
Masterarbeit

GPU based Clipmaps

Implementation of Geometry Clipmaps for terrain with non-planar
basis

Ausgeführt am Institut für

Computergrafik und Algorithmen

der Technischen Universität Wien

unter Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Werner Purgathofer
und Mitwirkung von

Dipl.-Ing. Dr.techn. Robert F. Tobler M.S.

durch

Anton Frühstück
Hegergasse 18/3

A-1030 Wien

Wien, am 23. April 2008

Abstract

Terrain rendering has a wide range of applications. It is used in cartography and landscape
planning as well as in the entertainment sector. Applications that have to render large terrain
are facing the challenge of handling a vast amount of source data. The size of such terrain
data exceeds the capabilities of current PCs by far.

In this work an improved terrain rendering technique is introduced. It allows the rendering
of surfaces with an arbitrary basis like the spherical-shaped earth. Our algorithm extends
the Geometry Clipmaps algorithm, a technique that allows to render very large terrain data
without losing performance. This algorithm was developed by Losasso and Hoppe in 2004.
Asirvatham and Hoppe improved this algorithm in 2005 by increasing the utilization of mod-
ern graphics hardware. Nevertheless both algorithms lack of the ability to render large curved
surfaces.

Our application overcomes this restriction by using a texture holding 3D points instead of
a heightmap. This enables our implementation to render terrain that resides on an arbitrary
basis. The created mesh is not bound by a regular grid mesh that can only be altered in
z-direction. The drawback of this change of the original geometry clipmap algorithm is the
introduction of a precision problem that restricts the algorithm to render only a limited area.
This problem is handled by patching the whole surface with individual acting, geometry
clipmap quads.

2

Kurzfassung

Das Rendering von Terrain-Daten findet in vielen Anwendungsgebieten Verwendung. Neben
kartographischen Anwendungen wird es auch im Unterhaltungssektor eingesetzt. An-
wendungen, die ein sehr ausgedehntes Gelände anzeigen sollen, stehen vor dem Verar-
beitungsproblem von großen Datenmengen. Es ist in der Regel nicht möglich, diese Daten-
sätze mit herkömmlichen PCs direkt anzuzeigen.

In dieser Arbeit wird eine verbesserte Terrain Rendering Technik vorgestellt. Diese Level-

of-Detail Technik erlaubt das Anzeigen von auf beliebiger Basis aufgesetztem Terrain. Ein
Beispiel dafür ist die Erde, deren Oberfläche auf einer Kugel basiert. Der vorgestellte
Algorithmus baut auf dem Geometry Clipmaps Algorithmus auf, der das Anzeigen von
unbeschränkt großen Terrain-Daten ohne Leistungsabfall erlaubt. Dieser Algorithmus
wurde 2004 von Losasso und Hoppe entwickelt und 2005 von Asirvatham und Hoppe
verbessert, um herkömmliche Graphik-Hardware besser ausnützen zu können und dadurch
die Rendering-Leistung zu steigern. Dennoch können beide Algorithmen nur Gelände auf
ebener Basis darstellen.

Unsere Anwendung überwindet diese Einschränkung, indem anstelle einer Höhentextur eine
Floating-Point Textur mit den 3D-Koordinaten der einzelnen Oberflächenpunkte verwendet
wird. Durch diese Änderung ist es unserer Anwendung möglich, Gelände mit beliebiger
Form anzuzeigen. Das erzeugte Drahtgitter ist nicht an ein reguläres, nur in z-Richtung
veränderbares Mesh gebunden. Der Nachteil dieser Änderung des ursprünglichen Geometry
Clipmap Algorithmus ist das Auftreten eines Genauigkeitsproblems, das dem Algorithmus
das Rendern von nur beschränkt großen Terrains erlaubt. In dieser Arbeit wird dieses Präzi-
sionsproblem durch Teilen der gesamten Oberfläche in kleinere, ohne Probleme verarbeit-
baren Teile gelöst.

3

Credits

I would like to thank my supervisor for the great support during the development of this
work, my parents for making my study at the university possible and last but not least my
girlfriend who encouraged me and showed understanding for the little spare time I had.

4

Contents

1. Introduction 10

1.1. Thesis Objectives . 11
1.2. Structure of this Thesis . 12

2. State of the Art 13

2.1. Hierarchical Algorithms . 13
2.2. Triangular Irregular Meshes . 20
2.3. Geometry Clipmaps . 22

3. Theory 30

3.1. Overview . 30
3.2. Preprocessing . 32
3.3. Clipmap Structure . 34
3.4. Precision Problem and Solution . 36
3.5. Rendering Process . 39
3.6. Issues . 48

4. Implementation 51

4.1. Development Environment . 51
4.2. System Overview . 52
4.3. Design Motivation . 52
4.4. Rendering Process . 54

5. Evaluation 58

5.1. Test Environment and Scenario . 58
5.2. Results . 60
5.3. Analysis . 63

5

Contents

5.4. Problem Solution . 64

6. Conclusion and Outlook 68

6.1. Conclusion . 68
6.2. Outlook . 69

A. Screenshots 71

B. Acronyms 74

C. Bibliography 75

6

List of Figures

1.1. Height field with flat basis versus spherical basis 11

2.1. Longest edge bisection of a right-angled triangle-pair 15
2.2. Embedding of the white into the black quadtree structure (following Lind-

strom and Pascucci [LP01]) . 16
2.3. Recursive forced splitting of a triangle with a base neighbor from a coarser

level (following Duchaineau et al. [DWS+97]) 17
2.4. Nested wedgies for the 1D domain (following Duchaineau et al. [DWS+97]) 19
2.5. Schematic representation of a triangular irregular mesh (following Hoppe

[Hop98]) . 20
2.6. Vertex split refinement and the inverse operation, edge collapse 21
2.7. Clipmap region within a mipmap (from Tanner et al. [TMJ98]) 23
2.8. Rendering of clipmap rings (from Asirvatham and Hoppe [AH05]) and the

structure of the three finest clipmap rings in top-down view 24
2.9. Partitioning of a clipmap ring into different 2D footprints (from Asirvatham

and Hoppe [AH05]) . 25
2.10. The clipmap pyramid (from Asirvatham and Hoppe [AH05]) 25
2.11. Concentric ring support geometry for spherical clipmapping (from Clasen

and Hege [CH06]) . 27
2.12. Transformation from spherical coordinates to sample coordinates (from

Clasen and Hege [CH06]) . 29

3.1. Simple heightmap elevation compared with the use of a 3D vertex texture . 31
3.2. An axis-aligned bounding box for the terrain image points of a tile 33
3.3. Spatial extent of a clipmap ring . 35
3.4. Structure of the IEEE standard for binary floating-point arithmetic 36
3.5. Rendering of clipmaps which overlap two terrain patches 38

7

List of Figures

3.6. A maximum of four algorithm instances at the corner of one patch 38
3.7. Minimum and optimal covering with wrap-around addressing of a clipmap

ring referenced within terrain image tiles 40
3.8. Processing of a toroidal update (following Asirvatham and Hoppe [AH05]) 41
3.9. The n-vertex and p-vertex of bounding boxes (from Assarsson and Möller

[AM00]) . 44
3.10. The size of one screenpixel calculated by the viewer’s height and the field of

view angle . 46
3.11. Controlling of the camera movement by a quad defined by the finest level . 48
3.12. Orthographic view of the HEALPix partition of the sphere (from K. M.

Górski et al. [GHB+05]) . 50

4.1. UML class/package diagram of the GeoClipmap application 53
4.2. Schematic representation of the rendering process 55
4.3. Effect of mouse and keyboard events on the camera’s position and the look-at

point . 56

5.1. Average frame rate during the test runs . 62
5.2. Number of rendered triangles compared with the resulting frame rate for the

different test terrains . 62
5.3. Test 3: average time consumption by the different tasks during rendering . . 63
5.4. Three levels with the affiliation of the sample points encoded by their value/-

color . 65
5.5. Repacking of the samples after removing the redundant samples 66

8

List of Tables

3.1. Look-up table for determining the n- and p-vertices 45

5.1. Structure of the test-terrains . 59
5.2. Results of the performance tests . 61

9

Chapter 1.

Introduction

Terrain rendering has a wide range of applications. It is used in cartography and landscape
planning as well as in the entertainment center (e.g. in games). Applications like Google
Earth 1 or NASA World Wind 2 fit in between those areas and enjoy great popularity.

High resolution terrain data is usually captured by satellites. TerraSAR-X, a satellite of
the German Aerospace Center and European Aeronautic Defence and Space Company, was
launched on the 15. June 2007. The satellite uses a X-band Radar to gain high resolution
images [WBB+]. The resolution of the images ranges from 1-2 meters in spotlight mode

(10 x 10 km) to a resolution of 16 meters for 100 km wide strips. Therefore a full image
set of the earth produced by the TerraSAR-X satellite, results in roughly 30.000 million data
points.

In the game sector artistic tricks allow the rendering of larger terrain without getting prob-
lems with the amount of data. Applications that have to render real terrain, however, face
the challenge of handling large amount of source data. The size of the data exceeds the
capabilities of current PCs by far.

There are a number of applications that allow the rendering of very large datasets in different
ways. Some of those render terrain on a flat basis (compare Figure 1.1 left) whereas others
superimpose the data on spherical objects (compare Figure 1.1 right).

During our literature research we were not able to find implementations that render terrain
based on differently shaped objects. In some cases it might be desired to not only render

1http://earth.google.com
2http://worldwind.arc.nasa.gov

10

http://earth.google.com
http://worldwind.arc.nasa.gov

Chapter 1. Introduction

Figure 1.1.: Rendering a height field on a flat basis (left) versus a spherical basis (right).

terrain on a sphere but for example on a cylinder. The user shall not be restricted to a specific
basis from which the terrain is elevated.

The first problem can be solved by a variation of Geometry Clipmaps which will be dis-
cussed later but this introduces another difficulty. By way of example during the rendering
of spherical objects with terrain on the GPU numerical problems can arise due to the limited
32 bit floating point textures on current graphics cards. This limitation allows the application
to render only a limited area without getting precision problems.

1.1. Thesis Objectives

As the problems of terrain rendering were discussed, the main objectives of this work can be
outlined:

1. Create a working geometry clipmap implementation.

2. Extend the implementation to use 3D elevation data instead of a single channel
heightmap to be able to render spherical based objects.

3. Overcome the 32 bit floating point restriction to allow the rendering of arbitrary large
terrains with arbitrary resolution.

11

Chapter 1. Introduction

1.2. Structure of this Thesis

We will now provide an overview of this thesis:

• Chapter 2 outlines the state of the art in graphics hardware accelerated landscape en-
gines and the according algorithms.

• Chapter 3 discusses the theory behind our approach as well as the performance en-
hancing techniques used by our application.

• Chapter 4 describes the implementation details of our application.

• Chapter 5 evaluates the performance of the algorithm, points out its weak points and
our solution approaches.

• Chapter 6 briefly recaps the introduced algorithm and outlines the future work.

12

Chapter 2.

State of the Art

In the following three sections the state of the art in computer hardware accelerated landscape
engines and the according algorithms is discussed. Similarly to Brettell [Bre05] we classify
the existing techniques into three categories: hierarchical algorithms, triangular irregular

meshes and GPU-based approaches.

The algorithms in the first category recursively subdivide the height field using common
data structures. Irregular mesh techniques reduce a triangulated terrain into triangles of any
shape and size to give the most faithful representation of the terrain. According to Clasen
and Hege [CH06] GPU-based terrain rendering algorithms take the advantage of the huge
geometry bandwidth of current GPUs. This advantage overcompensates their deficiencies in
accuracy.

2.1. Hierarchical Algorithms

Hierarchical rendering algorithms use bisection of the terrain’s triangles to gain a better level
of detail (LOD). Recursive splitting is done until a desired LOD is reached. According to
Brettell [Bre05] the only requirement is that one instance of a shape can be partitioned into
n smaller copies of the same shape. The result of this process is a hierarchy. The possibility
of cracks in the subdivided terrain is a drawback of the splitting process and one challenge
for the algorithms.

A good overview of hierarchical algorithms is contained in the following two papers: Vi-

sualization of large terrains made easy by Lindstrom et al. [LP01] and ROAMing Terrain:

13

Chapter 2. State of the Art

Real-time Optimally Adapting Meshes by Duchaineau et al. [DWS+97]. In the following
two subsections those algorithms are shortly reviewed.

2.1.1. Real-Time, Continuous LOD

The paper of Lindstrom et al. [LKR+96] about real-time terrain rendering was among the
first papers published in the terrain rendering sector. The main goal of the authors is to build
a mesh with a smaller number of triangles out of a much larger mesh. This enables them
to render an approximated version of the orginial mesh which is too large to be rendered
directly. During the rendering task the authors want to remain highly memory and compute
efficient. The coarser mesh should be a good approximation of the original mesh for a given
view.

The authors [LKR+96] describe a method to simplify and render a fine-grained mesh in
two steps. First the mesh is reduced with little computational cost by using a conservative
estimate of whether certain groups of vertices can be eliminated block wise. The organization
of the blocks is done by a quadtree. This first step saves computational effort that would
otherwise arise if the whole mesh was processed only by the following second step.

In the second step the resulting mesh is processed with a computational more expensive
method for further, finer-grained simplification and rendered afterwards. The simplification
process of the triangles is carried out if the accuracy loss introduced by the reduction of
triangles is smaller than a certain constant values.

Lindstrom and Pascucci [LP01, LP02] improved the upper algorithm by changing the
bottom-up (fine-to-coarse) simplification technique to a more efficient top-down, out-of-core
algorithm. Out-of-core algorithms are such that process data which is too large to fit into the
PC’s or the graphics card’s main memory and therefore has to be streamed into the memory
on demand.

In the original version of the algorithm Lindstrom et al. [LKR+96] process the data into a
quadtree and simply traverse the tree during the rendering process. In the improved version
of the algorithm [LP01] an interleaved quadtree is not directly used for rendering but outputs
a single long triangle strip in an efficient way. The main advantage of this triangle strip is
that current graphics cards are optimized for the input of such triangle strips. As a result the
render process is optimized and simplified.

14

Chapter 2. State of the Art

Figure 2.1.: Longest edge bisection of a right-angled triangle-pair.

During a preprocessing step an interleaved quadtree is generated by gradually subdividing
the original mesh into different levels. Each vertex of this tree is either labeled white or black,
depending if it is created at an odd or an even level of refinement. In the implementation of
Lindstrom and Pascucci [LP01] they use a subdivision based on longest edge bisection where
an isosceles right-angled triangle is refined by dividing its hypotenuse (compare Figure 2.1).
The results of this preprocessing step are two quadtrees – a white and a black one. The top
row of Figure 2.2 shows the first three levels of the white quadtree whereas the second row
views the according black quadtree. It is important to note that during the creation of the
black quadtree, vertices outside of the terrain boundaries have to be created. The resulting
unused space is filled with the the first two levels of the white quadtree (indicated by the
arrows in Figure 2.2).

The quadtrees are implemented as direct acyclic graphs (DAGs) in which an edge is formed
by connecting the vertex at the center of the baseline and the opposite vertex. The data is
stored within the DAG from coarse to fine levels. Within one level, vertices that are geomet-
rically close are stored close together in the memory to preserve neighborhood properties.
This can be achieved by computing the index of the kth child of the parent by using following
formula:

c(p,k) = 4p+ k +m with k = 0,1,2,3

m is a constant and depending on the index of the root and the index distance between
consecutive levels of resolution.

The data is eventually stored as a single linear array. Unwanted holes arise within this array
but can be avoided by duplicating vertices. According to Bradley [Bra03] the drawback of
this is that it can result into sending twice as many triangles to the graphics card than actually
seen on the screen.

15

Chapter 2. State of the Art

Figure 2.2.: Embedding of the first two levels of the white quadtree structure (first row) into
the black quadtree structure (second row). The arrows indicate the new position of the
different parts of the white quadtree (following Lindstrom and Pascucci [LP01]).

The triangle strip has to be rebuilt every frame in order to achieve continuous LOD. The al-
gorithm starts from four separate large triangles (the southern, eastern, northern and western
triangular regions) and determines if the current node is active. A node being active means
that its screen space error is greater than a user-defined error tolerance. The screen space
error is the projection of the difference between the original terrain and the actually rendered
terrain on to the screen. If the node is active, the algorithm recursively refines the left child
of the node, adds the apex of the node to the triangle strip and refines the right child of the
node.

According to the Lindstrom and Pascucci [LP01, LP02] the improved version of the original
algorithm [LKR+96] renders the same scene significantly faster and more efficient but the
negative effect mentioned by Bradley [Bra03] and the small exploitation of the graphics
hardware makes this algorithm not suitable for our needs.

16

Chapter 2. State of the Art

forced split

Figure 2.3.: Recursive forced splitting of a triangle with a base neighbor from a coarser level
(following Duchaineau et al. [DWS+97]).

2.1.2. ROAM

The Real-time Optimally Adapting Meshes (ROAM) algorithm was introduced by
Duchaineau et al. [DWS+97] in 1997. ROAM is similar to the algorithm described in
the previous subsection.

As pointed out by the authors [DWS+97] ROAM consists of a preprocessing component and
several runtime components. During the preprocessing step a dynamic binary triangle tree
is created as a mesh representation including nested, view-independent error bounds for the
triangle tree. The space of continuous binary triangle tree meshes is the same as the one used
by Lindstrom and Pascucci [LP01] in their algorithm. The root triangle is a right-isosceles
triangle at the coarsest level of subdivision. The children of this root triangle are created by
splitting the parent triangle along an edge from its apex vertex to the midpoint of its base
edge. Continuing this process recursively creates the whole binary triangle tree.

The main difference of the ROAM algorithm to the algorithm by Lindstrom and Pascucci
[LP01] is the splitting an merging technique. A triangle can not only be split into two chil-
dren, but two neighboring triangles can also be merged into a larger one. Two mergeable
triangles are referred to as a mergeable diamond. If a triangle has a base neighbor from a
coarser level and has to be split, the base neighbor has to be split in advance. This can result
into a recursive forced split-process as visualized in Figure 2.3.

17

Chapter 2. State of the Art

The authors [DWS+97] annotate that any triangulation can be obtained from any other tri-
angulation by a sequence of splits and merges. These operations can be animated during
the update process by vertex morphing. Instead of immediately moving a vertex to its new
position, the vertex’s position is linearly interpolated over time from the old to the new posi-
tion. Using the split and merge operations, fine-grained updates can be made to an existing
triangulation.

The authors [DWS+97] present a greedy algorithm that drives the split and merge process.
This algorithm consists of two priority queues. The first queue starts with the base triangu-
lation and recursively splits the triangles with the highest priority. The priority of an triangle
is typically an error bound and is discussed later. The only requirement for the split queue is
that a child’s priority is not larger than its parent’s. During the merge queue, mergeable di-
amonds are handled, starting from a previous optimal triangulation when the priorities have
changed. Therefore advantage of frame-to-frame coherence is taken.

Duchaineau et al. [DWS+97] describe several error metrics and bounds which are used for
computing the queue priorities. For heightmap triangulations they introduce wedgies that
can be generated in a preprocessing stage. Wedgies are pie-shaped volumes that determine
the accuracy of each triangular section of the landscape. A wedgie is produced by paral-
lel shifting of the three triangle points along the y-axis. The length of the shift is defined
by the local error value. Nested wedgie bounds are built bottom-up (compare Figure 2.4).
This ensures that the children of a high-level node describe the same volume more accurate
[Hou04].

The actual tasks that are carried out per frame are following. After view-frustum culling (that
is described in next paragraph), the priorities of the nodes that are potentially split or merged
is updated. With the use of these priorities the greedy algorithm updates the triangulation.
The new triangulation is then ready to be built into a triangle strip. In the last step the terrain
is rendered using this triangle strip.

In the paper about the ROAM algorithm four different performance enhancement techniques
are described. View frustum culling tests every triangulation whether it is within the current
view frustum. Each triangle in the binary tree is given an IN, OUT, ALL-IN and DONT-
KNOW flag depending on the triangles position and the position of the according wedgie
relative to the six half spaces. Those flags are updated every frame by efficient recursive

18

Chapter 2. State of the Art

Figure 2.4.: Nested wedgies for the 1D domain (following Duchaineau et al. [DWS+97]).

binary tree traversal. Depending on the flags the rendering engine knows whether a triangle
has to be rendered or not.

The second performance optimization is incremental T-stripping. Duchaineau et al.

[DWS+97] use a simple, sub-optimal, incremental approach to organize triangles into strips.
This yields into strip lengths of about four to five triangles and allows to gain advantage of
the graphics cards optimized ability to handle such strips. During frame update only minimal
reorganization of the strips has to be performed.

Because recalculating error bounds of all triangles for every frame is too costly, the au-
thors suggest renewing the priorities only when they potentially affect a split or merge deci-
sion. Recomputation of a triangle can safely be delayed until its priority bound exceeds the
crossover priority (defined as the maximum split-queue priority).

The fourth optimization described in the paper [DWS+97] is titled as Progressive Optimiza-

tion. Triangulation optimization should stop when the time runs out for the current frame
update. This results into non-optimal triangulations. However the split and merge steps are
performed in decreasing order of importance so that the partial work is as good as possible
as time permits.

19

Chapter 2. State of the Art

Figure 2.5.: Schematic representation of a triangular irregular mesh (following Hoppe
[Hop98]).

The ROAM algorithm is similar to the Real-Time, Continuous LOD algorithm by Lindstrom
and Pascucci [LP01, LP02]. It meets our requirements neither due to the same problems
described in the previous subsection.

2.2. Triangular Irregular Meshes

Triangular Irregular Meshes (in the following abbreviated by TIN) represent a terrain as
a number of triangles of different shape and size [Bre05]. Figure 2.5 shows a schematic
representation of a TIN. Such meshes allow a optimal approximation for a terrain for a given
number of triangles. An example of a TIN algorithm that refines the triangulation as the
viewport changes is the view-dependent progressive mesh (VDPM) framework by Hoppe
[Hop98]. In the following subsection this algorithm will be reviewed.

2.2.1. Smooth View-Dependent Level-of-Detail Control

A technique called progressive meshes was developed by Hoppe [Hop96]. Progressive
meshes allow an efficient, lossless, continuous-resolution representation of highly detailed
geometric models. Smooth geomorphing, level-of-detail approximations, progressive trans-
mission, mesh compression and selective refinement is possible.

20

Chapter 2. State of the Art

vertex split

edge collapse

Figure 2.6.: Vertex split refinement and the inverse operation, edge collapse.

This technique was later extended into the VDPM (view-dependent progressive mesh) frame-
work. According to the author [Hop97] the framework allows to retrieve accurate approx-
imating meshes from a hierarchy of geometrically optimized refined meshes. Hoppe again
improved the framework to provide temporal coherence through the runtime creation of ge-

omorphs, which smoothly transition surface geometry over several frames. This is necessary
for eliminating the popping effect (a visible sudden change of the mesh from one frame to the
next). In his work the author also describes how to specialize the VDPM framework for ter-
rain rendering because Hoppe did not mainly develop progressive meshes for the rendering
of height fields.

According to Hoppe a progressive mesh representation is an arbitrary triangle mesh with
a sequence of refinement transformations to progressively recover detail. As refinement
transformations Hoppe uses vertex splits (compare Figure 2.6). During a vertex split process,
a vertex is replaced by two new vertices with all the edges that are needed for a correct
triangulation. The inverse vertex split transformation is called edge collapse. Two vertices
as well as the effected edges are merged.

To achieve view-dependent rendering of progressive meshes certain properties of every ver-
tex are checked per frame as the viewing parameters change in the VDPM framework. A
vertex must intersect the view frustum, its screen projected deviation from the base mesh
must exceed a user-defined tolerance and the surface surrounding the vertex must not be
strictly oriented away. If those requirements are fulfilled, a split refinement or an edge col-
lapse transformation is opposed on each vertex of the active front before rendering. As a
result the mesh is adapted to the new viewing parameters and an optimal image of the scene
is created.

21

Chapter 2. State of the Art

For being able to apply the idea of view-dependent progressive meshes upon terrain, Hoppe
decided to create a hierarchical progressive mesh construction [Hop98]. In a preprocessing
step the surface is reduced into a number of approximations with different coarseness. For
larger models those pre-simplified meshes may still be too large to fit into the memory.
Therefore the author suggests to partition the refinement database into blocks.

During the render process, the blocks that are going to be needed, are pre-fetched into the
memory. When the refinement criteria indicate the need for a vertex split or an edge collapse,
the transformation is not performed immediately. Instead it is carried out over a series of
frames as a geomorph if and only if the region of the affected surface is visible. Regions
outside the view frustum are refined instantaneously.

Next to the position other attributes have to be interpolated as well, like the normal, color and
texture coordinates. Interpolation is mostly done linearly, only the normals are interpolated
over the unit sphere.

For our approach view-dependent progressive meshes are not sufficient. The CPU-load is
too great to efficiently render very large terrains.

2.3. Geometry Clipmaps

The idea of clipmaps is based on mipmaps defined by Williams [Wil83]. Mipmapping is
a technique for avoiding aliasing during texture rendering. A mipmap consists of multiple
correlated images with reduced resolutions. The level 0 of this mipmap pyramid holds the
finest and therefore largest image. Lower levels are created by skipping every second texel
in both image directions of the previous image. This results in an image with 1/4 of the size
of the finer image.

Tanner et al. [TMJ98] state that during the rendering with a mipmap pyramid the engine
chooses a texel from a mipmap level where the display’s pixel-to-texel mapping is closest to
a 1:1 mapping. For very large mipmaps the majority of the mipmap pyramid is not used dur-
ing the render process of a single image – no matter what geometry is rendered. Therefore
they define a clipmap as an updateable, minimal subset of a mipmap (compare Figure 2.7).

22

Chapter 2. State of the Art

needed

clippedclipped

Figure 2.7.: Clipmap region within a mipmap (from Tanner et al. [TMJ98]).

Each level is clipped to a specific maximum size. As a result a clipmap is a dynamic tex-
ture representation that enables real-time rendering of arbitrary large textures using a finite
amount of physical memory.

The idea of clipmaps can be used for rendering arbitrary large terrains by elevating a planar
grid. This technique is called geometry clipmapping and is described in the first subsection.
Using the original version of geometry clipmapping it is not possible to render spherical
shaped terrain like the earth. Terrain rendering using spherical clipmapping makes this pos-
sible and is discussed in the second subsection.

2.3.1. Planar Clipmaps

Rendering a large terrain without any level-of-detail (LOD) control can lead to aliasing arti-
facts, just like texturing without mipmaps. To overcome such problems, Losasso and Hoppe
introduced Geometry Clipmaps [LH04]. In their implementation terrain is created by ele-
vating a basic flat mesh. This mesh is stored as a traditional vertex buffer. As a result the
CPU is heavily used in updating and rendering the terrain. Asirvatham and Hoppe improved
the original geometry clipmap algorithm by using vertex textures [AH05] and therefore took
advantage of the great processing capabilities of current graphics cards to decrease the CPU-
load.

In the improved version of the geometry clipmap algorithm the geometry of the terrain is
split into two parts. The x and y coordinates are stored as constant vertex data while the
accordingly z coordinate is stored in a single channel 2D texture. This elevation map is used
in the vertex shader to elevate the flat vertex data.

23

Chapter 2. State of the Art

Figure 2.8.: Left: Rendering of clipmap rings (from Asirvatham and Hoppe [AH05]).
Right: the structure of the three finest clipmap rings in top-down view.

The vertex data is not stored as one big mesh but is instead composed by different smaller
constant parts (2D footprints). During the rendering process those parts are scaled and trans-
lated to form regular grid rings which are centered about the viewer (compare Figure 2.8).
Figure 2.9 shows the different footprints and how the clipmap rings are composed.

The grid size of a whole clipmap ring has to be odd to ensure that each level lies on the grid
of the next coarser level. The size of the elevation texture is chosen to be a power of two
because the hardware is often optimized for this size. As a result the clipmap ring size is
n = 2k − 1 (with any desired k).

The 2D elevation map that is used for the terrain creation is prefiltered into a mipmap pyra-
mid with L level. Figure 2.10 shows a schematic clipmap pyramid. In this figure the up-
permost (= coarsest) level of the clipmap pyramid on the left corresponds to the outermost
region of the top view on the right. Each clipmap level is used to elevate a different regular
grid ring. Coarser levels elevate the rings further away. The finest clipmap level L-1 elevates
not only the closest ring but also a grid square that fills the hole of the nearest ring. The
elevation is done by sampling the elevation map as a vertex texture. This is possible since
DirectX 9 Shader Model 3.0 on NVIDIA Geforce 6 GPUs and better [GFG04].

For large terrains the whole clipmap pyramid does not fit into the memory. To overcome this
restriction only squared parts of the clipmap levels are stored in the memory. The size of
the stored clipmap parts corresponds to the number of vertices on one side of the rendered
clipmap rings.

24

Chapter 2. State of the Art

(Example: n=15, m=4)

m x m block

m x 3 ring fix-up

(2m + 1) x 2 interior trim

Outer degenerated triangles

n=15 vertices

Viewpoint

Figure 2.9.: Partitioning of a clipmap ring into different 2D footprints (from Asirvatham and
Hoppe [AH05]).

Coarsest level

Finest level Top view of terrain

Figure 2.10.: The clipmap pyramid (from Asirvatham and Hoppe [AH05]).

25

Chapter 2. State of the Art

If the position of the viewer moves, the missing parts of the clipmap levels in the memory are
updated. Those parts are generally L-shaped. 2D wraparound addressing of the clipmap level
textures makes efficient incremental update possible. Only the required parts are updated
and therefore translating existing data in the memory is avoided. Using this technique the
upper left corner of the actual elevation image does not correspond to the upper left corner
of the texture but moves within the texture. During the rendering process the graphics card
automatically wraps the texture.

Finer levels are never exactly centered within the next coarser levels. According to Asir-
vatham and Hoppe [AH05] the advantage of this is that a requirement of the algorithm is
fulfilled – finer levels are allowed to shift within the next coarser levels while those stay
fixed.

During the rendering process not all the levels are necessarily rendered. If the grid extent of
a level is greater than 2.5 times the height of the viewer, this level is skipped and the arisen
hole is filled by the next coarser level.

View frustum culling is easily possible. The x and z coordinates remain always the same
during the rendering process. Only the z value is affected by the vertex elevation. During
view frustum culling the footprints of the levels are elevated and intersected with the view
frustum in 3D. According to Asirvatham and Hoppe [AH05] the rendering load is reduced
with this view frustum culling technique by a factor of 2 to 3 for a 90-degree field-of-view.

The authors state that the main bottlenecks in their implementation are the vertex texture
lookups used for the vertex elevation. Removing the lookups increases the rendering rate by
a factor of about 40% in their rendering scenario [AH05].

Losasso and Hoppe use a GPU based technique to overcompensate the fact that the rendered
mesh is not optimal in terms of terrain approximation accuracy. The biggest issue for us is
the fact that only planar terrain can be rendered, although this terrain is allowed to be infinite
large due to the out-of-core technique of the algorithm.

2.3.2. Spherical Clipmaps

The geometry clipmap implementation by Losasso and Hoppe [LH04] does not allow to ren-
der spherical objects. Rendering such objects using rectangular support geometry results in

26

Chapter 2. State of the Art

Figure 2.11.: Concentric ring support geometry for spherical clipmapping (from Clasen and
Hege [CH06]).

the grid becoming infinitely thin towards the poles and stopping there. Spherical coordinates
do not wrap around in θ direction. For being able to visualize spherical terrains (e.g. planets)
on many scales, Spherical Clipmaps were introduced by Clasen and Hege [CH06].

In the implementation by Clasen and Hege [CH06] the underlying geometry is changed
from a rectangular grid to concentric rings. The shape of the support geometry of spherical
clipmaps is shown in Figure 2.11. Changing the support geometry involves a change of
the parameterization. An equally simple parameterization of the plane (x,y) are spherical
coordinates. Any point of a sphere can be addressed using the angle θ to the z-axis and the
angle φ of the projected point on the x,y-plane to the x-axis (compare Figure 2.11). The
value of θ ranges from 0 to π and the value φ from 0 to 2π .

Clasen and Hege implemented spherical clipmaps using two different spaces [CH06]. In the
view space the viewer is located at the north pole of the spherical object which allows using
static geometry that can be precomputed and transferred to the GPU only once. The hemi-
sphere around the viewer is parameterized by (φ̂ , θ̂). The view space is rotated to absolutely
orient the spherical terrain. The resulting space is called world space and parameterized by
(φ ,θ).

The mapping between those two spaces is defined as

f (θv, φ̂ , θ̂)→ (φ ,θ)

27

Chapter 2. State of the Art

The viewer is assumed to be located exactly above the 0-meridian at (0,θv). Any deviation
of the viewer in φv direction results in a simple φ -offset in the heightmap.

A point p̂ with local spherical coordinates (φ̂ , θ̂) on the hemisphere has the coordinates

p̂ =

cos φ̂ · sin θ̂

sin φ̂ · sin θ̂

cos θ̂

The world coordinates of this point are:

p =

 cosθv · p̂x− sinθv · p̂z

py

−sinθv · p̂x + cosθv · p̂z

The conversion back into spherical coordinates can be done using the following equation:(

φ

θ

)
=

(
tan−1 py

px

cos−1(pz)−θv

)

Points on the view hemisphere are transformed into the world space using the upper trans-
formations. The rectangular heightmap is parameterized by (s, t) = (φ ,θ) and can therefore
be sampled with the parameters of world space. These steps are pictured in Figure 2.12.

Clasen and Hege [CH06] create the grid of the hemisphere by dividing φ̂ into n fixed steps. θ̂

is divided into concentric rings which exponentially grow in increasing θ̂ direction and cor-
respond to the grid rings of the levels in the original implementation by Losasso and Hoppe
[LH04]. Each concentric ring is subdivided into m fixed rings and the resulting discrete
elements partitioned into two triangles.

As a result of this partitioning scheme the 1:1 correspondence of vertices and height samples
is lost. In contrast to the original geometry clipmaps no T-intersections at level boundaries
are created.

The visibility of the different concentric rings is dependent of the camera’s height. The lower
bound is determined by the earth curvature. Parts behind the horizon (from the camera’s
point of view) are not visible. Same as in the original geometry clipmap implementation
finer clipmap levels are skipped if the triangles cover less than one pixel. Therefore the

28

Chapter 2. State of the Art

N

0

Figure 2.12.: Transformation from spherical coordinates to sample coordinates (from Clasen
and Hege [CH06]).

upper bound is defined by the height of the camera above the surface. It is important to note
that no matter how far the camera is relative to a planet only one hemisphere of the spherical
object is visible.

Like in the improved GPU geometry clipmap implementation by Asirvatham and Hoppe
[AH05], the vertex texture fetch is the bottleneck of the implementation by Clasen and
Hege.

Clasen and Hege solve the issue of the implementation by Losasso and Hoppe [LH04] that
does not to allow the rendering of spherical objects. As a drawback of this, they run into
the precision problem discussed in Chapter 1. Therefore using this technique allows only
rendering a limited range of terrain and is not suitable for our needs.

29

Chapter 3.

Theory

The main requirement for our application is to render arbitrary large terrain in real-time.
As reviewed in Chapter 2 there exist a number of algorithms that accomplish that but none
of them fully meets our demands. The GPU-based geometry clipmap algorithm by Asir-
vatham and Hoppe [AH05] attracted us the most but unfortunately it lacks of the ability to
render large arbitrary curved surfaces. For instance it is not possible to display large spher-
ical shaped objects like the earth. Their implementation only allows rendering terrain that
resides on a flat basis. Therefore we present an algorithm that overcomes this planar basis
restriction. In this chapter we describe the theory behind our GPU-based geometry clipmap
implementation.

3.1. Overview

The main problem of all the terrain rendering algorithms is the huge amount of data that
current CPUs and graphics cards are not able to handle. Level-of-detail techniques have to
be used which process the data so that the engine is able to render the terrain in real-time
without losing visual information.

The GPU-based geometry clipmap algorithm creates a terrain with decreasing sample density
when moving away from the viewer. Asirvatham and Hoppe [AH05] state that by this way
triangles are rendered that are uniformly sized in screen space and therefore fulfill the level-
of-detail demand.

30

Chapter 3. Theory

x

y
z

Figure 3.1.: Simple heightmap elevation (left) compared with the use of a 3D vertex texture
(right).

Same as Asirvatham and Hoppe [AH05] we store the terrain in vertex textures. In the original
implementation the authors use 2D elevation images, prefiltered into a mipmap pyramid of
L levels. Their application caches square windows of n× n samples for every level. Those
windows are used during the rendering to elevate regular grid rings centered about the viewer
and thus create the terrain. Every sample of the elevation image stores the z coordinate of
the according terrain point explicitly in its value and the x and y coordinate implicitly by
its position within the image. Figure 3.1 left shows a simple grid that is elevated using a
heightmap texture.

Instead of using 2D elevation images like described above, our implementation stores all
three coordinates of the terrain samples in the RGB channels of a RGBA1 floating point
texture. The information about the sample’s position within the whole texture is only used to
connect the points to triangles. This technique is the main difference between the algorithm
presented by Asirvatham and Hoppe [AH05] and our implementation and enables it to render
terrain that resides on arbitrary basis because the created mesh is not bound by a regular grid
mesh that can only be altered in z-direction (compare Figure 3.1 right).

1Red, Green, Blue, Alpha: the different channels of a four channel texture.

31

Chapter 3. Theory

3.2. Preprocessing

In a preprocessing step a data structure is generated that helps the render engine to reduce
per-frame calculations as much as possible. In the following the terrain data is referred to
as terrain image that is indexed by x and y and holds on position Px,y the actual (xa,ya,za)
coordinates of the terrain sample.

The preprocessing is done by a separate part of our implementation and consists of following
steps:

1. Tile the terrain data into large patches if the data’s extent is too great.

2. Prefilter the terrain data patches into mipmap pyramids of L levels.

3. Tile each level of a mipmap pyramid into tiles of fixed sized.

4. Calculate a bounding box for each tile.

5. Save the tiled levels and the according bounding boxes into separate binary files.

In the first step of the preprocessing procedure the application checks the raw terrain data
on its extent. If the extent of the terrain is too large to be rendered by one instance of the
algorithm, i.e. the algorithm runs into a precision problem, the terrain is tiled into large
patches (compare Section 3.4).

In the next step the terrain patches are prefiltered into mipmap pyramids by taking the terrain
image patches and removing every second texel in x and y direction. L terrain image levels for
every terrain patch are produced by repeating this step recursively until a minimum mipmap
level size of (n+1+ st)× (n+1+ st) is reached.

The terrain image levels usually do not fit into the memory as a whole. Therefore they have
to be stream on demand. To enable this, the individual levels are separated into tiles. The
size st of those quads is calculated by dividing the clipmap size n (compare Section 3.3) by
a user determined factor ct (that has to divide the clipmap size whole-numbered):

st =
n+1

ct

A larger ct value produces smaller tiles which will result in streaming more often less amount
of data into the memory.

32

Chapter 3. Theory

x

yz

Figure 3.2.: An axis-aligned bounding box for the terrain image points of a tile.

To enable view frustum culling an axis aligned bounding box is calculated for every created
tile (compare Figure 3.2). This bounding box describes the minimum and maximum extend
in xa, ya and za direction of the terrain points saved in the according tile. During the rendering
process it is used for a quick check whether the tile’s terrain points are visible or not (compare
Section 3.5.4).

After having calculated the level tiles and the according bounding boxes, all the data is saved
to disk. Starting with the upper left tile of the terrain image all the tiles are traversed line-by-
line and converted to binary streams. All the streams of one terrain image level are merged
into a large one and saved to disk. Same is done with the bounding boxes. As a result every
level creates two files on the hard disk. Disk space consumption and therefore the amount
of data that has to be read from disk can be reduced by compressing those streams. The
drawback of the compression is the heavier CPU load during the rendering process due to
the decompression.

For the shading of the surface during the rendering process the normal of every terrain sam-
ple is needed. In our application we implemented two different ways of creating the normals.
Because all the terrain information is available in the vertex shader the normals can be com-
puted on the fly during the rendering process. On the other hand it is possible to precompute
the normals into a normal map in a preprocessing step. Similar to the handling of the terrain
images the normal map is loaded on demand during the rendering into the GPU’s memory
and accessed by the vertex shader using vertex texture lookups.

The advantage of the preprocessing approach is the reduced computational effort during the

33

Chapter 3. Theory

vertex shader execution while the drawback is double the amount of data that has to be
streamed from the hard disk to the graphics card. Both the increased vertex texture lookups
that are needed for the computation of the normals on the GPU as well as the doubled stream-
ing data are bottlenecks for fluid rendering. It turned out that the greater bottleneck for our
implementation is the amount of data to be streamed. Therefore we choose to compute the
normals on the GPU in our final implementation. Nevertheless the creation of the normal
maps in a preprocessing step is described in the following.

Every sample point Px,y is in x and y direction surrounded by 4 sample points:

. . . Px,y−1 . . .
Px−1,y Px,y Px+1,y

. . . Px,y+1 . . .

We calculate the normal of Px,y by the cross product of vector (Px−1,y−Px+1,y) and vector
(Px,y+1−Px,y−1). Using the exact normal for rendering the image produces a very harsh
image. To reduce this harshness the normals are altered by a smoothing coefficient and
filtered afterwards with a Gauss kernel. By storing each normal with the same x and y index
like its according image point a normal map is created.

Same as the terrain image, the normal map is filtered into a mipmap pyramid with L levels.
After tiling all the mipmap levels into quads of the same size like the clipmaps, each normal
map level is saved to disk into one binary stream.

3.3. Clipmap Structure

The original algorithm of geometry clipmaps by Asirvatham and Hoppe [AH05] has to be
adjusted only little to fit our new requirements. Same as the authors we cache a n×n square
window of samples for every level. These windows produce nested grid rings centered about
the viewer. As we give up the x and y correspondence between the looked-up samples and
the grid used for the lookup in our implementation, the resulting grid usually won’t be a
regular grid anymore. Nevertheless the finer-level windows have smaller spatial extent than
the coarser ones. Like in the original implementation this ensures that the triangles of the
nested grid windows are uniformly sized in screen space.

34

Chapter 3. Theory

1- /1 16

1- /1 16

y

1

x

0

0

1

Interior trim

m x 3 block

m x m block

Figure 3.3.: Spatial extent of a clipmap ring (n = 15).

The grid size of a whole clipmap ring has to be odd to ensure that each level lies on the grid
of the next coarser level. The size of the elevation texture is chosen to be a power of two
because the hardware is often optimized for this size. As a result the clipmap ring size is
n = 2k − 1 (with any desired k).

The grid that encodes the (x,y) geometry and is used for the texture lookup is not created by a
single vertex and index buffer but rather composed by different footprints. Those small sets
of constant buffers are reused for every level. As Asirvatham and Hoppe state in their work
[AH05] the use of multiple vertex and index buffers both reduce memory costs and enables
view frustum culling.

All the clipmap levels are rendered as rings which are centered about the viewer. Only the
finest level is rendered as a complete grid square. Each clipmap ring is generated by four
different footprint pieces (compare Figure 2.9 and Figure 3.3). The first footprint of size
m×m with m = (n + 1)/4 is used 12 times and covers most of a clipmap ring. A smaller
footprint (m×3) is used to fill the gaps between the m×m pieces. When the next finer level
is fit in the hole of a level, a L-shaped hole arises that is filled by interior trims (blocks of size
(2m+1)×2 and 2m×2). Finally a set of degenerated triangles is used on the outer perimeter
of the level to avoid mesh T-junctions and fill small holes that possibly arise between the two

35

Chapter 3. Theory

sign exponent fraction

1 bit 8 bits 23 bits

Figure 3.4.: Structure of the IEEE standard for binary floating-point arithmetic.

levels.

During the rendering of the footprints, the vertex and index buffer are constant – only affine
transformations (translation, rotation, scaling) are applied. In the original implementation
by Asirvatham and Hoppe [AH05] the location of the footprints differs from level to level
because the x and y coordinate does not change during the elevation process. This is different
in our implementation. For every level in our implementation, the footprints form a ring (or a
square for the finest level) with a spatial extent of 0 to (1− 1

n+1) in x and y direction (compare
Figure 3.3). This allows the vertex shader to use the x and y coordinates as u and v values for
the vertex texture lookup and therefore those values have to be the same for every level. The
shift of the vertices to their desired position within the terrain is done by the vertex shader
by overwriting their coordinates with the values stored in the vertex texture.

The footprints are encoded in stets of constant vertex and index buffers. Following Asir-
vatham and Hoppe [AH05] we use 16-bit indices for the index buffer, resulting in a maxi-
mum block size of m = 256 and therefore a maximum clipmap size of n = 1023. The length
of the indexed triangles encoded by the index buffer enables optimal vertex caching.

3.4. Precision Problem and Solution

The drawback of changing the original geometry clipmap algorithm from the use of
heightmaps to textures holding 3D information is the introduction of a precision problem.
Like stated in the introduction of this work numerical problems can arise due to the limited
32 bit floating point textures on current graphics cards.

The IEEE standard for binary floating-point arithmetic stores in the first bit of the 32 bits
the sign, in the succeeding 8 bits the exponent and in the last 23 bits the fraction (compare
Figure 3.4). The fraction is used for storing the actual number, the exponent "only" scales

36

Chapter 3. Theory

this number. If the 23 bits are used for storing a texture, the value can range from -223 to
223 (= 16.777.216) arbitrary units. Assuming a terrain with a distance between two samples
of one meter results in a maximum extent of around 16.800 km (maximum surface size of
~280 million km2) without getting numerical errors for the x and y coordinates. Therefore
the earth with a surface size of around 510 million km2 sampled every one meter does not fit
into a 32 bit floating point texture, not to think about higher sampling resolutions.

Our solution to overcome this restriction is to split up the surface into multiple individual
patches. Each one of these patches can have the maximum extent of a floating point tex-
ture. Often the patching has to be done anyway. Spherical objects for instance have to be
partitioned for being able to be stored in rectangular quads.

During the rendering process our implementation checks every frame whether the border of
one terrain patch is reached. In case the inquiry returns true the algorithm is instantiated a
second time. During the first run the algorithm continues to render the terrain like in the
previous frames (with a slightly different camera position). Because the border of the terrain
part is reached not all of the actually visible terrain can be rendered. During the second run
the adjacent terrain patch is loaded and the missing parts of the terrain are rendered. Naturally
the different parts of the terrain rendered during the two runs have to fit seamlessly together.
To archive this in the second run the camera has to be moved from the local coordinate
system of the first terrain patch the appropriate position within the local coordinate system
of the second patch.

Figure 3.5 schematically shows the rendering of such patch-overlapping clipmaps in 2D.
During the first rendering pass the camera is set to its position (visualized by the orange
line) within the coordinate system of the first patch (X0,Y0) and the green parts are rendered.
During the second pass the camera is moved to its position (yellow line) within the second
patch’s coordinate system (X1,Y1) and the missing parts (in blue) are rendered.

If the camera entirely moves out of the first patch the rendering of the first pass as well as the
first patch can be dismissed and the second pass handles all the terrain. At most four patches
and therefore four algorithm instances have to be loaded if the camera moves to the corner
of one patch (compare Figure 3.6).

37

Chapter 3. Theory

X0

Y0

X1

Y1

P0

P1

Figure 3.5.: Rendering of clipmaps which overlap two terrain patches (P0 and P1).

Figure 3.6.: A maximum of four algorithm instances at the corner of one patch.

38

Chapter 3. Theory

3.5. Rendering Process

The rendering process of our implementation can be summarized by following steps:

1. Load the needed parts of the terrain image levels, (the normal maps,) and the bounding
boxes into the system’s and GPU’s memory.

2. Upon camera movement detect if missing data has to be reloaded from the hard disk
into the main memory.

3. Update the textures on the GPU

4. From fine to coarse, render the different clipmap levels with the footprints. Detect if
the rendering of individual footprints can be neglected by performing view frustum
culling.

5. Repeat step 2. to 4. until the user request termination. Reinstantiate the rendering
process with a different viewpoint and clipmap level textures, if the viewer moves to
the edge of the terrain patch.

The upper steps are described in more detail in the following subsections.

3.5.1. Disk-to-Memory Handling

With the start of the application a camera position is defined within the terrain’s area. Using
this information the application calculates which of the terrain image tiles cover the clipmap
levels around the camera. Like stated in Section 3.2 the size of one tile is st = (n + 1)/ct ,
whereas n is the clipmap size and ct a user determined factor. In general a clipmap level is
covered by ct

2 tiles (compare Figure 3.7 left). However if the level shifts, it can happen that
an extra band of tiles is needed on both x and y direction to cover the whole level.

In our implementation the number of tiles which are loaded does not change. At any time
(ct + 1)2 tiles are kept in the main memory. The advantage of the greater number of loaded
tiles is the lesser necessity to update the terrain image information. Analog to the loading of
the terrain image tiles the application loads the according bounding boxes and the tiles for
the normal maps (if normal map usage is enabled).

39

Chapter 3. Theory

and : terrain image samples
 stored in tiles

Figure 3.7.: A clipmap ring (n = 15) referenced within terrain image tiles (ct = 4).
Left: minimum covering. Right: optimal covering with wrap-around addressing.

If the camera is requested to move the application checks whether the new position of the
clipmap within the tiles exceeds the area covered by the ones current loaded and gets the
tiles that are missing. In the main memory the individual tiles are stored in a 2D-array and
referenced by wrap-around addressing (compare Figure 3.7 right). If an array index exceeds
the arrays dimension boundaries in any direction, the index is wrapped around the boundaries
by subtracting the length of the according dimension. This technique avoids updating all the
indices of the tiles if new ones are loaded.

3.5.2. Memory-to-GPU Handling

After loading the terrain information into the main memory, the application creates floating
point textures on the GPU. For each level two RGBA floating point textures are allocated:
one for storing the terrain information and the second one for the normal map. Both textures
leave the alpha channel unused. If the application calculates the normals on the fly only one
128 bit floating point texture is needed.

40

Chapter 3. Theory

Figure 3.8.: Processing of a toroidal update (following Asirvatham and Hoppe [AH05]).
Left: texture before update. Middle: viewer motion in green and update region in light-
blue. Right: texture after update.

Similar to the management of the tiles, the application takes advantage of the graphics cards
built in 2D wraparound addressing feature. If uv values exceede the range [0,1] they are
automatically remapped into this range. Therefore the upper left corner of the actual terrain
image does not correspond to the upper left corner of the texture but moves within it.

If the position of the viewer moves and the system’s main memory is already updated, the
missing parts of the clipmap levels in the GPU’s memory are updated as well. Those parts are
generally L-shaped. 2D wraparound addressing of the clipmap level textures makes efficient
incremental update possible and avoids copying existing data from the main memory to the
GPU’s memory (compare Figure 3.8). Only the required parts are updated. In general the
L-shaped update region becomes a cross shaped region on the GPU-texture. The update is
done by overwriting one to four quads within the texture.

3.5.3. Vertex and Pixel Shader

During the execution of the rendering pipeline the vertex shader creates the actual terrain.
This shader takes the footprint pieces which remain in their local coordinate system and
shifts them to their world position using the given world matrix. This matrix consists of
simple translation, rotation and scaling transformations. After the world transformation the
z coordinate of the vertices is 0 and the values of the x and y coordinates range from 0 to
(1− 1

n−1).

41

Chapter 3. Theory

In the next step the shader uses the values of the x and y coordinate as u and v values for the
vertex texture lookup in the terrain image texture. The resulting RGBA values are interpreted
as the new (x,y,z) coordinates of the vertex used for the lookup. As mentioned before the A
channel of the RGBA floating point texture remains unused in our case.

When using a normal map, the vertex shader uses the previous u and v values to get the
according precomputed normal from the normal map. In our final implementation we do
not use a normal map but instead compute the normal on the GPU. This requires four more
vertex texture lookups for every processed vertex in the vertex shader. In u and v direction
the circumjacent vertices are looked-up by in- and decreasing the u and v value by one step
t = 1/(n+1). Analog to the offline creation of the normal map the normal of a point Pu,v is
computed by the cross product of vector (Pu−t,v−Pu+t,v) and vector (Pu,v+t −Pu,v−t) (com-
pare Section 3.2). On the borders of the texture one of the four adjacent points is not avail-
able. Instead of this missing fourth point we use Pu,v itself. Usually the difference between
two adjacent points is not very high and therefore no visually noticeable distortions occur.
The resulting normals can be altered by a smoothing factor to reduce their harshness.

At last the vertex shader applies the view-projection matrix to the vertices. Apart from the
vertex position and the normal, the light direction, the viewer direction and the original uv

values are also packed together as input parameters for the pixel shader.

We chose to render our scene using the Phong illumination model with directional per pixel
lighting [Wik07, Kon07]. This technique interpolates the surface normals across the ras-
terized polygons. As a result the lightning calculation is carried out for every fragment.
The pixel shader calculates the needed parameters (Itexture, cshadow, cdi f f use, Ispecular) and
combines those with predefined values (Idebug, Iambient , Idi f f use, cspecular) using following
formular:

Iout = Idebug · Itexture · (Iambient + cshadow · (cdi f f use · Idi f f use + cspecular · Ispecular))

Idebug is used to color the different footprints of the clipmap levels on user request in different
colors. The output of the pixel shader is the color Iout of the according fragment.

In contrast to the implementation of Asirvatham and Hoppe [AH05] we do not perform
geometric blending between the different clipmap levels. The overlapping vertices on the
edges of two levels are the same as a result of our mipmap creation technique. The hole

42

Chapter 3. Theory

that arises because of the coarser resolution of the follow-up clipmap level is filled using the
degenerated triangles.

3.5.4. Performance Optimization

Performance optimization is critical for the most rendering applications to avoid unnecessary
work that decreases the frame rate. Naturally it is important to use any hardware specific
optimization. In this section we will discuss various performance optimization techniques
we took advantage of in our application.

Depth Test

Because of the nature of the geometry clipmap algorithm coarser levels are more far away
from the camera than the finer ones. Therefore we render the levels from fine to coarse. As a
result triangles more closer to the camera are rendered earlier. Secondly we render the larger
footprints (of size m×m) before the smaller ones which might be occluded by the bigger
parts. All of this allows the graphics cards to use its depth test feature (Z-buffering) in an
optimal way. Rewriting a fragment by the rasterizer is costly and therefore the rendering
speed is improved if a close triangle creates fragments that omit the rewriting because of the
depth test.

View Frustum Culling

Another performance optimization that greatly reduces rendering load is view frustum
culling. In contrast to the implementation by Asirvatham and Hoppe [AH05] we cannot
directly extrude the footprints in z direction and test them on visibility by intersecting the
extruded volume with the view frustum in 3D. In our implementation we do not know
the boundaries of the footprints because the information is foremost extracted in the ver-
tex shader from the vertex texture. Therefore we had to come up with another idea which
we assume to be at least equal good performing than the view frustum culling technique by
Asirvatham and Hoppe.

43

Chapter 3. Theory

n-vertex

n-vertex

p-vertex

p-vertex

plane ð

Figure 3.9.: The n-vertex and p-vertex of bounding boxes corresponding to plane π and its
normal (from Assarsson and Möller [AM00]).

As described in the Section 3.2 during the preprocessing our application creates for every tile
a bounding box by calculating the maximum extend of the tile’s terrain in 3D. During ren-
dering, apart from the tiles, the according bounding boxes are loaded into the main memory.
Usually the footprints are not covered by a single tile, depending on the type of footprint and
the factor ct that indirectly specifies the side length of the tiles. Therefore multiple bounding
boxes have to be combined to create a larger bounding box that fully covers the footprint’s
terrain. If a footprint is to be tested for visibility relating to the view frustum, our application
first calculates the tiles that cover the footprint. With the use of that information, the accord-
ing bounding boxes can be combined. If a bounding box is defined by (xmin, ymin, zmin, xmax,
ymax, zmax) the combined bounding box can simply be created be taking the minimum values
of xmin, ymin and zmin and the maximum values of xmax, ymax and zmax. The resulting larger
bounding box is then tested against the view frustum with a simple outside test following an
algorithm presented by Assarsson and Möller [AM00].

Assarsson and Möller suggest to test only two vertices of an axis aligned bounding box
(AABB) with the view frustum instead of all vertices. They call those vertices the n-vertex
(negative far point) and the p-vertex (positive far point). Figure 3.9 shows the correspondence
between the two points and a plane. For the determination of the n- and p-vertex a look-up
table can be used (compare Table 3.1). For every view frustum plane the signs of the normal’s
components give the indices (nx, ny, nz) for the look-up table.

The basic collision test by Assarsson and Möller uses only two dot products and determines

44

Chapter 3. Theory

nx ny nz p-vertex n-vertex
+ + + [xmax,ymax,zmax] [xmin,ymin,zmin]
+ + – [xmax,ymax,zmax] [xmin,ymin,zmin]
+ – + [xmax,ymax,zmax] [xmin,ymin,zmin]
+ – – [xmax,ymax,zmax] [xmin,ymin,zmin]
– + + [xmax,ymax,zmax] [xmin,ymin,zmin]
– + – [xmax,ymax,zmax] [xmin,ymin,zmin]
– – + [xmax,ymax,zmax] [xmin,ymin,zmin]
– – – [xmax,ymax,zmax] [xmin,ymin,zmin]

Table 3.1.: Look-up table for determining the n- and p-vertices.

one of the AABB’s states: outside, inside or intersect. The first test detects if the n-vertex
is outside the half-space defined by the view frustum plane used for the test. If the first test
fails the second test is run for the p-vertex. If this vertex is outside, the AABB intersects
the view frustum plane. If both vertices are inside the plane, the whole AABB is inside the
half-space.

Following pseudo code implements the two tests using the n- and p-vertex (nVertex,
pVertex), the plane’s normal (nPlane) and the plane’s offset (dPlane) (following
Assarsson and Möller [AM00]):

a = nVertex · nPlane + dPlane;

b = pVertex · nPlane + dPlane;

if(a > 0) {

return OUTSIDE;

} else if(b > 0) {

return INTERSECT;

} else {

return INSIDE;

}

After testing the n- and p-vertex of an AABB with all the view frustum planes the position
of the bounding box corresponding to the whole view frustum is known. In our case the

45

Chapter 3. Theory

fov

á

s

h

image
plane

#p

Figure 3.10.: The size of one screenpixel s calculated by the viewer’s height h and the angle
α .

intersection test can be omitted – if a terrain tile is partly visible we have to render it anyway.
This slightly reduces computational effort of the view frustum culling because only the n-
vertex has to be tested.

Level Deactivation

If the camera is far enough from the underlying terrain the finest clipmap levels might be
unnecessarily dense. Asirvatham and Hoppe [AH05] state that apart from the fact that too
much information is rendered without getting a visually better result, even aliasing artifacts
might occur. Therefore during the rendering process not all of the L allocated clipmap levels
are used for rendering. Based on the height of the user over the underlying terrain a set of
active levels 0 to L−1 is defined.

Following Clasen and Hege [CH06] the size of one screen pixel mapped onto the surface
can be calculated with the height h of the user, the field of view angle fov and the number of
pixels #p per scanline (compare Figure 3.10):

s = h · tanα = h · tan
f ov
#p

After having calculated s, it can be compared with the average size of a triangle of the finest
active level. This size on the other hand is calculated by dividing the level extent by the
number of samples in one direction. If the average triangle size is smaller than twice the

46

Chapter 3. Theory

screen pixel size (i.e. a triangle is rendered by less than two pixels), the level is omitted in
our application. If a level is shifted, both the height of the user from the ground and the levels
extent are updated using the samples stored in the system’s main memory.

If the user moves fast over the surface the rendering engine might slow down due to the
massive amount of data that has to be streamed into both the systems and GPUs memory.
As a result the frame rate drops to an unwanted low level. If the application notices that the
loading of the terrain is too slow it deactivates finer levels to ensure a certain frame rate. Our
application loads the terrain information from coarse to fine level. That ensures that coarse
levels are updated sooner and enough terrain is available for rendering. This technique does
not have a visually bad impact on the rendered image because of the viewer’s higher motion
fine details are not noticeable anyway.

3.5.5. Camera Movement

The connection between the camera movement and the level update is slightly more compli-
cated than in the original geometry clipmap implementation. Differently from Asirvatham
and Hoppes [AH05] implementation a shift of the camera in x and y direction does not neces-
sarily has to result in a shift of the levels in the same direction because the terrain is allowed
to reside on a curved surface. Generally the shift of the camera has to be projected onto the
basis of the terrain. If the projection is greater or equal than the predefined unit for shifting,
a level shift has to be requested. The problem is that the basis is not directly known by the
implementation and even if the the basis were known by the application it can happen that
there might exist multiple possible projections for an arbitrary basis.

Our solution is to use the corner points of the finest level (or the current area saved by the
tiles of the finest level) to create a quad (compare Figure 3.11). In the next step the camera’s
position is normal projected onto this quad. Because the number of samples hold by the tiles
in one direction is known, an average step size can be calculated for the two directions of the
quad. The application only needs to divide the side lengths by the number of samples. Now
the application can check every frame if the projected camera position exceeds one of the
two averaged step sizes and if so, issue a level shift. Upon a level shift the application has to
recreate the quad and recalculate the averaged step sizes.

47

Chapter 3. Theory

Figure 3.11.: Controlling of the camera movement by a quad defined by the finest level with
the averaged step sizes (small green lines).

3.6. Issues

In this chapter we raise several issues that arise due to changing the original geometry
clipmap algorithm from the use of heightmaps to textures holding 3D information. Those
issues cannot be controlled or corrected by our implementation but have be considered by
the user during the terrain preprocessing.

3.6.1. Grid Size

In their original geometry clipmap implementation Asirvatham and Hoppe [AH05] hope use
regular grids as a basis for the heightmap elevation. During the elevation process this basis
does not change in x and y direction and therefore the distances between adjacent samples
are very similar, differing only by a factor introduced due to the z-displacement.

In contrast to that our implementation has no direct control over the distance between the
samples. On the average coarser levels will have double the distance than the next finer
levels but the charge of the actual position of the samples lies at the user who controls the
preprocessing of the terrain. If the user chooses a tessellation of the terrain that creates very
unequal sample distances in x and y direction, our algorithm cannot guarantee anymore that
the triangles of the nested grid windows are uniformly sized in screen space. The terrain

48

Chapter 3. Theory

created by the user in the preprocessing step does not have to reside on a regular grid basis
but as a general guideline the user should try to approximate such a regular basis as much as
possible.

3.6.2. Terrain Shape

Our implementation is able to visualize arbitrary shaped objects but the main purpose is to
render large terrains. Such terrains do not have to reside on a flat basis and can be convex
as well as concave. Theoretically our application is able to render not only spherical objects
from the outside but also from the inside. But it has to be considered that our application
renders only a finite amount of levels and hence a limited range. If the user wants to render
closed concave objects like a sphere from the inside and looks at the ceiling there might not
be any terrain visible because the distance measured on the ground is too large.

Another issue that has to be kept in mind is that the slope of the object’s virtual basis should
not be too steep (in other word: the virtual radius of the object is too small). The result would
be that the coarser level might lap into each other and produce distortions. The user has to
make sure that at any point on the surface the coarsest level has to fully fit on the surface
without overlapping.

3.6.3. Patching of the Surface

Our algorithm has been developed for very large datasets that exceed the floating point pre-
cision as discussed in Section 3.4. It is not a problem for our algorithm to display such
datasets but they have to be partitioned into large tiles to be able to be input into the applica-
tion. In order to be able to tile the whole dataset an appropriate partitioning scheme has to
be found. This can often be a difficult task but is crucial for the usability of the dataset for
our application.

An example for a partioning scheme for a sphere was presented by K. M. Górski et al.

[GHB+05]. They developed a Hierarchical Equal Area isoLatitude Pixelization (HEALPix)
which can be used for partitioning a sphere in four square regions (compare Figure 3.12).

49

Chapter 3. Theory

Figure 3.12.: Orthographic view of the HEALPix partition of the sphere (from K. M. Górski
et al. [GHB+05]).

50

Chapter 4.

Implementation

In this chapter implementation details of our application are discussed. The Unified Mod-
eling Language (UML) [OMG07] is used for visualizing relations or processes within our
application.

4.1. Development Environment

Our application is implemented using the C# programming language1 with the use of the
DirectX API2 for accessing the graphics hardware. The vertex and pixel shader are written
in the HLSL language. We chose C# for development because in our opinion this program-
ming language made writing the application easier than other languages that are used for 3D
application development like C++. C# manages the objects and provides a garbage collector
which can result in slower execution speed than comparable code in an unmanaged language.
Fortunately C# allows excluding certain parts of the code from being managed and therefore
possibly run with increased speed. We did this for the parts in our code which we assumed
to be runtime sensitive and therefore the overhead of the object management provided by C#
is not too great compared with non-managed programming languages like C++.

1http://msdn.microsoft.com/vcsharp
2http://www.microsoft.com/directx

51

http://msdn.microsoft.com/vcsharp
http://www.microsoft.com/directx

Chapter 4. Implementation

4.2. System Overview

In order to increase system flexibility and readability our application is distributed into dif-
ferent modules (compare Figure 4.1). The GUI module provides classes for interaction with
the user. If the application is started SettingsDialog is called to retrieve various graphi-
cal adapter specific settings from the user like the resolution and full screen rendering. Upon
occurrence of an unmanageable error during the execution the application’s ErrorDialog
displays the error message before the application is terminated.

The Rendering module provides the classes which form the basic rendering engine. The
GeoClipmapsMain class is the first class of the application to be accessed after the startup.
The class RenderEngine initializes the DirectX environment with the information gained
from the SettingsDialog inside the GUI module. This class also handles all the periph-
eral input, both the mouse’s as well as the keyboard’s. The input of the keyboard is used
for moving the camera while the mouse controls the viewing direction which is also used as
the primary moving direction. All the camera specific calculations are performed within the
Camera class.

The module GeoClipmaps contains all the classes that handle the loading, rendering and
updating of the geometry clipmaps. While the GeoClipmaps class does the overall han-
dling of the geometry clipmap algorithm, the loading and updating of the level’s data is done
by the LevelManager. View frustum culling is encapsulated within the ViewFrustum
class.

The static classes TimeStat and MsgHandler inside the Helper module provide meth-
ods of general purpose that are used by most of the other classes. TimeStat is used for
retrieving the accurate elapsed time at any time as well as other usefull time based values
like the the current and averaged frame rate. The static class MsgHandler allows the ap-
plication to output messages into a log file.

4.3. Design Motivation

The main design motivation for our application was to separation the rendering engine
from the actual geometry clipmap algorithm. This is accomplished by the two modules

52

Chapter 4. Implementation

GeoClipmapsMain

SettingsDialog

AdapterSettings

DeviceInformation

DisplayModeWrapper

ErrorDialog

RenderEngine

MsgHandler

TimeStat

GeoClipmaps

LevelManager

ViewFrustum

Camera

GeoClipmaps

GUI

Helper

Rendering

Figure 4.1.: UML class/package diagram of the GeoClipmap application.

53

Chapter 4. Implementation

Rendering and GeoClipmaps shown in Figure 4.1. With the use of delegates3 in the
C# programming language the rendering done by the GeoClipmaps part is integrated into
the actual rendering engine. By this modular technique other rendering tasks can simply
be plugged into the rendering engine without having to change neither the rendering engine
nor the GeoClipmaps part. Such tasks can be for example an extended user interface or a
head-up display.

The Helper classes TimeStat and MsgHandler are static classes and therefore do not
have to be initialized. Those classes can be accessed by all other classes.

4.4. Rendering Process

Figure 4.2 shows a schematic representation of the rendering process. After the start of the
application the user is asked to choose the display settings. One of the available adapters can
be selected as well as hardware or software rendering. The user is allowed to run the appli-
cation windowed or in fullscreen mode in an available adapter format and resolution. With
this information the application initializes the graphics device. Z-buffering and backface

culling is enabled. This allows the application to use those built-in performance optimizing
functions of the graphics card. According to Konerow [Kon07] Z-buffering stores the depth
value for every written fragment in a depth buffer and discards every fragment with a larger
value than the one currently saved in the depth buffer. This ensures correct rendering of over-
lapping triangles. Backface culling discards all triangles whose normal face away from the
camera (i.e. the backface of the triangle would be visible). In common rendering scenarios
such triangles are not visible anyway, therefore quite a lot of rendering load can be quickly
omitted.

After the setup of the render device the actual rendering loop can be started. The
RenderEngine checks for peripheral input in the first step. Next to keyboard events like
F1 for calling an on-screen help menu, W/A/S/D key events are captured and used for mov-
ing the camera. As an alternative to the W, A, S and D key the arrow keys can be used. On
a mouse movement event the x and y coordinates of the mouse within the rendering window
are translated into a displacement vector between the mouse’s old and new position. The
keyboard events and the displacement vector of the mouse are passed to the Camera class.

3http://msdn2.microsoft.com/en-us/library/ms173171.aspx

54

http://msdn2.microsoft.com/en-us/library/ms173171.aspx

Chapter 4. Implementation

Render clipmap
levels

Update clipmap
levels on GPU

Calc. update
quads

Update clipmap
tiles in memory

Manage clipmap
level shifts

Setup
render device

Handle
peripheral input

Check for term-
ination request

Stop

Start

RenderEngine

GeoClipmaps

LevelManager

Figure 4.2.: Schematic representation of the rendering process.

55

Chapter 4. Implementation

A D

W

S

-dy

+dy

-dx
+dx

x

y

Rendering window

Camera

Look-at point

dx
dy

Figure 4.3.: Effect of mouse and keyboard events on the camera’s position and the look-at
point.

In this class the displacement vector is used to rotate the camera’s look-at point around the
camera position. The y component of the displacement vector is used for tilting the camera
up or down while the x component affects the panning of the camera. If the user presses
the W (or S) key the camera is moved towards (or away of) the look-at point. The A and D
key trigger a horizontal sideways movement, right-angled to the vector between the point-
of-interest and the camera’s position. Figure 4.3 shows the effect of the various events on the
camera’s position and the look-at point.

In the next step of the rendering process the RenderEngine calls the rendering method
of the GeoClipmaps class passed as a delegate. This step will be discussed in the next
paragraph. In the last step the RenderEngine checks whether the user requested the
application to be stopped and either restarts the rendering loop or terminates the execution.

All the geometry clipmap work is separated from the RenderEngine class and en-
capsulated in the GeoClipmaps and LevelManager class. During the first time the
GeoClipmaps class is called, all the tiles which hold the clipmap levels are initialized and
loaded from the hard disk. Also the geometry that is later used for rendering the different
level parts is created. Next the actual per-frame-work is started. The GeoClipmaps class
checks if the camera has moved and calculates the count of steps that the finest level has to
shift to remain centered below the camera. The resulting displacement values are passed to
the LevelManager which handles the recursive shift of all the levels and the updating of
the level tiles (compare Section 3.5.1). Normally only a subset of the level tiles has to be

56

Chapter 4. Implementation

updated from the disk. Only if the shift is larger than the side length of a whole clipmap level
quad in the memory, all tiles have to updated.

When the LevelManager is finished with the update of the clipmap levels the
GeoClipmap class calculates the texture regions that have to be updated on the GPU for
every level (compare Section 3.5.2). The count of those regions range from one quad up to a
maximum of four. For every region the LevelManager is requested for the data. It packs
this data into a float array and returns it to the GeoClipmap class. Now the actual update
of the GPU textures can be done.

In the last step of the application’s geometry clipmaps part the actual rendering of the clipmap
levels is done. To achieve optimal utilization of the graphics cards Z-buffering feature, the
levels are rendered front to back. Every footprint is tested with the according bounding box
against the view frustum and only rendered if its bounding box is visible (compare Section
3.5.4).

57

Chapter 5.

Evaluation

In this chapter the performance of our implementation is evaluated. In the first chapter the
test scenario is described. Next to the system we used, the performed tests as well as the
assembly of those are pointed out. Section 5.2 shows the results of the various test runs. The
gathered data is visualized in different graphs and interpreted in Section 5.3. Section 5.4
provides possible solution approaches for the appeared problems.

5.1. Test Environment and Scenario

As the name suggests the primary goal of every real-time algorithm is to run at least at
a certain minimum frame rate. Therefore we evaluated the real-time performance of our
implementation by testing it under various conditions. All tests were performed on a system
with following configuration:

OS Windows Vista 32bit SP1
CPU AMD Athlon64 X2 3800+

RAM 2048 MB
GPU NVidia Geforce 8800GT

The application was tested in fullscreen mode with a screen resolution of 1920×1200 pixels.
The vertical synchronization (VSync) was disabled to be able to measure frame rates higher
than the monitor’s refresh rate. As test scenarios we created four terrains with different level

58

Chapter 5. Evaluation

sizes. As the basis for the terrains we used a gray scale image as a height map, resized it to
fit the level sizes and converted it to the 3D texture required by our application.

level size level count number of triangles
1024 3 6.795.278
512 3 1.693.710
256 3 420.878
128 3 103.950

Table 5.1.: Structure of the test-terrains.

Table 5.1 shows the structure of the different terrains used for the performance tests. Every
terrain was rendered using three levels and each of the test-terrains was used for performing
three different tests. During the first two tests, data was acquired without moving the cam-
era, e.g. no level shifts occurred and therefore no data was streamed neither from the hard
disk to the memory nor from the memory to the GPU. The camera’s position and viewing
direction remained the same for both tests. The first test was run with view frustum culling
enabled while culling was disabled during the second test. With those two tests the rendering
speed of the application was profiled. The third test was performed with a moving camera
and view frustum culling enabled. Thus the performance impact of the streaming could be
investigated.

All the tests were performed for 10 seconds and the gathered data averaged over this time
period to get a representative value. Following values were calculated during one test run:

• Average frame rate

• Average shifts per frame

• Triangles rendered

• Triangles culled

• Average time needed for streaming data from the hard disk to the memory (HDD to
memory).

• Average time needed for processing the data (Memory processing).

• Average time needed for streaming the data to the GPU’s memory (Memory to GPU).

• Average time consumed by the rendering.

59

Chapter 5. Evaluation

In Appendix A four different screenshots show different test terrains used for the profiling.
The first two screenshots show the terrain with level size=512 whereas the last two screen-
shots are taken from the terrain with a level size of 1024 samples. The second and third
screenshot show the density of the image samples in wire frame mode. Additionally this
image visualizes the different footprints by rendering them in different colors. The m×m

blocks are rendered in green, the m×3 footprints in blue and the L-shaped interior trims in
red (compare Section 3.3).

5.2. Results

In this section we will present and discuss the values gathered during the performance tests.
Table 5.2 shows the results of the different test runs. Test 1 was run with fixed camera
position and view frustum culling enabled. The settings of Test 2 differed from Test 1 by
disabling view frustum culling. Test 3 was performed during the movement of the camera
with constant velocity for all test scenarios.

5.2.1. Test 1 and 2

The first two performance tests performed like we expected. With increasing level size the
overall triangle count increases as well like shown in Table 5.1. The result of the increasing
triangle count is heavier work during the rendering and as a result the frame rate drops
exponentially like shown in Figure 5.2. View frustum culling reduces the amount of data
that has to be rendered and therefore Test 1 performed better for all test terrains than Test 2.
This can be seen in Figure 5.1: the green timber that visualizes Test 1 is always larger than
the red one (Test 2).

During the tests the averaged time consumption by the different tasks during the rendering
of one frame was profiled. As expected during the first two tests very little time was wasted
in the first three tasks of the rendering. Because of the steady camera no level shift occurred
and thus no data had to be streamed from the hard disk to the GPU’s memory. As a result the
time consumed by the HDD to memory task, Memory processing task and Memory to GPU

task took less than 1.5% of the frame’s total processing time. The reason for the slightly
higher percentage values of those tasks during the test runs with smaller level sizes is the

60

Chapter 5. Evaluation

Level size 1024 512 256 128
Te

st
1

Average frame rate 72 222 540 1081
Rendered triangles 4.706.310 1.173.510 291.594 71.887

HDD to memory 0,7% 0,7% 0,9% 1,4%
Memory processing 0,4% 0,5% 0,7% 1,1%

Memory to GPU 0,0% 0,0% 0,0% 0,0%
Rendering 98,84% 98,77% 98,38% 97,49%

Te
st

2

Average frame rate 51 169 451 1036
Rendered triangles 6.795.278 1.693.710 420.878 103.950

HDD to memory 0,9% 0,9% 1,1% 1,3%
Memory processing 0,6% 0,6% 1,0% 1,0%

Memory to GPU 0,0% 0,0% 0,0% 0,0%
Rendering 98,50% 98,49% 97,92% 97,70%

Te
st

3

Average frame rate 8 20 462 637
Average shifts per frame 16,9 6,9 0,3 0,2

HDD to memory 36,7% 24,9% 30,3% 55,3%
Memory processing 61,7% 33,0% 24,0% 9,3%

Memory to GPU 1,4% 41,4% 27,5% 8,5%
Rendering 0,3% 0,6% 18,3% 26,9%

Table 5.2.: Results of the performance tests.

fewer rendering load. The work in the first three tasks remains nearly constant for different
level sizes and therefore they have a slightly greater impact on the percentage values for
smaller level sizes.

5.2.2. Test 3

Test 3 profiled the application with a moving camera. Table 5.2 shows that during Test 3

the different frame rates between the different test terrains result in different average shifts
per frame. If the frame rate is higher, the shifts are not as much agglomerated as with a
lower frame rate. Nevertheless about the same amount of shifts per time unit are performed
independent from the test terrain. This can be quickly checked by taking the average frame
rate into account.

61

Chapter 5. Evaluation

fr
a

m
e

 r
a

te
 [

fp
s

]

0

200

400

600

800

1.000

1.200

1024 512 256 128

Test 3

Test 2

Test 1

level size

Figure 5.1.: Average frame rate during the test runs.

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200

culling
enabled

culling
disabled

1024

512

256 128

frame rate [fps]

re
n

d
e

re
d

 t
ri

a
n

g
le

s
 *

 1
0

6

Figure 5.2.: Test 1 and Test 2: number of rendered triangles compared with the resulting
frame rate for the different test terrains (level sizes: 1024, 512, 256, 128).

62

Chapter 5. Evaluation

1024

512

256

128
HDD to
Memory

Memory
Processing

Memory to
GPU

Rendering

frame start frame end

le
v

e
l
s

iz
e

Figure 5.3.: Test 3: average time consumption by the different tasks during rendering.

Test 3 revealed the great weak-point of our geometry clipmap implementation. It performs
not very well if the terrain data needs to be synchronized between the hard disk and the
GPU’s memory. As visible in Figure 5.1 the frame rate drops much, especially for larger
terrains. Figure 5.3 shows the average time consumption by the rendering task during the
rendering. It is visible that with increasing amount of data (e.g. increasing level sizes), the
synchronization tasks consume more and more of the rendering time. Particular with a level
size of 512 samples that unfortunately turned out to be an optimal level size, the uploading
of the terrain data takes too long.

5.3. Analysis

The rendering of the test terrains during Test 1 and 2 performed as expected. Very steady
frame rates of over 200 fps for rendering about 1.7 million triangles is in our opinion an
acceptable result and reveals the powerful capabilities of today’s hardware.

However Test 3 did not perform as good as the first two tests. Two problems were detected
by us that lead to the frame rate drop during the third test run. The first problem of our im-
plementation is the massive amount of data that has to be synchronized. Our implementation
does not support a separate thread for the data upload therefore the rendering thread has to
wait for the terrain data streaming to finish. If too much data has to be streamed the render
process is suspended too long and the frame rate drops. This also explains why the frame
rate is not steadily low but rapidly skips between higher and lower frame rates.

63

Chapter 5. Evaluation

The second problem of our implementation is the costly memory processing of the data just
before uploading to the GPU. The synchronization between the hard disk and the memory
is handled by a few larger blocks that cover an area larger than the clipmap level’s area.
Therefore not much time is wasted by the calculations needed for the HDD to memory
synchronization. In contrast to that for every level shift the exact region that is affected
by the shift is updated on the GPU’s memory. To get this data from the memory costly
calculations have to be performed that take a considerable amount of time (compare Figure
5.3).

5.4. Problem Solution

The greatest problem of our application is the frame rate drop during level shifts because
of the amount of data that has to be streamed. Currently our application does not support
textures for the terrain. This feature will soon be added to the application. The resolution
of such a texture is normally larger than the underlying terrain information and therefore the
data that has to be synchronized between the hard disk and the GPU’s memory increases
more than 100%. This will have an even greater impact on the synchronization problem we
are currently facing in our application.

We would like to shortly introduce three basic approaches for solving the upper problem.
The following three sections briefly outline those solution ideas which will be tested and
implemented in our application in the future.

5.4.1. Memory Processing Reduction

The first enhancement reduces the memory processing time by using the same technique for
the uploading of the data between the system’s memory and the GPU like the one used for the
synchronization between the HDD and the memory. Instead of uploading the precise region
for every shift, the texture on the GPU is tiled by the user defined factor ct (compare Section
3.5.1). Upon a shift the application checks whether the level exceeds the larger texture on the
GPU and if the inquiry returns true whole tiles are updated. The advantage of this approach
is that the caching of the terrain data in the system’s main memory can be dismissed and
therefore the heavy Memory Processing task becomes unnecessary.

64

Chapter 5. Evaluation

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0

1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 1 0 1 2 0 2 1 2 0 2 1 2 0 2 1 2 0 1 0 1 0 0 0 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 1 0 1 2 0 2 1 2 0 2 1 2 0 2 1 2 0 1 0 1 0 0 0 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 1 0 1 2 0 2 1 2 0 2 1 2 0 2 1 2 0 1 0 1 0 0 0 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 1 0 1 2 0 2 1 2 0 2 1 2 0 2 1 2 0 1 0 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.4.: Three levels with the affiliation of the sample points encoded by their
value/color.

One disadvantage of the upper approach is an increase of the GPU’s memory consumption
by a factor of (ct +1)2/ct

2 when ct is the user defined tiling factor (compare Section 3.5.1).
For a tiling factor of 8 the memory consumption increases by 26.6%. Another negative side
effect is the loss of the optimized power-of-two side length of the GPU’s textures. A way
to avoid the resizing of the GPU’s vertex textures is by making the level size dependent on
the texture size. As a result the texture size remains the same but the level size is resized
depending on the texture size and the tiling factor.

5.4.2. Data Reduction

As the amount of data is a problem in our current implementation the following enhancement
technique tries to reduce it. Decreasing the amount of streaming data directly reduces the
work load and increases the frame rate.

We came up with two possibilities for data-reduction. The first way is to reduce redundant

65

Chapter 5. Evaluation

Figure 5.5.: Repacking of the samples after removing the redundant samples.

data. Figure 5.4 shows three levels positioned within each other. Each number represents an
image sample and the value of the number corresponds with the level to which it belongs.
The image shows that within finer levels certain image samples can be retrieved from coarser
levels. Generally for every level that has a coarser level, only three quarter of the samples
within the n× n level window have to be stored and transferred to the GPU. The missing
sample points can be retrieved in the vertex shader by sampling from the coarser levels.
The drawback of this data reduction is a far more complex vertex shader because the direct
correspondence of the relative position between the image samples and the structure of the
geometry is lost as the image has to be repacked in order to take advantage of the removal of
the redundant terrain image samples (compare Figure 5.5).

The second way for reducing the uploading data is to compress the terrain images. As stated
by Wang et al. [WWS+07] commodity graphics hardware today does not provide any native
compression for HDR textures. In their work they present a method that uses a pair of 8-bit
DXT textures for storing a floating point texture. The DXT format, also called S3 Texture

Compression (S3TC), is a group of related image compression algorithms that are supported
on modern graphics hardware. The compression rate achieved by the algorithm of Wang et

al. [WWS+07] is 3:1 for 16-bit floating point inputs. This method can be used to compress
the terrain image tiles into a set of DXT textures and therefore benefit from the reduced data
size during the uploading. The drawback of this technique is the lossy characteristic of the
DXT texture compression. For HDR images it is often accepted that the data slightly changes
because of the lossy texture compression – it is to be worked out whether lossy compression
can be acceptable for terrain rendering too.

One condition of both reduction methods presented above is that the terrain samples are
loaded in tiles directly from the hard disk to the GPU’s memory. Both the removal of redun-

66

Chapter 5. Evaluation

dant data as well as the compression does not allow intermediate processing of the tiles in
the system’s main memory.

5.4.3. Multi-threading

Often not all of the data can be streamed in one frame without losing an acceptable frame
rate. Therefore a multi-threaded out-of-core rendering technique has to be used to overcome
this problem. This performance enhancing technique is probably the most import solution
for the frame rate dropping problem because even if the two other approaches fulfill what
they are promising, the uploading of data can be hindered by effects like multiple concurrent
disk accesses by other applications. Using such a multi-threaded technique the rendering
process is separated from the uploading task and therefore the rendering thread is prevented
from being slowed down by the uploading task. Upon detection of the need to shift levels,
the uploading thread is asked to the work. The render engine continues drawing the scene
without using the levels that are affected by the shift. The uploading task in the meanwhile
uploads the data from coarse to fine to ensure that coarser level are sooner updated and
therefore the whole terrain can be rendered even though in poorer quality.

The uploading of the data can not totally be separated from the rendering task. The syn-
chronization from the system’s and the GPU’s memory has to be phased with the rendering
because only single threaded access to the graphics hardware is allowed.

67

Chapter 6.

Conclusion and Outlook

In the first section of this chapter we will summarize the purpose and the novelties of this
thesis. Afterwards an outlook on possible future work is provided.

6.1. Conclusion

The purpose of this work is to present a technique for rendering terrain that resides on an
arbitrary basis. This technique was implemented to be able to display large curved surfaces
like the earth. Our first task was to search for existing technology. In Chapter 2 we presented
the results of our literature search. Next to describing the individual technologies we outlined
the advantages and disadvantages. The algorithm that attracted us the most is the GPU based
geometry clipmap algorithm by Asirvatham and Hoppe [AH05]. Unfortunately it lacks of
the ability to render large arbitrary curved surfaces. Their implementation only allows to
render terrain that resides on a flat basis. We extended the algorithm of Asirvatham and
Hoppe to overcome this planar basis restriction.

In Chapter 3 we have presented the theory behind our novel geometry clipmap implementa-
tion. Unlike the original GPU based implementation by Asirvatham and Hoppe [AH05] our
implementation supports the rendering of large curved surfaces like the earth.

Same as Asirvatham and Hoppe [AH05] we store the terrain in vertex textures. In the origi-
nal implementation the authors use 2D elevation images, prefiltered into a mipmap pyramid
of L levels. Their application caches square windows of n×n samples for every level. Those
windows are used during the rendering to elevate regular grid rings centered about the viewer

68

Chapter 6. Conclusion and Outlook

and thus create the terrain. Instead of using 2D elevation images like described above, our
implementation stores during a preprocessing step all three coordinates of the terrain sam-
ples in three of the four channels of a RGBA floating point texture. The information about
the sample’s position within the whole texture is only used to connect the points to trian-
gles. This technique is the main difference to the algorithm presented by Asirvatham and
Hoppe [AH05] and enables our implementation to render terrain that resides on arbitrary
basis because the created mesh is not bound by a regular grid mesh that can only be altered
in z-direction.

The drawback of changing the original geometry clipmap algorithm from the use of
heightmaps to textures holding 3D information is the introduction of a precision problem
that restricts the algorithm to render only limited amount of area. Our solution to overcome
this restriction is to split up the surface into multiple individual patches. Each one of this
patches can have the maximum extent of a floating point texture. During the rendering pro-
cess the algorithm checks every frame whether the border of one terrain patch is reached. In
case the inquiry returns true the algorithm is instantiated a second time with a camera posi-
tion referenced within the coordinate system of the new patch. Now the algorithm is able to
rendering the missing parts of the scene.

6.2. Outlook

Our implementation proofed the concept of the new geometry clipmap algorithm. We are
now able to render large curved surfaces. Unfortunately the current implementation has
problems during the update of the terrain data. The current single threaded nature of our ap-
plications is not able to handle the vast amount of data. In Section 5.4 we already pointed out
solutions for this problem. Those solution approaches need to be worked out in more detail
to be able to be implemented in future versions of our geometry clipmap implementation.

Currently our implementation does not support textures. Usually combined with raw ter-
rain data, textures are available. With the use of such textures the rendered surface can be
greatly valorized. For simplifing the development of the current implementation we resigned
textures but in future implementations texture support is to be included.

One purpose of our development is to be able render the earth at any scale. Commonly
points on the earth are not identified by x, y and z coordinates but embedded in a geodesic

69

Chapter 6. Conclusion and Outlook

coordinate system. Therefore in future implementations we would like to reference the user’s
position on the surface of the rendered earth with geodesic coordinates.

70

Appendix A.

Screenshots

Screenshot of a test terrain, rendered in solid mode.

71

Appendix A. Screenshots

Screenshot of a test terrain, rendered in block-colored wire frame mode.

Screenshot of a test terrain in top down view, rendered in solid mode.

72

Appendix A. Screenshots

Screenshot of a test terrain in top down view, rendered in block-colored mode.

73

Appendix B.

Acronyms

AABB Axis aligned bounding box

CPU Central processing unit

DAG Direct acyclic graph

FPS Frames per second

GPU Graphics processing unit

HDD Hard disk

HDR High dynamic range

IEEE Institute of Electrical and Electronics Engineers

LOD Level of detail

OS Operating system

RAM Random access memory

ROAM Real-time optimally adapting meshes

TIN Triangular irregular meshes

VDPM View-dependent progressive mesh

VSync Vertical synchronization

74

Appendix C.

Bibliography

[AH05] Arul Asirvatham and Hugues Hoppe. Terrain rendering using GPU-based ge-
ometry clipmaps. In M. Pharr and R. Fernando, editors, GPU Gems 2, chapter 2,
pages 27–46. Addison Wesley, March 2005.

[AM00] Ulf Assarsson and Tomas Möller. Optimized view frustum culling algorithms
for bounding boxes. J. Graph. Tools, 5(1):9–22, 2000.

[Bra03] Derek Bradley. Evaluation of real-time continuous terrain level of detail algo-
rithms. Technical report, Carleton University, 8 August 2003.

[Bre05] Nick Brettell. Terrain rendering using geometry clipmaps. Technical report,
University of Canterbury, Department of Computer Science, 2005.

[CH06] Malte Clasen and Hans-Christian Hege. Terrain rendering using spheri-
cal clipmaps. In B.S. Santos, T. Ertl, and K. Joy, editors, EUROVIS-

Eurographics/IEEE VGTC Symposium on Visualization, pages 91–98, Lisbon,
Portugal, 2006. Eurographics Association.

[DWS+97] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles
Aldrich, and Mark B. Mineev-Weinstein. ROAMing Terrain: Real-time Opti-
mally Adapting Meshes. In Proceedings of the conference on Visualization ’97,
pages 81–88. ACM Press, 1997.

[GFG04] G. Gerasimov, F. Fernando, and S. Green. Shader model 3.0 using vertex tex-
tures. White Paper, 2004.

75

Appendix C. Bibliography

[GHB+05] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Rei-
necke, and M. Bartelmann. Healpix: A framework for high-resolution dis-
cretization and fast analysis of data distributed on the sphere. The Astrophysical

Journal, 622(2):759–771, April 2005.

[Hop96] Hugues Hoppe. Progressive meshes. In SIGGRAPH ’96: Proceedings of

the 23rd annual conference on Computer graphics and interactive techniques,
pages 99–108, New York, NY, USA, 1996. ACM.

[Hop97] Hugues Hoppe. View-dependent refinement of progressive meshes. In SIG-

GRAPH ’97: Proceedings of the 24th annual conference on Computer graphics

and interactive techniques, pages 189–198, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[Hop98] Hugues Hoppe. Smooth view-dependent level-of-detail control and its appli-
cation to terrain rendering. In VIS ’98: Proceedings of the conference on Vi-

sualization ’98, pages 35–42, Los Alamitos, CA, USA, 1998. IEEE Computer
Society Press.

[Hou04] Christopher Hoult. Real-time optimally adapting meshes - an overview, 10 May
2004.

[Kon07] Jens Konerow. Managed DirectX und C#. Einstieg und professioneller Einsatz.
entwickler.press, 2007.

[LH04] Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering using
nested regular grids. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages
769–776, New York, NY, USA, 2004. ACM.

[LKR+96] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hughes, Nick Faust,
and Gregory Turner. Real-time, continuous level of detail rendering of height
fields. In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, An-
nual Conference Series, pages 109–118, New Orleans, Louisiana, August 1996.
ACM SIGGRAPH / Addison Wesley. ISBN 0-201-94800-1.

[LP01] Peter Lindstrom and Valerio Pascucci. Visualization of large terrains made easy.
In IEEE Conference on Visualization, pages 363–370, 2001.

76

Appendix C. Bibliography

[LP02] Peter Lindstrom and Valerio Pascucci. Terrain simplification simplified: A gen-
eral framework for view-dependent out-of-core visualization. IEEE Transac-

tions on Visualization and Computer Graphics, 8(3):239–254, 2002.

[OMG07] OMG. Unified Modeling Language, Superstructure, V2.1.2. Object Modeling
Group, November 2007.

[TMJ98] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The
clipmap: a virtual mipmap. In SIGGRAPH ’98: Proceedings of the 25th annual

conference on Computer graphics and interactive techniques, pages 151–158,
New York, NY, USA, 1998. ACM.

[WBB+] Rolf Werninghaus, Wolfgang Balzer, Stefan Buckreuss, Josef Mittermayer, Pe-
ter Mühlbauer, and Wolfgang Pitz. The TerraSAR-X Mission. Technical re-
port, Deutsches Zentrum für Luft- und Raumfahrt (DLR) / EADS Astrium
GmbH. http://wwwserv2.go.t-systems-sfr.com/tsx/documentation/EUSAR-
TX-Mission.pdf.

[Wik07] Wikipedia. Phong-Beleuchtungsmodell – Wikipedia, The Free Encyclopedia,
2007. [Online; accessed 4. April 2008] http://de.wikipedia.org/wiki/Phong-
Beleuchtungsmodell.

[Wil83] Lance Williams. Pyramidal parametrics. In SIGGRAPH ’83: Proceedings of

the 10th annual conference on Computer graphics and interactive techniques,
pages 1–11, New York, NY, USA, 1983. ACM.

[WWS+07] Lvdi Wang, Xi Wang, Peter-Pike Sloan, Li-Yi Wei, Xin Tong, and Baining Guo.
Rendering from compressed high dynamic range textures on programmable
graphics hardware. In I3D ’07: Proceedings of the 2007 symposium on In-

teractive 3D graphics and games, pages 17–24, New York, NY, USA, 2007.
ACM.

77

http://wwwserv2.go.t-systems-sfr.com/tsx/documentation/EUSAR-TX-Mission.pdf
http://wwwserv2.go.t-systems-sfr.com/tsx/documentation/EUSAR-TX-Mission.pdf
http://de.wikipedia.org/wiki/Phong-Beleuchtungsmodell
http://de.wikipedia.org/wiki/Phong-Beleuchtungsmodell

	1 Introduction
	1.1 Thesis Objectives
	1.2 Structure of this Thesis

	2 State of the Art
	2.1 Hierarchical Algorithms
	2.2 Triangular Irregular Meshes
	2.3 Geometry Clipmaps

	3 Theory
	3.1 Overview
	3.2 Preprocessing
	3.3 Clipmap Structure
	3.4 Precision Problem and Solution
	3.5 Rendering Process
	3.6 Issues

	4 Implementation
	4.1 Development Environment
	4.2 System Overview
	4.3 Design Motivation
	4.4 Rendering Process

	5 Evaluation
	5.1 Test Environment and Scenario
	5.2 Results
	5.3 Analysis
	5.4 Problem Solution

	6 Conclusion and Outlook
	6.1 Conclusion
	6.2 Outlook

	A Screenshots
	B Acronyms
	C Bibliography

