
Visibility Histograms in Direct
Volume Rendering

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Informatik

eingereicht von

Gerlinde Emsenhuber
Matrikelnummer 0026580

am:
Institut für Computergraphik und Algorithmen

Betreuung:
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Stefan Bruckner

Wien, 4. November 2008
(Unterschrift Verfasserin) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Abstract

This thesis introduces visibility histograms as a method for analyzing volumetric
datasets. These histograms show how much the data points within a 3D dataset
that have the same scalar value influence the image which is created by rendering
the dataset with a particular transfer function and from a particular viewing
direction. These histograms can be used to gain insights into the internal structure
of volumetric datasets, in particular information about occlusions. Furthermore,
the possibility of automatically calculating transfer functions which generate a
particular visibility histogram when applied to a dataset from a particular viewing
direction is explored. Two methods which can be used to calculate a matching
transfer function for a visibility histogram are explained, one of which is based on
a genetic algorithm approach, while the other is an heuristic.

Zusammenfassung

In dieser Diplomarbeit werden Visibility Histogramme als Methode um vo-
lumetrische Datensätze zu analysieren eingeführt. Diese Histogramme zeigen
an, welchen Einfluss die Datenpunkte mit demselben Skalarwert in einem sol-
chen Datensatz auf das Gesamtbild, welches entsteht wenn der Datensatzes
mit einer bestimmten Transferfunktion und von einer bestimmten Blickrich-
tung aus mithilfe einer Direct Volume Rendering Methode wie zum Beispiel
Volume Raycasting dargestellt wird, haben. Die Histogramme können benutzt
werden um Aufschluss über die interne Struktur von volumetrischen Datensätzen,
insbesonders Verdeckungen von verschiedenen Strukturen zu erhalten. Weiters
wird auf die Möglichkeit eingegangen, mithilfe der Histogramme automatisch
Transferfunktionen zu berechnen, welche bei Anwendung auf einen Datensatz
aus einer bestimmten Blickrichtung eine gewünschte Sichtbarkeitsverteilung
erzeugen. Zwei Ansätze wie dies realisiert werden kann werden vorgestellt: Der
erste Ansatz basiert auf einem genetischen Algorithmus, der andere auf einer
Heuristik.

Contents

1. Overview . 6

1.1 Structure . 8

2. State of the Art in Volume Rendering 9

2.1 Datasets used in Volume Rendering 9

2.2 Surface Rendering Methods . 11

2.3 Direct Volume Rendering Methods 13

2.3.1 Optical Models . 13

2.3.2 Volume Rendering Techniques 17

2.4 Transfer Functions . 21

2.4.1 Transfer Function Design 22

2.5 Focus+Context in Direct Volume Rendering 25

3. Genetic Algorithms . 29

3.1 Historical Overview . 29

3.2 Methodology . 30

3.2.1 Methods of Representation 32

3.2.2 Selection . 32

3.2.3 Reproduction . 34

3.2.4 Termination . 34

4. Visibility Histograms . 36

4.1 Visibility . 37

4.2 Visibility Histograms . 39

4.2.1 Influence of the Transfer Function 40

4.2.2 Influence of the Viewing Direction 40

Contents 5

4.3 Visibility Histograms as Tool for Analyzing Volume Datasets . . . 41

5. Visibility Manipulation . 43
5.1 Automatic Transfer Function Generation with Visibility Histograms 43
5.2 Genetic Algorithm Approach . 46

5.2.1 Genetic Representation 47
5.2.2 Fitness Function . 48

5.3 Heuristic . 54

6. Implementation . 56
6.1 Implementation of Visibility Histograms in General 56

6.1.1 Geometry Setup . 57
6.1.2 Texture Setup . 57
6.1.3 Shaders . 60

6.2 Implementation of the Genetic Algorithm and the Heuristic 62
6.2.1 Implementation of the Genetic Algorithm 62

6.3 Implementation of the Heuristic 67

7. Results . 69
7.1 Visibility Histograms . 69
7.2 Transfer Functions . 75

8. Summary . 84
8.1 Introduction . 84
8.2 Visibility Histograms . 85
8.3 Automatic Transfer Function Generation with Visibility Histograms 86

8.3.1 Genetic Algorithm . 87
8.3.2 Heuristic Approach . 88

8.4 Conclusion . 89

Chapter 1

Overview

This thesis belongs to the research field of volume visualization, in particular
to the field of direct volume rendering, also commonly referred to as DVR. In
traditional computer graphics 3D objects are created using high-level surface
representations such as polygonal meshes, NURBS or subdivision surfaces. The
visual properties of surfaces are described by means of shading algorithms, e.g.
the Lambertian diffuse reflection model or BRDFs. Using surface rendering,
typically only the surface points of an object contribute to the final image, while
the interior points of an object and the light interaction that takes place between
them are unaccounted for. In contrast, direct volume rendering takes the interior
points of an object into account. Direct volume rendering techniques typically
generate images from a set of three dimensional scalar data. Often, these data
sets come in the form of regular volumetric grids: they consist of a group of
slice images with the slices acquired in a regular pattern, with each single slice
containing a regular amount of pixels in a regular pattern. The elements of such
a grid are also called voxels, and are the three dimensional counterpart to pixels.
Based on their scalar value, these voxels are assigned a certain color and opacity.
This is done with the help of a transfer function, witch can be a simple ramp, a
piecewise linear function or even a random table. In order to generate an image,
the three dimensional set of voxels is projected onto the image plane. The value
of a single pixel is influenced by the voxels that are projected onto it.
Volume rendering has become a very important area of research over the last
decades. Its applications reach from medical imaging to scientific visualization
of data. It is used in computer graphics, where is can be employed to model
natural objects that are difficult to describe with surface models, such as clouds,

7

fog or fire. It also plays a very important role in medicine, due to its potential use
of giving a three dimensional insight into the internal structure of the human body,
organs etc.
Since volume rendering deals with 3D data sets, its possible that a structure of
interest is occluded by another structure. With the help of the transfer function, it
can be specified which points of the data set should be completely transparent and
which ones should be opaque. This is done by assigning specific alpha values to
data points. Finding a good transfer function that shows the desired structures can
be a rather complex task, often finding an appropriate transfer function is done by
trial-and-error. A very simple approach would be to assign the data values that
are of interest full opacity, while making all the other data values completely
transparent, but in doing so, the context surrounding the structure of interest
would be lost. In this thesis visibility histograms are introduced as a way to give
insight into the internal structure of a dataset. ”Visibility” is a measure for the
amount of influence that a data point within a volumetric data set has on an image
generated by a direct volume rendering algorithm. It is higher for points which
are not occluded by other structures or have a high opacity and lower for points
which are occluded or have a low opacity. The visibility information is displayed
in the form of a histogram, where data points with the same scalar value are
sorted into the same histogram bin. Visibility histograms represent the visibility
distribution in a data volume, and are similar to the concept of color histograms
which are commonly used in computer graphics and give an insight into the color
distribution a image. These histograms are used for object recognition, and as
appearance-based signature to classify images for content-based image retrieval
systems [43, 34].
The second part of this thesis deals with automatically generating transfer
functions that enhance the visibility of certain data points within the dataset,
while trying to preserve the visibility of the the rest of the data points if possible.
Since the generation of transfer functions can be time-consuming, methods for
automatically generating them have become an important area of research as well.
Unfortunately, calculating a transfer function which produces exactly a specified
visibility histogram is computationally expensive, plus there is no guarantee that
such a transfer function can actually be found. Therefore, two approaches for

8 Chapter 1. Overview

generating a matching transfer function to a visibility histogram are presented:
one is based on genetic programming, the other is a heuristic approach.

1.1 Structure

The thesis is structured in the following way: Chapters 2 and 3 provide an
overview of related work that this thesis is based on. Chapter 2 deals with
volume visualization in general, explaining several surface rendering and volume
rendering techniques and dealing with the theory behind direct volume rendering
methods. Chapter 3 gives an overview of genetic algorithms. Chapter 4 deals with
visibility histograms, explaining what precisely is meant by the term visibility.
Chapter 5 deals with the automatic generation of transfer functions that match a
given visibility distribution, explaining the two approaches that were implemented
to reach this goal. Chapter 6 deals with implementation details, and in chapter 7,
result images that were obtained with the implemented methods are presented.
Chapter 8 is a summary of the presented work.

Chapter 2

State of the Art in Volume Rendering

This chapter gives an overview of the different techniques used in volume
visualization. Section 2.1 explains the structure of the data sets that are used
in volume visualization. Section 2.2 introduces several commonly used surface
rendering algorithms, while section 2.3 deals with volume rendering techniques.
Subsection 2.3.1 takes a closer look at the optical models that are used in
volume rendering, while subsection 2.3.2 explains several important volume
rendering methods. Section 2.4 explains the role of transfer functions in direct
volume rendering, and introduces several techniques that are used for automatic
transfer function generation. Finally, section 2.5 presents several Focus+Context
visualization techniques for direct volume rendering.

2.1 Datasets used in Volume Rendering

The input datasets for volume visualization can be generated by different methods
and devices. Primary sources of volumes are:

• sampled data of real objects

• computed data produced by computer simulations

• modeled data generated from a geometric model

One of the earliest scientific fields that adopted volume rendering was medical
imaging. In this field, the 3D data is typically acquired by some kind of scanning
device. In particular, CT (computerized tomography) and MRI (magnetic
resonance imaging) are two methods which are often used to generate datasets.
Medical imaging devices typically generate discretized volume datasets, where

10 Chapter 2. State of the Art in Volume Rendering

a single scalar value is given for a discrete point in 3D space. Another source
of data volumes are simulation results. For example, CFD (computational fluid
dynamics) simulations in engineering or computed electromagnetic fields in
physical sciences can generate volume datasets. Voxelization is an example for a
method that generates volume datasets from a surface descriptions of a 3D object.
Volume datasets span three dimensions, and assign one or more values to each
position in the data volume. If there is exactly one value per position, the volume
is also referred to as scalar field, otherwise it it called vector field. Datasets
generated by measuring or sampling typically are discretized, i.e. they consist
of a number of discrete sample points. The values between the sample points
are not known, and have to be estimated, e.g. by interpolating the values from
the surrounding sample points. On the other hand, datasets that were generated by
modeling can be continuous, i.e. they are defined by functions, and the exact value
at any point within the volume can be calculated. A continuous representation of
a dataset can be transformed into a discretized version by simply evaluating the
functions describing the volume at a number of sample points. This thesis deals
with volume datasets typically expect datasets in the form of a discrete scalar field,
such as the datasets generated by medical imaging. The scalar value given for a
position in the dataset is also referred to as density value.
The data points within the data volume are typically assumed to be arranged on
a uniform grid. What precisely this means is that the vectors from each point in
the volume the adjacent neighbors in the three dimensions are expected to create a
Cartesian coordinate system with axes parallel to the Cartesian coordinate system
of the entire volume. The distance between adjacent points can be different in
the x, y and z direction, but for a particular direction, the distance is assumed to
be constant for the whole volume. If the data points are arranged on a uniform
grid, they form a number of cuboid cells of equal size. Most practical applications
assume that the datasets are described by a uniform grid.
One particular example of an uniform grid is a Cartesian grid: in a Cartesian
grid, the distance between adjacent data points is equal in all directions, i.e. the
cells formed by the data points are cubes of equal size. A uniform grid can be
transformed into a Cartesian grid by choosing a set of sample points that form a
Cartesian grid, and interpolating the values at the sample points from the original

2.2. Surface Rendering Methods 11

dataset. This process is also referred to as resampling of the data volume.
An important term that is associated with volume visualization is a voxel, short for
”volume element”. Voxels are the 3D equivalent of pixels. Just like pixels are the
data elements in 2D images that hold the color values, voxels are the data elements
in 3D images, holding the scalar value. There are several different possible
interpretations of what precisely a voxel is used in literature. One possible view is
that a voxel is a small cube that fills a small volumetric region with its associated
data value. The other interpretation is that a voxel corresponds to a grid point
in a uniform grid. They are defined as points in 3D space, with an interpolation
scheme for calculation the value in between the data points.

2.2 Surface Rendering Methods

With surface rendering algorithms, surface representations such as polygonal
models are extracted from the 3D data set, and subsequently rendered. The
advantage of these algorithms is that once the model has been extracted from
the data, it can typically be rendered very fast with the help of graphics hardware
acceleration. For this reason, surface rendering algorithms were very popular for
a long time. The disadvantage of surface rendering techniques is that while in
the original data set, data values are available for every point in the volume, after
extracting the surface model only the surface points are used to compute the final
image. Also, depending on the algorithm which is used, the extraction of the
surface model can be a computationally expensive task.
A straight-forward surface rendering algorithm that was developed very early is
the cuberille algorithm, first introduced by Herman and Liu [16]. Cells from the
data set are selected for rendering if the value of one or more corners is higher
than the threshold value, and the value of one or more corners is lower than the
threshold value. These cells represent the border between the cells that lie inside
the object and the cells that lie outside of the object. This way, a surface model
consisting of small cubes is generated.
Another surface rendering algorithm is the so called contour connecting algorithm

developed by Keppel [21]. In this method, a three dimensional model is generated
from contours. Starting with a particular threshold value, the algorithm first

12 Chapter 2. State of the Art in Volume Rendering

searches for closed contours within each individual slice of the volume; This is
accomplished by first searching for the threshold value in a particular slice, and
by subsequently searching for a contour with values close to the threshold value
if it is contained within the slice. The detected contours are then connected be
geometric primitives between the slices.
Another widely used surface rendering algorithm is the marching cubes algorithm,
which was first introduced by Lorensen and Cline [29]. The algorithm takes a
certain threshold value and then traverses the data volume, taking eight adjacent
data points at a time, thus forming an imaginary cube, and checking the scalar
values at the eight data points against the threshold value. These eight data points
are the replaced with an appropriate set of polygons: If the scalar value at a
particular data point is higher than the threshold, it is marked with a 1, else it is
marked with a 0. The eight values can be interpreted as integer in binary format,
an can be used as an index into a table that contains the 256 possible polygon
configurations (for some of the polygon configurations, see Figure 2.1. Finally
each vertex of the generated polygons is placed on the appropriate position along
the cube’s edge by linearly interpolating the scalar values of the data points that
are connected by that edge. The individual polygons are then fused together to
form the desired surface.

During the last 10 to 15 years, surface rendering algorithms have lost a lot
of their appeal. While rendering the extracted surface models used to be a lot
more efficient and fast than computing an image with direct volume rendering
methods, during the last couple of years graphic cards have steadily become faster,
and capable of handling bigger amounts of data. For hardware-based volume
rendering the size of the memory is especially important as the volume data set
has to be stored on the graphics card: If the entire data set does not fit in the
memory of the graphics card then it is impossible to execute the entire rendering
process on the graphics card. E.g. a volume data set with a size of 5123, i.e. 512
data points in each direction, where each voxel value is stored with 16 bit has a
size of approximately 256 MB. A dataset of this size can be stored directly on the
graphics card, and larger values are also possible.

2.3. Direct Volume Rendering Methods 13

Fig. 2.1: The basic polygon configurations used by the marching cube algorithm for
generating a surface model. The rest of the 256 configurations can be generated from
these basic configurations by rotation and mirroring.

2.3 Direct Volume Rendering Methods

Direct volume rendering (DVR) methods generate images without computing an
intermediate model of the data set. In DVR, images are generated by directly
projecting the data volume onto the image plane, and voxels which belong to
the same pixel in the image plane are blended together. With this approach, the
internal points of the volume are taken into account when generating the image.

2.3.1 Optical Models

The physical basis for volume rendering relies on geometric optics, in which light
is assumed to propagate along straight lines unless an interaction between the light
and the medium takes place. The three most important types of interaction are:

• Emission: material actively emits light, increasing the light energy

• Absorption: material absorbs light, thereby reducing light energy

• Scattering: light can be scattered by the participating media, which changes
the direction of light propagation. If the wavelength is not changed by
scattering, the process is called elastic scattering, otherwise it is called

14 Chapter 2. State of the Art in Volume Rendering

inelastic scattering.

The Rendering Equation

The so-called rendering equation introduced by Kajiya [20] describes a physically
based model of how the light emitted by one or several light sources propagates
through a scene. With this equation, it is possible to completely describe the light
transfer that takes part within a scene. In Equation 2.1, one way to write the
rendering equation is given.

I(x, x′) = g(x, x′) ∗ [ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′) dx′′] (2.1)

In the equation above, I(x, x′) stands for the light energy that arrives at point x
from point x′, and g(x, x′) is a geometric factor between the two points. The term
ε(x, x′) denotes the light which is emitted from point x′ to point x, and ρ(x, x′, x′′)
is related to the intensity of the light scattered from point x′′ to point x via a patch
of the surface at point x′. The above formula is impossible to solve analytically,
as it contains an integral over the whole space as well as infinite recursions, and
therefore has to be simplified before it can be used.

The Volume Rendering Integral

The most commonly used model used in volume rendering is the emission-
absorption model. In this model, scattering and indirect illumination are ignored.
It is a popular model, because it provides a good compromise between generality
and efficiency of computation. The emission-absorption model can be described
by the volume rendering integral:

I(D) = I0e
−

∫ D
s0
κ(t)dt

+

∫ D

s0

q(s)e−
∫ D

s κ(t)dtds. (2.2)

The term I0 represents the light entering the volume from the background at
position s = s0; I(D) is the irradiance leaving the volume at position s = D

and reaching the camera. The first part of Equation 2.2 denotes the light from the

2.3. Direct Volume Rendering Methods 15

background attenuated by the volume. The second term represents the integral
contribution of the source terms attenuated by the participating medium along the
remaining distances to the camera. The term

τ(s1, s2) =

∫ s2

s1

κ(t)dt (2.3)

represents the optical depth between positions s1 and s2. The optical depth
indicates how long light may travel through the volume before it is absorbed, thus
indicating the typical length of light propagation before scattering occurs. Small
values for the optical depth mean that the medium is rather transparent, while
large values indicate that it is rather opaque. Defining the transparency between
two point s1 and s2 as

(s1, s2) = e−τ(s1,s2) = e
−

∫ s2
s1

κ(t)dt (2.4)

yields a simpler form of the volume rendering integral:

I(D) = I0T (s0, D) +

∫ D

s0

q(s)T (s,D)ds. (2.5)

The volume rendering integral in its classic form, as shown in Equation 2.2,
represents the emission-absorption model accurately, but does not take scattering
into account. Single scattering of the external light can be included in order to
achieve greater realism. Single scattering is often is often approximated by a local
illumination model that imitates local surface rendering, such as the Lambert or
the Blinn-Phong [3] illumination models. In such a case, the gradient of the scalar
field serves as the normal vector for the local illumination model, as the gradient
is identical to the normal vector on an isosurface through the respective point in
space.

Discretization

In order to solve the volume rendering equation, numerical methods have to be
applied as the integral cannot be evaluated analytically. A common approach

16 Chapter 2. State of the Art in Volume Rendering

Fig. 2.2: A) Partitioning the integration domain into several intervals and b)
approximating the integral by a Rieman sum.

is to split the integration domain into n subsequent intervals. The intervals are
described by sample points s0 < s1 < ... < sn, with s0 being the starting point and
sn = D being the endpoint of the integration. Using this approach, the radiance
at location si can be expressed by the following equation:

I(si) = I(si−1)T (si−1, si) +

∫ si

si−1

q(s)T (s, si)ds. (2.6)

A simpler notation for the color (radiance) ci and the opacity Ti at sample point si
is typically used in literature:

Ti = T (si−1, si)ci =

∫ si

si−1

q(s)T (s, si)ds

The radiance at the endpoint is given by:

I(D) = I(sn) = I(sn−1)Tn + cn. (2.7)

Equation 2.7 can also be written as

I(D) =
n∑
i=0

ci

n∏
j=i+1

Tj. (2.8)

2.3. Direct Volume Rendering Methods 17

In order to solve Equation 2.8, the color and transparency contributions of the
n intervals need to be known. The most common approach to compute these
values is to approximate the volume-rendering integral by a Riemann sum over
n equidistant segments. The color and opacity values are thus approximated by
piecewise-constant functions.

Compositing

The basic idea behind compositing is to iteratively compute the discretized
volume-rendering integral (Equation 2.8) by splitting the summations and mul-
tiplications into several simpler operations that are executed sequentially.
Two different methods for compositing exist:

• front-to-back compositing and

• back-to-front compositing.

Using the front-to-back compositing scheme, the viewing rays are traversed from
the eye point into the volume.

Cdst ← Cdst + (1− αdst)Csrc (2.9)

αdst ← αdst + (1− αdst)αsrc (2.10)

By reversing the traversal direction, the back-to-front compositing scheme is
obtained

Cdst ← (1− αsrc)Cdst + Csrc (2.11)

2.3.2 Volume Rendering Techniques

There are two subclasses of direct volume rendering algorithms, object-order and
image order algorithms. The difference between object-order and image-order
algorithms is that image order algorithms attempt to find all the voxels which
affect a single pixel in the image plane, while object order algorithms attempt
to find for each single voxel the pixel it belongs to. Figure 2.3 shows the basic
difference between these two concepts.

18 Chapter 2. State of the Art in Volume Rendering

Fig. 2.3: The concept of a) image-order volume rendering methods and b) object-order
volume rendering methods.

Object-Order Approaches

A typical object-oder algorithm is splatting, introduced by Westover [49]. In this
algorithm, each voxel in the volume is projected back onto the image plane in the
form of a 3D reconstruction kernel. This 3D kernel then produces a 2D footprint
on the image plane. The process of projecting the voxel onto the image plane
can be imagined like throwing a snowball at a wall: upon impact, the snowball
spreads out around the point where it hit the wall. The 2D footprint represents
the spreading out of the voxel as it hits the image plane. Typically, a Gaussian
distribution function is used as a footprint. Based on the distribution function,
color and opacity are calculated for each pixel that is affected by the footprint and
the values of overlapping footprints are blended together. Splatting is a flexible
algorithm which can be applied to a traditional volume dataset based on a uniform
grid, which is traversed in a voxel-by-voxel fashion, as well as datasets which
consist of arbitrarily distributed data points.
Another object-order approach is cell projection [41]. The basic principle of this
algorithm is similar to splatting, but instead of voxels, cells are projected back
onto the image plane. Cell projection is used for datasets represented by complex
unstructured cell meshes. The algorithm works by first sorting all the cells
according to their distance to the camera, then generating a set of triangles which
represent the projection cell for every cell, and finally rendering the triangles in
the right order.

2.3. Direct Volume Rendering Methods 19

Fig. 2.4: The concept of a) object-aligned and b) viewport-aligned slices in texture slicing.

Texture slicing is the dominant object-order method for GPU-based volume
rendering. The basic principle is to use 2D slices that are located in the 3D object
space to sample the volume. These slices are projected onto the image plane
and combined according to the compositing scheme. Texture slicing is directly
supported by the graphics hardware as it only needs texture support (used for
storing the dataset and the transfer functions) and blending (used for compositing).
There are three different methods for implementing texture slicing:

• using 2D textures with object-aligned slices,

• using 3D textures with viewport-aligned slices,

• using 2D textures with viewport-aligned slices.

Object-aligned slicing aligns the slices aligns the stack of planes with one of the
principal axis of the volume. For an arbitrary viewing direction, the slices are
always aligned with the main direction which points in the viewing direction.
When the viewing direction changes, the direction the slices are aligned with can
change rather abruptly, which causes artifacts in the final image. Figure 2.4.a
depicts the concept of object-aligned slices. When using viewport-aligned slices
the planes are always oriented in the direction of the viewer, thus no artifacts are
caused by a rotation of the volume. On the downside, it is harder to create the
geometry of the slices because they are not all quads such as in object-aligned

20 Chapter 2. State of the Art in Volume Rendering

Fig. 2.5: Shear-warp volume rendering.

slicing. In Figure 2.4.b, viewport-aligned slices are shown.
Shear-warp factorization is a an object-order algorithm that was first introduced
by Lacroute and Levoy [26]. It is the fastest known purely software based volume
rendering algorithm, however, the quality of the resulting images is often not as
good as the quality of images generated by other volume rendering techniques.
The principle behind shear warp factorization is to transform the volume into an
intermediate coordinate system called the sheared object space. In this space,
all viewing rays are parallel to the third coordinate axis (see Figure 2.5.b). For
each of the three coordinate axes a separate stack of slices has to be computed;
the stack which is most perpendicular to the viewing direction is chosen and
transformed. The slices are then blended together back-to-front, and a final
warping step eliminates distortions in the image and performs the rotation around
the viewing axis.

Image-Order Approaches

The most commonly used image-order algorithm is volume ray casting, which was
first introduced by Levoy [28]. In this algorithm, a ray is shot into the data volume
for every pixel in the image plane. The volume data is resampled at a number of

2.4. Transfer Functions 21

evenly spaced locations (sample points) along the ray. At each sample point,
color and opacity are determined by interpolating the surrounding area based on
the transfer function. In the last step the sample points are blended with each other
and the background, typically using the front-to back compositing scheme, as the
rays originate from the image plane. Sometimes, more than one ray is shot into
the volume for each pixel in the image plane; this is called super sampling. Ray
casting is the most important method for CPU volume rendering, and has been
used for quite sometime.
Since the development of faster GPUs with a higher functionality, GPU ray

casting has become popular. GPU ray casting can be either implemented by
multipass rendering or by single-pass rendering. In single-pass GPU ray casting,
advancing the viewing rays, accessing the data values that correspond to the ray
position, and compositing the values happens in a loop in the fragment program.
Multipass ray casting was developed before single-pass rendering, because the
functionality that allowed a loop to be carried out in a fragment program was not
available at that time. In multipass GPU ray casting, advancing the viewing rays
is done by the CPU, by rendering the front faces of the volume’s bounding box
several time in a row while shifting the previous position along the ray direction.
The accumulated colors and opacities are passed along as textures.

2.4 Transfer Functions

In direct volume rendering, using an appropriate transfer function is crucial for
obtaining useful and informative result images. The rendering equation assumes
that the optical properties, e.g. emission and absorption coefficients for each
point in the data volume are known - however, a typical volume dataset contains
abstract scalar data values that describe some spatially varying physical property.
In reality, obtaining emission and absorption coefficients from a data volume can
not be done ”naturally”, instead the user must decide how the different structures
in a given dataset should look like by assigning the aforementioned coefficients to
all the data points using arbitrary mappings. A transfer function is a way to define
such a mapping from data values to optical properties. In general, the mapping

22 Chapter 2. State of the Art in Volume Rendering

done by a transfer function can be described by the following equation:

tf(~h(x, y, z))→ ~p (2.12)

In Equation 2.12, the function tf stands for the transfer function while the function
vector ~h entails all the different functions which are applied to a specific point
with position (x, y, z) in the data volume. The complexity of a transfer function
depends on the dimension of the vector ~h: if the vector has dimensionality n, the
transfer function is called n-dimensional transfer function. The vector ~p describes
the different optical properties which are assigned by the transfer function. Typical
optical properties that are defined by a transfer function are

• the emitted radiance, which is represented by a RGB value

• the opacity which represents the absorption, represented by a scalar value
between 0 and 1

One-dimensional transfer functions are the most commonly used transfer func-
tions, as they are easy to generate manually. They use the scalar value at a
particular position (x, y, z) as input function. In Equation 2.13, a typical 1D
transfer function is given:

tf(f(x, y, z))→ (~c, α) (2.13)

The function f(x, y, z) return the scalar value at position (x, y, z). The optical
properties that are assigned by the transfer function are the opacity value α, and
emitted radiance ~c, which consists of the three color components red, green, and
blue. However, higher dimensional transfer function are also possible.

2.4.1 Transfer Function Design

Manually Generated Transfer Functions

Trial and error is used commonly for finding an appropriate transfer function for a
certain dataset. This approach is easy to handle, but can be very time consuming.
The transfer function is typically generated by the user, with the help of a transfer

2.4. Transfer Functions 23

Fig. 2.6: The same dataset, rendered with two different one-dimensional transfer
functions. The transfer functions are shown next to their corresponding image

function editor. Afterwards, the dataset is rendered with the previously specified
transfer function; If the resulting image does not meet the users expectations, the
transfer function is modified.
The problem with this approach is that the user has lots of possibilities for
generating and modifying transfer functions, and it might take a huge number
of steps to find an appropriate one. Another manual approach is the generation
of a variety of random transfer functions. Then the user selects the transfer
function which yields the best result. This procedure is repeated until the transfer
function converges against a useful setup. He et al. [15] introduce an approach
for assisting the user in exploring appropriate transfer functions by treating the
search as a parameter optimization problem and addressing it with stochastic
search techniques.
In order to make the manual transfer function setup easier, some methods
which analyze the data volume and automatically identify potentially interesting
structures within it have been developed. In an approach developed by Bajaj et al.
[1], the so called contour spectrum is used to achieve this: the contour spectrum
locates scalar values which correspond to uniquely shaped iso surfaces, so that
the user can select an appropriate iso value. Potts and Möller [36] propose a
logarithmically scaled transfer function editor, and argue that such a scale relates
the height of the transfer function to the rendered intensity of a region of particular
density in the volume almost directly, resulting in much improved, simpler manual
transfer function editing. Takanashi et al. [45], on the other hand, introduce an
interactive classification technique for volume data, called ISpace, which uses

24 Chapter 2. State of the Art in Volume Rendering

Independent Component Analysis (ICA) and a multidimensional histogram of the
volume data in a transformed space. The result of this technique is an opacity
transfer function defined for rendering multivariate scalar volume data.
According to Brodlie et al. [4], the fundamental drawback of transfer function
based methods is that they are injective, therefore the separation of features
with the same statistical properties is impossible. For example, tissue can be
separated from bone in CT scans, but a single bone cannot be separated from other
bones. The flexibility of transfer functions can be improved by extending them to
higher dimensions. The most commonly used type are two-dimensional transfer
functions, which depend on both the scalar value and its first-order derivate,
the gradient magnitude. Other variations take the second-order derivate into
account [18, 23]. Transfer functions of higher dimensions are also sometimes
proposed [46, 24]. While multi-dimensional transfer functions offer more degrees
of freedom and flexibility, the already time-consuming process of manually setting
up an appropriate transfer function gets even more complex with each extra
dimension that gets added. This lead to the development of several different
methods for (semi)-automatically generating transfer functions.

(Semi)-Automatic Transfer Function Generation

A common approach is to extract critical iso surfaces from the data volume,
analyze the topological structure of these surfaces and create a transfer function
based on the analysis. The topological method proposed by Fujishiro et al. [11] is
based on so called hyper reeb graphs.
A different method was introduced by Kindlmann and Durkin [22]. This method
was designed specifically for volume datasets where the regions of interest are
the boundaries between different materials, which actually constitute a large class
of volume datasets. A transfer function which makes boundaries readily visible
can be generated from the relationship between three quantities: the data value
and its first and second directional derivatives along the gradient direction. The
relationship between these quantities is captured in a so called volume histogram

throughout the volume in a position independent fashion. The histogram volume
is a three dimensional representation of the three aforementioned properties, so

2.5. Focus+Context in Direct Volume Rendering 25

that each property has its own coordinate axis, where the position of each bin in
the histogram volume represents the three values at a small range and the value
of the bin itself represents the number of voxels, which correspond to the three
values of the bin’s position.
Brodlie et al. [4] developed a method for the automatic setup of multi-dimensional
transfer functions by adding spatial information to the histogram of a volume. The
method is based on the fact that a feature by definition is a spatially connected
region in the volume domain with a unique position and certain statistical
properties, therefore only using the statistical properties - the histogram of the
data volume - ignores an important part of the definition of a feature. The method
produces a two-dimensional transfer function, where the spatial information has
been used to derive the color, and a combination of the statistical and spatial
information is used to setup the opacity. The opacity is calculated in such a way
that uninteresting regions with low gradients are blended out and the material
boundaries with high gradients are emphasized. The color is determined by
separating the data volume into a group of different features by the use of an
heuristic - this is done because doing an exact segmentation of the dataset would
be too time consuming. The accuracy of this heuristic segmentation can be
controlled by the user by specifying a control parameter. After the features have
been determined, each of them is assigned an individual color.

2.5 Focus+Context in Direct Volume Rendering

According to Card et al. [6], Focus+Context start from three premises: First, the
user needs both overview (context) and detail information (focus) simultaneously.
Second, information needed in the overview may be different from that needed
in detail. Third, these two types of information can be combined within a
single (dynamic) display, much as in human vision. Volume datasets, especially
those used for visualizing medical images often contain relatively small regions
of interest, occluded by the surrounding tissue. Using transfer functions, it is
possible to hide the tissue that surrounds the area of interest, but in doing so, the
context is lost. Therefore, during the past few years, Focus+Context display in
direct volume rendering has become an important area of research.

26 Chapter 2. State of the Art in Volume Rendering

(a) dataset without distortion (b) dataset with distorted fo-
cal region

Fig. 2.7: A volume dataset rendered with a distortion based Focus+Context Technique,
taken from [27]

Traditional Focus+Context visualization techniques, e.g. magnification lenses
have been adapted to work with direct volume rendering [48, 27]. Figure 2.7
shows a volume dataset where an area has been magnified with the help of
a nonlinear distortion technique. Non-photorealistic or illustrative rendering
methods are a very active field of research. In many technical or medical
textbooks, illustrations are used to visualize complex relationships and proce-
dures. Approaches for illustrative volume visualization employ non-photorealistic
rendering techniques to mimic the style of traditional illustrations.
In volume visualization, Levoy [28] was the first to propose modulation of opacity
using the magnitude of the local gradient. This is an effective way to enhance
surfaces in volume rendering by suppressing homogenous regions. Based on this
proposal, Ebert and Rheingans [8] developed a collection of volume illustration
techniques that adapt and extend non-photo realistic rendering techniques to
volume objects, e.g. feature enhancement, feature halos and adding depth
and orientation cues, and proposed to apply these methods locally for regional
enhancement.
Lu et al. [30] present a framework for an interactive direct volume illustration
system that simulates stipple drawings.
Another approach, inspired by cut-away views, which are commonly used in

2.5. Focus+Context in Direct Volume Rendering 27

Fig. 2.8: Importance driven rendering example, rendered from different angles; Taken
from [47]

technical illustrations, was introduced by Viola et al. [47]. With cut-away
views, less important parts of a scene are suppressed or completely removed to
reveal the more important underlying information. The proposed method assigns
different object importances to the parts in the data volume, which are used to
determine which structures should be readily discernible and which structures are
less important. In those image regions, where an object occludes more important
structures it is displayed more sparsely than in those areas where no occlusion
occurs; Thus the objects of interest are clearly visible. For each object several
levels of sparseness are specified.

Hauser et al. [14] propose two-level volume rendering, a technique which
allows for selectively using different rendering techniques for different subsets
of a three dimensional dataset. Different structures within the dataset are rendered
locally on an object-by-object basis by either direct volume rendering, maximum
intensity projection, surface rendering, value integration (x-ray-like images),
or non-photorealistic rendering. Globally all the results of subsequent object
renderings are combined in a merging step (usually compositing). This allows
to selectively choose the most suitable technique for depicting each object within
the data, while keeping the amount of information contained in the image at a
reasonable level.
Lum and Ma [31] present a multi-dimensional transfer function method for
enhancing surfaces which works through the modification of surface shading
instead of the variation of opacity. The technique uses a lighting transfer function
that takes into account the distribution of values along a material boundary.
The approach of using distance to emphasize and deemphasize different regions

28 Chapter 2. State of the Art in Volume Rendering

(a) (b) (c) (d)

Fig. 2.9: Engine block rendered using different style transfer functions. The lit sphere
maps used in the transfer function are depicted at the bottom right corner of each image.
Image taken from [5]

of a data volume was introduced by Zhou et al. [50]. The method uses the distance
between voxels in the data volume and the focus of interest in order to determine
the importance of the current voxel for the whole rendering.
The concept of style transfer functions was introduced by Bruckner and Gröller

[5]. Instead of traditional transfer functions, style transfer functions represent
specific styles captured from existing artwork. Capturing the specific styles is
based on the lit sphere shading model [42]. The basic idea of this model is to
capture color variations of an object as a function of normal direction. As a sphere
provides coverage of the complete set of unit normals, an image of a sphere under
orthographic projection will capture all such variations on one hemisphere.

Chapter 3

Genetic Algorithms

In this chapter, an overview of genetic algorithms is given. This is important,
as genetic algorithms were used in the second part of this thesis in order to
automatically compute a transfer function for a volume data set with desired
attributes.
A genetic algorithm is a search technique used in computing to find exact or
approximate solutions to optimization and search problems. Genetic algorithms
are categorized as global search heuristics. They are a particular class of
evolutionary algorithms that use techniques inspired by evolutionary biology such
as inheritance, mutation, selection, and crossover (also called recombination).
Genetic algorithms are used in many different areas, such as molecular biology,
Pattern recognition and data mining, routing and scheduling, and robotics.
In section 3.1 a brief historical overview of genetic algorithms is given. Section
3.2 takes a closer look at the methodology of genetic algorithms. In particular,
different methods for crossover and selection are presented.

3.1 Historical Overview

The earliest instances of genetic algorithms appeared appeared in the late 1950s
and early 1960s, programmed on computers by evolutionary biologists who
were explicitly seeking to model aspects of natural evolution [2, 10]. By
1962, researchers such as Friedman and Bremermann [9] had all independently
developed evolution-inspired algorithms for function optimization and machine
learning, but their work attracted little follow up.
A more successful development in this area came in 1965, when Rechenberg [38]

30 Chapter 3. Genetic Algorithms

introduced a technique he called evolution strategy, though it was more similar to
hill-climbers than to genetic algorithms. In this technique, there was no population
or crossover; one parent was mutated to produce one offspring, and the better of
the two was kept and became the parent for the next round of mutation. Later
versions introduced the idea of a population.
The next important development in the field was introduced in 1966 by Fogel et
al. [12] who introduced in America a technique called evolutionary programming.
In this method, candidate solutions to problems were represented as simple finite-
state machines, and like Rechenberg’s evolution strategy, their algorithm worked
by randomly mutating one of these simulated machines and keeping the better
of the two. Genetic algorithms in particular became popular through the work
of Holland [19] in the early 1970s. His work originated with studies of cellular
automata, conducted by Holland and his students at the University of Michigan.
Holland introduced a formalized framework for predicting the quality of the next
generation, known as Holland’s Schema Theorem.
These foundational works established more widespread interest in evolutionary
computation. By the early to mid-1980s, genetic algorithms were being applied to
a broad range of subjects, from abstract mathematical problems like bin-packing
and graph coloring to tangible engineering issues such as pipeline flow control,
pattern recognition and classification, and structural optimization. At first, these
applications were mainly theoretical. Over time, however, genetic algorithms
migrated into the commercial sector, their rise fueled by the exponential growth
of computing power and the development of the Internet.

3.2 Methodology

Figure 3.1 gives a general overview of the principle of genetic algorithms.
Basically, in genetic algorithms, an initial population of abstract representations
of a number of candidate solutions evolves towards better solutions by repeatedly
applying the techniques

• Selection

• Mutation

3.2. Methodology 31

Fig. 3.1: An overview of genetic algorithms.

• Crossover

. After each evolution step, a new generation is formed. This process is repeated
until a certain termination criterion is met, e.g. a maximum number of generations
is reached, or the individuals in the current generation are ”good enough”. The
most common way to abstractly represent the solutions is by encoding them in
binary as strings of 0s and 1s, although other encodings are also possible. The
initial population can either be generated randomly, or by seeding a particular
area of the search space, where optimal solutions are likely to be found. The initial
population the evolves towards better solution in a certain number of generations.
In each generation, the fitness of the individuals within the population is evaluated,
multiple individuals are stochastically selected from the current population based
on their fitness. The selected solutions are then modified by using mutation and
recombination and form a new population, which is used in the next iteration
of the algorithm. Commonly, the algorithm terminates when either a maximum
number of generations has been produced, or a satisfactory fitness level has been
reached for the population. If the algorithm has terminated due to a maximum
number of generations, a satisfactory solution may or may not have been reached.
Two important things that need to be defined in order to use a genetic algorithm
are

32 Chapter 3. Genetic Algorithms

• a genetic representation of the solution domain and

• a fitness function to evaluate the solution domain

3.2.1 Methods of Representation

Using same-length arrays of bits as genetic representation of the solution domain
is the most commonly used method of representation as it facilitates the crossover
operation. When using arrays of differing lengths, crossover is more complex.
Another, similar approach is to encode solutions as arrays of integers or decimal
numbers, with each position again representing some particular aspect of the
solution. This approach allows for greater precision and complexity than the
comparatively restricted method of using binary numbers only. Instead of
numbers, letters can also be used to represent aspects of the solution. Another
strategy, developed by Koza et al. [25] and called genetic programming, uses tree-
like representations. In this approach, random changes can be brought about by
changing the operator or altering the value at a given node in the tree, or replacing
one subtree with another.

3.2.2 Selection

The fitness function is defined over the genetic representation and serves as a
measure for the quality of the solutions. It is therefore always problem specific.
For some problems, it is very difficult to find an appropriate fitness function, in
some cases it is even impossible. In such a case, interactive genetic algorithms can
be used: instead of using a fitness unction, the solutions are evaluated by humans.
In every generation, a number of solutions are selected based on the defined fitness
function and subsequently used to generate the next generation. There are many
different techniques which a genetic algorithm can use to select the individuals
to be copied over into the next generation. Some of these methods are mutually
exclusive, but others can be and often are used in combination. Some of the
most commonly used techniques are explained below: Elitist selection selects
the fittest members of each generation. This selection method is rarely used in
practice, as selecting only the fittest members in each generation can lead the

3.2. Methodology 33

algorithm to converge towards a local optimum. Instead, fitness proportionate
selection algorithms typically select fitter individuals with a higher likelihood,
but it is not certain that they are selected. The selection pressure is ratio of the
best individual’s selection probability to the average selection probability of all
individuals in the selection pool.
Roulette-wheel selection is a form of fitness-proportionate selection in which the
chance of an individual’s being selected is proportional to the amount by which its
fitness is greater or less than its competitors’ fitness. The probability of selecting
a single solution can be described by 3.1:

pi =
fi∑N
j=1 fj

. (3.1)

Conceptually, this can be represented as a game of roulette - each individual gets a
slice of the wheel, but more fit ones get larger slices than less fit ones. The wheel
is then spun, and whichever individual owns the section on which it lands each
time is chosen.
Scaling selection: As the average fitness of the population increases, the strength
of the selective pressure also increases and the fitness function becomes more
discriminating. This method can be helpful in making the best selection later
on when all individuals have relatively high fitness and only small differences in
fitness distinguish one from another.
Tournament selection: In this selection method, subgroups of individuals are
chosen from the larger population, and members of each subgroup compete
against each other. Only one individual from each subgroup is chosen to
reproduce. Selection pressure can be easily adjusted by changing the tournament
size. If the tournament size is larger, weak individuals have a smaller chance to
be selected.
Hierarchical selection: Individuals go through multiple rounds of selection each
generation. Lower-level evaluations are faster and less discriminating, while those
that survive to higher levels are evaluated more rigorously. The advantage of this
method is that it reduces overall computation time by using faster, less selective
evaluation to weed out the majority of individuals that show little or no promise,
and only subjecting those who survive this initial test to more rigorous and more

34 Chapter 3. Genetic Algorithms

computationally expensive fitness evaluation.

3.2.3 Reproduction

Once selection has chosen fit individuals, they must be randomly altered in hopes
of improving their fitness for the next generation. The two basic strategies which
are used to accomplish this are mutation and crossover.
The concept of mutation is simple: Just as mutation in living things changes one
gene to another, so mutation in a genetic algorithm causes small alterations at
single points in an individual’s code.
On the other hand, crossover entails choosing two individuals to swap segments of
their code, producing artificial ”offspring” that are combinations of their parents.
This process is intended to simulate the analogous process of recombination that
occurs to chromosomes during sexual reproduction. Figure 3.2 shows the four
most commonly used crossover techniques: Using one-point crossover (Figure
3.2.a), one point common on both parents’ organism strings is selected. All data
beyond that point in either organism string is swapped between the two parent
organisms.
Two-point crossover (Figure 3.2.b) calls for two points to be selected on the
parent organism strings. Everything between the two points is swapped between
the parent organisms. Another crossover variant, the cut and splice approach

(Figure 3.2.c), results in a change in length of the children strings. The reason
for this difference is that each parent string has a separate choice of crossover
point. Finally, using Uniform crossover (Figure 3.2.d), the value at any given
location in the offspring’s genome is either the value of one parent’s genome at
that location or the value of the other parent’s genome at that location, chosen
with 50/50 probability.

3.2.4 Termination

The process of selection and recombination is repeated until a certain termination
condition is met. Termination conditions that are commonly used include:

• A solution is found that satisfies minimum criteria.

3.2. Methodology 35

Fig. 3.2: The basic principles of the different crossover methods. In Figure c), using the
cut-and-splice approach, the length of the offspring differs from the length of the parents,
while in Figures a), b) and d) the length stays equal

• A fixed number of generations is reached.

• The highest ranking solution’s fitness is reaching or has reached a plateau
such that successive iterations no longer produce better results.

• An allocated budget e.g. computation time or money is reached.
Combinations of the above reasons can be used as well.

Chapter 4

Visibility Histograms

This chapter introduces the idea of so called visibility histograms. The basic idea
behind a visibility histogram is to show for a given volume dataset that is rendered
with a specific transfer function, how much each individual density value in the
dataset contributes to the final image.
Basically, a histogram is a graphical display of tabulated frequencies. It is the
graphical version of a table that shows what proportion of cases fall into each of
several or many specified categories. The categories are usually specified as non-
overlapping intervals of some variable, and are adjacent. Histograms are often
used in computer graphics as a tool for visualizing information.
One area where histograms are used in computer graphics, is in the form of
color histograms [34]. A color histogram is a representation of the distribution
of colors in an image, derived by counting the number of pixels of each of a
given set of color ranges in a typically two-dimensional or three-dimensional
color space. They can be built from images in various color spaces, e.g. RGB
or rg chromaticity. A histogram of an image is produced first by discretization of
the colors in the image into a number of bins, and counting the number of image
pixels in each bin. Such a color histogram provides a compact summarization
of the distribution of data in an image. The color histogram of an image is
relatively invariant with translation and rotation about the viewing axis, and
varies only slowly with the angle of view. By comparing histograms signatures
of two images and matching the color content of one image with the other, it
is possible to recognize an object of unknown position and rotation within a
scene. In photography, color histograms are frequently used in digital cameras
for estimating the scene illumination, as part of the camera’s automatic white

4.1. Visibility 37

balance algorithm. Color Histograms are also commonly used as appearance-
based signature to classify images for content-based image retrieval systems.
Another area where histograms are often used, are image editors. Such programs
often have provisions to create an image histogram of the image being edited, i.e.
a brightness histogram plots the number of pixels in the image with a particular
brightness value. Algorithms in the digital editor allow the user to visually
adjust the brightness value of each pixel and to dynamically display the results as
adjustments are made. This way, improvements in picture brightness and contrast
can be obtained.
In this chapter, the basic idea behind visibility histograms will be explained.
Section 4.1 explains the mathematical background of the term ”visibility”, while
section 4.2 deals with computing a visibility histogram for a data set, and explains
which factors influence the visibility distribution for a particular dataset. Section
4.3 explains how visibility histograms can be used to analyze and visualize certain
aspects of volume datasets.

4.1 Visibility

The basic idea behind a visibility histogram is to show how much the points in
a volume data set with a certain density value affect the final image, i.e. how
”visible” they are. In chapter 2.3, different methods that are commonly used in
direct volume rendering were explained. In order to understand what precisely is
meant by the term visibility, a closer look needs to be taken at the most popular
image-order method for volume rendering, volume ray casting.
The basic idea behind volume ray casting is to shoot viewing rays through the data
volume for every pixel in the image plane, and samples are taken at evenly spaced
points (see Figure 4.1.a) and blended together using the front-to-back compositing
scheme defined by Equation 2.10 to calculate the intensity value for the pixel in
the image plane from which the ray originated.
Based on the transfer function which assigns opacity values to the densities in the
data volume, the accumulated opacity increases after every sample point, which
means that the next sample points have less of an influence on the final intensity
value of the pixel. Figure 4.1.b shows how the accumulated opacity increases as

38 Chapter 4. Visibility Histograms

Fig. 4.1: a) In volume raycasting, rays are shot through the data volume and the color
and opacity are evaluated at evenly spaced sample points. b) As the rays pass through the
volume, the accumulated opacity along every single ray increases. c) The contribution
of an interval between two sample points to the accumulated opacity is defined as the
visibility of the interval.

the ray passes deeper into the volume. Between two sample points sn−1 and sn,
the amount by which the opacity increases as the ray travels through the space
between the sample points can be described as

op(sn−1, sn) = αsn − αsn−1 (4.1)

where αsi
denotes the accumulated opacity at sample point i. The value

op(sn, sn+1) in Equation 4.1 is the visibility of sample point sn. In chapter 2.3,
the formula for front-to-back alpha compositing was expressed as

αdst ← αdst + (1− αdst)αsrc (4.2)

Using the front-to-back alpha compositing formula, the visibility can be calculated
as

op(sn−1, sn) = (1− αDST) ∗ αSRC (4.3)

4.2. Visibility Histograms 39

The opacity values in a given alpha transfer function are defined with respect to a
particular sampling rate which is assumed to be constant throughout the volume.
A problem arises when the sampling rate needs to be changed: the discretized
opacity contributions need to be modified because their values depend on the
sampling distance. The alpha values for two different sampling distances are
related by

α̃ = 1− (1− α)
∆x̃
∆x . (4.4)

Equation 4.4 describes the opacity correction which needs to be made whenever
a sampling distance different from the original sampling distance for which the
alpha transfer function was designed needs to be used. It allows for varying
sampling rates even though the optical properties are only given with respect to a
discrete version of the volume rendering integral.

4.2 Visibility Histograms

In Chapter 4.1 the mathematical meaning of ”visibility” for a single sample point
in a data volume was explained. In order to calculate a visibility histogram for
a given dataset, the visibility of all sample points with the same scalar value is
added together. Intuitively, this value is a measure for the influence that the data
points with a certain density have on an image that is created by rendering the
dataset with a volume rendering method such as ray casting.
The visibility value for a certain density is normalized by the number of sample
points in the volume with that particular density. Thus, the value that is displayed
in a visibility histogram for a particular density is a measure of how much
influence, on average, a data point with that density has on the final image.
Something that is not very intuitive about these visibility values is that increasing
the opacity value for a particular density, while decreasing the opacity values for
all the other density values in a data volume does not necessarily achieve a high
increase in the visibility of the data points with particular density: Increasing the
opacity value for a specific scalar value will make the data points with that density
which are closest to the image plane more visible - however, these data points may
occlude many other data points with the same density and decrease their visibility.

40 Chapter 4. Visibility Histograms

Achieving an average visibility that is close to 1 is not possible most of the time.
For a single ray traversing the data volume, the maximum visibility achievable
for a certain scalar value on that ray is 1/n, with n being the number of sample
points with the scalar value. In order to achieve this value, the alpha value for the
scalar value in question would have to be set to 1, while the alpha value for all the
scalar values of sample points that are encountered before the sample points with
the scalar value in question have to be set to zero. The visibility histogram for this
ray would then be zero for all scalar values other than the scalar value that is of
interest. In reality, such a visibility distribution is not very useful, since hiding
all scalar values other than one particular value would generally not generate
particularly meaningful images. In general, a range, or even several ranges of
scalar values within a dataset are of interest, leading to more occlusions and a
lower average visibility of the area of interest. Also, hiding the scalar values
that do not belong to the area of interest destroys context information. Given a
particular dataset, the visibility distribution is dependent on two factors:

• the transfer function

• the viewing direction

4.2.1 Influence of the Transfer Function

A visibility histogram depicts the visibility distribution for a given data set only
with respect to a certain transfer function. Every time the alpha transfer function
changes, the visibility histogram has to be computed anew. Figure 4.2 shows
how different transfer functions applied to the same dataset can lead to different
visibility distributions.

4.2.2 Influence of the Viewing Direction

A visibility histogram for a particular dataset is dependent on the direction from
which the dataset is looked at, i.e. the direction of the viewing rays which traverse
the data set. When rotating the dataset, the sample points that are encountered
along the viewing rays change, causing a change in the visibility distribution.
Even rotating a dataset by 180◦ will produce a different visibility distribution (see

4.3. Visibility Histograms as Tool for Analyzing Volume Datasets 41

Fig. 4.2: The influence of differing transfer functions on the visibility distribution.

Figure 4.3).

4.3 Visibility Histograms as Tool for Analyzing Volume
Datasets

Since the visibility histogram of a volume dataset is dependent on the viewing
direction and the transfer function it can be used to analyze the structure of the
dataset.
Rendering a dataset with a fixed viewing direction, but differing transfer functions
can be used to gain insight into the internal structure of the data set, particularly
how different tissues occlude each other and interfere with each others visibility.
For a dataset that is viewed from a certain direction, calculating the visibility
histograms for several transfer functions where the alpha values for a range of
scalar values vary slightly can be used to analyze the effect that this particular
data range has on the overall visibility distribution.
On the other hand, when rendering a dataset from different angles, the overall

42 Chapter 4. Visibility Histograms

Fig. 4.3: The influence of the differing viewing direction on the visibility distribution.

visibility distribution tends to change rather slowly with the viewing direction.
Visualizing the resulting visibility distributions makes it possible to spot patterns
and draw conclusions on the internal structure, i.e. if the dataset is symmetric,
the resulting visibility distributions will reflect this. For those scalar ranges with a
rather uniform distribution throughout the dataset, the visibility distributions will
likely not vary a lot while the viewing direction changes. On the other hand, if
a certain range of scalar values has a high visibility only from certain angles, it
points toward an asymmetry in the data set.

Chapter 5

Visibility Manipulation

In the previous chapter, visibility histograms were introduced. It was shown, how
given a particular transfer function which assigns an opacity value to each data
point in a volumetric dataset, the average visibility of all the data points with
a particular scalar value can be computed. This chapter deals with the reverse
operation: instead of computing the visibility histogram for a transfer function,
we want to find a transfer function which generates a specified visibility histogram
when applied to a dataset.
In section 5.1, an overview of transfer functions in general is given. Section 5.2
shows how theoretically, a transfer function could be computed for a particular
visibility distribution, and explains why an approach that does not exactly solve
the problem, but approximates it, is preferable over finding the exact solution.
Section 5.3 deals with how genetic algorithms can be used to find a suitable
transfer function for a given visibility histogram, whereas section 5.4 explains
how a heuristic approach could be used to find a suitable transfer function.

5.1 Automatic Transfer Function Generation with
Visibility Histograms

Trying to find a suitable transfer function for a volumetric dataset is typically done
with an idea in mind of what the final image generated should look like: certain
areas in the data volume are more interesting than others, and are thus desired to
be more visible than others. The data points which represent those areas typically
are assigned a higher opacity value, while those data points belonging to areas
which are of lesser interest are assigned a lower opacity value or may even be

44 Chapter 5. Visibility Manipulation

made fully invisible. In chapter 4, the connection between the opacity values
which are assigned to the data points in a volumetric dataset, and their visibility
in the generated image was explained. Given a particular transfer function, it can
be computed how visible each of the scalar values in the dataset is. If a way
could be found to automatically generate a transfer function that matches a a user-
specified visibility distribution - i.e. a transfer function that generates the specified
visibility histogram when applied to a volumetric dataset - this method could be
used to facilitate the process of finding a suitable transfer function.
Given a certain 3D dataset and a transfer function that assigns every point in
the dataset an opacity value, computing the visibility histogram from a certain
viewing direction is a rather straightforward task, but unfortunately, the reverse
operation is not easy. Given a 3D dataset that is viewed from a certain direction
and a visibility histogram, there are some challenges that make automatically
generating an alpha transfer that function complicated.
Assuming that a visibility distribution is given which assigns the desired average
visibility Vk to every bin mk in the histogram M = mk, a transfer function needs
to be found which assigns to every data point pxyz in the volume an opacity value
so that ∑k

l=0 visibility(pxyz)

k
= Vk pxyz ∈ mk. (5.1)

In chapter 3.1, it was mentioned that the formula for calculating the visibility of a
single data point is based on the front-to-back compositing scheme (see Equation
4.3). This means that the visibility of a data point is dependent on the alpha values
of all the data points preceding it on a ray which traverses the volume in the
viewing direction. In order to calculate a transfer function for a given visibility
distribution, it would thus be necessary to store all the points that lie on each
single viewing ray in the right order. With this information, the visibility at point
pn along a viewing ray can be calculated as

visibility(pn) =
n∑
i=0

(−1n+i ∗
n∏
j=i

αj) (5.2)

where αj is the opacity at point pj with 0 < j < n that lies on the same viewing
ray as pn. Combining equations 5.1 and 5.2 gives a system of k (k being the

5.1. Automatic Transfer Function Generation with Visibility Histograms 45

number of bins in the visibility histogram) nonlinear equations, and as much
variables as there are different opacity values. By solving the resulting system
of equations, the appropriate transfer function for a desired visibility distribution
could be found - assuming that the system of equations has a solution.
Assuming a 3D transfer function which assigns an opacity value to each data point
based on the position p(x, y, z) of the data point, and a visibility histogram with
a separate bin for every scalar value in the dataset, the amount of variables in the
system of equations is a lot higher than the amount of equations; in such a case,
infinitely many solutions could exist for the system. For example, the datasets
used for the scope of this thesis typically contained 107 data points, with densities
ranging from 0 to 4095.
In the typical case of an 1D transfer function, where an opacity value is assigned to
the data points based on the scalar value, a system of equations could be generated
where the number of equations is equal to the number of variables. This could be
achieved by assigning all the scalar values that fall into a same bin within the
visibility histogram the same opacity value.
If an application were to implement this method, it would require the user to
specify the following things:

• the viewing direction

• the number of bins in the visibility histogram

• the desired visibility value for every bin in the histogram

The problem with this approach is that there is no guarantee that a transfer function
which generates the desired visibilities can even be found: depending on the
internal structure of the dataset, i.e. the way structures with different densities
occlude each other, it might not be possible to find a suitable transfer function. The
maximum possible visibility of a single data point is bounded by the accumulated
opacity up to the data point, i.e. a data point hidden behind a very opaque region
has a rather low visibility, even if it has a high associated alpha value. In the
dataset in Figure 5.1, for example, the data points in the middle are occluded by
the surrounding teapot. If the visibility of the teapot is set to a certain value αi,
the maximum visibility that can be reached for the interior points is 1 − αi. For
the data points that belong to the teapot the situation is even more complex, as

46 Chapter 5. Visibility Manipulation

Fig. 5.1: Graph a) shows how the maximum achievable visibility of the red data points is
bounded by the opacity value of the blue data points. Graph b) shows how the maximum
achievable visibility of the blue data points is bounded by their own opacity values, due
to self occlusion.

they have the same density and thus share the same alpha value. As the visibility
of the data points at the back is bounded by the visibility of the front points, the
total visibility for data points is bounded.

Allowing a user to specify a visibility distribution in absolute values is an
infeasible idea, as no guarantee can be given that a matching transfer function can
be found. Another approach would be to let the user specify a desired visibility
distribution, and then attempt to find a transfer function which produces a
visibility distribution that comes close to the user-specified visibility distribution.

5.2 Genetic Algorithm Approach

In the last section, it was shown why trying to find a transfer function that
produces exactly the desired visibility histogram for a particular dataset is an
infeasible approach. However, finding an exact solution is not always necessary:
another approach is to search for a transfer function which generates a visibility
histogram that comes ”as close as possible” to the desired visibility distribution.
Thus, the problem of generating a transfer function can be viewed as search
problem: The space to be searched consists of all possible transfer functions that
assign an opacity value in the range of 0-1 to each point in the data volume, and

5.2. Genetic Algorithm Approach 47

the transfer function searched for is the one where the difference between the
generated visibility histogram and the desired visibility histogram is minimal. In
chapter 3, genetic algorithms were introduced as a method that is commonly used
to solve search problems. If a fitness function that can be used to evaluate a single
transfer function, as well as a way to represent the individual transfer functions
genetically can be found, a genetic algorithm can be used to find an appropriate
transfer function for a desired visibility histogram.

5.2.1 Genetic Representation

In chapter 3, it was established that for a genetic algorithm, a genetic representa-
tion of the solution domain is needed. In this particular case, the solution domain
consists of transfer functions which assign an opacity value to the individual
points in the data volume.
When designing the genetic representation, an important thing to keep in mind
is that the crossover and mutation operation have to be applied to the genetic
representation. It should be easy to carry out these operations.
In section 5.1, it was explained that a transfer function can be n-dimensional,
where n stands for the number of functions that are applied to a point at position
(x, y, z) (see Equation 2.12). In such a case, the functions which are used as input
for the transfer function, plus the transfer function itself, could be used as genetic
representation, where each single function represents a gene. Using this approach,
the crossover and mutation operation can be very complicated. Another approach
is to calculate the exact value of the transfer function for each individual point in
the volume, and interpreting the resulting values as an array. Given a 3D dataset
based on a uniform grid, with nx data points in the direction of the x-axis, ny
points in the direction of the y axis, and nz points in the direction of the z-axis,
evaluating the transfer function yields nx ∗ ny ∗ nz alpha values between 0 and
1, one for every point with position (x, y, z) in the data volume. These opacity
values can be arranged as an array where the index of the alpha value α(x, y, z)

for a particular point can be calculated as x + y ∗ nx + z ∗ nx ∗ ny. Using this
approach, all the transfer functions can be represented as arrays of equal length,
with values between 0 and 1. As mentioned in chapter 3, arrays of equal length

48 Chapter 5. Visibility Manipulation

are the preferred way to represent the solution domain, as crossover and mutation
are extremely easy to realize that way.
The the case of the most commonly used transfer function, a 1D function which
assigns an alpha value to every scalar value in the volumetric dataset, using
arrays of equal lengths is once again an easy method for obtaining a genetic
representation. In this case, the index where the alpha value for a particular scalar
value can be calculated with the help of the scalar value itself.

5.2.2 Fitness Function

The other important thing that needs to be defined for the genetic algorithm is a
fitness function to evaluate the solution domain. The solution domain consists of
different transfer functions which assign an opacity value to each individual point
in the 3D data set. The best approach for measuring the fitness of such a transfer
function is to evaluate the visibility histogram that is generated by applying the
transfer function to the data set when viewed from a fixed direction.
The goal of the genetic algorithm is to compute a transfer function which, when
applied to a specific data set, generates a visibility histogram that is as similar
as possible to another visibility histogram that is specified. Therefore, what is
needed is a measure for the dissimilarity between two visibility histograms. The
dissimilarity d(H,K) between histograms H = hi and K = ki is also commonly
referred to as distance.
The different methods for calculating the distance between two histograms can be
divided into two groups: Bin-by-bin dissimilarity measures compare the contents
of corresponding histogram bins. Cross-bin dissimilarity measures also compare
non-corresponding bins. For some cross-bin dissimilarity measures, a ground
distance has to be defined between the bins in the histograms that don’t correspond
to each other, that allows for weighting the difference between two bins based on
their ground distance.

5.2. Genetic Algorithm Approach 49

Minkowski-Form Distances

In the euclidean space Rn, the distance between two points x = (x1, x2, ..., xn)

and y = (y1, y2, ..., yn) is usually given by the euclidean distance (also called
2-norm distance). The euclidean distance d is defined as

d =

√√√√ n∑
i=1

|xi − yi|2 (5.3)

Similarly to Equation 5.3 minowski distance of order p (also called p-norm
distance) is defined as

d = p

√√√√ n∑
i=1

|xi − yi|p (5.4)

Interpreting a histogram with n bins as an n-dimensional point inRn, Minkowski-
form distances, especially the euclidean distance, can be used to calculate the
distance between two histograms. Minkowski-form distances are an example of
bin-by-bin dissimilarity measures. The Minkowski distance of order 1 is often
used for computing dissimilarity between color images [44]. One drawback of
the Minkowski distance is that when used as a measure for the similarity between
histograms, it does not match perceptual similarity well. Only the correspondence
between bins with the same index is accounted for, while information across bins
is disregarded. Figures 5.2.a and 5.2.b illustrate this problem: in Figure 5.2.a,
the Minkowski distance between the two histograms on the left is larger than
the perceptual distance. In 5.2.b, it is shown how the desired distance should be
based on correspondences between bins in the two histograms and on the ground
distance between them.

Histogram Intersection

The histogram intersection, another bin-by bin dissimilarity measure, is attractive
because it can handle partial matches when the areas of the two histograms - i.e.
the sum over all the bins - are different. If the areas of two histograms are equal,
the the histogram intersection is equivalent to the normalized 1-norm distance.

50 Chapter 5. Visibility Manipulation

Fig. 5.2: An example where the Minkowski distance does not match the perceptual
dissimilarity. In Figure a), the Minkowski distance between the histograms on the left
side is greater than the Minkowski distance between the histograms on the right side.
Figure b) shows the desired distance, which is based on perceptual similarity.

The histogram intersection can be calculated as

d(H,K) = 1−
∑

imin(hi, ki)∑
i ki

. (5.5)

Quadratic Distance

A well known cross-bin dissimilarity measure is the quadratic distance, first
introduced by Hafner et al. [13]. It calculates a weighted similarity between
histograms instead of simply comparing the values per bin. The computational
cost for the quadratic histogram distance is high. Equation 5.6 expresses the
quadratic distance between two histograms.

d(H,K) =
√

(h− k)t ∗ A(h− k) (5.6)

In Equation 5.6, h and k are vectors that contain all the entires in H and K; A =

[aij] refers to an n ∗n matrix, and aij is the similarity coefficient between the bins
i and j. The similarity coefficient can be calculated by the formula

aij =
1− dij
dmax

(5.7)

5.2. Genetic Algorithm Approach 51

Fig. 5.3: An example where the quadratic distance does not match the perceptual
dissimilarity. In Figure a), the quadratic distance between the histograms on the left side
is greater than the quadratic distance between the histograms on the right side. Figure b)
shows the desired distance, which is based on perceptual similarity.

where the ground distance dij = |xi − yi| is a measure for the similarity between
bins i and j.
The quadratic-form distance does not enforce a one-to-one correspondence
between mass elements in the two histograms: The same mass in a given bin
of the first histogram is simultaneously made to correspond to masses contained
in different bins of the other histogram. In Figure 5.3.a and 5.3.b, it is shown how
just like with the minowski distance, the perceptual dissimilarity can conflict with
the quadratic distance between two histograms.

Match Distance

The match distance is another cross-bin dissimilarity measure. It is calculated
with the formula

d(H,K) =
∑
i

|ĥi − k̂i. (5.8)

The match distance between two histograms is defined as the 1-norm distance
between their respective cumulative histograms. The cumulative histogram of a a
histogram hi is defined as

ĥi =
∑
i≤j

hj. (5.9)

52 Chapter 5. Visibility Manipulation

Fig. 5.4: The steps involved in calculating the Earth Mover’s distance between two
histograms.

Earth Mover’s Distance

A histogram can be represented by a set of clusters where each cluster is
represented by its mean (or mode) mj , and by the fraction of the distribution
that belongs to that cluster, wmj

. Such a representation is also called a signature

sj = (mj, wmj
). The earth mover’s distance can be interpreted in the following

way: Given two distributions, one can be seen as a mass of earth properly spread
in space, the other as a collection of holes in that same space. The earth movers
distance measures the least amount of work needed to fill the holes with earth. In
this metaphor, a unit of work corresponds to transporting a unit of earth by a unit
of ground distance.
Computing the earth mover’s distance is based on a solution to the well-known
transportation problem [17]. Suppose that several suppliers, each with a given
amount of goods, are required to supply several consumers, each with a given
limited capacity. For each supplier-consumer pair, the cost of transporting a single
unit of goods is given. The transportation problem is then to find a least-expensive
flow of goods from the suppliers to the consumers that satisfies the consumers’
demand.

Using signatures, a comparison between two histograms can be modeled as a
transportation problem: One histogram is defined as the supplier and the other as
the consumer. The cost for a supplier-consumer pair to equal the ground distance
between an element in the first signature and an element in the second.
This can be formalized as a linear programming problem: By interpreting

5.2. Genetic Algorithm Approach 53

histogram P as signature with m clusters P = (p1, wp1), ..., (pm, wpm) and
histogram Q as Q = (q1, wq1), ..., (qn, wqn) with n clusters, and defining the
ground distance matrix D = [dij] where dij is the ground distance between
clusters pi and qj . The goal of the linear optimizations is to find a flow F = [fij],
with fij being the flow between pi and qj , that minimizes the overall cost

Work(P,Q, F) =
m∑
i=1

n∑
j=1

fijdij (5.10)

The flow F is subject to the following constraints:

fij ≥ 0
m∑
i=1

fij ≤ wqi

n∑
j=1

fij ≤ wpi

m∑
i=1

n∑
j=1

fij = min (
m∑
i=1

wpi
,

n∑
j=1

wqi)

The first constraint allows moving supplies from P to Q and not vice versa. The
next two constraints limits the amount of supplies that can be sent by the clusters
in P to their weights, and the clusters in Q to receive no more supplies than their
weights; and the last constraint forces to move the maximum amount of supplies
possible. This amount is also referred to as total flow. Once the transportation
problem is solved, and the optimal flow is found, the earth mover’s distance is
defined as the work normalized by the total flow:

EMD(P,Q) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

(5.11)

The normalization factor is introduced in order to avoid favoring smaller sig-
natures in the case of partial matching. The Earth mover’s distance was first
introduced as distance measure for monochromatic images by Peleg et al. [35]
and is commonly used in image applications [40, 39].

54 Chapter 5. Visibility Manipulation

Parameter-based Dissimilarity Measures

These methods first compute a small set of parameters from the histograms, either
explicitly or implicitly, and then compare these parameters. Both bin-to-bin and
cross-bin parameter based dissimilarity measures exist [37, 7].

5.3 Heuristic

In the section before it was explained how a genetic algorithm can be used to find
an alpha transfer function that generates a visibility histogram for a given data set.
However, using this approach has some disadvantages.
First, starting from a random population of possible solutions, it takes a rather
long time for the algorithm to converge toward good solutions. Depending
on the population size, in each generation a lot of visibility histograms have
to be computed, and their distance to the desired visibility histogram has to
be evaluated. Also, several very different transfer functions can generate the
same visibility histogram. Some of these transfer functions might be more
desirable than others, yet it is difficult to mathematically define which transfer
functions are desirable and which ones are not. However, in order to include
this criterion into the fitness evaluation that happens during the selection stage of
a genetic algorithm, it would be necessary to define it in a form which can be
computationally evaluated.
A different approach that takes into account is the use of a heuristic. A heuristic
is a method to help to solve a problem, commonly informal. It is particularly
used for a method that often rapidly leads to a solution that is usually reasonably
close to the best possible answer. According to Michalewicz and Fogel [33],
heuristics stand for strategies using readily accessible, though loosely applicable,
information to control problem-solving in human beings and machines.
Concerning visibility histograms, an intuitive attempt at creating a simple heuris-
tic that generates a transfer function from a given visibility distribution is to simply
increase the alpha values for those regions where the user desires an increased
visibility, while decreasing the alpha values everywhere else. However, estimating
just by how much the alpha values of the scalar values within the region of interest

5.3. Heuristic 55

should be increased is already complicated, since these scalar values tend to
occlude each other, and increasing the alpha value of one of these scalars can
drastically change the visibility for the rest.
A possible way to refine the heuristic is to take the distance of a certain sample
point to the viewing plane into account. The idea behind this is simple: since
sample points that are close to the viewing plane potentially occlude many of the
sample points that are within the range of interest, their alpha value has the most
influence on the overall visibility. Overall, these sample points should have a
rather low alpha value. For sample points which are far away from the viewing
plane, the alpha value can be higher, since they are less likely to occlude important
data points. The general idea of making regions closer to the viewing plane
more transparent, while making regions further away more opaque can be refined
further by counting, for every slice in the volume, just how many sample points
for which the visibility should be increased because their scalar value falls within
a region of interest are potentially occluded by sample points in the slice, and by
adjusting the alpha values based on that number.

Chapter 6

Implementation

This chapter deals with the implementation details of the presented approach.
In chapter 6.1 the implementation of the algorithm for calculating visibility
histograms is described; Chapters 6.2 and 6.3 deal with the implementation of
the genetic algorithm and the heuristic that were described in chapter 5.

6.1 Implementation of Visibility Histograms in General

In chapter 4, the theoretical steps for computing visibility histograms were
described; this this section deals with the implementation. The goal of the
application was to generate a method for displaying several visibility histograms
for a given dataset in an OpenGL-enabled application.
In order to calculate a visibility histogram, rays need to be cast trough the data
volume in the viewing direction, taking samples at a number of evenly spaced
sample points. The values calculated for each sample point must be sorted into
bins based on the density of the sample point, added together and then normalized
by the total number of samples in the bin. The process of ray casting can be either
be CPU based or GPU based. Typically, implementations that utilize the graphics
hardware are faster than purely software-based implementations. As mentioned
before, the end goal of is not to compute a single visibility histogram, but a number
of visibility histograms that show the visibility distribution for the dataset when
viewed from different directions. Therefore, it is important that a single visibility
histogram can be computed fast, making a GPU-based implementation the better
solution. The main challenge in GPU-based ray casting is that graphics hardware
only supports polygonal rendering primitives, while a volume data set consists

6.1. Implementation of Visibility Histograms in General 57

of a three dimensional scalar field. It is necessary to decompose the volumetric
object that should be rendered into primitives supported by the GPU. The basic
idea behind GPU-based object-order volume rendering is that a discrete 3D scalar
field can be represented as a stack of 2D slices. A 3D data set can be rendered by
displaying a high number of semi-transparent 2D slices extracted from it. In this
approach, the polygons that correspond to the slices are the geometric primitives
used for rendering. These geometric primitives represent a proxy geometry which
describes the shape of the data domain, usually the bounding box, not the shape
of the object contained in the data. The data itself is supplied to the graphics
hardware in the form of texture images. These texture images are then mapped to
the slices. The interpolation of the opacity values at the sample points, as well as
the compositing of the computed values to calculate the visibility at a particular
sample point, is done by the GPU in a fragment program.

6.1.1 Geometry Setup

The first step is to decompose the volume data set into a series of polygonal slices
which are parallel to the viewing plane. This is done by rendering a series of
quads which are parallel to the viewing plane, one for each slice that should be
rendered. Clipping planes are used to discard the fragments of each quad that do
not belong to the data volume. The fragments which do actually belong to the data
volume are not clipped, and processed by the vertex and fragment shader, where
the actual visibility calculation takes place.

6.1.2 Texture Setup

The data volume and the transfer function are supplied to the GPU in the form
of textures. The data volume is passed to the GPU in the form of a 3D texture,
where the value that is stored at a certain point in the texture represents the scalar
value at that point in the volume. When a fragment is processed in the fragment
shader, looking up the value in the texture at the position of the fragment yields
the scalar value at that position. The scalar value can then be used as a parameter
for looking up the opacity value in the texture that stores the transfer function.
The transfer function maps an opacity value to each individual point in the dataset.

58 Chapter 6. Implementation

The simplest case is to assign an opacity value based on the density value on each
position in the volume. In this case, an 1D texture can be used to store the transfer
function. However, sometimes a transfer function which is dependent on more
than one variable is desirable. Since the goal of the application is to compute
visibility histograms for different viewing directions, it also makes sense to use
different transfer functions for different viewing directions. Thus, a 2D texture is
used to store the transfer functions, and the scalar value plus the viewing angle are
used to look up the alpha value.
However, when computing a visibility histogram, each slice polygon that is
processed by the fragment program contains the visibility values for all the data
points that are present in the slice. It is therefore necessary to access each of the
processed slice polygons individually, as the visibility values need to be sorted by
density value and summed up. Furthermore, as the visibility value of a data point
is computed by subtracting the accumulated opacity from before the light passes
through the data point from the accumulated opacity after the data point, a way
to pass the accumulated opacity of the previous slice to the fragment program is
needed. Both of these problems can be solved by the use of two additional 2D
textures. One texture is used to store the values that are generated by the fragment
program when processing a single slice polygon. That texture then gets passed
along with the data volume and the transfer functions when the next polygon is
rendered. The other texture, which was used to pass the results along when the
previous slice was processed, now becomes the texture into which the results of
the fragment program are written. The two textures always alternate between
storing the values generated when the previous slice polygon was processed, and
passing the results to the fragment program.

Framebuffer Objects

Since the output of each slice that is processed by the fragment program is
needed as input for the next slice in the form of a texture, the best approach is
to have the fragment program render its values directly into a texture. This is
accomplished by using the OpenGL framebuffer object extension. This extension
allows for rendering to destinations other than the buffers provided to the GL

6.1. Implementation of Visibility Histograms in General 59

by the window-system. These newly defined rendering destinations are known
as framebuffer-attachable images. The extension provides a mechanism for
attaching framebuffer-attachable images to the GL frame buffer as one of the
standard GL logical buffers: color, depth, and stencil. When a framebuffer-
attachable image is attached to the framebuffer, it is used as destination of
fragment operations. Rendering to a texture is accomplished by defining a texture
as frame buffer-attachable image. The ”render to texture” semantics are similar
to performing traditional rendering to the framebuffer, followed immediately by a
call to CopyTexSubImage() to copy the contents of the framebuffer to the specified
texture. By using the frambuffer object extension, an application can achieve the
same effect, but with the advantage that the GL can usually eliminate the data
copy from the framebuffer to the texture.

Pixelbuffer Objects

Each slice polygon contains the visibility values for all the sample points in the
slice. These visibility values have to be sorted into bins based on the density at
the sample point. This means that the contents of the frame buffer have to be
read after every slice that is rendered. The standard command used for reading
the contents of the frame buffer is glReadPixels(), which has the drawback of
being a synchronous read. This means that after glReadPixels() is called, the
driver will typically send a readback command to the hardware, and then wait
for all of the data to be available before returning control to the application. In
the case of the visibility histogram, this means that after each slice polygon is
rendered, the application would have to wait until the contents of the frame buffer
are read, before it can proceed to sort the visibility values calculated for the slice,
and subsequently drawing the next slice. This rather inefficient approach can be
improved by the use of pixel buffer objects offered by the OpenGL Pixel Buffer
Object extension. Pixel buffers offer asynchronous reads, which means that the
application does not have to wait until the read is finished, but can do something
else in the meanwhile. Figure 6.1 shows how the frame buffer objects and the
pixel buffer objects work together: after rendering slice n, its contents are written
into frame buffer object FB0. These values are then read into the pixel buffer

60 Chapter 6. Implementation

Fig. 6.1: An overview of how two pixel buffer objects and two frame buffer objects
alternate between storing the output of the fragment shader for processing by the CPU,
and passing data to the fragment shader as 2D texture.

object PB0 in an asynchronous read. While waiting for the results of the readout,
the values of slice n− 1 which were rendered into FB1 and read into PB1 can be
evaluated by the CPU, as they are ready at this point. Afterwards, the slice n + 1

can be rendered into FB1 while the texture bound to FB0 is passed along, after
which the next asynchronous readout for PB1 is started. At this point, the values
in PB0 are ready for CPU evaluation.

6.1.3 Shaders

Each slice that is rendered is first processed by the vertex shader, and subsequently
by the fragment shader. The vertex shader processes the four corner points
associated with each slice, and assigns two sets of texture coordinates to each
vertex: One set of texture coordinates is used to look up the accumulated opacity
from the previous slice in the 2D texture, the other is used to look up the density
value at the current position in the 3D texture that stores the volume. These texture
coordinates are the interpolated for each fragment and used for the texture look
ups. Shown below is the code of the vertex shader:

1 uniform mat4 TextureMatrix;
void main()

3 {
gl_Position = ftransform();

6.1. Implementation of Visibility Histograms in General 61

5 vec4 vecEyeVertex = gl_ModelViewMatrix * gl_Vertex;
gl_ClipVertex = matTexture*vecEyeVertex;

7

/* calculate the coordinates to look up the density */
9 gl_TexCoord[1] = TextureMatrix*vecEyeVertex;

/* these texture coordinates are used to look up the accumulated opacity */
11 gl_TexCoord[0] = gl_MultiTexCoord0;

}

For each fragment that gets processed by the fragment shader, the accumulated
opacity is looked up in the 2D texture. The alpha value for the fragment is
calculated by first looking up the scalar value in the 3D texture that represents
the data volume, then using the scalar value to look up the alpha value in the
texture representing the transfer function. With the old accumulated opacity and
the alpha value, the new accumulated opacity and the visibility are calculated.
The RGBA-value that is written for each fragment contains the new accumulated
opacity, which is used for the next slice, the visibility and the density which are
needed to calculate the histogram, and 0 as alpha value. The alpha value is used to
test whether a fragment actually belongs to the data volume, or to the background,
as the values outside of the data volume are clipped and the alpha value of the
background color is set to 1. The fragment shader is shown below:

uniform sampler3D DataVolume;
2 uniform sampler2D TransferFunction;
uniform sampler2D PreviousVisibility;

4 uniform float ViewingAngle;
void main (void)

6 {
/* look up the accumulated opacity of the previous slice */

8 float PreviousOpacity = texture2D(PreviousVisibility, gl_TexCoord[0].xy).g;

10 /* look up the alpha value */
float CurrentDensity = texture3D(DataVolume, gl_TexCoord[1].xyz).a;

12 vec2 vecLookup = vec2(CurrentDensity, ViewingAngle);
float CurrentAlpha = texture2D(TransferFunction, vecLookup.xy).a;

14

/* calculate the new accumulated opacity, and the visibility */
16 float CurrentOpacity = PreviousOpacity + (1.0-PreviousOpacity)*CurrentAlpha;

float CurrentVisibility = (1.0-PreviousOpacity)*CurrentAlpha;
18

/* the new accumulated opacity will be used in the next slice */
20 /* visibility and density at are needed to calculate the histogram */

vec4 vecCurrent = vec4(CurrentVisibility, CurrentOpacity, CurrentDensity, 0.0f);
22 gl_FragColor = vecCurrent;

}

62 Chapter 6. Implementation

6.2 Implementation of the Genetic Algorithm and the
Heuristic

For the scope of this thesis, two different methods for generating a transfer
function when given a specific visibility histogram were implemented: the first
implementation was in the form of a genetic algorithm, the second in the form of
a heuristic.
Both the approach based on the genetic algorithm and the heuristic approach
require a specific goal visibility histogram, which needs to be specified by user
input. One possible method of specifying the goal visibility histogram is in the
form of an editor similar to transfer function editors, where the user can specify
a piecewise linear function with the help of control points that describes the
desired visibility distribution. This approach has the advantage of allowing the
user to specify any desired visibility distribution. However, as was mentioned
before, when specifying an arbitrary visibility histogram, it is not guaranteed that
a transfer function that produces similar visibilities can be found.
Instead of being able to specify a complete visibility distribution, the user is
allowed to manipulate an already existing visibility distribution. This initial
visibility histogram is generated by applying a very simple starting transfer
function to the dataset. The user can the select a continuous interval out of the
density values within the dataset, and then either increase or decrease the visibility
of the points in the volume whose densities fall into the specified interval, by
a certain amount. After specifying the desired interval, and by how much the
visibility of the data points should be increased or decreased, the goal histogram
is calculated, which is then used as input for the genetic algorithm or the heuristic.

6.2.1 Implementation of the Genetic Algorithm

The implementation of the genetic algorithm is fairly straightforward: First, an
initial population of candidate transfer functions is created. In order to evaluate
the fitness of these transfer functions, the visibility histogram has to be calculated
for every single transfer function, and compared to the user specified visibility
histogram. Afterward, pairs of individuals are chosen from the current generation

6.2. Implementation of the Genetic Algorithm and the Heuristic 63

and recombined to form the next generation. The following an overview of the
genetic algorithm in pseudo code:

/* initialization */
2 for (int i=0; i<PopulationSize; i++)

seed the starting population p[i];
4

/* iteration */
6 for (int j=0; j<NumberOfGenerations; j++)\
{

8 initialize current population n[i] to zero;
for (int i=0; i<PopulationSize/2; i++)

10 {
/* selection */

12 select two individuals p[a] and p[b];

14 /* recombination */
generate a random number r1 between 0 and 1;

16 if (r1>CrossoverThreshold)
{

18 generate random crossover point c;
n[i], n[i+1] = crossover(p[a], p[b], c);

20 }
else

22 {
n[i] = p[a]; n[i+1] = p[b];

24 }
generate a random number r2 between 0 and 1;

26 if (r2<MutationThreshold) mutate(n[i]);
generate a random number r3 between 0 and 1;

28 if (r3<MutationThreshold) mutate(n[i+1]);
}

30

for (int i=0; i<PopulationSize; i++) p[i] = n[i];
32 }

Initialization

The algorithm starts by generating an initial population of n transfer functions.
Transfer functions are represented by arrays containing floating point values
between 0 and 1, and all transfer functions have the same length. A certain amount
of the transfer functions are generated in a totally random fashion, by assigning
a random number between 0 and zero as alpha value for each scalar value within
the dataset. The other transfer functions are based on the initial transfer function,
which was used to generate the initial visibility histogram. They are created by
dividing the initial transfer function into a number of evenly spaced intervals,
assigning a random scale factor to each of the intervals, and scaling the alpha
values of the original transfer function that fall into a particular interval with
the scale factor assigned to the interval. After the scaling, the alpha values are

64 Chapter 6. Implementation

clipped back into the interval [0, 1]. The scale factor is random for all the intervals
that do not overlap with the user defined interval where the visibility should be
increased or decreased, and weighted within the intervals that do overlap with the
user defined interval.

Fitness Evaluation

In order to evaluate the fitness of the generated transfer functions, the earth
mover’s distance was implemented. Calculating the earth mover’s distance
between two histograms can be seen as transportation problem, where one
histogram is assumed to be the supplier, and the other histogram is assumed to
be the demander. In the implementation, the goal visibility histogram was used as
the supplier, and the visibility histogram generated by the transfer function which
should be evaluated was the demander. The bins from the goal histogram become
supplier nodes, and the bins from the newly generated visibility histograms
become the demander nodes. The ground distance dij between two histogram
bins with indices i and j is simply defined as

|i− j|

This ground distance fulfills alls the conditions to be a metric, and as was
mentioned in section 5.2, the earth mover’s distance between two histograms that
is based on a ground distance which is a metric, is a metric itself.
The algorithm takes the goal visibility histogram, H1, and the visibility histogram
generated by the transfer function, H2, and begins by comparing the total supply
offered by H1 to the total demand in H2. If the supply is greater than the
demand, an additional demander that can ”soak up” the extra supply is added
to the transportation problem, and the ground distance to all supplier nodes is
set to zero. If, on the other hand, the total demand by H2 is greater than the
supply offered by H1, and additional supplier node is added to the problem that
fulfills the extra demand. The ground distance between this supplier node and the
demander nodes is again set to zero.
The cost matrix C = [cij] is calculated. It stores the cost for moving one unit
between supplier i and demander j, which is equal to the ground distance dij .

6.2. Implementation of the Genetic Algorithm and the Heuristic 65

The matrix F = [fij] stores the flow between supplier i and demander j, and is
initialized to zero. Finally, the matrix W = [wij] stores the reduced cost between
each of the supplier nodes and demander nodes. The values in this matrix are
calculated as

wij = cij − ui − vj.

The values ui and vj are the dual variables. They are associated with the so called
basic cells, i.e. all the cells in the flow matrix where the flow fij > 0. The
dual variables are chosen so that the reduced cost for the basic cells is zero. The
reduced cost matrix, and the dual variables have to be calculated anew every time
the flow changes, and are initialized to zero. Once the problem is set up like
this, a starting solution is generated. The starting solution sets up an initial flow
fij between each of the supplier nodes and each of the demander nodes. The
cells (i, j) in the matrix F where fij > 0 become the basic cells, and the wij ,
ui and vj are calculated accordingly. The basic cells all have wij = 0, but the
other cells take on positive and negative values. The condition for optimality for
the transportation problem is that all cells must have nonnegative reduced costs.
As long as that condition is not fulfilled, the given solution to the transportation
problem can be improved. In order to improve the solution, the cell (i0, j0) in F
with the minimal reduced cost wi0j0 in W is chosen to become a new basic cell.
The new basic cell always determines a cycle that consists of the new cell and
several basic cells of the current solution. This cycle is found by starting at the
new basic cell (i0, j0) in F and moving from one cell to another in horizontal or
vertical moves. Once this cycle has been identified, the flow is updated along the
cycle: The minimum positive flow fmin from all the basic cells within the cycle
is either subtracted or added to the cells in the cycle: starting at the new basic
cell, fmin is added, changing the the total flow within this cell from 0 to fmin,
then subtracted from the next cell in the circle, then added again in an alternating
pattern. By doing this, the flow in one of the original basic cells is set to zero:
this cell is no longer a basic variable. The new set of basic variables and their
associated fij represent the new solutions. The wij , ui and vj are the updated
to reflect the changes in the set of basic variables. The process of finding the
cell (i0, j0) in F with the minimal reduced cost wi0j0 in W , searching for a cycle

66 Chapter 6. Implementation

and updating the fij along the cycle is repeated until the optimality condition is
fulfilled, i.e. the reduced cost for all the cells is nonnegative. At this point the
earth mover’s distance can be calculated as

EMD =

∑
i

∑
j fij ∗ dij∑

i

∑
j fij

. (6.1)

The following listing gives an overview of how the earth mover’s distance is
computed in pseudocode.

/* initialization */
2 initialize matrices F = f[i][j] = 0, C = c[i][j] = 0 and W = w[i][j] = 0;
initialize vectors U = u[i] = 0 and V = v[j] = 0;

4 find an initial solution;
calculate the u[i] and v[j] so that c[i][j]-u[i]-v[j]=0 for all (i,j) where f[i][j] != 0;

6 calculate the w[i][j] = c[i][j]-u[i]-v[j];

8 /* iteration */
while(1)

10 {
/* optimality test */

12 if (all w[i][j] >= 0) break;

14 /* improve old solution */
find a, b so that w[a][b] = min(all w[i][j]);

16 find a cycle consisting of cells where f[i][j] != 0 and f[a][b];
find the minimal flow fMin in the cycle;

18 starting with f[a][b] alternate between adding or subtracting fMin;
}

20

/* calculate EMD */
22 EMD = F*C;

Selection and Recombination

Roulette wheel selection was chosen as selection scheme. After evaluating the
distance between the visibility histogram generated by a transfer function of the
current generation and the goal visibility histogram, the fitness is stored in an
array. The fitness Fi of a solution is calculated as

Fi =
1

Di

.

In the equation above, Di stands for the earth mover’s distance between the
visibility histogram which is generated by applying the transfer function to the
dataset, and the goal visibility histogram.

6.3. Implementation of the Heuristic 67

In each generation, a certain number of ”unfit” individuals are excluded from the
selection and recombination step, in order to improve the rate of convergence.
When the fitnesses of all transfer functions in the current generation have been
evaluated, the total fitness of the remaining individuals is calculated, and their
fitness values are normalized with the total fitness. In order to select an individual
from the population, a random number between 0 and 1 is generated. Imagining
that each individual in the population is assigned a pocket on a roulette wheel
with the size of the pocket depending its normalized fitness, this random number
is the equivalent of the roulette ball which lands in a certain pocket, with its value
determining the individual that should be selected.
In order to create the n individuals that make up the next generation, n/2 pairs
of individuals are selected from the fittest members of the current population.
Each individual can be selected multiple times, however, each of the n/2 pairs of
individuals must consist of two different individuals.
Since the transfer functions are represented by two arrays of floating point
numbers of equal length m, the recombination step is rather straightforward: A
crossover point is chosen by generating a random integer i0 between 0 and m− 1,
which represents an index into the arrays. By swapping the values of the two
arrays for all indices i ≥ i0, one-point crossover can be implemented. For the
two-point crossover method, two indices imin and imax between 0 and m − 1 are
generated, and the values with indices imin ≤ i ≥ imax are swapped. Mutating
a transfer function is accomplished by iteration trough the array elements, and,
with a very low chance, changing the value in a single array element to a random
floating point number. Crossover and mutation can be carried out in a single step.

6.3 Implementation of the Heuristic

A heuristic approach was implemented as well. The heuristic approach is based
on the following idea: in order to increase (or decrease) the visibility in a certain
interval, the alpha values of the data points which fall into this interval are
increased (or decreased), while the alpha values of all the other data points are
decreased (or increased). However, increasing the alpha values for an interval
does not always bring a high increase in the overall visibility of the interval, as a

68 Chapter 6. Implementation

certain amount of self-occlusion happens within the data volume. The approach
also makes use of the fact that different transfer functions can lead to the same
visibility distribution, and extends the transfer function from one dimension into
two dimensions. The idea is to make the alpha values of the individual data points
slice-dependent: data points which are in the front slices - i.e. the slices that are
closest to the viewing plane - occlude many other points, while the data points that
are located in the slices in the back of the volume occlude less points. Therefore
the alpha values of points in the back can safely be set to higher values without
having to worry about occlusion, while the points in the front slices have to be
assigned alpha values that are relatively lower.
The algorithm works as follows: The data points for which the visibility should
be increased are counted in each slice. The counting can be done with the same
algorithm that computes a visibility histogram. With the values for each individual
slice, it can be calculated for every slice how much of the total number of the data
points that should be made more visible are potentially occluded by points within
it. If the total number of points is c0 and the number of points that lie behind the
n-th slice is cn, the fraction of potentially occluded points is cn

c0
, a value between 0

and 1. The alpha value of all the points which belong to a slice then gets weighted
with this value.

Chapter 7

Results

This chapter presents the result images that were obtained by the algorithms
implemented in chapter 6. In section 7.1, result images of the general implemen-
tation of visibility histograms are presented. Section 7.2 presents some transfer
function generated with the heuristic approach and the genetic approach, and
compares the results of both approaches.

7.1 Visibility Histograms

In this section, the results which were obtained by the implementation presented
in the previous section are be shown. The goal of the implementation was an
application with which several visibility histograms for a given dataset could be
calculated and displayed an a neatly arranged way.
Figure 7.1 shows a rendering of a dataset representing a human head, with several

visibility histograms which show the visibilities from different viewing angles
arranged in a circle around the dataset. The individual visibility histograms that
are displayed around the dataset are generated by rotating the dataset around the
y-axis in steps of 5◦. The step size was chosen because it gives a good overview of
how the visibilities of the individual data values change with the viewing direction,
while still making the individual histograms easily distinguishable. Each visibility
histogram contains 32 bins, representing same-sized intervals of the scalar values
contained within the dataset.
A bin in the histogram is represented by a single quad with a particular brightness

and color. The brightness of the quad shows how many data points within the
dataset fall into that particular bin: A quad with a high brightness indicates that a

70 Chapter 7. Results

Fig. 7.1: A human head, rendering with the texture slicing method. The visibility
histograms that are generated when rotating the dataset around the y-axis are displayed
around the head. Green areas in the histograms represent a high visibility of the
corresponding data points, while red ares represent a low visibility.

high number of points fall into that particular bin, while a low brightness indicates
that only few data points belong to a particular bin. In Figure 7.1, there are two
areas in the histograms where the brightness is very high: One represents the
empty space around the head, which has an opacity of 0 and is therefore invisible,
the other represents the data points which belong to the skin and flesh. These
data points have a low opacity and are displayed in red in the rendering of the
datasets. Even though this area is visible in the rendering of the dataset, the
average visibility of a single point belonging to the area is rather low, as there
are so many of them. The color of a quad indicates the average visibility of
the data points that belong to the bin it represents. Color values range from
pure green, which indicates a high visibility, to pure red, which indicates that
the data points belonging to a particular bin are completely invisible. In Figure

7.1. Visibility Histograms 71

Fig. 7.2: The human head dataset with its respective visibility histograms. The visibility
histograms on the left side use logarithmic scaling, while the visibility histograms on the
right side display the unscaled values.

7.1, the bones have a high visibility which is represented by the green ring in the
visibility histograms. It should be noted that the displayed visibility values are
not absolute; Instead the displayed visibilities are normalized with the maximum
visibility value that is contained within any of the displayed histograms, and
scaled logarithmically in order to increase the contrast between areas of high
visibility and areas of low visibility. Figure 7.2 displays the visibility histograms
for the same dataset, once normalized and with logarithmic scaling and once in
”pure” form. In the pure form, differences in the visibilities are not very well
recognizable.

72 Chapter 7. Results

(a) α0 = 0, α1 = 0.8 (b) α0 = 0.0125, α1 = 0.8

(c) α0 = 0.05, α1 = 0.8 (d) α0 = 0.2, α1 = 0.8

(e) α0 = 0.4, α1 = 0.8 (f) α0 = 0.8, α1 = 0.8

Fig. 7.3: The dataset is rendered with different transfer functions: the alpha α1 value of
the red tissue increases, while the alpha value α0 of the white tissue stays constant.

7.1. Visibility Histograms 73

Fig. 7.4: A 3D dataset of a small lizard, with its corresponding visibility histograms.

Figure 7.3 shows several renderings of a volumetric dataset of a human hand
that was recorded using computerized tomography, each generated with a different
alpha transfer function, with the alpha values of the red tissue which represents the
flesh and skin increasing in each picture and the alpha values of the white tissue
which represents the bones staying constant. In Figure 7.3.a, only the bones are
displayed with an alpha value of 0.8. The visibility of the bones is represented
by the bright green outer ring in the visibility histograms, while the rest of the
scalar values are totally invisible. In Figure 7.3.b, the alpha value of the red tissue
is set to 0.0125. Since the alpha value is low, and there is a lot of self-occlusion
happening in the red tissue, the average visibility of a data points belonging to the
red tissue is still close to zero. Because of this and the logarithmic scaling used
to display the visibilities, the red tissue is not recognizable at all in the visibility
histograms, while the visibility of the bones is still almost the same as in the
previous picture. In Figure 7.3.c, the alpha value of the red tissue is increased

74 Chapter 7. Results

(a) the gecko dataset with rotation of 0◦

around the y-axis
(b) the corresponding visibility histogram

(c) the gecko dataset with rotation of
180◦ around the y-axis

(d) the corresponding visibility histogram

(e) the gecko dataset with rotation of
45◦ around the y-axis

(f) the corresponding visibility histogram

(g) the gecko dataset with rotation of
135◦ around the y-axis

(h) the corresponding visibility histogram

(i) the gecko dataset with rotation of 90◦

around the y-axis
(j) the corresponding visibility histogram

(k) the gecko dataset with rotation of
270◦ around the y-axis

(l) the corresponding visibility histogram

Fig. 7.5: the gecko dataset in detail, rotated around the y axis. the corresponding visibility
histograms are displayed next to the datasets.

7.2. Transfer Functions 75

to 0.05. Here, the visibility of the red tissue begins to finally show in the form
of the second yellow ring in the visibility histograms, while the visibility of the
bones has decreased with respect to figures 7.3.a and 7.3.b. In Figure 7.3.d, the
alpha value of the red tissue is set to 0.2. At this point, the data points belonging
to the red tissue are clearly visible in the visibility histograms, while the bones
are invisible from most viewing directions. In Figure 7.3.e, the alpha value of
the red tissue is set to 0.4, which causes the red tissue to be displayed in bright
green in the histograms, and the bones to become even more invisible. Finally, in
Figure 7.3.f, the alpha value of the red tissue is set to 1.0: At this point, the bones
become completely invisible. The self-occlusion of the red tissue is so high, that
the overall visibility of the red tissue has decreased again.
By arranging several visibility histograms from different viewing directions at
once, the user can get an overview of how the visibilities change with the
viewing direction. In Figure 7.4, a dataset consisting of 256x256x88 data points
which represents a small lizard is shown with its respective visibility histograms.
Looking at the changes within the visibility distribution, it becomes clear that
from certain angles, a lot of data points have a very low visibility due to occlusion.
Especially when rotating the dataset 90◦ around the y-axis, the visibility of most
of the points in the dataset becomes very low.
This is because when viewed from this angle, 256 slices have to be rendered, with
many data points being occluded. For these two angles, the displayed visibility
histograms are almost completely red, meaning that the average visibility for each
scalar value is very low. The same situation happens when rotating the dataset
270◦ around the y-axis. Figure 7.5 shows the dataset viewed from various angles,
plus the respective visibility histograms in detail. On the other hand, when not
rotating the dataset at all, or by rotating 180◦ around the y-axis, only 88 slices are
rendered, thus the least occlusion occurs.

7.2 Transfer Functions

In this section, the results which were obtained by the implementation presented
in the previous section are be shown. The goal was to test how suitable the two
methods presented in the previous section are at producing a transfer function

76 Chapter 7. Results

(a) dataset rendered with the original
transfer function

(b) dataset rendered with the output trans-
fer function

(c) the corresponding visibility histograms

Fig. 7.6: Results obtained with the genetic algorithm: (a) shows the original transfer
function, while (b) shows the fittest member of the final population. Figure (c) shows
the visibility histograms of the original, the desired and the resulting transfer functions.
The red box represents the area where the visibility was manipulated, which corresponds
mainly to the green tissue

which matches the visibility histogram specified by the user.
When implementing the genetic algorithm, different values were tried out for the
population size, the number of generations and the number of ”unfit” individuals
which are not allowed to reproduce, as well as the rate of mutation and crossover.
Since in every generation, the visibility histogram of every single individual
within the population has to be calculated, the runtime of the genetic algorithm is
very dependent on the population size, as well as the total number of generations.
With a population size of 100 and 100 generations, 10000 visibility histograms

7.2. Transfer Functions 77

(a) dataset rendered with the original
transfer function

(b) dataset rendered with the output trans-
fer function

(c) the corresponding visibility histograms

Fig. 7.7: Results obtained with the genetic algorithm: (a) shows the original transfer
function, while (b) shows the fittest member of the final population. Figure (c) shows
the visibility histograms of the original, the desired and the resulting transfer functions.
The red box represents the area where the visibility was manipulated, which corresponds
mainly to the white tissue, i.e. the bone structure

would have to be calculated and compared to the target histogram, which would
take too much time. On the other hand, if the population size is too small, the
genetic algorithm may not explore enough of the solution space to consistently
find good solutions. The number of individuals excluded from possible selection
and recombination, on the other hand, directly influences the selection pressure: If
the selection pressure which is applied is too high, the algorithm might suffer form
a well-known problem, premature convergence. If only the fittest members of each
generation are allowed to reproduce, this can drive down the population’s diversity

78 Chapter 7. Results

(a) dataset rendered with the original
transfer function

(b) dataset rendered with the output trans-
fer function

(c) the corresponding visibility histograms

Fig. 7.8: Results obtained with the genetic algorithm: (a) shows the original transfer
function, while (b) shows the fittest member of the final population. Figure (c) shows the
visibility histograms of the original, the desired and the resulting transfer functions. The
red box represents the area where the visibility was manipulated.

too soon, leading the algorithm to converge on the local optimum than searching
the fitness landscape thoroughly enough. In the end, a population size of 60 was
chosen, and the 15 most unfit members were excluded from reproducing. The
termination condition is simply that a maximum number of generations has been
generated; Out of the individual within the last generation, the fittest individual
is selected as the final result. The number of created generations was set to
20. In general, the most significant improvements within the total fitness of the
individual generations were happening within the first 15 generations, with less
overall improvement afterwards. The crossover- and mutation rates were set to

7.2. Transfer Functions 79

(a) Original transfer function (b) Output transfer function

(c) Visibility histograms

Fig. 7.9: Results obtained with the heuristic approach: (a) shows the original transfer
function, while (b) shows the generated transfer function. Figure (c) shows the visibility
histograms of the original, the desired and the resulting transfer functions. The red box
represents the area where the visibility was manipulated.

0.7 and 0.01, respectively. Figures 7.6, 7.7 and 7.8 show some results that were
obtained with the implementation of the genetic algorithm. The figures show
the fittest member - i.e. the transfer function when applied to the dataset - of
the final generation, as well as the resulting visibility distribution. The visibility

80 Chapter 7. Results

(a) Original transfer function (b) Output transfer function

(c) Visibility histograms

Fig. 7.10: Results obtained with the heuristic approach: (a) shows the original transfer
function, while (b) shows the generated transfer function. Figure (c) shows the visibility
histograms of the original, the desired and the resulting transfer functions. The red box
represents the area where the visibility was manipulated.

distribution of the result transfer function matches the overall shape of the desired
visibility distribution rather well, however, the increase in the visibility is often
not as high as desired.
In figures 7.9, and 7.10, transfer functions which were generated with the heuristic
approach are shown. With the transfer functions generated with the heuristic
approach, the resulting visibility distribution does not match the overall shape of
the desired visibility distribution as well as with the transfer functions generated
by the genetic algorithm. However, the achieved increase in the visibility comes

7.2. Transfer Functions 81

closer to the desired visibility increase than with the genetic algorithm.
In figures 7.11, and 7.12, the resulting transfer functions of both the genetic
algorithm and the heuristic plus their respective visibility histograms are shown
in comparison. In the images rendered with the resulting transfer functions,
the data points for which the visibility was supposed increase, are more clearly
visible than in the images rendered with the transfer function calculated by the
genetic algorithm. Both algorithms do not always succeed at generating a transfer
function which causes an a increase in visibility that is as high as desired, while
decreasing the visibility of data points is, on the other hand, relatively easy.
Generally, there is a connection between the amount of data points that should
become more visible, and the the total increase that can be achieved: The higher
the total number of data points, the more self occlusion occurs, thus the visibility
increase that can be achieved decreases.

82 Chapter 7. Results

(a) Original transfer function (b) Output of the genetic algorithm

(c) Output of the heuristic

(d) Visibility histograms

Fig. 7.11: Results obtained with the heuristic approach vs. the genetic algorithm: (a)
shows the original transfer function, while (b) shows the the transfer function generated
by the genetic algorithm. Figure (c) shows the transfer function generated by the heuristic.
Figure(d) shows the visibility histograms of the original, the desired and the resulting
transfer functions. The red box represents the area where the visibility was manipulated.

7.2. Transfer Functions 83

(a) Original transfer function

(b) Output of the genetic algorithm

(c) Output of the heuristic

(d) Visibility histograms

Fig. 7.12: Results obtained with the heuristic approach vs. the genetic algorithm: (a)
shows the original transfer function, while (b) shows the the transfer function generated
by the genetic algorithm. Figure (c) shows the transfer function generated by the heuristic.
Figure(d) shows the visibility histograms of the original, the desired and the resulting
transfer functions. The red box represents the area where the visibility was manipulated.

Chapter 8

Summary

8.1 Introduction

Volume rendering has become a very important area of research over the last
decades. Its applications reach from medical imaging to scientific visualization
of data. Volume datasets typically consist of a scalar values representing the
density. In volume rendering, the definition of transfer functions is an important
task for the generation of informative images. While manually setting up transfer
functions via a trial-and-error approach is commonly used in many direct volume
rendering applications, there are two main drawbacks about the approach:
• Setting up a proper transfer via trial-and-error can be a very time consuming

task, since the parameter-space of all possible transfer functions is large.

• For higher dimensional transfer functions, which take additional properties
like gradient magnitude, curvature or spatial information into account, the
manual setup of the transfer function becomes unintuitive and takes even
longer.

. Therefore, the development of approaches for automatic or semi-automatic
transfer function generation has become an active are of research. Several
approaches that assist the user at manually setting up transfer functions have been
proposed [36, 15, 1]. Fujishiro et al. [11] propose techniques for automatically
generating transfer functions by analyzing the topology of the data volume and
extracting critical features. Kindlmann and Durkin [22] introduce a method that
was designed specifically for volume datasets where the regions of interest are
the boundaries between different materials, via the help of a volume histogram.
Finally, Brodlie et al. [4] describe a method for the automatic setup of multi-

8.2. Visibility Histograms 85

dimensional transfer functions by adding spatial information to the histogram of
a volume.
Focus+Context in volume visualization has become another important topic of
research. Wang et al. [48] and LaMar et al. [27] propose distortion techniques
that have been adapted to work with direct volume rendering methods. In terms of
illustrative rendering techniques, Levoy [28] was the first to propose modulation
of opacity using the magnitude of the local gradient. This is an effective way
to enhance surfaces in volume rendering by suppressing homogenous regions.
Based on this proposal, Ebert and Rheingans [8] developed a collection of
volume illustration techniques that adapt and extend non-photo realistic rendering
techniques to volume objects. Lu et al. [30] present a framework for an interactive
direct volume illustration system that simulates traditional stipple drawing, while
Hauser et al. [14] propose two-level volume rendering, a technique which allows
for selectively using different rendering techniques for different subsets of a three
dimensional dataset. Lum and Ma [31] present a multi-dimensional transfer
function method for enhancing surfaces which works through the modification of
surface shading instead of the variation of opacity. The concept of style transfer

functions was introduced by Bruckner and Gröller [5]. Instead of traditional
transfer functions, style transfer functions represent specific styles captured from
existing artwork.

8.2 Visibility Histograms

The basic idea behind visibility histograms is to show for a given volume dataset
that is rendered with a specific transfer function, how much the density values
contribute to the final image. For a dataset rendered with the help of a direct
volume rendering algorithm, the visibility of a single sample n point is defined as

visibility(n) = αsn − αsn−1 . (8.1)

where αsi
is the accumulated opacity at sample point i, i.e. the opacity that

accumulates along a viewing ray that is cast into the volume in the viewing
direction. The accumulated opacity can be calculated recursively by the following

86 Chapter 8. Summary

formula:
αdst ← αdst + (1− αdst)αsrc, (8.2)

which is the front-to back formula for alpha compositing. Therefore, the visibility
of sample point n can be calculated recursively as

visibility(n) = (1− αDST) ∗ αn. (8.3)

The visibility of sample point n is dependent on two things:

• The transfer function that is applied to the data volume, as the alpha value
of sample point n, as well as the alpha values of all the sample points that
are encountered by the viewing ray before n are needed for the visibility
calculation.

• The viewing direction: By looking at the data volume from a different angle,
the sample values that are encountered the viewing ray change, therefore the
accumulated opacity before n changes as well.

Given these dependencies, visibility histograms can be used to analyze a volume
dataset, either with respect to its sensitivity to changes in in the alpha values of a
certain transfer function, or with respect to its sensitivity concerning the viewing
direction. By calculating the visibility distribution for a dataset with a fixed
viewing direction and an alpha transfer function that varies slightly for a range
of scalar values, the effect of the sample that fall within the specified range on the
overall visibility distribution can be visualized. Likewise, using a particular alpha
transfer function while rotating the dataset around a virtual axis and calculating the
corresponding visibility histograms generates an overview of how the occlusions
within the dataset change with the viewing direction.

8.3 Automatic Transfer Function Generation with
Visibility Histograms

Since the automatic setup of transfer functions has become an important topic
of research, The main problem of this approach lies in the fact that, while it is
relatively simple to calculate the visibility histogram for a given transfer function

8.3. Automatic Transfer Function Generation with Visibility Histograms 87

and viewing direction, there exists exists no direct mapping from a given visibility
histogram to a matching transfer function. Depending on the internal structure of
the volume data set, there might be multiple transfer functions which produce
a particular visibility histogram when applied to the dataset, or none at all.
Therefore, instead of trying to let the user specify a certain visibility distribution
and calculating an appropriate transfer function, it makes more sense to try and
approximate the desired visibility distribution. The main idea is to let the user
select a certain range of scalar values that should become either more visible or
less visible, while keeping the visibility of the the other data values roughly the
same.

8.3.1 Genetic Algorithm

The problem of generating a transfer function can be viewed as search problem:
The space to be searched consists of all possible transfer functions that assign
an opacity value in the range of 0-1 to each point in the data volume, and
the transfer function searched for is the one where the difference between the
generated visibility histogram and the desired visibility histogram is minimal.
Genetic algorithms are commonly used to approximate the solution to such a
problem [15, 32]. Basically, in genetic algorithms, an initial population of
abstract representations of a number of candidate solutions evolves towards better
solutions by repeatedly applying the techniques

• Selection

• Mutation

• Crossover

After each evolution step, a new generation is formed. This process is repeated
until a certain termination criterion is met, e.g. a maximum number of generations
is reached, or the individuals in the current generation are ”good enough”.
The two things that need to be defined for a genetic algorithm are

• a genetic representation of the solution domain and

• a fitness function to evaluate the solution domain.

88 Chapter 8. Summary

Storing the corresponding alpha value to each scalar value in the dataset in an
array works as a genetic representation of the solution domain. This representation
makes genetic operations like crossover and mutation easy.
In order to evaluate the fitness of the transfer functions, the output that is
generated by applying these transfer functions - i.e. the visibility histograms
- need to be compared to the desired visibility histogram. A measure for the
dissimilarity, also called distance between to histograms is needed. The different
methods for calculating the distance between two histograms can be divided
into two groups: Bin-by-bin dissimilarity measures compare the contents of
corresponding histogram bins. Cross-bin dissimilarity measures also compare
non-corresponding bins. For some cross-bin dissimilarity measures, a ground
distance has to be defined between the bins in the histograms that don’t correspond
to each other, that allows for weighting the difference between two bins based on
their ground distance.
The dissimilarity measure that is best suited for comparing visibility distributions
is the earth movers distance. The earth mover’s distance can be interpreted in
the following way: Given two distributions, one can be seen as a mass of earth
properly spread in space, the other as a collection of holes in that same space. The
earth movers distance measures the least amount of work needed to fill the holes
with earth. In this metaphor, a unit of work corresponds to transporting a unit of
earth by a unit of ground distance. Computing the earth mover’s distance is based
on a solution to the well-known transportation problem [17].

8.3.2 Heuristic Approach

A heuristic solution is an alternative approach to the genetic algorithm. Its main
advantage is that it is a lot faster than the genetic approach, as the genetic approach
requires a lot of visibility histograms to be calculated. The goal of the heuristic
approach was to find a quick solution, however depending on the volume dataset
in question, the solution might not be particularly good. The heuristic approach
that was chosen uses a two dimensional transfer function, which is dependent on
the scalar value of the sample point, as well as its distance to the viewing plane.
The idea behind the heuristic approach is to increase the alpha values of those

8.4. Conclusion 89

scalar values where the user wants to increase the visibility by a certain factor,
while decreasing the alpha values every where else a little bit. In addition to that,
the alpha values of those sample points which are farther away from the image
plane get a higher alpha value assigned to them, since the chance that they might
be occluding important structures is pretty low.

8.4 Conclusion

Visibility histograms can be used to gain insights into the internal structure of a
volume dataset, and to visualize those insights. They can also be used to help
the user of direct volume rendering applications in setting up transfer functions,
however finding a transfer function that generates an exactly specified visibility
distribution is generally not possible, therefore other approaches like heuristics
and genetic algorithms have to be used.

List of Figures

2.1 The basic polygon configurations used by the marching cube
algorithm for generating a surface model. The rest of the 256
configurations can be generated from these basic configurations
by rotation and mirroring. 13

2.2 A) Partitioning the integration domain into several intervals and
b) approximating the integral by a Rieman sum. 16

2.3 The concept of a) image-order volume rendering methods and b)
object-order volume rendering methods. 18

2.4 The concept of a) object-aligned and b) viewport-aligned slices in
texture slicing. 19

2.5 Shear-warp volume rendering. 20

2.6 The same dataset, rendered with two different one-dimensional
transfer functions. The transfer functions are shown next to their
corresponding image . 23

2.7 A volume dataset rendered with a distortion based Focus+Context
Technique, taken from [27] . 26

2.8 Importance driven rendering example, rendered from different
angles; Taken from [47] . 27

2.9 Engine block rendered using different style transfer functions. The
lit sphere maps used in the transfer function are depicted at the
bottom right corner of each image. Image taken from [5] 28

3.1 An overview of genetic algorithms. 31

List of Figures 91

3.2 The basic principles of the different crossover methods. In Figure
c), using the cut-and-splice approach, the length of the offspring
differs from the length of the parents, while in Figures a), b) and
d) the length stays equal . 35

4.1 a) In volume raycasting, rays are shot through the data volume
and the color and opacity are evaluated at evenly spaced sample
points. b) As the rays pass through the volume, the accumulated
opacity along every single ray increases. c) The contribution of an
interval between two sample points to the accumulated opacity is
defined as the visibility of the interval. 38

4.2 The influence of differing transfer functions on the visibility
distribution. 41

4.3 The influence of the differing viewing direction on the visibility
distribution. 42

5.1 Graph a) shows how the maximum achievable visibility of the
red data points is bounded by the opacity value of the blue data
points. Graph b) shows how the maximum achievable visibility of
the blue data points is bounded by their own opacity values, due
to self occlusion. 46

5.2 An example where the Minkowski distance does not match the
perceptual dissimilarity. In Figure a), the Minkowski distance
between the histograms on the left side is greater than the
Minkowski distance between the histograms on the right side.
Figure b) shows the desired distance, which is based on perceptual
similarity. 50

5.3 An example where the quadratic distance does not match the
perceptual dissimilarity. In Figure a), the quadratic distance bet-
ween the histograms on the left side is greater than the quadratic
distance between the histograms on the right side. Figure b) shows
the desired distance, which is based on perceptual similarity. . . . 51

5.4 The steps involved in calculating the Earth Mover’s distance
between two histograms. 52

92 List of Figures

6.1 An overview of how two pixel buffer objects and two frame buffer
objects alternate between storing the output of the fragment shader
for processing by the CPU, and passing data to the fragment
shader as 2D texture. 60

7.1 A human head, rendering with the texture slicing method. The
visibility histograms that are generated when rotating the dataset
around the y-axis are displayed around the head. Green areas in
the histograms represent a high visibility of the corresponding
data points, while red ares represent a low visibility. 70

7.2 The human head dataset with its respective visibility histograms.
The visibility histograms on the left side use logarithmic scaling,
while the visibility histograms on the right side display the
unscaled values. 71

7.3 The dataset is rendered with different transfer functions: the alpha
α1 value of the red tissue increases, while the alpha value α0 of
the white tissue stays constant. 72

7.4 A 3D dataset of a small lizard, with its corresponding visibility
histograms. 73

7.5 the gecko dataset in detail, rotated around the y axis. the corre-
sponding visibility histograms are displayed next to the datasets. . 74

7.6 Results obtained with the genetic algorithm: (a) shows the original
transfer function, while (b) shows the fittest member of the final
population. Figure (c) shows the visibility histograms of the
original, the desired and the resulting transfer functions. The red
box represents the area where the visibility was manipulated,
which corresponds mainly to the green tissue 76

7.7 Results obtained with the genetic algorithm: (a) shows the original
transfer function, while (b) shows the fittest member of the final
population. Figure (c) shows the visibility histograms of the
original, the desired and the resulting transfer functions. The red
box represents the area where the visibility was manipulated,
which corresponds mainly to the white tissue, i.e. the bone structure 77

List of Figures 93

7.8 Results obtained with the genetic algorithm: (a) shows the original
transfer function, while (b) shows the fittest member of the final
population. Figure (c) shows the visibility histograms of the
original, the desired and the resulting transfer functions. The red
box represents the area where the visibility was manipulated. . . . 78

7.9 Results obtained with the heuristic approach: (a) shows the
original transfer function, while (b) shows the generated transfer
function. Figure (c) shows the visibility histograms of the original,
the desired and the resulting transfer functions. The red box
represents the area where the visibility was manipulated. 79

7.10 Results obtained with the heuristic approach: (a) shows the
original transfer function, while (b) shows the generated transfer
function. Figure (c) shows the visibility histograms of the original,
the desired and the resulting transfer functions. The red box
represents the area where the visibility was manipulated. 80

7.11 Results obtained with the heuristic approach vs. the genetic
algorithm: (a) shows the original transfer function, while (b)
shows the the transfer function generated by the genetic algo-
rithm. Figure (c) shows the transfer function generated by the
heuristic. Figure(d) shows the visibility histograms of the original,
the desired and the resulting transfer functions. The red box
represents the area where the visibility was manipulated. 82

7.12 Results obtained with the heuristic approach vs. the genetic
algorithm: (a) shows the original transfer function, while (b)
shows the the transfer function generated by the genetic algo-
rithm. Figure (c) shows the transfer function generated by the
heuristic. Figure(d) shows the visibility histograms of the original,
the desired and the resulting transfer functions. The red box
represents the area where the visibility was manipulated. 83

Bibliography

[1] C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum. In
Proceedings of IEEE Visualization, pages 167–173. IEEE Computer Society,
1997.

[2] N. A. Baricelli. Symbiogenetic evolution processes realized by artificial
methods. Methodos, 9:143–182, 1957.

[3] J. F. Blinn. Models of light reflection for computer synthesized pictures.
SIGGRAPH Computer Graphics, 11(2):192–198, 1977.

[4] K. W. Brodlie, D. J. Duke, K. I. Joy, S. Röttger, M. Bauer, and
M. Stamminger. Spatialized transfer functions. In Proceedings of EuroVis,
pages 271–278. Eurographics Association, 2005.

[5] S. Bruckner and E. Gröller. Style transfer functions for illustrative volume
rendering. Computer Graphics Forum, 26(3):715–724, 2007.

[6] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings

in Information Visualization: Using Vision to Think. Morgan Kaufmann
Publishers Inc., 1999.

[7] M. Das, E. M. Riseman, and B. A. Draper. Searching for multi-
colored objects in a diverse image database. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 756–761.
IEEE Computer Society, 1997.

[8] D. S. Ebert and P. Rheingans. Volume illustration: Non-photorealistic
rendering of volume models. In Proceedings of IEEE Visualization, pages
195–202. IEEE Computer Society, 2000.

BIBLIOGRAPHY 95

[9] D. B. Fogel. Evolutionary Computation: The Fossil Record. Wiley-IEEE
Press, 1998.

[10] A. Fraser. Simulation of genetic systems by automatic digital computers. The

Australian Journal of Experimental Biology and Medical Science., 10:484–
491, 1957.

[11] I. Fujishiro, T. Azuma, and Y. Takeshima. Automating transfer function
design for comprehensible volume rendering based on 3D field topology
analysis. In Proceedings of IEEE Visualization, pages 467–470. IEEE
Computer Society, 1999.

[12] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

[13] J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Efficient
color histogram indexing for quadratic form distance functions. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 17(7):729–736,
1995.

[14] H. Hauser, L. Mroz, G. I. Bischi, and E. Gröller. Two-level volume
rendering. IEEE Transactions on Visualization and Computer Graphics,
7(3):242–252, 2001.

[15] T. He, L. Hong, A. Kaufman, and H. Pfister. Generation of transfer functions
with stochastic search techniques. In Proceedings of IEEE Visualization,
pages 227–234. IEEE Computer Society, 1996.

[16] G. T. Herman and H. K. Liu. Three-dimensional display of human organs
from computed tomograms. Computer Graphics and Image Processing,
9(1):1–21, 1979.

[17] F. L. Hitchcock. The distribution of a product from several sources to
numerous localities. Journal of Mathematical Physics, 20:224–230, 1941.

[18] J. Hladuvka, A. König, and E. Gröller. Curvature-based transfer functions
for direct volume rendering. In Proceedings of the Spring Conference on

Computer Graphics, pages 58–65, 2000.

96 BIBLIOGRAPHY

[19] J. Holland. Adaptation in Natural and Artificial Systems,. The MIT Press,
1975.

[20] J. T. Kajiya. The rendering equation. SIGGRAPH Computer Graphics,
20(4):143–150, 1986.

[21] E. Keppel. Approximating complex surfaces by triangulation of contour
lines. IBM Journal of Research and Development, 19(1):2–11, 1975.

[22] G. Kindlmann and J. W. Durkin. Semi-automatic generation of transfer
functions for direct volume rendering. In Proceedings of the IEEE

Symposium on Volume Visualization, pages 79–86. ACM, 1998.

[23] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller. Curvature-based
transfer functions for direct volume rendering: Methods and applications. In
Proceedings of IEEE Visualization, pages 513–520. IEEE Computer Society,
2003.

[24] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume rendering using
multi-dimensional transfer functions and direct manipulation widgets. In
Proceedings of IEEE Visualization, pages 255–262. IEEE Computer Society,
2001.

[25] J. Koza, F. Bennett, D. Andre, and M. Keane. Genetic Programming III:

Darwinian Invention and Problem Solving. Morgan Kaufman Publishers,
1999.

[26] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp
factorization of the viewing transformation. In Proceedings of SIGGRAPH,
pages 451–458. ACM, 1994.

[27] E. LaMar, B. Hamann, and K. I. Joy. A magnification lens for interactive
volume visualization. In Proceedings of the 9th Pacific Conference on

Computer Graphics and Applications, pages 223–232. IEEE Computer
Society, 2001.

[28] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics

and Applications, 3(8):29–37, 1988.

BIBLIOGRAPHY 97

[29] W. E. Lorensen and H. E. Cline. Marching cubes : A high resolution
3D surface construction algorithm. SIGGRAPH Computer Graphics,
21(4):163–169, 1987.

[30] A. Lu, Christopher J. Morris, D. S. Ebert, P. Rheingans, and C. Hansen. Non-
photorealistic volume rendering using stippling techniques. In Proceedings

of IEEE Visualization, pages 211–218. IEEE Computer Society, 2002.

[31] E. B. Lum and K. Ma. Lighting transfer functions using gradient aligned
sampling. In Proceedings of IEEE Visualization, pages 289–296. IEEE
Computer Society, 2004.

[32] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins,
T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber.
Design galleries: a general approach to setting parameters for computer
graphics and animation. In Proceedings of SIGGRAPH, pages 389–400.
ACM Press/Addison-Wesley Publishing Cooperation, 1997.

[33] Z. Michalewicz and D. B. Fogel. How To Solve It: Modern Heuristics.
Springer Verlag, 2000.

[34] C. L. Novak and S. A. Shafner. Anatomy of a color histogram. In
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 599–605. IEEE Computer Society, 1992.

[35] S. Peleg, M. Werman, and H. Rom. A unified approach to the change of
resolution: space and grey-level. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 11(7):739–742, 1989.

[36] S. Potts and T. Möller. Transfer functions on a logarithmic scale for volume
rendering. In Proceedings of Graphics Interface, pages 57–63. Canadian
Human-Computer Communications Society, 2004.

[37] J. Puzicha, T. Hofmann, and J. Buhmann. Non-parametric similarity
measures for unsupervised texture segmentation and image retrieval. In
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 276–272. IEEE Computer Society, 1997.

98 BIBLIOGRAPHY

[38] I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

[39] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with
applications to image databases. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, page 59. IEEE Computer Society,
1998.

[40] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as
a metric for image retrieval. International Journal of Computer Vision,
2(40):99–121, 2000.

[41] C. Silva, J. Comba, S. Callahan, and F. Bernandon. A survey of GPU-based
volume rendering of unstructured grids. Brazilian Journal of Theoretic and

Applied Computing, 12(2):9–29, 2005.

[42] P. J. Sloan, W. Martin, A. Gooch, and B. Gooch. The lit sphere: a model for
capturing npr shading from art. In Proceedings of Graphics Interface, pages
143–150. Canadian Information Processing Society, 2001.

[43] M. Stricker and M. Swain. The capacity and the sensitivity of color
histogram indexing. Technical report, University of Chicago, 1994.

[44] M. J. Swain. Color indexing. PhD thesis, The University of Rochester, 1990.

[45] I. Takanashi, E. B. Lum, K. Ma, and S. Muraki. Ispace: Interactive volume
data classification techniques using independent component analysis. In
Proceedings of the 10th Pacific Conference on Computer Graphics and

Applications, page 366. IEEE Computer Society, 2002.

[46] F. Tzeng, E. B. Lum, and K. Ma. A novel interface for higher-dimensional
classification of volume data. In Proceedings of IEEE Visualization, page 66.
IEEE Computer Society, 2003.

[47] I. Viola, A. Kanitsar, and E. Gröller. Importance-driven feature enhancement
in volume visualization. IEEE Transactions on Visualization and Computer

Graphics, 11(4):408–418, 2005.

BIBLIOGRAPHY 99

[48] L. Wang, Y. Zhao, K. Müller, and A. Kaufman. The magic volume lens: An
interactive focus+context technique for volume rendering. In Proceedings of

IEEE Visualization, pages 367–374. IEEE Computer Society, 2005.

[49] L. Westover. Footprint evaluation for volume rendering. SIGGRAPH

Computer Graphics, 24(4):367–376, 1990.

[50] J. Zhou, A. Döring, and K. D. Tönnies. Distance based enhancement for
focal region based volume rendering. In Proceedings of Bildverarbeitung

für die Medizin, pages 199–203, 2004.

