
DISSERTATION

HLOD Re�nement Driven by Hardware
Occlusion Queries

Jean Pierre Charalambos1,2,3

Advisor: Dr. Eduardo Romero1

Co-advisor: Dr. Michael Wimmer2

December 2007

1Universidad Nacional de Colombia, 2Vienna University

of technology
3Universidad Politécnica de Cataluña

A quien se vea solo, para que se recoja, insista en lo que cree y aguarde la maravillosa
ocasión de dar con quien lo complemente.

3

4

Resumen

Con objeto de realizar una e�ciente visualización interactiva de modelos geométricos
complejos, que pueden llegar a comprender varios millones de polígonos, es clave reducir
sustancialmente la cantidad de datos procesados. Los métodos LOD (�level-of-detail�)
permiten efectuar una agresiva reducción de los datos enviados a la GPU, a expensas
de sacri�car algo de calidad visual. Particularmente, los métodos HLOD (�hierarchical
level-of-detail�), en los que se precomputan LODs en los distintos niveles de una jerar-
quía espacial dada, han demostrado ser el más e�ciente enfoque para la visualización
interactiva de este tipo de modelos. Además de soportar en forma directa algoritmos
�out-of-core� (en los que durante tiempo de ejecución los datos deben ser constantemente
leídos desde la memoria secundaria del sistema), los métodos HLODs permiten efectuar
una carga óptima de los datos entre la CPU y la GPU.
Obedeciendo al mismo objeto, un enfoque ortogonal al anterior es �occlusion culling�

(descarte por oclusión). Respecto a un punto de vista dado se busca descartar de modo
e�ciente las partes invisibles de la escena y en visualizar solo sus partes visibles. Los
métodos más recientes pertenecientes a esta categoría emplean HOQs (�hardware occlu-
sion queries�).
Los efectos relativos a HLODs y occlussion culling pueden combinarse de modo efec-

tivo. Primero, es posible descartar aquellos nodos de la jerarquía que resulten invisibles.
Segundo, para los nodos visibles, es posible emplear los resultados de los HOQs como
parte integral de la condición de re�namiento de la jerarquía: de acuerdo con el grado de
visibilidad de un nodo dado y teniendo en cuenta un fenómeno de la percepción denomi-
nado �visual masking�, es factible determinar cuando no habría una ganancia apreciable
en la apariencia �nal de la imagen obtenida si el nodo fuera re�nado ulteriormente. En
este caso, HOQs permiten reducir aún más agresivamente el total de primitivas visual-
izadas. Sin embargo, debido a la latencia presente entre el momento de iniciar el HOQ
y la disponibilidad de su resultado, el uso directo de HOQs en las condiciones de re-
�namiento resultaría siendo una fuente de estancamiento de la CPU, lo que a su vez
redundaría en un apreciable desaprovechamiento de la GPU.
En esta tesis presentamos una novedosa métrica que emplea información de visibilidad

(determinada a partir de HOQs) como parte integral de la condición de re�namiento de
un modelo HLOD (de nuestro conocimiento, el primer enfoque en este contexto con esta
meta en mente). También contribuimos con un novedoso algoritmo para atravesar la
jerarquía del HLOD que permite sacar el máximo provecho de esta métrica. A partir de
una rutina básica de predicción de la condición de re�namiento del HLOD, el algoritmo
minimiza el estancamiento de la CPU y permite obtener así un mejor aprovechamiento
de la GPU.
Las principales propiedades expuestas en nuestro enfoque combinado son: 1. Mejor

5

rendimiento con la misma calidad visual: mediante nuestro sistema es posible visualizar
un menor número de primitivas (no por ello nuestra técnica de occlusion culling deja de
ser conservativa) con una pérdida mínima en la calidad visual del modelo; 2. General-
idad: nuestra métrica soporta cualquier tipo de HLOD; 3. Uso integral de los resulta-
dos obtenidos en HOQs: nuestra métrica aprovecha de modo completo la información
obtenida mediante HOQs; 4. Aprovechamiento integral de la coherencia espacio-temporal
inherente a las representaciones jerárquicas; y, 5. Implementación directa.

6

Abstract

In order to achieve interactive rendering of complex models comprising several millions
of polygons, the amount of processed data has to be substantially reduced. Level-of-
detail (LOD) methods allow the amount of data sent to the GPU to be aggressively
reduced at the expense of sacri�cing image quality. Hierarchical level-of-detail (HLOD)
methods have proved particularly capable of interactive visualisation of huge data sets
by precomputing levels-of-detail at di�erent levels of a spatial hierarchy. HLODs support
out-of-core algorithms in a straightforward way and allow an optimal balance between
CPU and GPU load during rendering.
Occlusion culling represents an orthogonal approach for reducing the amount of ren-

dered primitives. Occlusion culling methods aim to quickly cull the invisible part of the
model and render only its visible part. Most recent methods use hardware occlusion
queries (HOQs) to achieve this task.
The e�ects of HLODs and occlusion culling can be successfully combined. Firstly,

nodes which are completely invisible can be culled. Secondly, HOQ results can be used
for visible nodes when re�ning an HLOD model; according to the degree of visibility of a
node and the visual masking perceptual phenomenon, then it could be determined that
there would be no gain in the �nal appearance of the image obtained if the node were
further re�ned. In the latter case, HOQs allow more aggressive culling of the HLOD
hierarchy, further reducing the amount of rendered primitives. However, due to the
latency between issuing an HOQ and the availability of its result, the direct use of HOQs
for re�nement criteria cause CPU stalls and GPU starvation.
This thesis introduces a novel error metric, taking visibility information (gathered from

HOQs) as an integral part of re�ning an HLOD model, this being the �rst approach
within this context to the best of our knowledge. A novel traversal algorithm for HLOD
re�nement is also presented for taking full advantage of the introduced HOQ-based error
metric. The algorithm minimises CPU stalls and GPU starvation by predicting HLOD
re�nement conditions using spatio-temporal coherence of visibility.
Some properties of the combined approach presented here involve improved perfor-

mance having the same visual quality (whilst our occlusion culling technique still re-
mained conservative). Our error metric supports both polygon-based and point-based
HLODs, ensuring full use of HOQ results (our error metrics take full advantage of the
information gathered in HOQs). Our traversal algorithm makes full use of the spatial
and temporal coherency inherent in hierarchical representations. Our approach can be
straightforwardly implemented.

7

8

Acknowledgements

I would like to thank Professors Romero and Wimmer for their comments and ideas
regarding this thesis; it has been always a pleasure to work with them.
My special thanks go to Dr. Ji°í Bittner whose invaluable collaboration made this

work possible.
I would like to thank Professor Arinyo for his constructive criticism regarding the

thesis proposal and the doctorate scholarship holders at LSI-UPC for the good working
climate. I am also grateful to Professor Purgathofer for inviting me to the Institute of
Computer Graphics and Algorithms at Vienna University of Technology where I found
a very comfortable and collaborative environment necessary for �nishing this thesis.
I am grateful to Mariana Renthel for her ideas regarding the historical notes in the

introductory chapter. I also want to thank Katalin Koncz and Sarah McCarthy for their
criticism regarding the style of my �rst two papers in the �eld of this dissertation.
I also want to thank the following people, although I never had the pleasure to meet

them in person. Dr. Ji°í �ára for sharing his thoughts with me since the brainstorm-
ing times of my dissertation activities and Gilles Debunne and Mario Botsch for their
assistance with the libQGLViewer software library and the OpenMesh software library,
respectively.
Special thanks also go to my mother and to all friends who have always believed that

one day I would make this work see the light of day.

9

10

Contents

1 Introduction 13
1.1 Historical notes . 13
1.2 Problem domain of this thesis . 16
1.3 Purpose and outline of this thesis . 17

2 Real-time visualisation of complex models 19
2.1 Level-of-detail (LOD) . 19

2.1.1 View-dependent LOD . 19
2.1.2 LOD selection factors . 20

2.1.2.1 Distance . 21
2.1.2.2 Size . 21
2.1.2.3 Screen space error . 22
2.1.2.4 Visibility . 23
2.1.2.5 Visual masking . 23
2.1.2.6 Other factors . 24

2.2 Occlusion culling . 25

3 Hierarchical levels of detail (HLOD) 27
3.1 HLOD notion . 27
3.2 Properties . 27
3.3 Re�nement criteria: model and screen space errors 30

4 Hardware Occlusion Queries (HOQs) 33
4.1 HOQ mechanism . 33

4.1.1 Properties of HOQs . 33
4.1.2 Advantages and disadvantages of HOQs 33

4.2 Coherent hierarchical culling (CHC) . 34
4.2.1 CHC traversal algorithm . 35
4.2.2 Front of termination nodes . 35

5 HLOD re�nement driven by HOQs 39
5.1 Motivation . 39
5.2 Challenges . 40

5.2.1 A novel visibility-based re�nement error metric 40
5.2.2 A novel HLOD traversal algorithm 40

6 Virtual multiresolution screen space errors 41

11

Contents

6.1 Notions and notation . 41
6.2 Visibility-based re�nement strategy . 43
6.3 Visibility-based HLOD re�nement condition 44
6.4 Image quality loss minimisation . 45

6.4.1 VMSSE ratio sigmoid approximation 46
6.4.2 VMSSE ratio linear approximation 47

7 Visibility-based HLOD culling algorithm 49
7.1 Visibility-based HLOD traversal . 49
7.2 Predicting the HLOD re�nement condition 50

7.2.1 Approximation of the degree of visibility of the node 51
7.2.2 Coherency of the front of termination nodes 52

8 Results and discussion 55
8.1 Tests . 55
8.2 Image quality . 56
8.3 Speedup . 57
8.4 Summary of results . 64

9 Conclusion 67

Bibliography 69

12

1 Introduction

1.1 Historical notes

Convincing images

The concept of illusion has always been bound up with the history of art and the de-
velopment of thought regarding image handling. "The best artists are those who lie the
best", said Bembenuto Celini, as sometimes reality and �ction wish to be confused.
Plato referred to art as representation in terms of mimesis (imitation), imitating to

trick the eye to make the brain believe some things exist. A very well-known painting
e�ect used in baroque times to open up spaces (known as the trompe-lóeil) confused the
common people whilst enriching the great houses just to make excess the main course.
What really matters in image representation then? Representing the concept through

sensations is not just the most realistic situation but the most credible one, going far
beyond realism. Credibility is obtained by regulating the degree of attention, focusing the
viewer's eye and creating atmosphere. Several resources helped artists with the task of
representation, ranging from perspective to a bird's eye view; nonetheless, acknowledging
atmosphere is quite interesting regarding the subject of this thesis. The contrasting works
from Leonardo da Vinci and Salvador Dalí reveal how art history has developed regarding
representation.
An opened image ensures the construction of a picture's atmosphere. Sfumato was the

term Leonardo used for describing how to gride the mass into particles, a �gure within a
background. It mainly consisted of using dissolution, thus de�ning the background from
a �gure in the case of landscapes and thereby creating three-dimensionality. The paint
brush was not just used to apply colour, keeping quantities equal on the surface, but as an
airbrush or device for creating a blurred background, thereby creating transparent layers.
The result not only involved introducing atmosphere into the piece but also focused on
whatever element or subject the artist desired to be highlighted. Such strategy was
based on the economy of elements and synthesis of objects, thereby ensuring clarity
and credibility; The Virgin and Child with St. Anne provides a good example of this
approach (Figure 1.1). Disposed within an invisibly-shaped triangle we can see three
�gures forming the entrance to a mystical world spreading out beneath them. The
�gures are the most important element here, even though the real grace lies in the
involving environment as determined by un�nished pieces of landscape. However, if we
enter this tripartite form and look closely at a detail such as a hand or an eye we could
also appreciate the same treatment.
As art evolved, abstraction began to provide other aspects within reality, according

to the concept which an artist wished to portray not the image itself; in surrealism the

13

1 Introduction

Figure 1.1: Leonardo Da Vinci: The Virgin and Child with St. Anne. Near 1508, oil on
wood, 168 Ö 112 cm., Louvre, Paris.

oneiric played a main character on representation. In the particular and complex case
of Dalí's work, we can mark the treatment not only involving the degree of speci�city in
background and landscapes but also dual images. Of course, as stated, this was indeed
the result of a complex concept to be represented which had to respond to dreams and
symbolism and also leave space for free interpretation. In the case of Swans Re�ecting
Elephants (see Figure 1.2) we can appreciate very realistic production in the central
�gures and the image of the man on the left, even though it does not leave aside the
duality and the level of speci�city used in the background. We can thus have at least
two paintings in one. The shaded tones on the sky, continuing or extending the horizon
and returning in the form of the lake, involving rocky formations shaped as a crusty but
melting substance, seem to be the renewed legacy of Leonardo's sfumato.

Computer graphics rendering

Rendering is the process of generating a convincing image from a model by means of
computer programmes within the context of computer science. The model is a description

14

1.1 Historical notes

Figure 1.2: Salvador Dalí: Swans Re�ecting Elephants. 1937, oil on canvas, 51 x 77 cm.,
Cavalieri Holding Co. Inc., Geneva.

of three-dimensional objects in a strictly-de�ned language which may contain geometry,
texture, lighting and shading information. The term may be an analogy of an �artist's
rendering� of a scene. With the increasing sophistication of computer graphics since the
1970's, rendering has now become a more distinct subject.
Rendering has uses in architecture, medicine, simulators, video games, special e�ects

in movies and design visualisation, each employing a di�erent balance of features and
techniques. A wide variety of rendering engines is available nowadays; some are inte-
grated into larger modelling and animation packages, some are stand-alone whilst others
are free open-source projects [Wik07].
A scene may be slowly rendered, as in prerendering, or in real time. Whilst preren-

dering is a computationally intensive process typically used for movie creation, real-time
rendering is more suitable for applications requiring interactivity, such a 3D video game.
Real-time rendering requires 3D hardware acceleration which is provided by special pur-
pose graphics cards (nowadays ubiquitously available).

Rendering techniques

Since tracing every ray of light in a scene to produce an image is impractical, due to
the gigantic amounts of time this would require, more e�cient techniques for modelling
the transport of light have emerged over the last decades. These techniques fall into the
following categories:

� Rasterisation: this method loops every frame through each of the geometric prim-
itives comprising the 3D model to determine which pixels in the image it a�ects,

15

1 Introduction

modifying those pixels accordingly. This rendering method is the one used by all
current graphics cards. Rasterisation is thus usually the fastest approach and hence
it is the main choice when interactive rendering is required.

� Ray casting : this method casts rays from the viewpoint, one per pixel, and �nd
the closest object blocking the path of that ray. When an object is intersected,
the colour value at that point may be evaluated by using several methods. In the
simplest, the colour value of the object at the point of intersection becomes the
value of that pixel. The colour may also be determined from a texture-map or be
modi�ed by an illumination factor.

� Radiosity : also known as global illumination, is a method which uses �nite element
mathematics to simulate the way in which directly illuminated surfaces act as
indirect light sources illuminating other surfaces [Wik07]. This produces more
realistic shading and seems to better capture the ambience of an indoor scene.

� Ray tracing : this category is similar to ray casting, but it employs more advanced
optical simulation leading to more realistic results at a speed which is often orders
of magnitude slower. A ray tracing renderer usually uses Monte Carlo techniques
for averaging a number of randomly-generated samples (imaginary rays of light
intersecting the viewpoint from the objects in the scene) from a model.

Most advanced software could combine two or even more of these techniques to obtain
good-enough results at reasonable cost.

1.2 Problem domain of this thesis

One of the fundamental problems of computer graphics lies in rendering very large polyg-
onal datasets at interactive rates. Time critical rendering applications arise in several
arenas such as architectural walkthroughs, medicine, video games, range scanners, ter-
rain rendering, CAD applications and numerical simulation. However, despite the rapid
improvement in hardware performance, the size of the models to be rendered largely
overload the performance and memory capacity of state-of-the-art graphics and compu-
tational platforms.
The amount of processed data must therefore be substantially reduced to achieve

interactive rendering of such models. Level-of-detail (LOD) methods allow aggressive
reduction of the amount of data sent to the GPU at the expense of sacri�cing image
quality. Hierarchical level-of-detail (HLOD) methods have particularly proved capable of
the interactive visualisation of huge data sets by precomputing levels-of-detail at di�erent
levels of the spatial hierarchy. HLODs support out-of-core algorithms in a straightforward
way and allow an optimal balance between CPU and GPU load during rendering.
Occlusion culling represents an orthogonal approach for reducing the amount of ren-

dered primitives. Occlusion culling methods aim to quickly cull the invisible part of the
model and render only its visible part. Most recent methods employ hardware occlusion
queries (HOQs) for achieving this task.

16

1.3 Purpose and outline of this thesis

Combining HLODs and HOQs

The e�ects of HLODs and occlusion culling can be e�ectively combined in two di�erent
ways:

1. The HLOD hierarchy nodes which are completely invisible can be culled. The
problem of using HOQs to cull a general scene hierarchy has been recently studied
to some extent.

2. HOQ results can be used in the re�nement condition for visible nodes of the HLOD
hierarchy. In this case, the occlusion queries allow more aggressive culling of the
HLOD hierarchy, further reducing the amount of rendered primitives. However,
due to the latency between issuing an HOQ and the availability of its result, the
direct use of HOQs for re�nement criteria causes CPU stalls and GPU starvation.

1.3 Purpose and outline of this thesis

The main goal was to improve HLOD-based system performance by taking visibility
information (gathered from HOQ results) into account within re�nement criteria while
preserving image quality results. An HOQ-based model was sought which took the degree
of visibility of a given node into account and also attempted to exploit the visual masking
perceptual phenomenon. To our knowledge, no HLOD approaches have so far had this
goal in mind. Previous approaches have treated re�nement criteria and occlusion culling
as independent subjects. The visibility information potentially gathered in most recent
occlusion culling approaches has thus been restrictively used, simply to cull the invisible
nodes of the HLOD hierarchy (see item 1 above).
Two challenges had to be identi�ed to achieve our goal and two contributions were

posed for each. One of the challenges related to de�ning the visibility-based error metric
needed to re�ne a given HLOD and the other related to designing the HLOD hierarchy
traversal algorithm. Since one of the contributions regarding the visibility-based error
metric became nicely reduced into the other, it was possible to introduce them as a
single entity (see Section 6.4). Since they represent two di�erent approaches, the two
contributions regarding the traversal algorithm were a di�erent story. However, instead
of only presenting the best approach found (see Section 7.2.2), it was decided to introduce
both of them here to show the evolution of our ideas while trying to keep the discussion
as consistent as possible (see Sections 7.2.1 and 7.2.2).
A general overview of the state of the art concerning the real-time visualisation of

complex models (see Chapter 2) is �rst given before presenting our own contribution,
focusing more closely on HLODs and HOQs (see Chapters 3 and 4, respectively). The two
groups of contributions are then outlined (see Chapters 6 and 7, respectively) and their
viability demonstrated by testing them in various representative settings (see Chapter 8).
The thesis concludes by outlining future directions for related research (see Chapter 9).

17

1 Introduction

18

2 Real-time visualisation of complex
models

The amount of processed data has to be substantially reduced to achieve interactive
rendering of complex models comprising several million polygons. Two of the most
common approaches (orthogonal between each other) to accomplishing this task are
described in this chapter: LOD (see Section 2.1) and occlusion culling (see Section 2.2).
HLODs and HOQs are discussed separately in following chapters since they are of central
importance to this work, being particular cases of LOD and occlusion culling respectively
(Chapter 3 and 4, respectively).

2.1 Level-of-detail (LOD)

The original level-of-detail (LOD) scheme proposed by Clark [Cla76] (nowadays referred
to as discrete LOD [LWC∗02]) creates multiple versions of interesting objects within a
scene during a preprocess, each one having a di�erent level of detail. The appropriate
LOD is chosen to represent the object at runtime (see Section 2.1.2). Since distant
objects use coarser LODs the total number of polygons is reduced and rendering speed
increased (see Figure 2.1).
The simpli�cation is unaware of viewing directions since LODs are computed o�ine

during preprocessing; it therefore uniformly reduces object detail. Discrete LOD are
thus also referred to as isotropic or view-independent LOD [LWC∗02]. The two main
advantages of discrete LODs are: 1. Easy to use: decoupling simpli�cation and rendering
makes this the simplest model to programme. Independently of the simpli�cation, the
runtime rendering algorithm simply needs to choose which LOD to render for each object
(see section 2.1.2); and 2. O�ine optimisation: depending on the particular hardware
targeted, LODs can be easily converted to an optimal rendering format (which will render
much faster than simply rendering the LODs as a triangle soup) such as triangle strips,
display lists, vertex arrays and vertex bu�er objects.

2.1.1 View-dependent LOD

View-dependent LOD departs from the traditional view-independent LOD approach.
Rather than creating individual LODs during the preprocessing stage (see above), the
simpli�cation of a view-dependent LOD creates a data structure encoding a continuous
spectrum of detail [Hop96]. The structure stores the evolution of a mesh throughout a
sequence of local modi�cations performed to simplify the model [PS97].

19

2 Real-time visualisation of complex models

Figure 2.1: The fundamental concept of LOD. (a) A complex object is simpli�ed, (b)
Creating LODs to reduce the rendering cost of small, distant, or unimportant
geometry [LWC∗02]. Model courtesy of Stanford Graphics Group [SU].

The desired LOD is then extracted from this structure at runtime. The rendering
algorithm uses view-dependent simpli�cation criteria to dynamically select the most ap-
propriate LOD for the current view [Hop97, LE97, XESV97, KL01] (see Section 2.1.2.3).
View-dependent LOD is therefore anisotropic: a single object can span multiple levels
of simpli�cation [LWC∗02]; for instance, nearby portions of the object may be shown at
higher resolution than distant portions (see Figure 2.2). This leads to the following ad-
vantages over view-independent LOD: 1. Better granularity, since polygons are allocated
where they are most needed rather than selected from a few previously created options;
no more polygons are used than necessary; and 2. Better �delity for a given polygon
count thereby optimising distribution of this scarce resource.
View-dependent LOD can enable interactive rendering of complex models (interactive

rendering of very complex models is discussed in greater detail in Chapter 3) which
cannot otherwise be suitably simpli�ed using view-independent techniques. In this case,
the compromise between �delity and frame rate becomes una�ordable.

2.1.2 LOD selection factors

The most important issue in LOD management is to decide when to switch to a lower or
higher resolution model. A brief overview is given of the main selection mechanisms which
have been used to modulate LOD, such as object space factors, screen space factors and
visibility information. HLOD re�nement criteria is discussed in detail in Section 3.3 and
our proposed visibility-based error metric for HLOD re�nement is discussed in Chapter 6.

20

2.1 Level-of-detail (LOD)

Figure 2.2: View-dependent LODs show nearby portions of the object at higher reso-
lution than distant portions. (a) View from eyepoint, (b) Bird's eye view.
From [Lue01]. Copyright© 2001 IEEE.

2.1.2.1 Distance

Distance has been the main LOD selection criterion used in object space. The idea
is simple; since fewer high-detail features of a distant object are visible, a lower LOD
could then be selected without greatly a�ecting the �delity of the image [LWC∗02].
The distance from the viewer to an object is compared to a given distance threshold
when properly selecting an LOD. Whilst distance thresholds are separate and previously
assigned for each LOD comprising the object, the viewer's object space distance to the
object is computed from the viewpoint to an arbitrary point within the object, such as
its centroid.
Distance-based LOD is both simple and e�cient and is more suitable for view-independent

LOD; a few conditional statements su�ce to check whether a distance exceeds the pre-
de�ned thresholds. However, since the actual distance to the viewpoint can change de-
pending on orientation, the arbitrary choice of the point within the object for all distance
calculations gives poor accuracy leading to obvious popping artifacts [LWC∗02].

2.1.2.2 Size

Size-based LOD techniques use the projected screen coverage of an object since objects
become smaller as they move further away and switch between LOD based on a series
of size thresholds [LWC∗02]. Since projecting the object itself would be too expensive,
current methods project instead a bounding volume of the object (such as its bounding
box or its bounding sphere). Size-based techniques avoid some of the problems with
distance-based LOD since projected size is insensitive to display resolution, object scaling
or �eld of view. Moreover, size-based LOD selection uses the entire object thereby
providing more generic and accurate means for modulating LOD than distance-based
techniques [LWC∗02].

21

2 Real-time visualisation of complex models

2.1.2.3 Screen space error

The screen space error (SSE) metric uses the projection onto screen space of the model
space error (MSE, see below) and switch between LOD if the magnitude of the projection
falls below an user-de�ned tolerance, given in pixels (sometimes known as pixels of error
[YSGM04]). Some possible MSE computations are presented, followed by a method for
computing an SSE upper bound.

MSE computation. The MSE (sometimes also referred to as geometric error) is a
measurement of the di�erence between two models, one being a simpli�ed version
of the other. There are several possible ways to compute theMSE. Suppose model
A is simpli�ed to obtain model B for the following de�nitions:

� Huasdor� distance: The Hausdor� distance (H(A,B)) is the max of min
distances between points in the two models [LWC∗02]. The Hausdor� distance
may be expressed algebraically as: H(A,B) = max(h(A,B), h(B,A)), where
h(A,B) = max

a∈A
min
b∈B ‖ a− b ‖. The Hausdor� distance is (by construction) the

tightest possible bound on the maximum distance between two models.

� Mapping distance: Given a continuous one-to-one mapping between two mod-
els, the mapping distance is the distance regarding this mapping [LWC∗02],
i.e., Let F : A → B be such a continuous mapping, the mapping distance is
de�ned as: D(F) = max

a∈A ‖ a− F (a) ‖.
� Quadric error metrics: Given a vertex, v = (x, y, z, 1), and a plane, p =

(nx, ny, nz, D), the quadric error metric (Ev) is the sum of squared vertex�plane
distances [GH97], i.e., Ev =

∑
p∈planes(v)(p · v)2. The quadric error metric

measures the cumulative surface distortion introduced by a series of vertex
merge operations, which are accomplished during the simpli�cation of the
model. The MSE could be approximated from Ev by the following expres-
sion: s 3

√
max
v∈BEv, where s is an empirical scale factor for converting to world

units [Lin03]. The scale factor is determined prior to rendering time by �nding
the smallest value of s leading to no image di�erence in a �xed number of ran-
dom views, when setting the screen space tolerance below 1 pixel [CGG∗04].

SSE upper bound. An upper SSE bound could be obtained by projecting the MSE
from the point on the minimum bounding sphere of the LOD closest to the view-
point (v). This could easily be achieved by projecting a sphere centered at v and
with a diameter equals to the magnitude of the MSE and then counting the pixels
of the screen x-axis aligned diameter (see Figure 2.3). The LOD may actually be
the entire object (in the case of a discrete LOD system) or just a small surface
portion of the object (in the case of a view-dependent LOD system) [LWC∗02].
The error metric should be monotonic down the LOD structure to preserve the
consistency in the latter case; any criterion which would re�ne a node should also
re�ne its parent (see Section 3.3).

22

2.1 Level-of-detail (LOD)

Figure 2.3: Computation of an SSE upper bound.

2.1.2.4 Visibility

The exclusive use of view-parameters to perform LOD selection causes even occluded
regions to be rendered with a high level of detail. Visibility-based LOD selection tech-
niques aim to overcome this serious drawback by integrating occlusion culling informa-
tion into the LOD selection mechanism [FS93] (occlusion culling is discussed separately
in Section 2.2). However, there have been few approaches which integrated LODs with
occlusion culling because computing exact visibility has been too expensive to be per-
formed in real time until recently (see Section 2.2 and Chapter 4). Nonetheless, two
notable exceptions based on visibility estimation techniques would be:

1. Hardly visible sets: in the context of discrete LOD, Andújar et al., divide the scene
into cells and classify the objects into sets according to their visibility degree for
each cell [ASVNB00]. A representative error which measures the possible contri-
bution to the �nal image in pixels is then assigned to each set. The sets related to
each cell are obtained during a preprocess from the selection of some objects which
act as occluders. During runtime, the error is used for discarding the objects of the
sets not meeting an user-de�ned threshold or, for objects having a discrete LOD
representation, to select the proper LOD needed to display them.

2. Cell solidity values: in the context of view-dependent LOD, El-Sana et al., impose
a 3D grid over the scene and precompute solidity values for each cell [ESSS01].
These values are view-dependent indicators for how a cell occludes other cells from
the imposed 3D grid [KS00, KS01]. The solidity values are used during runtime
to estimate the occlusion probability of a given node in the view-dependent LOD
structure. The LOD at a node is then determined by computing its view-parameter
contribution and its occlusion probability estimation.

2.1.2.5 Visual masking

Visual masking describes the perceptual phenomenon that the presence of one visual
pattern can a�ect the visibility of another pattern [FSPG97, KB05]. For example, a
large adjacent stimulus (in time or space) can raise the threshold of a smaller stimulus,
meaning that the smaller stimulus must be more intense to be visible. In terms of
computer graphics, this means that a visual texture can mask small details or aliasing

23

2 Real-time visualisation of complex models

artifacts in an image [BM95] (see Figure 2.4) which could then be exploited for LOD
selection [LWC∗02].

Figure 2.4: Masking in computer graphics. The upper pair images are quantised to 8
bits; the lower pair to 4 bits. Banding is visible in the smooth surface on
the lower left but not in the rough surface on the lower right due to masking
e�ects from the visual texture created by the rough surface. From [BM95].
Copyright © 1995 Association for Computing Machinery, Inc.

2.1.2.6 Other factors

The following are other LOD selection criteria which researchers have proposed over the
last few decades (a complete overview of these factors lies beyond the scope of this thesis.
For a more thorough discussion of this subject readers may refer to the work of Luebke
et al., [LWC∗02]):

1. Priority: giving a priority ranking to objects according to their role in a scene
could allow objects considered as most important to be degraded the least.

2. Focus and velocity: as their names suggest, whilst focus-based LODs consist of
simplifying objects in an user's peripheral vision more aggressively than objects
under direct attention, velocity-based LODs consist of simplifying objects moving
quickly more aggressively than slow-moving objects.

24

2.2 Occlusion culling

3. Environmental conditions: atmospheric e�ects such as haze and fog could help to
reduce the appearance of popping artifacts due to the switching between LODs, or
to reduce the range over which models need to be displayed [LWC∗02].

2.2 Occlusion culling

Visibility culling is an orthogonal approach to LOD for reducing the amount of rendered
primitives; it aims at quickly rejecting invisible geometry before performing the actual
hidden-surface removal (HSR) which is typically handled with the z-bu�er algorithm.
Visibility culling strategies consist of back-face culling, view-frustum culling and occlusion
culling. Whilst back-face culling algorithms avoid rendering geometry which faces away
from the viewer, viewing-frustum culling algorithms avoid rendering geometry which is
outside the viewing frustum. On the other hand, occlusion culling techniques aim at
avoiding rendering primitives which are occluded by some other part of the scene. This
technique involves interrelationships amongst polygons and is thus far more complex
than back-face and view-frustum culling [COCSD02]. The three culling strategies are
depicted in Figure 2.5.

Figure 2.5: Visibility culling strategies.

Typically, the higher the depth complexity of the scene, the larger the amount of
geometry occluded and hence the more e�ective the occlusion culling could be. Starting
with the pioneering work of Airey et al., [ARFPB90] and Teller and Séquin [TS91] on
precomputing lists of potentially visible geometry from cells, occlusion culling grew into
an important area of research in computer graphics. There are several classes of occlusion
culling algorithms (a complete overview of occlusion culling lies beyond the scope of this
thesis. For a more complete taxonomy the reader may refer to recent surveys, such as
the one by Cohen-Or et al., [COCSD02] or that by Durand [Dur00]):

1. Image-precision algorithms perform visibility computations with image precision,
i.e., using depth values [GKM93, BMH98] or occlusion maps [ZMHH97]. Most
recent methods � particular interesting regarding the subject of this thesis � employ
hardware occlusion queries (HOQs) [BWPP04, GBK06] (see Chapter 4).

2. Object-precision algorithms perform visibility computations with object precision,
usually by �nding a set of large occluders which can be used to determine if other
objects (or a hierarchy of objects) in a scene are visible [CT97, HMC∗97].

25

2 Real-time visualisation of complex models

3. From-region algorithms perform visibility computations not just for a single view-
point but also compute the set of potentially visible cells for a whole region [DDTP00,
SDDS00].

Occlusion culling techniques are usually conservative, producing images which are iden-
tical to those which would result from rendering all of the geometry. However, they can
also be approximation techniques producing images which are mostly correct in exchange
for even greater levels of interactivity [ZMHH97, KS99, KS00].

26

3 Hierarchical levels of detail (HLOD)

Hierarchical levels of detail (HLOD) extend the traditional view-dependent LOD ap-
proach (previously described in Section 2.1.1) by moving the granularity implicit in hier-
archical traversal operations from single primitives to small surface portions. HLOD thus
amortises traversal costs over many graphics primitives, allowing interactive visualisation
of huge models which otherwise could not be re�ned in real time using view-dependent
LOD techniques. The notion behind HLOD and its main properties are �rst described,
followed by the current HLOD re�nement criteria which are central to our study.

3.1 HLOD notion

A hierarchical level of detail (HLOD) system corresponds to a nested subdivision of the
space occupied by a given model, where:

1. The subdivision is encoded as a hierarchical data structure.

2. Each node in the hierarchy contains a small surface portion of the region encom-
passed by the node [EMWVB01]. Geometric data is related to each node in the
following manner:

a) The original geometry of the model is spread amongst leaf nodes.
b) Each inner node contains one, or few simpli�ed versions, i.e., levels of detail

(see Section 2.1), of the geometry contained in their children.

An HLOD system typically consists of two steps: preprocess and runtime. The HLOD
hierarchy and the geometric patches related to each node (see Figure 3.1) are built o�ine
during the preprocess. The goal during runtime is to determine the front of termination
nodes (see Figure 3.2), i.e., nodes of the hierarchy where the traversal is terminated for
each frame (see Section 4.2.2). The re�nement stops at a given node either because the
node is determined to be invisible, i.e., the node is either view frustum culled, back face
culled, or occlusion culled, (see Chapter 4), or because it is determined that there would
be no gain in the �nal appearance of the image obtained if the node were further re�ned
(see Section 3.3). The latter mechanism (being the only one in which geometric data is
actually rendered) allows local view-dependent re�nement of the model.

3.2 Properties

Some of the main properties shared among HLOD-based systems are:

27

3 Hierarchical levels of detail (HLOD)

F
igure

3.1:
E
xam

ple
of

a
m
ultiresolution

structure.
O
ctree

w
ith

associated
L
O
D

hierarchy.
M
odel

courtesy
of

Stanford
G
raphics

G
roup

[SU
].

28

3.2 Properties

Figure 3.2: Front of termination nodes.

1. Generality of the scene: HLOD approaches are not limited to meshes from a par-
ticular topological genus. They commonly take a model represented as a triangle
soup as input, i.e., a �at list of triangles with direct vertex information.

2. Cost amortisation: since the granularity of the HLOD structure is coarse, data
management, traversal and occlusion culling cost is amortised over many graphics
primitives [CGG∗03, CGG∗04]. Note that the re�nement operations were carried
out in view-dependent LOD on a per primitive basis (see Section 2.1.1). Actually,
HLOD can enable interactive rendering of gigantic models on current commodity
graphics platforms which otherwise could not be re�ned in real time using view-
dependent LOD techniques.

3. HLOD types: HLOD systems either use polygonal representation of LODs [CGG∗04],
point-based representations [RL00, GM05], or a combination of both [GBK03].

4. HLOD phases:

a) Preprocess: the goal of the preprocess is to prepare data and perform the
optimisations needed to interactively visualise the system at runtime. The
preprocess typically consists of two o�ine steps:

i. Constructing the hierarchy : the scene hierarchy is built in a top-down
manner using spatial subdivision driven solely by an user-de�ned target
number of primitives per node.

ii. Simpli�cation: a single, or a few, levels of detail are generated for each
node in the hierarchy using o�ine simpli�cation in a bottom-up manner.
The model space error is computed once the node has been simpli�ed and
is also kept at the node.

b) Runtime: the hierarchy structure is loaded only once into the main memory
during runtime inspection of the model and nodes are fetched from disk and
loaded to high-speed GPU memory space using explicit memory management
routines (see below). The main selection mechanisms for the nodes comprising
the front for termination nodes (see Section 4.2.2) are: view frustum culling,

29

3 Hierarchical levels of detail (HLOD)

back face culling, occlusion culling (see Chapter 4) and the hierarchical re�ne-
ment criterion (see Section 3.3).

5. Memory management : an explicit memory manager should be implemented for
HLODs exceeding memory storage capacity. This could easily be done by imple-
menting a memory cache based on an LRU strategy exploiting the spatio-temporal
coherence inherent in hierarchical representations. The idea is that most of the
nodes which were processed recently could then be reused in subsequent frames.
Depending on the memory needs, there could be two di�erent levels of memory
caches:

a) GPU cache: for storing the most recently rendered nodes. This could easily
be implemented in OpenGL using the vertex bu�er objects extension, thereby
allowing optimising data throughput which relies heavily on extensive on-
board data caching in the GPU.

b) RAM cache: for storing the most recently visited nodes. This is necessary for
out-of-core rendering of massive models which do not �t into RAM such as
range scanners [LPC∗00], terrain rendering [LP01], CAD applications [VM02]
and numerical simulation [MCC∗99]. It is also possible to employ a spec-
ulative prefetching technique to prepare data which is likely to be used in
the future [CKS03]. This technique is commonly implemented as a separate
thread [CGG∗04, YSGM04].

6. Static scenes: The main limitation inherently presented in HLODs is that they can
only deal with static scenes.

3.3 Re�nement criteria: model and screen space errors

Local view-dependent re�nement of the HLOD model is accomplished by evaluating a re-
�nement condition which commonly uses the screen space error (SSE) metric [CGG∗03,
CGG∗04, YSGM04, GM05] (see Section 2.1.2.3). When visiting a node in a top down
traversal of the hierarchy (see Section 4.2), the re�nement condition may be written
as follows: if (SSE(node) ≤ τ) then stop hierarchical re�nement (e.g., [CGG∗04]),
where: the returning value of the SSE(node) function corresponds to the SSE re-
lated to a given node and τ corresponds to the user speci�ed threshold given in pixels
(sometimes known as pixels of error [YSGM04]). It is worth noting that the MSE
has typically been approximated from the quadric error metric (see Section 2.1.2.3)
[CGG∗03, CGG∗04, YSGM04, GM05].
An upper bound of the SSE could be obtained as described in Section 2.1.2.3, using

the node minimum bounding sphere (built around the node geometry) to project the
MSE from (see Figure 3.3). Since the node bounding spheres form a self-contained
hierarchy of bounding volumes, this procedure ensures that the error metric is always
monotonic down the HLOD hierarchy (see Section 2.1.2.3).

30

3.3 Re�nement criteria: model and screen space errors

Figure 3.3: Computation of an SSE upper bound in polygon-based HLODs. Under the
assumption that the SSE is aligned with the screen x-axis it follows that
SSE = MSE

(
w

2d tan(θ/2)

)
, where w corresponds to the screen width in pixels.

Instead of MSEs, point-based HLODs typically use sizes for SSE computation (see
Section 2.1.2.2), e.g., the projection of the node bounding sphere [RL00], or the projection
of the node bounding box [GM05].

Re�nement within the nodes

Popping artifacts may appear when re�ning (or coarsening) a previous visible node in
polygon-based HLODs in a given frame during runtime inspection of the model. These
visual artifacts are prominent in hierarchies having fast growing subdivision [Pas02]. A
few levels of detail are related to each node instead of a single level of detail to avoid their
appearance. An additional �ner-grained re�nement is thus needed within the nodes of the
hierarchy [YSGM04]. A range of model space errors [MSEmin, MSEmax] is �rst related
to each node to perform such re�nement (during the simpli�cation step). When visiting a
node during runtime, τ is mapped back from screen to model space to obtainMSEτ , i.e.,
MSEτ simply corresponds to the value of the model space error leading to SSE = τ when
projected onto the screen. The value of MSEτ is then used to: 1. Re�ne the hierarchy
by means of the following re�nement condition: if (MSEmin ≤ MSEτ ≤ MSEmax)
then stop hierarchical re�nement. 2. Re�ne the geometry within the node. Hoppe has
described how to re�ne a geometric model when MSEτ is given [Hop97].

31

3 Hierarchical levels of detail (HLOD)

32

4 Hardware Occlusion Queries (HOQs)

This chapter describes using hardware occlusion queries (HOQs) for occlusion culling
which is central to our study (for a general overview of occlusion culling techniques see
Section 2.2). The HOQ mechanism is described, followed by a traversal algorithm for a
scene arranged as a hierarchy which has been commonly used to deal with the latency
presented in HOQs.

4.1 HOQ mechanism

Hardware occlusion queries follow a simple pattern: to test visibility of an occludee, its
bounding volume is sent to the GPU. The volume is rasterised (but it is not rendered
to screen) and its fragments are compared to the current contents of the z-bu�er. The
GPU then returns the number of visible fragments. If there is no visible fragment, the
occludee is invisible and it need not be rendered [HGJ03, BWPP04].

4.1.1 Properties of HOQs

Currently, the two main supported HOQ properties in OpenGL (see [SA04]) are:

Property 1. Multiple occlusion queries may be sent at once (see Section 4.2).

Property 2. The returning value corresponds to the number of visible pixels of the
queried object, but without saying anything about their position (see Chapter 5).

4.1.2 Advantages and disadvantages of HOQs

HOQs have several advantages:

1. Generality of occluders. The original scene geometry can be used as occluders,
since the queries use the current contents of the z-bu�er.

2. Occluder fusion. The occluders are merged in the z-bu�er so the queries automat-
ically account for occluder fusion. Such fusion comes free since the intermediate
result of the rendering itself can be used.

3. Generality of occludees. Complex occluders can be used; anything which can be
rasterised quickly is suitable.

4. Better use of GPU power. The queries take full advantage of the high �ll rates and
internal parallelism provided by modern GPUs.

33

4 Hardware Occlusion Queries (HOQs)

5. Easy use. Hardware occlusion queries can be easily integrated into a rendering
algorithm. They provide a powerful tool for minimising the implementation e�ort,
especially when compared to CPU-based occlusion culling.

Due to their advantages HOQs have become the preferred occlusion culling method
for those scenes spatially arranged with a hierarchical data structure, e.g., [YSGM04,
BWPP04, GM05, GBK06].
The main disadvantage presented by HOQs is that there is a latency between issuing a

query and the availability of the result [BWPP04]. The latency occurs due to the delayed
processing of the query in a long graphics pipeline, the cost of processing the query itself
and the cost of transferring the result back to the CPU. The latency causes two major
problems: CPU stalls and GPU starvation. After issuing the query, the CPU waits for
its result and does not feed the GPU with new data. When the result �nally becomes
available, the GPU pipeline may already be empty; the GPU thus needs to wait for the
CPU to process the query result and feed the GPU with new data. A major challenge
when using HOQs is to avoid CPU stalls by �lling the latency time with other tasks,
such as rendering visible scene objects or issuing other, independent occlusion queries.

4.2 Coherent hierarchical culling (CHC)

Some authors have focused their attention on property 1 stated above when dealing
with the latency introduced in HOQs (see Section 4.1.1), i.e., the possibility of issuing
several occlusion queries in parallel and using their results later [BWPP04, GBK06].
Bittner et al., [BWPP04] have proposed a coherent hierarchical culling algorithm (CHC)
which exploits the spatial and temporal coherence of visibility inherent in hierarchical
representations. The two main ideas introduced in CHC are the following:

1. Assuming coherence of the front of termination nodes:

a) HOQs are initiated along the front of termination nodes (see Section 4.2.2) as
determined in the previous frame. This allows saving HOQs on all previously
visible interior nodes [BH01].

b) Previously visible nodes where traversal is determined to be stopped are as-
sumed to remain visible and thus their associated geometry is rendered with-
out waiting for the corresponding HOQ result.

2. Interleaving the queries with the rendering of visible geometry: issued HOQs are
stored in a query queue until it is known that they have been carried out by the
GPU.

In the particular context of HLOD-based systems, Gobbetti et al., [GM05] adapted the
CHC algorithm to perform the traversal of the HLOD hierarchy. The generalities common
to both approaches are �rst described (see Section 4.2.1), followed by the main di�erences
relying on the type of nodes comprising the front of termination nodes (see Section 4.2.2).

34

4.2 Coherent hierarchical culling (CHC)

4.2.1 CHC traversal algorithm

The CHC algorithm traverses the hierarchy in a top-down (and front-to-back) manner
starting at its root node (see Algorithm 1). For each visited node the algorithm proceeds
as follows:

� For a previously invisible node, an HOQ is issued and stored in a query queue. The
node is delayed for traversal until the HOQ result is available, i.e., the expectation
is that the node still remains invisible in the current frame.

� There are two cases for a previously visible node:

1. If traversal is not terminated at the node (see Section 4.2.2), then its children
are scheduled for traversal in a front-to-back order using a priority queue (see
the function traverse() in the pseudocode used in Algorithm 1).

2. If traversal is determined to be stopped at the node (see Section 4.2.2), an
HOQ is issued and stored in a query queue. The associated geometry is then
rendered immediately without waiting for the HOQ result.

When the query queue is not empty, CHC checks if the result of the oldest query in the
queue is already available; if the query result is not available, the traversal continues as
described above. If it is available, the result is fetched and the node is removed from
the query queue. If it is determined that the node is visible, it is recursively traversed.
Otherwise, the whole sub-tree of the node is invisible and thus it is culled. It is worth
noting that since the visibility state of the invisible nodes is veri�ed when the HOQ
result is available, CHC performs the occlusion culling in a conservative fashion (see
Section 2.2).
Visibility classi�cation is pulled up according to the following rule to propagate changes

in visibility upwards in the hierarchy: An interior node is invisible only if all its children
have been classi�ed invisible, otherwise it remains visible (see the pullUpV isibility()
function in the pseudocode).

4.2.2 Front of termination nodes

The set of nodes where traversal algorithm re�nement stops because the node has been
determined to be invisible or because it becomes rendered forms the front of termination
nodes. Depending on the type of scene hierarchy, renderable nodes correspond to the
following:

General scene hierarchies: since only leaf nodes in a non-HLOD scene contain geometry,
renderable nodes are only leaf nodes. Therefore, the evalStopCondition(node)
function in the pseudocode of Algorithm 1 simply corresponds to querying whether
the node is a leaf.

HLOD hierarchies: since every node in the HLOD hierarchy contains geometry, render-
able nodes are those where the re�nement condition indicates stop. Therefore, the

35

4 Hardware Occlusion Queries (HOQs)

evalStopCondition(node) function in Algorithm 1 pseudocode simply corresponds
to verifying the HLOD stop re�nement condition: SSE(node) ≤ τ , which is a quick
operation [CGG∗04] (see Section 3.3).

36

4.2 Coherent hierarchical culling (CHC)

PriorityQueue.Enqueue(hierarchy.Root);
while ¬PriorityQueue.Empty() ∨ ¬QueryQueue.Empty() do

while ¬QueryQueue.Empty() ∧ (ResultAvailable(QueryQueue.Front()) ∨
PriorityQueue.Empty()) do

node←QueryQueue.Dequeue();
visiblePixels←GetOcclusionQueryResult(node);
if visiblePixels> 0 then

PullUpVisibility(node);
stopTraversal ← evalStopCondition(node);
Traverse(node, stopTraversal);

if ¬PriorityQueue.Empty() then
node←PriorityQueue.Dequeue();
if InsideViewFrustum(node) then

wasVisible ← node.visible=true ∧ (node.lastVisited=frameID-1);
stopTraversal ← evalStopCondition(node);
node.visible ← false;
node.lastVisited ← frameID;
if ¬wasVisible ∨ stopTraversal then

IssueOclussionQuery(node);
QueryQueue.Enqueue(node);

if wasVisible then
Traverse(node, stopTraversal);

Traverse(node, stop);
if stop then

Render(node);

else
PriorityQueue.EnqueueChildren(node);

PullUpVisibility(node);
while ¬node.visible do

node.visible ← true;
node ← node.parent;

Algorithm 1: Coherent HLOD Culling

37

4 Hardware Occlusion Queries (HOQs)

38

5 HLOD re�nement driven by HOQs

5.1 Motivation

Although HOQs have recently opened up the possibility for very simple and quite pre-
cise visibility computations (see Chapter 4), no HLOD approaches have taken visibility
information as an integral part of the re�nement condition, to the best of our knowledge.
Current HLOD re�nement criteria mechanisms (see Section 3.3) cause even occluded
regions to be rendered in a high level of detail.

Our aim has been to provide the means for a visibility-based re�nement error metric
for HLODs to overcome this serious drawback, based on the information gathered from
HOQs. We can thus expect increased average rendering frame-rate; once it is determined
that there is no gain in further re�ning a node, due to partial occlusion, the re�nement
could be stopped in advance, sending less primitives to the graphics card while achieving
the same approximated visual quality. Concerning previous work, our aim in improving
HLOD performance could be regarded as what hardly visible sets are to discrete LODs
[ASVNB00] and what cell solidity values are to view-dependent LODs [ESSS01] (see
Section 2.1.2.4).

Observations

1. Previous HLOD approaches have not taken visibility information into account as
an integral part of the HLOD re�nement condition: if there is at least one visible
pixel and if (SSE(node) > τ), then the node is further re�ned [YSGM04, GM05],
i.e., HOQs have been used restrictively as if their result were Boolean. The main
issue involved is that this approach results in being too conservative, particularly
when the number of visible pixels is low [Cha06b, Cha06a].

2. A naive approach to using HOQ results would be to rede�ne the re�nement condi-
tion as follows: if ((SSE(node) ≤ τ) or (HOQ(node) ≤ ψ)) then stop re�nement,
where ψ would be an additional user-de�ned threshold given in pixels. The rea-
son is that the new proposition (HOQ(node) ≤ ψ), is view independent, i.e., it
does not take into account the viewpoint, nor other viewing parameters and is thus
incompatible with the nature of the re�nement criterion.

39

5 HLOD re�nement driven by HOQs

5.2 Challenges

5.2.1 A novel visibility-based re�nement error metric

Our error metric should take into account visibility information for more aggressively
deciding the stop re�nement condition. Due to the underlying occlusion culling method,
the visibility information is thus gathered from HOQs. To avoid re�nement being stopped
at a level where geometric error is still apparent, our new visibility-based error metric
should ideally take into account:

1. The degree of visibility of the node.

2. The distribution of the pixels comprising the regions through which the geometry
of the node is reachable. It should be stressed that this feature is not currently
supported by HOQs (see Section 4.1.1).

This thesis contributes two approaches for addressing this challenge. Whilst the �rst
approach only takes the degree of visibility of the node into account, the second attempts
to exploit the visual masking perceptual phenomenon (see Section 2.1.2.5) by taking
into account the possible clustering of the visible pixels comprising the regions through
which the geometry of the node is reachable (see Section 6.4). The user-parameters
provided in the second approach not only allows it to be reduced into the former, but
more importantly, enables the user to �ne-tune the tradeo� between speedup and image
quality.

5.2.2 A novel HLOD traversal algorithm

Dealing with the latency presented in HOQs and, at the same time, using them as an
integral part of the re�nement criteria (i.e., within our new visibility-based error metric)
results in them being mutually exclusive goals. Because of the latency introduced in
HOQs, speedup due to occlusion culling mainly relies on the possibility of issuing several
occlusion queries in parallel and using their results later on (see Section 4.1.1). Thus,
when HLOD re�nement criteria are evaluated, the HOQ result is not readily available
(see Algorithm 1).
A new traversal algorithm was thus needed for addressing this shortcoming; it had to

be able to predict the visibility-based re�nement criterion. This thesis contributes two
approaches which exploit the tempo-spatial coherency inherent in hierarchical represen-
tations. Whilst the �rst approach predicts the degree of visibility of the node which is
to be used in place of the unknown value when evaluating the HLOD re�nement con-
dition (see Section 7.2.1), the second improved approach directly predicts the HLOD
re�nement condition for the current frame based on the results from the last frame (see
Section 7.2.2).

40

6 Virtual multiresolution screen space
errors

By contrast with previous approaches we use HOQ results as an integral part of the HLOD
re�nement criterion (see Chapter 5). An HOQ issued on an HLOD node bounding volume
may be thought as a mask on the screen space that forms visibility windows through
which the geometry of the node is reachable. An ideal re�nement strategy would stop
the traversal at the invisible nodes (culling them away) and selectively re�ne the regions
within the visible nodes according to the location and size of each visibility window.
Due to the visual masking perceptual phenomenon, �ner detailed representations should
be used only at larger visibility windows while coarser representations may be used at
smaller ones (see Section 2.1.2.5). However this method should be aware of the exact
position of the visible pixels returned by a given HOQ. Since this functionality is not
currently supported by HOQs (see Section 4.1.1), our approach is to use the number of
visible pixels returned by the HOQ to modulate the node SSE without performing any
selective re�nement within visited nodes. However, since the location and size of the
visibility windows are disregarded, a loss in image quality is inevitably introduced. It
is therefore imperative to keep the loss of image quality within some reasonable limits
while still managing to more aggressively decide the stop re�nement condition.
To begin with, the necessary notions are introduced and our re�nement strategy is

described (see Sections 6.1 and 6.2, respectively). Our visibility-based HLOD re�nement
condition is then derived (see 6.3), followed by our approach for minimising the loss of
image quality which uses a simple model for re�ecting the possible clustering of visible
pixels (see Section 6.4).

6.1 Notions and notation

Let Mγ be the subset of screen space that corresponds to the projection of a given node
bounding volume B, at the (real or virtual) screen resolution γ, i.e., γ corresponds to
the number of pixels in Mγ . Observe that Mγ bounds the projection onto screen space
of the MSE related to B, and also the (eventual) projection of its related geometry. Let
q be the number of visible pixels on screen space obtained when an HOQ on B is issued,
i.e., the HOQ result. Let us say that the real node resolution (herein simply referred to as
node resolution) denoted by α, corresponds to the number of pixels of the projection of B
onto screen space, at its real resolution1 (see Figure 6.1). Finally, we refer to each cluster

1Note that calculating the exact node resolution at runtime would be too expensive, e.g., it would
require an occlusion query by itself on a reset z-bu�er (i.e., if the query is issued when there are no

41

6 Virtual multiresolution screen space errors

of visible contiguous pixels found in Mγ as a visibility window (or simply window), and
the number of pixels within it as the window resolution.

Figure 6.1: Notions. Screen space Mα and node bounding volume B. The total number
of pixels comprising the projection of B onto screen space corresponds to α.
The returning value of an HOQ issued on B corresponds to q. Since in this
example there are no objects between screen space and B, α = q = 56.

Table 6.1 gives a summary of the notation used throughout this thesis.

Acronym Meaning Reference

MSE Model space error Sections 2.1.2.3 and 3.3
SSE Screen space error Sections 2.1.2.3 and 3.3
τ Pixels of error Section 3.3
q HOQ result This Section
γ Given real or virtual resolution This Section
α Node resolution This Section
δ Coarse virtual resolution Section 6.2
B Node bounding volume This Section

Mγ Projection of B onto screen space
at the screen resolution γ

This Section

VMSSE Virtual multiresolution screen space error Section 6.3
VMSSE ratio δ

α Section 6.3
µ Degree of visibility of a node Section 6.4.1

ρs,t(q)
Sigmoid function used to

approximate the VMSSE ratio
Section 6.4.1

Table 6.1: Notation used throughout this thesis.

objects between S and B, then α = q) or projecting the vertexes of B and then computing the area
of the convex hull. However it could e�ciently be approximated by simply interpolating the known
(e.g., precomputed) node resolutions for the visible faces of B from a given viewpoint and viewing
direction at runtime.

42

6.2 Visibility-based re�nement strategy

6.2 Visibility-based re�nement strategy

Our re�nement strategy consists of modulating the SSE by taking the HOQ result to
carefully coarsen the resolution of Mγ . That is to say, we interpret a given HOQ result
as the virtual resolution (δ) of the screen space where we are going to project a given
node data. In all previous approaches the MSE has been directly projected onto screen
space at its real resolution (see Section 3.3). The value of the new error metric, dubbed
virtual multiresolution screen space error (VMSSE), is used as the quantity guiding
HLOD re�nement (see Section 6.3).
As we will see, our visibility-based error metrics produce fairly high quality results

regarding image quality. They also possess a useful geometric meaning. Observe that an
aggressive coarsening in the node resolution does not necessarily imply a drastic change in
the window resolutions. Indeed, it depends on the clustering of visible pixels. The more
clustered together the pixels of the windows are, the more likely that a coarsening in the
node virtual resolution would produce an important change in the window resolutions.
Thus if the node coarser virtual resolution δ (δ = f(q) ≤ α) is chosen so that the window
resolutions are preserved (see Figure 6.2), then the visual appearance of the geometry
should not be substantially a�ected. However if δ is used instead of α for evaluating
the re�nement condition, the re�nement could be terminated higher in the hierarchy and
thus less primitives would be sent to the GPU.

Figure 6.2: Coarsening of a virtual resolution (δ). The HOQ result (q) is the same but the
distribution of the visible pixels are di�erent: a) Small size windows (shown
in yellow). The window resolutions are kept, even for δ = 16. b) Medium
and large size windows (shown in yellow). The window resolutions are kept
for δ = 36, but not for δ = 16.

43

6 Virtual multiresolution screen space errors

6.3 Visibility-based HLOD re�nement condition

Since we can not allow an actual change in the resolution to take place, we now seek
to compute the SSE at a virtual resolution δ, from its computation at α. The value
of the former can then be taken for e�ectively re�ning the hierarchy, without actually
modifying the original resolution. For doing so, we show how the SSE could be virtually
switched among multiple resolutions.
Observe �rst that if the virtual resolution δ is chosen so that the visual appearance

of the geometry is not a�ected (see Section 6.2), then the appearance of the respective
MSE should not be a�ected either. However, due to the coarsening of the resolution,
simply projecting the MSE onto screen space (as described in Sections 2.1.2.3 and 3.3)
at the coarse resolution δ leads to a di�erent appearance than when projecting it at the
real resolution α (see Figure 6.3). We may thus think of the SSE as the total intensity
(brightness) of the pixels comprising the MSE projection onto screen space; and keep
the absolute intensity constant when switching the resolutions to preserve the appearance
(see Figure 6.3).
We now generalise the de�nition of the screen space error according to a given (real or

virtual) screen resolution γ. For doing so, let us say that the virtual multiresolution screen
space error SSEγ at a given screen resolution γ, is given by the following expression:

SSEγ =
∑
i

∑
j

Iγi,j , ∀i, j ∈M
γ ,

where Iγi,j corresponds to the intensity value of the pixel at position (i, j) in Mγ ;
Iγi,j ∈ [0, 1] if the pixel lays in the projection of theMSE (as described in Sections 2.1.2.3
and 3.3) and Iγi,j = 0 if it does not (see Figure 6.3). It should be noted that SSEγ

expresses the total intensity due to SSE, relative to a given screen resolution γ. The
convention that if γ = α then Iαi,j = 1 (for pixels laying on the projection of the MSE)
is used for calibrating the metric. In this case SSEγ simply becomes reduced to the
original de�nition of the SSE.
Now let aγ be the area occupied by a single pixel at a given screen resolution γ.

As observed above, the absolute intensity due to SSEγ should be maintained constant
to keep the estimation of the error consistent when virtually switching the resolutions.
Therefore, since the absolute intensity due to SSEγ is given by aγ

∑
i

∑
j I

γ
i,j , it follows

that (see Figure 6.3):

aα
∑
i

∑
j

Iαi,j = aδ
∑
i′

∑
j′

Iδi′,j′ , ∀i, j ∈Mα ∧ ∀i′, j′ ∈M δ

However, since aδδ = aαα and SSE = SSEα, we �nally get:

SSEδ =
(
δ

α

)
· SSE, (6.1)

where the expression SSEδ is herein referred to as VMSSE. It should be observed
that the ratio

(
δ
α

)
∈ [0, 1] modulates the SSE according to the HOQ result, and thus it

44

6.4 Image quality loss minimisation

is herein referred to as the VMSSE modulation ratio (or simply VMSSE ratio). Note
that our new visibility-based HLOD re�nement condition may be simply written as: if
(VMSSE(node) ≤ τ) then stop hierarchical re�nement, where the returning value of the
function VMSSE(node) corresponds to the VMSSE related to a given node.

Figure 6.3: Virtual multiresolution screen space errors. The areas covered by the projec-
tion of the MSE (which by construction leads to a line segment parallel to
the screen x-axis) are di�erent for the two resolutions, but the absolute inten-
sity is the same. In this example SSE = 4 and SSEδ = 1 (e.g., Iδi′,j′ = 1/2,
for (3, 2) and (3, 3)).

6.4 Image quality loss minimisation

Observe that the coarser the virtual resolution (δ) is, the more aggressive the stop re�ne-
ment condition is decided (see Equation 6.1). To take full advantage of the VMSSE,
δ should therefore be assigned the lowest value leading to no substantial change in win-
dow resolutions, otherwise a noticeable loss in image quality may arise (see Section 6.2).
However, it would be necessary to determine the exact position of the visible pixels re-
turned by a given HOQ at runtime to precisely compute δ. Since this functionality is not
currently supported by HOQs (see Section 4.1.1), an eventual implementation would not
only lose simplicity, but would most likely result in being too expensive. Our approach
is therefore to approximate the value of δ. It should be noted that a poor approximation
may lead to the following drawbacks:

1. When the approximation is too conservative, the bene�ts of using the VMSSE
are missed.

2. When the approximation is too aggressive, a noticeable loss in image quality may
arise.

The following simple model was designed to avoid these drawbacks, aiming to re�ect the
possible clustering of visible pixels.

45

6 Virtual multiresolution screen space errors

Note that for extreme visibility conditions, the simple approximation δ = q, e�ectively
minimises the loss in image quality: if q = 0 then the value of the VMSSE would be 0
(see Rule 1 below) and if q = α then the value of the VMSSE would be the same as if
no visibility information would have been gathered, i.e., VMSSE = SSE (see Rule 2

below). The above image quality loss minimisation problem could thus be stated in the
following much simpler terms:

We seek the curve δ = ρ(q) that interpolates the points (0, 0) and (α, α),
and minimises the loss in image quality while still allowing an aggressive
modulation of the SSE.

It should �nally be observed that the less scatter the visible pixels of the HOQ are,
the higher the chance that the pixels of the windows would be more clustered together,
and thus it would be more likely that a coarsening in the virtual resolution (δ) would
produce an important change in the window resolutions (see Section 6.2, and Rules 3

and 4 below). The shape of ρ(q) can thus be modelled according to the following set of
rules:

Rule 1: If q = 0 then δ = q, i.e., the value of the VMSSE should be 0 (the object is
invisible and thus re�nement should be stopped). See Figure 6.4.

Rule 2: If q = α then δ = q, i.e., the value of the VMSSE should be the same as if no
visibility information had been gathered, VMSSE = SSE. See Figure 6.4.

Rule 3: If the value of q is close to 0 then δ → 0, i.e., the visible pixels of the HOQ are
scatter and thus we can aggressively modulate the SSE. This rule de�nes the cyan
region in Figure 6.4.

Rule 4: If the value of q is close to α then δ → α, i.e., the visible pixels of the HOQ
are more clustered together and thus in order to minimise the image quality loss
we should conservatively modulate the SSE. This rule de�nes the blue region in
Figure 6.4.

It is worth noting that Rules 3 and 4 express an attempt to exploit the visual masking
perceptual phenomenon to deciding the stop re�nement condition (see Section 2.1.2.5).

6.4.1 VMSSE ratio sigmoid approximation

We simply use a sigmoid function to conveniently capture the set of rules stated above:
δ = ρs,t(q). Two user de�ned parameters are used to provide more control over the shape
of the sigmoid curve: 1. A movable turn over point t, t ∈ [0, 1] of the sigmoid function,
i.e, the closer t is to 0, the more conservative the approximation is (see Figure 6.4); and,
2. A smoothness parameter s, s ∈ [0, 1] that linearly interpolates between δ = q and
the sigmoid, i.e., the closer s is to 0, the smoother the shape of δ is (see Figure 6.4)
[CBWR07]. The two parameters, s and t (which typically takes small values), are deter-
mined experimentally by the user according to the underlying scene (see Chapter 8).

46

6.4 Image quality loss minimisation

Figure 6.4: Sigmoid function δ = ρs,t(q) used to minimise the loss in image quality due
to VMSSE. In the cyan region (q ≤ t) the function provides aggressive
modulation of the SSE compared to linear scaling, while in the blue region
(q > t) the modulation is rather conservative. The s value is used to control
the smoothness of the curve. Note that taking s = 0 leads to linear scaling.

For convenience, the sigmoid function may be normalised using the node resolution
(α), i.e., Ps,t(µ) = ρs,t(q)/α, where µ =

(q
α

)
∈ [0, 1] corresponds to the degree of visibility

of the node (simply computed as the degree of visibility of the node bounding volume).
Since δ = ρs,t(q), then the normalised sigmoid function Ps,t(µ) simply corresponds to the
VMSSE ratio (see Equation 6.1).

6.4.2 VMSSE ratio linear approximation

It is also possible to directly take the number of visible pixels returned by an HOQ as the
number that de�nes the node virtual resolution used to evaluate the re�nement condition,
i.e., δ = q [Cha06b]. Observe that this model only takes Rules 1 and 2 stated above
into account and that it ignores the visual masking phenomenon (Rules 3 and 4). Also
note that this model could be reduced from the sigmoid approximation stated above by
simply taking user-de�ned parameter s = 0, i.e., Ps=0,t(µ) = µ (see Figure 6.4).
It should also be stressed that the user parameters s and t provide the means for �ne-

tuning the tradeo� between speedup and image quality according to user needs. Indeed,
it has been found experimentally that the highest speedup has typically been obtained
when using the linear VMSSE ratio function Ps=0,t(µ) = µ, i.e., δ = q (see Chapter 8).

47

6 Virtual multiresolution screen space errors

48

7 Visibility-based HLOD culling
algorithm

Dealing with the latency presented in HOQs and, at the same time, using HOQs to
assist the re�nement mechanism proves cumbersome; the reason is that there is a mu-
tual dependence between them. On the one hand, the culling algorithm should issue
several HOQs and proceed with HLOD re�nement without waiting for their results (see
Section 4.2). On the other hand, the query result becomes necessary for determining
the stop re�nement condition (see Chapter 6). The HLOD re�nement condition must
therefore be predicted to break such mutual dependence.
Before showing our two proposed approaches for predicting the HLOD re�nement con-

dition [Cha06a, CBWR07], the traversal algorithm which is common to both approaches
is �rst described (see Section 7.1). A detailed discussion is then given of our two proposed
methods for predicting the HLOD re�nement condition by using temporal coherence of
visibility (see Section 7.2).

7.1 Visibility-based HLOD traversal

The aim of our new algorithm is to perform e�cient traversal of the HLOD hierarchy
while using visibility information to drive HLOD re�nement (see Chapter 5). A naive
algorithm would issue an occlusion query for every traversed node, wait for its result,
compute the re�nement condition and decide whether to descend the hierarchy. Waiting
for the query result is expensive as it stalls the CPU and in turn causes GPU starvation
(see Section 4.1.2). Our algorithm solves this problem by predicting the re�nement
criterion using temporal coherence of visibility. When proceeding from one frame to
the next, it is most likely that re�nement will stop at the same set of nodes where it
has stopped in the previous frame (a fact fully exploited by the technique described in
Section 7.2.2). Exceptions occur when re�nement is shifted up or down from the current
level of the node due to a change in its VMSSE.
Our coherent HLOD culling algorithm proceeds as follows; the traversal of the HLOD

hierarchy is started at the root node. At each traversed node, the re�nement condition
for the node is predicted using some form of temporal coherence (the prediction will be
described in detail in the next Section). The prediction indicates one of the following
actions: (1) re�ne, (2) stop re�nement or (3) delay the decision to the moment when the
visibility of the node for the current frame becomes known.
In case (1), the children of the node are traversed by putting them on the priority

queue. In case (2) and (3), an HOQ is issued for the node and put in the query queue.
In case (2), the geometry associated with the node is immediately rendered and the

49

7 Visibility-based HLOD culling algorithm

re�nement is stopped. In case (3), the processing of the node is delayed until the HOQ
result becomes available in the query queue. The decision is then made using the updated
information about the visibility of the node: if the node is invisible, it is culled. If the
VMSSE is lower than the threshold, re�nement stops and the geometry of the node
is rendered. Otherwise, the re�nement continues by inserting the children of the node
into the priority queue. Before showing our two approaches for predicting the HLOD
re�nement condition, let us �rst analyse the consequences of these actions for the traversal
algorithm:

1. Re�ne. The children of the node are traversed immediately. No HOQ or rendering
is performed for the current node. If it turns out that the prediction was too con-
servative (it actually might have stopped for the current node) then more geometry
than necessary is rendered.

2. Stop. An HOQ is issued and the node is rendered immediately. When the query
result is available, the VMSSE of the current node is computed. The children of
the node must continue to be traversed if the prediction was too aggressive. Note,
in this case, that the geometry of (some) child nodes is rendered over the geometry
of the parent node, thereby increasing the rendering cost and very possibly leading
to visual artifacts.

3. Delay. In this case, the query result is awaited for deciding on the re�nement
condition. Thus, for a node which was delayed and for which re�nement should
have stopped, a latency is introduced in passing its geometry to the GPU.

The new traversal algorithm is outlined in Algorithm 2. Note that di�erences in relation
to the traversal algorithm of Gobbetti et al., [GM05] this being the closest algorithm
published to date regarding our approach, have been coloured (see Section 4.2.1). The
non-coloured parts of the algorithm are also virtually identical to the basic CHC algo-
rithm produced by Bittner et al., [BWPP04] and are therefore not explained in detail
here (see Section 4.2.1). It is worth noting that since the visibility state of nodes pre-
dicted as being invisible is veri�ed when the HOQ result is available, then this strategy
leads to conservative occlusion culling (see Section 2.2).

7.2 Predicting the HLOD re�nement condition

We designed two di�erent techniques which aim at minimising the number of incor-
rect predictions (see Sections 7.2.1 and 7.2.2). Both techniques estimate the VMSSE
(̂VMSSE) by combining the SSE of the current frame with the estimated value of the
VMSSE ratio (̂ratio):

̂VMSSE = ̂ratio · SSE (7.1)

The ̂VMSSE is used when evaluating the visibility-based stop re�nement condition
during the traversal. The main di�erence between the two predictors lays in how they
compute ̂ratio.

50

7.2 Predicting the HLOD re�nement condition

PriorityQueue.Enqueue(hierarchy.Root);
while ¬PriorityQueue.Empty() ∨ ¬QueryQueue.Empty() do

while ¬QueryQueue.Empty() ∧ (ResultAvailable(QueryQueue.Front()) ∨
PriorityQueue.Empty()) do

node←QueryQueue.Dequeue();
visiblePixels←GetOcclusionQueryResult(node);
if visiblePixels> 0 then

PullUpVisibility(node);
µ ← visibleP ixels/BBoxPixels(node);
VMSSE ← Ps,t(µ)*SSE(node);
stopTraversal ← VMSSE ≤ τ ;
node.ratio ← Ps,t(µ) ; // only for the approach in Section 7.2.2

node.stopRe�nement ← stopTraversal ; // only for Section 7.2.2

Traverse(node, stopTraversal);

if ¬PriorityQueue.Empty() then
node←PriorityQueue.Dequeue();
if InsideViewFrustum(node) then

stopMode←PredictRe�nement(node);
stopTraversal ← ¬(stopMode=Re�ne);
node.stopRe�nement ← stopTraversal ; // only for Section 7.2.2

node.visible ← false;
node.lastVisited ← frameID;
if stopTraversal then

IssueOclussionQuery(node);
QueryQueue.Enqueue(node);

if ¬(stopMode=Delay) then
Traverse(node, stopTraversal);

Algorithm 2: Coherent Visibility-based HLOD Culling

7.2.1 Approximation of the degree of visibility of the node

A simple approach to compute ̂ratio is to approximate the degree of visibility of the node
(µ̂) [Cha06a].

̂ratio = Ps,t(µ̂) (7.2)

The main observation for predicting µ̂ is to use the position of the node in the priority
queue as determined in the previous frame. The reason is that the nodes in the priority
queue are scheduled in an approximated front-to-back traversal order [BWPP04] (see
Section 4.2.1). Thus, the assumption in computing µ̂ is that it linearly decreases from 1
to 0 with the position of the node in the priority queue (see Algorithm 3).
The main limitation of this technique is that it is not precise enough (see Chapter 8),

51

7 Visibility-based HLOD culling algorithm

if ¬(node.lastVisited=frameID-1) ∨ node.visible=false then
return Delay;

µ̂ = 1− (node.insertionPosition/totalScheduledNodes(frameID − 1));̂VMSSE ← Ps,t(µ̂) ∗ SSE(node);
if ̂VMSSE ≤ τ then

return Stop;
return Re�ne;

Algorithm 3: PredictRe�nement(node)

leading to two main drawbacks: (1) when the prediction is too conservative, more nodes
become re�ned and in turn more primitives are rendered; and (2) when the prediction
is too aggressive, the node is rendered, but the same node is then also re�ned when the
query result is available. This means that the re�ned children are rendered together with
their parent, which can cause visual artifacts (see Section 7.1 and 8.3). This is because
this technique does not take the underlying scene depth complexity into account; this
clearly plays a role when estimating the degree of visibility of a node respecting its
scheduled traversal position.

7.2.2 Coherency of the front of termination nodes

From the above analysis of the actions needed to be carried out by the predictor (see Sec-
tion 7.1) and to overcome the lack of precision of the previous method (see Section 7.2.1),
we designed a prediction technique aiming at minimising the number of incorrect predic-
tions by assuming coherence of the front of termination nodes. It was primarily aimed
at predicting either re�ne or stop conditions with a high degree of accuracy. If a stop
condition is expected, but with lower con�dence, then the predictor returns delay. It also
returns delay for nodes which have been previously invisible and thus it is expected that
the re�nement will terminate without rendering the geometry of these nodes. The main
idea of the prediction is to estimate the VMSSE ratio (̂ratio) using the cached ratio as
determined in the previous frame:

̂ratioi = ratioi−1 (7.3)

However, it should be noted that the actual ratio is only computed for nodes where
re�nement stopped in the previous frame. Therefore, to check the availability of the
cached ratio at the current frame, the result of the stop re�nement condition is also
cached at the node. The prediction works as follows (see also the pseudocode depicted
in Algorithm 4), if:

� the node was invisible in the previous frame, then the prediction returns delay.

� the re�nement was stopped for the node in the previous frame, then the ̂VMSSE
is calculated and if it is still below the threshold, the predictor returns stop. Oth-
erwise, a signi�cant change in the node visibility has occurred and the predictor
returns re�ne.

52

7.2 Predicting the HLOD re�nement condition

� the node was re�ned in the previous frame, but re�nement stopped for all its child
nodes, then the node is a good candidate for pulling up the termination front (see
the red node in Figure 7.1). This is veri�ed by �rst checking whether re�nement
for all children would still stop in the current frame based on their ̂VMSSE esti-
mations. If any of these indicates continue re�nement, then the predictor returns
re�ne. Otherwise, since the node itself does not have a cached ratio value, the nodêratioi is approximated by taking the average cached ratios from all children. If the
resulting ̂VMSSE is above the threshold, the predictor returns re�ne. Otherwise
the predictor returns delay.

if ¬(node.lastVisited=frameID-1) ∨ node.visible=false then
return Delay;

if ¬node.stopRe�nement then
candidateToShiftUp ← true;
forall child ∈ node.children do

if ¬child.stopRe�nement ∨ ¬(child.ratio*SSE(child) ≤ τ) then
candidateToShiftUp ← false;

if candidateToShiftUp then

if AvgRatio(node.children)*SSE(node) ≤ τ then
return Delay;

else if node.ratio*SSE(node) ≤ τ then
return Stop;

return Re�ne;
Algorithm 4: PredictRe�nement(node)

The candidates for updating the front of termination used by the predictor described
above are depicted in Figure 7.1.

Figure 7.1: Set of nodes which are candidates for being in the front in the next frame:
(1) the front of termination nodes in the current frame, (2) nodes one level
above this set (only if re�nement has stopped for all its children), coloured
as red and, (3) nodes one level below this set, coloured blue.

53

7 Visibility-based HLOD culling algorithm

Compared to the �rst approach [Cha06a] (see Section 7.2.1), it has been found that this
technique better predicts the HLOD stop re�nement condition [CBWR07]. Independent
of scene depth complexity, using this method has produced nearly the optimal number of
nodes to be drawn (see Chapter 8). Moreover, it also preserves the visual quality obtained
in the �nal rendered image, i.e., the only source which could hinder the visual quality is
when there is an important number of nodes needing to be re�ned once they have been
rendered in the same frame (see Section 7.1). However, the accuracy of the prediction
and the veri�cation of the stop re�nement condition described above practically eliminate
this problem (see Section 8.3).

54

8 Results and discussion

We implemented an experimental software supporting our coherent HLOD culling algo-
rithm using C++ and OpenGL in Linux. The HLODs use an octree with a single discrete
LOD per node consisting of about 2000 triangles. The quadric error metric was used for
constructing the HLODs and for deriving model space errors [CGG∗04, YSGM04] (see
Sections 2.1.2.3 and 3.3). Axis-aligned minimum bounding boxes around the geometry of
the nodes were precomputed o�ine and were then used for issuing HOQs and performing
VMSSE computations at runtime (see Chapters 4 and 6, respectively). Vertex bu�er
objects were used for e�cient caching of the geometry on the GPU (see Section 3.2).
The measurements were performed on three scenes having di�erent depth complexity. A
640 ∗ 480 pixel resolution window was used for all tests and error threshold τ = 1. The
tests were evaluated on a PC with Intel-Core 2 Duo (2.4GHz) and nVidia GeForce 8800
GTX.

8.1 Tests

Three scenes having low, middle and high depth complexity were used, respectively called
scene 1, scene 2 and scene 3 (see Figures 8.1, 8.2 and 8.3). A session representing typical
inspection tasks was designed for each scene. Our inspection sequences include rotations
and changes from overall views to extreme close-ups, heavily stressing the system. The
sequence was played for each scene to collect the frame rates and number of drawn
nodes. The following scenarios were evaluated depending on the traversal algorithm and
the error metrics used to re�ne the hierarchy:

1. Bool: the hierarchy was traversed using the coherent culling algorithm version of
Gobbetti et al., [GM05] (see Section 4.2.1). The error metric used for re�ning the
hierarchy was SSE, i.e., HOQs were used as if their result were Boolean. Note
that this con�guration yielded the ideal image quality given as reference in our
tests below (see Section 8.2).

2. The following two scenarios were set up to evaluate the tradeo� between image
quality and speedup due to the combination of both, the error metric and the
traversal algorithm introduced in this thesis:

a) Coh(P): the hierarchy was traversed with our coherent HLOD culling algo-
rithm (see Section 7.2.2) using VMSSE to re�ne the hierarchy and Ps,t(µ) to
compute the VMSSE ratio (see Section 6.4.1). Note that this con�guration

55

8 Results and discussion

sought to obtain high quality image results. User parameters s and t were de-
termined experimentally with this purpose in mind (see Figures 8.1, 8.2 and
8.3).

b) Coh(µ): the hierarchy was traversed with our coherent HLOD culling al-
gorithm (see Section 7.2.2) using µ to compute the VMSSE ratio, i.e.,
Ps=0,t(µ) = µ (see Section 6.4.2). Note that this con�guration sought to
obtain the highest possible speedup.

8.2 Image quality

The di�erences were measured regarding the �nal ideal image obtained when using Bool
and that obtained when using Coh(P) and Coh(µ). 20 frames from the inspection se-
quence were thus randomly selected and the peak signal-to-noise ratio (psnr) di�erence
calculated. This measurement has been traditionally used as an estimator of the distor-
tion introduced by compression algorithms [Net89, TM02] and corresponds to the ratio
of the power of a particular signal and the corrupting noise. The average psnr values for
the 20 frames are presented in Table 8.1. Note that:

1. Using the two computations proposed for the VMSSE ratio (see Section 6.4) did
not substantially alter �nal image quality as objectively measured in these frames
from the inspection sequences. The fact that a psnr > 30 was returned for all
colour components indicated that the two proposed methods practically did not
alter �nal image quality [GW01].

2. Using Coh(P) gave better image quality than Coh(µ) [GW01]. The reason was that
the latter approximation only took the degree of visibility of the node into account
whilst the former also considered the visual masking perceptual phenomenon.

Eval. Bool vs Coh(P) Bool vs Coh(µ)
dB Luminance Cb Cr Luminance Cb Cr
S1 48.5± 2.9 70.8± 3.7 60.3± 3.6 46.4± 2.6 68.1± 2.6 57.89± 3
S2 41.1± 2.6 64.2± 2.7 53.9± 2.9 37.4± 1.6 60.7± 2.2 49.9± 2.5
S3 34.4± 1.5 59.9± 2 50.4± 2.6 30.1± 1.5 55.6± 1.7 45.6± 1.6

Table 8.1: Average and standard deviation psnr values, i.e., luminance and chrominance
(Cb and Cr) for 20 image pairs from the tests scenes randomly selected from
the inspection sequence. Each pair comprises the ideal image obtained when
using Bool and that obtained when using: 1. Coh(P); and, 2. Coh(µ).

In addition to psnr measurements, the geometry has been coloured from blue to ma-
genta to red according to the severity level of the modulation introduced by the VMSSE
to emphasise the in�uence on image quality caused by Coh(µ) and Coh(P) respecting
Bool for each node in the front: blue represents regions of the model where the mod-
ulation is weak, magenta represents regions where the modulation is moderate and red

56

8.3 Speedup

represents regions where the modulation is strong (see the last two rows in Figures 8.1,
8.2 and 8.3). Note that:

1. Using Coh(µ) and Coh(P) attenuated the loss in image quality, i.e., the stronger
the modulation was, the less likely it was that the node was actually visible.

2. As noticed above, using Coh(P) better attenuated the loss of image quality than
Coh(µ), i.e., SSE modulation due to the VMSSE ratio in Coh(P) was determined
according to the visual masking perceptual phenomenon (see Section 6.4.1). The
reader may compare the magenta and red areas present in Coh(P) and in Coh(µ)
from the user's viewpoint (second row in Figures 8.1, 8.2 and 8.3).

8.3 Speedup

The following two scenarios were also set up for evaluating speedup due to Coh(P) and
Coh(µ), not only respecting Bool but also respecting our alternative (former) approach
to predicting the HLOD re�nement condition as depicted in Section 7.2.1:

1. Simp(P): the hierarchy was traversed with our former coherent HLOD culling
algorithm (see Section 7.2.1) using Ps,t(µ) to compute the VMSSE ratio (see
Section 6.4.1).

2. Simp(µ): the hierarchy was traversed with our former coherent HLOD culling algo-
rithm (see Section 7.2.1) using µ to compute the VMSSE ratio, i.e., Ps=0,t(µ) = µ
(see Section 6.4.2).

The following two scenarios were also set up to determine the ideal number of nodes to
be drawn in Coh(P) as well as in Coh(µ):

1. SW (P): the hierarchy was traversed with the hierarchical stop-and-wait method
referred to in Bittner et al., [BWPP04] using Ps,t(µ) to compute the VMSSE ratio
(see Section 6.4.1).

2. SW (µ): the hierarchy was traversed with the hierarchical stop-and-wait method
referred to in Bittner et al., [BWPP04] using µ to compute the VMSSE ratio (see
Section 6.4.2).

Figures 8.4 and 8.5 show the whole sequence of drawn nodes together with the frame rates
for the three scenes. All scene statistics have been summarised in Table 8.2. Table 8.3
shows the relative speedup and node savings for Coh(P) respecting Bool and Simp(P).
Table 8.4 shows the relative speedup and node savings regarding Coh(µ) respecting to
Bool and Simp(µ).
It can be seen that Coh(P) signi�cantly reduced the number of drawn nodes compared

to both Bool and Simp(P), also directly translating into higher frame rates. The main

57

8 Results and discussion

F
igure

8.1:
S
cen

e
1
:
selected

fra
m
e
o
f
th
e
v
isu

a
lisa

tio
n
seq

u
en
ce

w
h
en

u
sin

g
B
ool,

C
oh

(P
)
a
n
d
C
oh

(µ
).

T
h
e
la
st

tw
o
row

s
co
rresp

o
n
d
to

a

v
isu

a
lisa

tio
n
(fro

m
th
e
u
ser's

v
iew

p
o
in
t
a
n
d
a
b
ird

's
ey
e
v
iew

)
o
f
th
e
in
tro

d
u
ced

m
o
d
u
la
tio

n
o
f
th
e
n
o
d
es

selected
to

b
e
d
raw

n
d
u
e

to
th
e
V
M
S
S
E
ra
tio

(P
s
=

0
.6
,t=

0
.2 (µ

)):
b
lu
e
rep

resen
ts

w
ea
k
m
o
d
u
la
tio

n
(sm

a
ll
red

u
ctio

n
o
f
L
O
D

lev
el,

i.e.,
P
s
,t (µ

)
'

0
),
m
a
g
en
ta

rep
resen

ts
m
o
d
era

te
m
o
d
u
la
tio

n
a
n
d
red

rep
resen

ts
h
ig
h
m
o
d
u
la
tio

n
(stro

n
g
red

u
ctio

n
o
f
L
O
D
lev

el,
i.e.,

P
s
,t (µ

)
'

1
).

M
o
d
el
co
u
rtesy

o
f
th
e
A
IM

@
S
H
A
P
E
R
ep
o
sito

ry
[A
S].

58

8.3 Speedup

F
ig
ur
e
8.
2:

S
ce
n
e
2
:
se
le
ct
ed

fr
a
m
e
o
f
th
e
v
is
u
a
li
sa
ti
o
n
se
q
u
en
ce

w
h
en

u
si
n
g
B
oo
l,
C
oh

(P
)
a
n
d
C
oh

(µ
).

T
h
e
la
st

tw
o
ro
w
s
co
rr
es
p
o
n
d
to

a

v
is
u
a
li
sa
ti
o
n
(f
ro
m

th
e
u
se
r'
s
v
ie
w
p
o
in
t
a
n
d
a
b
ir
d
's
ey
e
v
ie
w
)
o
f
th
e
in
tr
o
d
u
ce
d
m
o
d
u
la
ti
o
n
o
f
th
e
n
o
d
es

se
le
ct
ed

to
b
e
d
ra
w
n
d
u
e

to
th
e
V
M
S
S
E
ra
ti
o
(P
s
=

0
.7
,t

=
0
.1

5
(µ

))
:
b
lu
e
re
p
re
se
n
ts

w
ea
k
m
o
d
u
la
ti
o
n
(s
m
a
ll
re
d
u
ct
io
n
o
f
L
O
D

le
v
el
,
i.
e.
,
P
s
,t
(µ

)
'

0
),
m
a
g
en
ta

re
p
re
se
n
ts

m
o
d
er
a
te

m
o
d
u
la
ti
o
n
a
n
d
re
d
re
p
re
se
n
ts

h
ig
h
m
o
d
u
la
ti
o
n
(s
tr
o
n
g
re
d
u
ct
io
n
o
f
L
O
D
le
v
el
,
i.
e.
,
P
s
,t
(µ

)
'

1
).

M
o
d
el
co
u
rt
es
y

o
f
S
ta
n
fo
rd

G
ra
p
h
ic
s
G
ro
u
p
[S
U
].

59

8 Results and discussion

F
igure

8.3:
S
cen

e
3
:
selected

fra
m
e
o
f
th
e
v
isu

a
lisa

tio
n
seq

u
en
ce

w
h
en

u
sin

g
B
ool,

C
oh

(P
)
a
n
d
C
oh

(µ
).

T
h
e
la
st

tw
o
row

s
co
rresp

o
n
d
to

a

v
isu

a
lisa

tio
n
(fro

m
th
e
u
ser's

v
iew

p
o
in
t
a
n
d
a
b
ird

's
ey
e
v
iew

)
o
f
th
e
in
tro

d
u
ced

m
o
d
u
la
tio

n
o
f
th
e
n
o
d
es

selected
to

b
e
d
raw

n
d
u
e

to
th
e
V
M
S
S
E
ra
tio

(P
s
=

0
.9
,t=

0
.0

5 (µ
)):

b
lu
e
rep

resen
ts

w
ea
k
m
o
d
u
la
tio

n
(sm

a
ll
red

u
ctio

n
o
f
L
O
D

lev
el,

i.e.,
P
s
,t (µ

)
'

0
),
m
a
g
en
ta

rep
resen

ts
m
o
d
era

te
m
o
d
u
la
tio

n
a
n
d
red

rep
resen

ts
h
ig
h
m
o
d
u
la
tio

n
(stro

n
g
red

u
ctio

n
o
f
L
O
D
lev

el,
i.e.,

P
s
,t (µ

)
'

1
).

M
o
d
el
co
u
rtesy

o
f
S
ta
n
fo
rd

G
ra
p
h
ics

G
ro
u
p
[SU

].

60

8.3 Speedup

S
ta
ti
st
ic
s

sc
en
e
1

fu
ll
re
so
lu
ti
o
n
m
o
d
e
l
≈

4
M
4

′ s

n
u
m
be
r
o
f
H
L
O
D

n
o
d
e
s
≈

1
0
k

sc
en
e
2

fu
ll
re
so
lu
ti
o
n
m
o
d
e
l
≈

5
M
4

′ s

n
u
m
be
r
o
f
H
L
O
D

n
o
d
e
s
≈

1
2
k

sc
en
e
3

fu
ll
re
so
lu
ti
o
n
m
o
d
e
l
≈

1
2
M
4

′ s

n
u
m
be
r
o
f
H
L
O
D

n
o
d
e
s
≈

2
1
k

Sc
en
ar
io

F
P
S

D
N

R
A
R
N

D
F
P
S

D
N

R
A
R
N

D
F
P
S

D
N

R
A
R
N

D
B
oo
l

15
3.

4
29

1.
2

−
−

17
3.

9
21

7
−

−
10

1
45

7.
4

−
−

C
oh

(P
)

17
9.

8
22

3.
2

0.
1

6
19

4.
5

18
3.

7
0.

1
5

13
5.

9
31

2.
2

0.
3

4.
5

S
im
p
(P

)
16

4.
8

25
1.

5
9.

7
−

17
9.

3
19

9.
9

5
−

10
9.

3
38

1.
7

3.
9

−
S
W

(P
)

67
.7

22
0.

1
−

−
47
.8

18
1.

4
−

−
66
.6

31
0.

7
−

−
C
oh

(µ
)

20
1.

1
19

4.
8

0.
2

7.
3

21
1.

2
16

6.
8

0.
2

5.
3

17
4.

3
23

5.
2

0.
2

6.
9

S
im
p
(µ

)
18

1.
2

22
0.

6
9.

5
-

19
5.

6
18

3.
8

5.
3

−
13

8.
6

30
0.

9
7.

3
−

S
W

(µ
)

76
.4

19
2.

7
−

−
50
.8

16
5

−
−

90
.8

23
3.

8
−

−

T
ab
le
8.
2:

St
at
is
ti
cs

fo
r
th
e
te
st

sc
en
es
.
F
P
S
is
th
e
nu
m
be
r
of

fr
am

es
pe
r
se
co
nd

,
D
N

is
th
e
nu
m
be
r
of

dr
aw

n
no
de
s,
R
A
R
N

is
th
e
nu
m
be
r
of

no
de
s
th
at

on
ce

re
nd

er
ed

in
a
gi
ve
n
fr
am

e
ne
ed

fu
rt
he
r
re
�n

em
en
t
w
it
hi
n
th
e
sa
m
e
fr
am

e
(o
nl
y

fo
r
C
oh

(P
),
S
im
p
(P

),
C
oh

(µ
)
an
d
S
im
p
(µ

))
an
d
D
is
th
e
nu
m
be
r
of

no
de
s
de
la
ye
d
fo
r
re
nd

er
in
g
(o
nl
y
fo
r
C
oh

(P
)

an
d
C
oh

(µ
))
.
A
ll
va
lu
es

ar
e
av
er
ag
es

ov
er

al
l
fr
am

es
.

61

8 Results and discussion

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700

1/
fr

am
e

tim
e

(=
 fp

s)

frame number

Scene 1
Bool

Coh(P)
Simp(P)

SW(P)

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700

dr
aw

n
no

de
s

frame number

Scene 1
Bool

Coh(P)
Simp(P)

SW(P)

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700

1/
fr

am
e

tim
e

(=
 fp

s)

frame number

Scene 2
Bool

Coh(P)
Simp(P)

SW(P)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 100 200 300 400 500 600 700

dr
aw

n
no

de
s

frame number

Scene 2
Bool

Coh(P)
Simp(P)

SW(P)

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

1/
fr

am
e

tim
e

(=
 fp

s)

frame number

Scene 3
Bool

Coh(P)
Simp(P)

SW(P)

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100 200 300 400 500 600 700

dr
aw

n
no

de
s

frame number

Scene 3
Bool

Coh(P)
Simp(P)

SW(P)

Figure 8.4: Drawn nodes and frame rates for the test scenes using bool, Coh(P), Simp(P)
and SW (P).

reason for the node savings obtained in Coh(P) respecting Bool was the use of VMSSE
instead of SSE within re�nement conditions (image quality results have been previously
discussed in Section 8.2). The bene�ts obtained from using VMSSE are more clearly
perceived in scenes having higher depth complexities where the number of node savings
is more important. The reason for the node savings obtained in Coh(P) respecting
Simp(P) was the tighter approximation it gave for the ideal number of nodes to be drawn,
relying on the method for approximating VMSSE ratio. Comparison with SW (P),
which does not use prediction, showed that Coh(P) gave more than 98% precision for
this number (see Table 8.3). It is also worth noting that Simp(P) precision depends on
scene depth complexity; it behaves poorly in scenes having higher depth complexities. A
similar analysis revealed comparable results for Coh(µ) respecting Simp(µ). However,
Coh(µ) gave even higher speedup over Bool than Coh(P), as expected.
The only source for visual artifacts inherent in the traversal algorithm (as opposed

to the VMSSE calculation) is the case when there is an important number of nodes

62

8.3 Speedup

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700

1/
fr

am
e

tim
e

(=
 fp

s)

frame number

Scene 1
Bool

Coh(µ)
Simp(µ)

SW(µ)

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700

dr
aw

n
no

de
s

frame number

Scene 1
Bool

Coh(µ)
Simp(µ)

SW(µ)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700

1/
fr

am
e

tim
e

(=
 fp

s)

frame number

Scene 2
Bool

Coh(µ)
Simp(µ)

SW(µ)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 100 200 300 400 500 600 700

dr
aw

n
no

de
s

frame number

Scene 2
Bool

Coh(µ)
Simp(µ)

SW(µ)

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700

1/
fr

am
e

tim
e

(=
 fp

s)

frame number

Scene 3
Bool

Coh(µ)
Simp(µ)

SW(µ)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100 200 300 400 500 600 700

dr
aw

n
no

de
s

frame number

Scene 3
Bool

Coh(µ)
Simp(µ)

SW(µ)

Figure 8.5: Drawn nodes and frame rates for the test scenes using bool, Coh(µ), Simp(µ)
and SW (µ).

(RARN) which need to be re�ned, even though they have already been rendered in
the same frame (see Section 7.1). Figures 8.6 and 8.7 have followed the same colouring
scheme described in the previous section to reveal this source for the appearance of visual
artifacts. It was always found that the value of RARN was negligible, unlike Simp(P)
and Simp(µ), in Coh(P) and Coh(µ) (see Table 8.2). The reason was that our delay
strategy for the nodes where the stop re�nement condition was predicted to be shifted
up (see Section 7.2.2) e�ectively minimised RARN without hindering performance; the
average number of nodes which were delayed for rendering in Coh(P) out of the total
number of drawn nodes for the three scenes were only 2.7%, 2.7% and 1.4%, respectively,
and the correspondent values in Coh(µ) for the three scenes were 3.8%, 3.2% and 3.1%,
respectively.

63

8 Results and discussion

Statistics Speedup Node Savings

Scenario scene1 scene2 scene3 scene1 scene2 scene3

Bool 17.2 11.8 34.6 23.4 15.3 31.7
Simp(P) 9.1 8.5 24.4 11.2 8.1 18.2
SW (P) 165.3 306.5 104.2 −1.4 −1.3 −0.5

Table 8.3: Relative average speedup and node savings statistics for the test scenes found
in Coh(P) respect to Bool, Simp(P) and SW (P). All values are percentages.

Statistics Speedup Node Savings

Scenario scene1 scene2 scene3 scene1 scene2 scene3

Bool 31.1 21.5 72.6 33.1 23.1 48.6
Simp(µ) 11 8 25.8 11.7 9.2 21.8
SW (µ) 163.2 316.1 91.9 −1.1 −1.1 −0.6

Table 8.4: Relative average speedup and node savings statistics for the test scenes found
in Coh(µ) respect to Bool, Simp(µ) and SW (µ). All values are percentages.

8.4 Summary of results

The results showed that our approach (Coh(P) and Coh(µ)) was superior respect to
previous state-of-the-art methods regarding frame-rate while keeping good visual qual-
ity. Compared to the method of Gobbetti et al., [GM05] (Bool), the reference solution
for image quality measurements, Coh(P) led to obtaining 17, 2%, 11.8% and 34.6% of
speedup for the three scenes, respectively, while Coh(µ) led to obtaining 31.1%, 21.5%
and 72.6% of speedup for the three scenes, respectively. Both speedups were signi�cant,
while the visual quality of our method did not incur a perceivable penalty, especially for
Coh(P) which gave better image quality results than Coh(µ) (average psnr values for
the 20 frames are presented in Table 8.1).
The following results were obtained by comparison with our former traversal algorithm

(Simp(P) and Simp(µ)). In comparison to Simp(P), the speedup for the three scenes
in Coh(P) was 9.1%, 8.5% and 24.4%, respectively. Compared to Simp(µ), the speedup
for the three scenes in Coh(µ) was 11%, 8% and 25.8%, respectively. However, this
technique (Simp(P) and Simp(µ)) showed frequent visual artifacts which might not
have been acceptable in walkthrough or inspection applications and which our latter
approach (Coh(P) and Coh(µ)) avoids. Our later approach was therefore qualitatively
superior while still managing to be faster.

64

8.4 Summary of results

Figure 8.6: Detail in the scenes to show the possible appearance of visual artifacts due to
RARN. Whilst the appearance of this visual artifacts is common in Simp(P),
this problem was practically eliminated in Coh(P).

65

8 Results and discussion

Figure 8.7: Detail in the scenes to show the possible appearance of visual artifacts due to
RARN. Whilst the appearance of this visual artifacts is common in Simp(µ),
this problem was practically eliminated in Coh(µ).

66

9 Conclusion

This thesis has presented a novel visibility-based re�nement error metric which supports
both polygon-based and point-based HLODs. A novel coherent HLOD culling algorithm
was also introduced which employed the introduced error metric to perform HLOD re-
�nement. Our traversal strategy allowed e�cient updating of the front of termination
nodes as well as e�cient scheduling of HOQs (from which the visibility information was
gathered). The main contributions found in our combined approach were:

1. Improved performance while keeping good visual quality: less primitives could be
rendered (whilst our occlusion culling technique still remained conservative) with
minimal loss in image quality. Moreover, the tradeo� between speedup and image
quality could be �ne tuned with the parameters provided by our proposed visibility-
based error metric, according to user needs.

2. Full use of HOQ results: our error metric took full advantage of the information
gathered in HOQs. To avoid HLOD re�nement being stopped at a level where
the geometric error was still apparent, a simple HOQ-based model was used which
took the degree of visibility of a given node into account. Moreover, our model
also attempted to exploit the visual masking perceptual phenomenon by taking
into account the possible distribution of the visible pixels comprising the regions
through which the geometry of the node was reachable (a feature not directly
supported by HOQs). Previous approaches have treated HOQs restrictively as if
their results were Boolean and they thus become too conservative.

3. Seamless integration between the common strategy for dealing with the latency
presented in HOQs, and the use of visibility information within re�nement criteria.
Our traversal algorithm minimised CPU stalls and GPU starvation by predicting
the HLOD re�nement condition with high precision using spatio-temporal coher-
ence of visibility. Moreover, our traversal algorithm prevented the appearance
of visual artifacts (caused by rendering over nodes previously rendered in wrong
LOD) and produced tight prediction for the front of termination nodes. The re-
sults indicated that the proposed method was very close to optimal HLOD and
HOQ integration respecting the scheduling of queries and the rendering of HLOD
geometry.

4. Straightforward implementation. Our approach can also be easily integrated into
existing HLOD-based systems supporting HOQs.

Future work will be aimed at improving the proof-of-concept implementation and re-
leasing the algorithm as an integral component of a visualisation system for complex

67

9 Conclusion

models. Plans are also being made for investigating the use of tighter bounding volumes
for HOQs.

68

Bibliography

[ARFPB90] Airey J. M., Rohlf J. H., Frederick P. Brooks J.: Towards image
realism with interactive update rates in complex virtual building environ-
ments. In SI3D '90: Proceedings of the 1990 symposium on Interactive 3D
graphics (New York, NY, USA, 1990), ACM Press, pp. 41�50.

[AS] Aim-Shape: The aim@shape shape repository. http://shapes.

aimatshape.net/.

[ASVNB00] Andújar C., Saona-Vázquez C., Navazo I., Brunet P.: Integrating
occlusion culling with levels of detail through hardly-visible sets. Computer
Graphics Forum (Proceedings of Eurographics '00), 3 (2000), 499�506.

[BH01] Bittner J., Havran V.: Exploiting coherence in hierarchical visibil-
ity algorithms. Journal of Visualization and Computer Animation 12, 5
(2001), 277�286.

[BM95] Bolin M. R., Meyer G. W.: A frequency based ray tracer. In SIG-
GRAPH '95: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 1995), ACM
Press, pp. 409�418.

[BMH98] Bartz D., Meiÿner M., Hüttner T.: Extending graphics hard-
ware for occlusion queries in opengl. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware (1998),
ACM Press.

[BWPP04] Bittner J., Wimmer M., Piringer H., Purgathofer W.: Coherent
hierarchical culling: Hardware occlusion queries made useful. Computer
Graphics Forum 23, 3 (Sept. 2004), 615�624.

[CBWR07] Charalambos J. P., Bittner J., Wimmer M., Romero E.: Opti-
mized hlod re�nement driven by hardware occlusion queries. In Advances
in Visual Computing (2007), Bebis G., Boyle R., Parvin B., Koracin D.,
Paragios N., Tanveer S.-M., Ju T., Liu Z., Coquillart S., Cruz-Neira C.,
Müller T., Malzbender T., (Eds.), vol. 4841 of LNCS, Springer, pp. 106�
117.

[CGG∗03] Cignoni P., Ganovelli F., Gobbetti E., Marton F., Ponchio F.,
Scopigno R.: BDAM � batched dynamic adaptive meshes for high perfor-
mance terrain visualization. Computer Graphics Forum 22, 3 (September
2003), 505�514.

69

http://shapes.aimatshape.net/
http://shapes.aimatshape.net/

Bibliography

[CGG∗04] Cignoni P., Ganovelli F., Gobbetti E., Marton F., Ponchio F.,
Scopigno R.: Adaptive TetraPuzzles � e�cient out-of-core construction
and visualization of gigantic polygonal models. ACM Transactions on
Graphics 23, 3 (August 2004). Proc. SIGGRAPH 2004.

[Cha06a] Charalambos J. P.: Coherent hierarchical level-of-detail (hlod) re�ne-
ment through hardware occlusion queries. In SIACG 2006 - Ibero-American
Symposium on Computer Graphics (July 2006), Universidad Santiago de
Compostela, Spain, Eurographics Association.

[Cha06b] Charalambos J. P.: Virtual multiresolution screen space errors: Hierar-
chical level-of-detail (hlod) re�nement through hardware occlusion queries.
In GMAI (2006), IEEE Computer Society, pp. 221�227.

[CKS03] Correa W. T., Klosowski J. T., Silva C. T.: Visibility-based
prefetching for interactive out-of-core rendering. In PVG '03: Proceedings
of the 2003 IEEE Symposium on Parallel and Large-Data Visualization and
Graphics (Washington, DC, USA, 2003), IEEE Computer Society, p. 2.

[Cla76] Clark J. H.: Hierarchical geometric models for visible surface algorithms.
Commun. ACM 19, 10 (1976), 547�554.

[COCSD02] Cohen-Or D., Chrysanthou Y., Silva C. T., Durand F.: A survey
of visibility for walkthrough applications. IEEE Transaction on Visualiza-
tion and Computer Graphics (2002).

[CT97] Coorg S., Teller S.: Real-time occlusion culling for models with large
occluders. In SI3D '97: Proceedings of the 1997 symposium on Interactive
3D graphics (New York, NY, USA, 1997), ACM Press, pp. 83��.

[DDTP00] Durand F., Drettakis G., Thollot J., Puech C.: Conservative
visibility preprocessing using extended projections. Proceedings of SIG-
GRAPH 2000 (July 2000). Held in New Orleans, Louisiana.

[Dur00] Durand F.: A multidisciplinary survey of visibility, 2000.

[EMWVB01] Erikson C., Manocha D., William V. Baxter I.: Hlods for faster
display of large static and dynamic environments. In SI3D '01: Proceedings
of the 2001 symposium on Interactive 3D graphics (New York, NY, USA,
2001), ACM Press, pp. 111�120.

[ESSS01] El-Sana J., Sokolovsky N., Silva C. T.: Integrating occlusion culling
with view-dependent rendering. In Proceedings of the conference on Visu-
alization '01 (2001), pp. 371 � 378.

[FS93] Funkhouser T. A., Sequin C. H.: Adaptive display algorithm for inter-
active frame rates during visualization of complex virtual environments. In
SIGGRAPH '93: Proceedings of the 20th annual conference on Computer

70

Bibliography

graphics and interactive techniques (New York, NY, USA, 1993), ACM
Press, pp. 247�254.

[FSPG97] Ferwerda J. A., Shirley P., Pattanaik S. N., Greenberg D. P.: A
model of visual masking for computer graphics. In SIGGRAPH '97: Pro-
ceedings of the 24th annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 1997), ACM Press/Addison-Wesley
Publishing Co., pp. 143�152.

[GBK03] Guthe M., Borodin P., Klein R.: E�cient view-dependent out-of-core
visualization. In The 4th International Conference on Virtual Reality and
its Application in Industry (VRAI'2003) (October 2003).

[GBK06] Guthe M., Balázs Á., Klein R.: Near optimal hierarchical culling:
Performance driven use of hardware occlusion queries. In Eurographics
Symposium on Rendering 2006 (June 2006), Akenine-Möller T., Heidrich
W., (Eds.), The Eurographics Association.

[GH97] Garland M., Heckbert P. S.: Surface simpli�cation using quadric er-
ror metrics. In SIGGRAPH '97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques (New York, NY, USA,
1997), ACM Press/Addison-Wesley Publishing Co., pp. 209�216.

[GKM93] Greene N., Kass M., Miller G.: Hierarchical z-bu�er visibility. In
Proceedings of SIGGRAPH '93 (1993), Computer Graphics Proceedings,
Annual Conference Series, ACM SIGGRAPH, pp. 231�238.

[GM05] Gobbetti E., Marton F.: Far Voxels � a multiresolution framework for
interactive rendering of huge complex 3d models on commodity graphics
platforms. ACM Transactions on Graphics 24, 3 (August 2005), 878�885.
Proc. SIGGRAPH 2005.

[GW01] Gonzalez, Woods: Digital Image Processing, 2nd edition. Prentice Hall,
2001.

[HGJ03] Ha H., Gregorski B., Joy K. I.: Out-of-core interactive display of
large meshes using an oriented bounding box-based hardware depth query.
Computer Graphics Forum 22, 3 (2003).

[HMC∗97] Hudson T., Manocha D., Cohen J. D., Lin M. C., Hoff III K. E.,
Zhang H.: Accelerated occlusion culling using shadow frusta. In Pro-
ceedings of the 14th ACM Symposium on Computational Geometry (1997),
pp. 1�10.

[Hop96] Hoppe H.: Progressive meshes. Computer Graphics 30, Annual Confer-
ence Series (1996), 99�108.

71

Bibliography

[Hop97] Hoppe H.: View-dependent re�nement of progressive meshes. Computer
Graphics 31, Annual Conference Series (1997), 189�198.

[KB05] Kim C. Y., Blake R.: Psychophysical magic: rendering the visible
'invisible'. Trends Cogn Sci 9, 8 (August 2005), 381�388.

[KL01] Kim J., Lee S.: Truly selective re�nement of progressive meshes. In Pro-
ceedings of Graphics Interface 2001 (2001), Watson B., Buchanan J. W.,
(Eds.), pp. 101�110.

[KS99] Klosowski J. T., Silva C. T.: Rendering on a budget: a framework
for time-critical rendering. In VIS '99: Proceedings of the conference on
Visualization '99 (Los Alamitos, CA, USA, 1999), IEEE Computer Society
Press, pp. 115�122.

[KS00] Klosowski J. T., Silva C. T.: The prioritized-layered projection algo-
rithm for visible set estimation. IEEE Transaction on Visualization and
Computer Graphics (2000), 108�123.

[KS01] Klosowski J. T., Silva C. T.: E�cient conservative visibility culling
using the prioritized-layered projection algorithm. IEEE Transactions on
Visualization and Computer Graphics 7, 4 (2001), 365�379.

[LE97] Luebke D., Erikson C.: View-dependent simpli�cation of arbitrary
polygonal environments. Computer Graphics 31, Annual Conference Series
(1997), 199�208.

[Lin03] Lindstrom P.: Out-of-core construction and visualization of multireso-
lution surfaces. In SI3D '03: Proceedings of the 2003 symposium on Inter-
active 3D graphics (New York, NY, USA, 2003), ACM Press, pp. 93�102.

[LP01] Lindstrom P., Pascucci V.: Visualization of large terrains made easy.
In VIS '01: Proceedings of the conference on Visualization '01 (Washing-
ton, DC, USA, 2001), IEEE Computer Society, pp. 363�371.

[LPC∗00] Levoy M., Pulli K., Curless B., Rusinkiewicz S., Koller D.,
Pereira L., Ginzton M., Anderson S., Davis J., Ginsberg J.,
Shade J., Fulk D.: The digital michelangelo project: 3d scanning of
large statues. In SIGGRAPH '00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques (New York, NY,
USA, 2000), ACM Press/Addison-Wesley Publishing Co., pp. 131�144.

[Lue01] Luebke D. P.: A developer's survey of polygonal simpli�cation algo-
rithms. IEEE Comput. Graph. Appl. 21, 3 (2001), 24�35.

[LWC∗02] Luebke D., Watson B., Cohen J. D., Reddy M., Varshney A.:
Level of Detail for 3D Graphics. Elsevier Science Inc., New York, NY,
USA, 2002.

72

Bibliography

[MCC∗99] Mirin A. A., Cohen R. H., Curtis B. C., Dannevik W. P., Dimits
A. M., Duchaineau M. A., Eliason D. E., Schikore D. R., Ander-
son S. E., Porter D. H., Woodward P. R., Shieh L. J., White
S. W.: Very high resolution simulation of compressible turbulence on the
IBM-SP system.

[Net89] Netravali A.: *Digital Pictures, Representation and Compression*.
Plenum, 1989.

[Pas02] Pascucci V.: Slow growing subdivision (sgs) in any dimension: Towards
removing the curse of dimensionality. Comput. Graph. Forum 21, 3 (2002).

[PS97] Puppo E., Scopigno R.: Simpli�cation, lod and multiresolution, prin-
ciples and applications. Computer Graphics Forum (Proceedings of Euro-
graphics 1997) (1997).

[RL00] Rusinkiewicz S., Levoy M.: Qsplat: a multiresolution point ren-
dering system for large meshes. In SIGGRAPH '00: Proceedings of the
27th annual conference on Computer graphics and interactive techniques
(New York, NY, USA, 2000), ACM Press/Addison-Wesley Publishing Co.,
pp. 343�352.

[SA04] Segal M., Akeley K.: The OpenGL Graphics System: A Speci�cation
(Version 2.0), 2004. http://www.opengl.org.

[SDDS00] Schaufler G., Dorsey J., Decoret X., Sillion F. X.: Conservative
volumetric visibility with occluder fusion. In SIGGRAPH '00: Proceed-
ings of the 27th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 2000), ACM Press/Addison-Wesley Pub-
lishing Co., pp. 229�238.

[SU] Standford-University: The stanford 3d scanning repository. http:

//graphics.stanford.edu/data/3Dscanrep.

[TM02] Taubman D., Marcellin M. W.: JPEG2000 Image Compression, Fun-
damentals, Standards and Practice. Kluwer Academic Publishers, 2002.

[TS91] Teller S. J., Séquin C. H.: Visibility preprocessing for interactive
walkthroughs. In SIGGRAPH '91: Proceedings of the 18th annual con-
ference on Computer graphics and interactive techniques (New York, NY,
USA, 1991), ACM Press, pp. 61�70.

[VM02] Varadhan G., Manocha D.: Out-of-core rendering of massive geometric
datasets. In VIS '02: Proceedings of the conference on Visualization '02
(Washington, DC, USA, 2002), IEEE Computer Society.

[Wik07] Wikipedia: Rendering (computer graphics) � Wikipedia, the free en-
cyclopedia, 2007. [Online; accessed 25-July-2007] http://en.wikipedia.
org/wiki/Rendering_(computer_graphics).

73

http://www.opengl.org
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)

Bibliography

[XESV97] Xia J. C., El-Sana J., Varshney A.: Adaptive real-time level-of-detail-
based rendering for polygonal models. IEEE Transactions on Visualization
and Computer Graphics 3, 2 (1997), 171�183.

[YSGM04] Yoon S.-E., Salomon B., Gayle R., Manocha D.: Quick-vdr: Inter-
active view-dependent rendering of massive models. In VIS '04: Proceed-
ings of the conference on Visualization '04 (Washington, DC, USA, 2004),
IEEE Computer Society, pp. 131�138.

[ZMHH97] Zhang H., Manocha D., Hudson T., Hoff III K. E.: Visibility
culling using hierarchical occlusion maps. In Proceedings of SIGGRAPH
'97 (1997), Computer Graphics Proceedings, Annual Conference Series,
ACM SIGGRAPH, pp. 77�88.

74

	Introduction
	Historical notes
	Problem domain of this thesis
	Purpose and outline of this thesis

	Real-time visualisation of complex models
	Level-of-detail (LOD)
	View-dependent LOD
	LOD selection factors
	Distance
	Size
	Screen space error
	Visibility
	Visual masking
	Other factors

	Occlusion culling

	Hierarchical levels of detail (HLOD)
	HLOD notion
	Properties
	Refinement criteria: model and screen space errors

	Hardware Occlusion Queries (HOQs)
	HOQ mechanism
	Properties of HOQs
	Advantages and disadvantages of HOQs

	Coherent hierarchical culling (CHC)
	CHC traversal algorithm
	Front of termination nodes

	HLOD refinement driven by HOQs
	Motivation
	Challenges
	A novel visibility-based refinement error metric
	A novel HLOD traversal algorithm

	Virtual multiresolution screen space errors
	Notions and notation
	Visibility-based refinement strategy
	Visibility-based HLOD refinement condition
	Image quality loss minimisation
	VMSSE ratio sigmoid approximation
	VMSSE ratio linear approximation

	Visibility-based HLOD culling algorithm
	Visibility-based HLOD traversal
	Predicting the HLOD refinement condition
	Approximation of the degree of visibility of the node
	Coherency of the front of termination nodes

	Results and discussion
	Tests
	Image quality
	Speedup
	Summary of results

	Conclusion
	Bibliography

