + At) is the new position after time
At and u(p(t),t) is the velocity of the particle at position p(t) at time ¢. The Runge-Kutta
method (RK4) can be used for numeric integration of these pathlines [116]. Given a vector
field u we call py, 5, the pathline starting at point zy and time t,.

Following Chapter 6 we can define the Eulerian detector response for a pathline py, ,, as

E(ptowoﬁ t) = E(ptowo (t)’ J(pto,xo (t)> t)’ u(pto,évo (t)’ t))

if pr, 2 () € D. ) )
The two maximal integration length parameters ¢y and ¢, for a pathline represent the
maximal time the particle remains inside the simulation domain D during forward (resp.
backward) integration. The user can interactively specify integration length parameters t,
and t; to select integration length in backward and forward time.
Given ¢, and ty, the delocalized version of the Eulerian detector at position zy and time
to is ) B
. Jrvntiasy w(s) - B(pry.ay 5)ds
E(pto,xoatb7tf) = : iy
) w(s)ds

with ¢, < top < ty and w(z) a weighting function. We suggest to use linear or gaussian
weighting of detector values along the pathline.

Using several real-world data sets in Chapter 5 we have shown that the delocalized
feature detectors outperform their local counterparts regarding the separation of vortices.
Furthermore the delocalization process improves the robustness of the detectors in the
presence of noise, and using the interactive line view it becomes possible to specify these
parameters non-uniformly. This improves the flexibility of the detection process and allows
to concentrate on specific types of vortices, e.g., the largest or those which trap particles
inside and prevent mixing.

(7.1)

7.3 Chapter Conclusions

In this chapter we have given an overview of the approaches presented in this thesis. The
extension of vortex core line detectors to unsteady flow fields can improve the detection
results, given the temporal resolution of the data is sufficiently high. We have also shown
how the different extensions for interactive vortex analysis are mutually dependent on each
other and contribute to the final delocalized feature detectors: combining multiple vortex
detectors benefits from the non-binary form of the detectors and the delocalized detectors
take much of their robustness from integration over good local selections.
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Chapter 8

Thesis Conclusions

7 All proofs inevitably lead to propositions which have no proof — all things are
known because we want to believe in them.” (Frank Herbert 1920 — 1986)

In this thesis we have presented a set of approaches to extend classical vortex feature detec-
tion and to include the detected information into the process of visual interactive analysis.
The presented framework is target at engineers and researchers that have to deal with
complex simulation results. As we have seen in various case studies throughout this thesis,
CFD simulation results very often include surprising features, which the engineer could
not have foreseen. In other words, due to the non-linear nature of the flow, unforeseeable
effects can influence the performance of a prototype simulation. When the engineer has to
perform a ’debugging’-type of analysis for a prototype to figure out why the results are not
as expected (e.g., a cooling jacket does not cool well enough), then the interactive analysis
process including vortex features is an invaluable tool.

The field of feature based visualization develops in co-evolution with basic fluid dynam-
ics research. As new theories on coherent structures in fluid flows are developed by fluid
dynamicists, new visualizations based on these concepts become possible. One example is
the transition from the Eulerian to the Lagrangian perspective regarding feature extrac-
tion. New visualization tools help engineers and researches to expand their understanding
of the governing laws of turbulence, thus leading to new results in fluid dynamics. With
the goal in mind to understand the underlying laws of coherent structures in turbulence,
visualization can play an important role in assisting both researchers and engineers.

We have discussed that none of the vortex feature detectors is generally accepted and
that there are examples where all of them fail to produce optimal results. By combining
multiple detectors and taking the development over time into account we can balance
many of these problems. We conclude that feature based visualization is a powerful tool for
understanding simulation results. Combining interactive analysis and automatic extraction
of relevant features allows the user to apply high level knowledge and experience regarding
the effects of vortices into the analysis process.

For future work, many questions remain open. Here we summarize some questions
which have come up during the work on this thesis:
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e How can we combine and relate vortex type features with topological features? Mul-
tiple results point in this direction, but little has been done in the visualization
community in this direction.

e How can we use the extracted information to produce illustrative visualization of
vortex type structures in the flow? There are multiple points to attack this question,
but there have been no groundbreaking successes yet.

e How can we bring simulation and visualization tools closer together, in so far as the
information and understanding generated during the analysis process can be fed back
to the simulation to improve the simulation results as well?

We can conclude that vortex extraction is a key tool for understanding complex fluid
dynamics results and that interactive visual analysis benefits from including complex derived
features.
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Figure A.1: Control volume variants used for numerical solution for CFD. (a) Cell-centered
volume representation. (b) Vertex-centered volume representation. The segments surround
the median dual control volume, i.e., the positions inside the cells are computed using the
center of gravity for each cell.

Appendix A

Gradients

The vortex core line extraction process consists of three stages:
1. estimate velocities at vertices and faces (Subsection A.1)
2. reconstruct gradients at vertices and faces using estimated velocities (Subsection A.2)

3. for each cell subdivide into tetrahedra and use reconstructed gradients to find vortex
core positions (Subsection 6.3.4).

Depending on the type of simulation data storage can be either vertex or cell centered
(see Figure A.1). In the third vortex core line extraction step we need gradients at the
nodes of the grid, and the gradient reconstruction step varies slightly for the two storage
types.
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Figure A.2: Velocity estimation for different mesh types. (a) Estimating face velocities
from cell centered data can be done by inverse distance weighting of the adjacent cell
velocities. (b) Estimating vertex velocities from cell centered data can be done by inverse
distance weighting of the surrounding cell velocities

A.1 Velocity Estimation

To reconstruct velocities we use a standard inverse geometric weighted interpolation
scheme.

For estimating face velocities from cell centers, we define the distance between the
center of a cell and one of its faces as the distance between the cell center and the center
of gravity of the face. The velocity at face uy is computed as

ur = auc + (1 — a)uy

where C' and N are the two cells adjacent to the face f. Here the weighting geometric factor
« can be computed as « := %, where d(-, -) denotes the Euclidean distance (see
Figure A.2 (a)). When working with vertex-centered volume representation, the velocity

at a face can be computed by taking the average of the surrounding vertices.

The velocity at a node v can be computed from the surrounding cell centers by using
the cell values of the surrounding cells. Again the weight is taken as the inverse of the
distance of the node from the cell center. Let No be the number of cells surrounding v, C;
the center of the ¢-th neighboring cell, and u¢, its velocity vector. Then we can compute
the velocity u, at v as u, := ZJ\LCO uc,o; where the weight of the i-th cell is «; := d(v, C;) ™!
(see Figure A.2 (b)). The velocity at a cell center from the surrounding vertices for vertex
centered grids can be computed by taking the inverse distance weighted average of vertices
of the cell.
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Figure A.3: Gradient estimation at a vertex (red) using the Green-Gauss theorem requires
to estimate cell center velocities and mid-point velocities. (a) The surrounding surface uses
cell centers (green) and mid-points (gray). (b) In this detail illustration of the lighter gray
section from (a) we see the full configuration for a single surrounding tetrahedron.

A.2 Gradient Reconstruction

In addition to the velocity values at the vertices to the cell we also need the velocity
gradients. To compute the gradients we suggest to use the Green-Gauss reconstruction
method which works with velocity values from the faces of the cell. The least-squares
linear reconstruction method can be used when no connectivity values are present (for
example when working with point clouds).

A.2.1 Green-Gauss Linear Reconstruction

Let € be a volume (a cell of the mesh for cell centered representation or the median control
volume for vertex centered representations), S = 92 the bounding surface of 2, ¢ some
scalar function defined on €2, and V¢ the derivative of ¢. Then the Green-Gauss theorem
states that the surface integral of the scalar function ¢ times the normal vector of the
surface over the surface S is equal to the volume integral of the gradient V¢ over the

volume 2:
/Vgon:/gondS.
Q s
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To compute the derivative at the center of the control volume we assume that Vi is
constant over the control volume and the volume integral over V¢ reduces to the volume
of ) times Vu:

\Q\V@%/V@d@z/cpnd&
0 S

Finally, we can approximate the integral over the bounding surface using face values. That

1s
1

Vo= @ Z @ - area(face;) - ny

faces

where area(triangle) is the surface area of a triangle.
To compute the derivative at a vertex we can use the control volume depicted in Figure

A.3 and get

Nt(U) 3

|Qc|Vu ~ Z Zar@a(st,i) U

=0 i=1
Here N(v) is the number of tetrahedra at vertex v. Here we are using an interpolated
velocity vector at the mid-points v}’ := %(uv + u;;) and the velocity at the cell center to
construct the surface velocity uf; := 3(uf + uf, | 4+ u.) (with uf’y, := uj"). See Figure A.3
for an illustration.

A.2.2 Least-Squares Linear Reconstruction

Here the gradient is estimated by fitting a hyperplane to the cell such that the difference
between the extrapolated value for the surrounding cells and the present values of the
surrounding cells are minimized.

For each edge of the resulting mesh incident to the vertex vy, an edge projected gradient
constraint equation is constructed using inverse distance weights «; for each edge:

a(Vu) - (x — z0) = a(r — ¥0)-

The gradient construction is obtained by solving a least-squares optimization problem to
minimize the sum of the distances between the estimated values and the vertex values.
This approach implicitly smoothes the data and can improve the results when working
with noisy data.

Which weighting scheme works best is still an open question. Mavriplis [95] stresses
that the minimization problem will be much better conditioned when using inverse distance
weighting. On the other hand when the mesh is irregularly sampled and on one side of
a cell we have a large number of small triangles and on the other side just a few larger
triangles this can lead to a gross misrepresentation of small triangles. Therefore we use
unweighted direct neighbors for estimating the gradient at a cell by default and only change
this procedure when necessary.
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