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Abstract

In this paper we present a novel framework for the vi-
sualization and reconstruction from non-uniform point
sets. We adopt a variational method for the reconstruc-
tion of 3D non-uniform data to a uniform grid of cho-
sen resolution. We will extend this reconstruction to
an efficient multi-resolution uniform representation of
the underlying data. Our multi-resolution representa-
tion includes a traditional bottom-up multi-resolution
approach and a novel top-down hierarchy for adaptive
hierarchical reconstruction. Using a hybrid regulariza-
tion functional we can improve the reconstruction re-
sults. Finally, we discuss further application scenarios
and show rendering results to emphasize the effective-
ness and quality of our proposed framework. By means
of qualitative results and error comparisons we demon-
strate superiority of our method compared to competing
methods.

Keywords:Non-uniform Representation, Multi-
resolution, Variational Reconstruction, Regularization.

1 Introduction

The traditional sources of volumetric data are simula-
tions as well as data acquisition devices on uniform
(Cartesian) lattices. In an effort to study larger and more
complex problems, there has been a move toward non-
uniform data representation, since they offer a way of
adapting the measure location (or sample points) ac-
cording to the importance (variance) of the data. Ex-
amples include a) simple data loss during data commu-
nication in sensor networks, b) Doppler measurements
or other novel acquisition models (polar or spiral) for
tomography and magnetic resonance imaging, and c)
adaptive and moving mesh approaches in mathematical
simulations in the physical sciences.

While the acquisition of data on non-uniform grids has
become wide-spread, the available tools for processing,

filtering, analysis, and rendering of data are most effi-
cient on uniform representations. Hence, there are two
competing efforts to deal with non-uniform data: a) cre-
ate novel and efficient tools that directly work on them,
or b) convert the non-uniform representation into an ef-
ficient intermediate uniform representation and apply
standard tools. Both approaches have advantages and
disadvantages. In this paper we make a contribution
towards the latter approach. Among other things, this
will allow us to better exploit the capabilities of mod-
ern GPUs. In Section 2 we will contrast these two ap-
proaches further and review alternative works.

In order to find the best way to capture the non-uniform
data onto a uniform grid, we first need to analyze the
nature of the given data. While one reason for non-
uniformity is the ability to capture different scales of
information density (e.g. mathematical simulation of
shock waves), another reason for non-uniform data rep-
resentations could come from imprecise measurement
devices (e.g. ultrasound) or sparse representations (e.g.
compressive sensing). While in the former case multi-
resolution representations might be most suitable, in the
latter case a single flat representation might be all that
is needed. Therefore, we develop some heuristics, based
on a statistical analysis, to adapt to either scenario.

In this paper we propose a uniform representation con-
sisting of B-spline coefficients which define aC2 con-
tinuous function across the whole volume. Our main
contributions are:a) a statistical approach for select-
ing the resolution of reconstruction for non-uniform
datasets (Section 4.1),b) a bottom-up multi-resolution
pyramid (Section 4.2),c) a novel top-down adaptive
multi-resolution scheme (Section 4.3), andd) a novel
hybrid regularization functional for the variational ap-
proach leading to improved accuracy (Section 5).

We compare our approaches with similar approaches,
that perform a resampling of the data domain on a va-
riety of different data sets (Section 6). Conclusions and
ideas for future work are summarized in Section 7.
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2 3 VARIATIONAL RECONSTRUCTION BASICS

2 Related Work

There is a considerate body of literature on the rendering
of non-uniform data without any resampling steps (see
e.g. [?, 27, 21, 18]). While there are very good reasons
to adapt such an approach for rendering, we postulate
here that an intermediate transformation onto a regular
data structure opens up the possibilities for much more
sophisticated data processing in general and henceforth
focus on such a pipeline.

A number of approaches have been proposed for the re-
construction of non-uniformly sampled data, especially
for one- and two-dimensional signals. Most of the meth-
ods are based on the reconstruction of the data by solv-
ing large systems of equations [11, 12]. However, their
use of basis functions with infinite support makes them
impractical to use for real-time visualization applica-
tions, where finite support reconstruction kernels are
desired. Nielson [19] presented an overview of several
approximation techniques for non-uniform point sets.
While each technique performs best only in particular
cases, the use of local compact operators is considered
the fastest approach.

The necessity of basis functions with infinite support
comes from a desire of reconstructing bandlimited sig-
nals. Unser [25] suggests to replace the concept of band-
limitedness by minimum-error projection on a space of
shift-invariant functions. A more general overview on
modern non-uniform reconstruction techniques in shift-
invariant spaces has been summarized by Aldroubi and
Gröchenig [1].

Perhaps the most popular shift-invariant spaces are
based on Radial Basis Functions (RBFs). They have
been used for surface [2, 20, 7] as well as volumet-
ric [14, 13, 28] approximation and reconstruction tech-
niques. Our focus is on volumetric data.

Jang et al.’s [14] method is formulated as an iterative
algorithm for finding the centers and weights of the
RBFs using a PCA-based clustering technique applying
truncated Gaussians as basis functions. This technique
suffers from high-encoding times and is suited best
for locally isotropic structures. Later they [13] adapt
their technique to ellipsoidal basis functions (EBFs).
The high computational cost is still the main bottle-
neck of this approach. Welsh and Mueller [28] intro-
duce a method for converting regular volumes to non-
uniform spherical and ellipsoidal Gaussian RBFs and
render them via splatting.

Our approach uses B-splines as basis functions. B-
splines, with their smoothness and compact support, of-
fer optimal conditions for fast and accurate reconstruc-
tion results. They are related to RBF-based approaches

since B-splines are very good approximators of thin-
plate splines, which in turn are widely used RBFs in
approximation theory. Further, our B-spline basis will
be anchored on a regular grid, preventing the need to
store the grid geometry explicitly and opening the door
for efficient multi-resolution representations.
Arigovindan et al. [3] proposed to use B-splines in
a multi-grid framework for the reconstruction of non-
uniform 2D data. Vuçini et al. [26] extended these ideas
for 3D volumes and proposed a block-based variational
reconstruction technique for large datasets. In this paper
we build on these ideas.
Multi-resolution approaches have been introduced to
improve the rendering speed as well as the quality of
the data representation adaptively while minimizing the
memory overhead [22]. Generally, the visual importance
of the local data points is based on the distance to the
viewer and other user-selected criteria. Cignoni et al. [8]
propose a multi-resolution technique for rendering tetra-
hedral meshes with scattered vertices obtained from any
3D data. Lamar et al. [16] present an adaptive multi-
resolution rendering technique based on a hierarchical
octree scheme. Entezari et al. [10] propose a multi-
resolution approach using wavelet concepts and alter-
nate lattices.
Based on the data structure, multi-resolution schemes
can be divided into regular schemes [16] (e.g., oc-
trees) and irregular schemes [15] (e.g., adaptively re-
fined meshes). Our scheme adopts concepts from both
classes. It is a multi-level hierarchy where the first level
represents the coarse resolution and has a regular rep-
resentation. Additional levels encode the errors and are
refined adaptively. The structure of the refined cells is
again regular.
The proper continuous interpolation between differ-
ent octree levels has remained a challenge in multi-
resolution volume rendering. Beyer at al. [5] minimize
rendering artifacts between block-boundaries by over-
lapping data blocks. Ljung et al. [17] propose a multi-
resolution interblock interpolation that permits extreme
changes in resolution across block boundaries. All these
approaches ensure only aC0 continuity in their render-
ing algorithms. The multi-resolution function in our ap-
proach is a hierarchical sum ofC2 continuous functions,
ensuring theC2 continuity over the entire domain.

3 Variational Reconstruction Ba-
sics

Variational reconstruction is a well-known technique
applied to solving ill-posed problems such as the recon-
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struction from non-uniform point sets. The variational
functional is formulated as the sum of two terms:a) the
sum of squared errors, andb) the regularization term
that controls the smoothness of the solution. The first
part guarantees that the solution is close to the sample
points, while the second part ensures that there are no
discontinuities in the reconstruction.
Given a set of sample points,pi = (xi ,yi ,zi), i =
1,2, . . . ,M, let fi be the scalar values associated withpi .
We define the B-spline approximation through the form:

F(p) =
N−1

∑
k=0

ckβ 3(p−k) (1)

whereβ 3(p) is the tensor product of cubic B-spline ba-
sis functions and where we denoteN = (Nx,Ny,Nz) the
resolution of the axis-aligned bounding box of our non-
uniform data set. Although cubic B-splines do not enjoy
the interpolation property, they have the maximal order
of approximation for a given integer support, providing
the best quality for a given computational cost [23]. In
order to find the coefficientsck the following cost func-
tion is minimized:

C(F) =
M

∑
i=1

‖F(pi)− fi‖
2+λ

∫∫∫
‖DpF‖2dxdydz (2)

where λ is a parameter that controls the smoothness
and the second term is the regularization term that uses
Duchon’s seminormsDpF [9].
The key idea of the variational reconstruction is to ex-
press the second term of Eq. 2 by means of the first term
and then minimize the errorC(F) with regard to the B-
spline coefficientsck in Eq. 1. Once we solve the equa-
tion, we haveNx×Ny×Nz B-spline coefficients defined
at each reconstruction-grid position. We can compute
F(p) (a C2-continuous function) at any position inside
the volume, using a 64 point neighborhood using Eq. 1.
For a deeper insight into the method we refer the reader
to Arigovindan [3].

4 Single and Multi-Resolution Re-
construction

The key issue in resampling a non-uniform point set into
a uniform representation is the selection of resolution.
This will be the central question we are trying to answer
in this section. We first assume that we only afford a
single resolution and we make suggestions on how this
resolution can be best obtained. This is applicable for
non-uniform data, where the distribution of samples is
even (in the sense of a discrepancy measure), e.g., ultra-
sound data or seismic data.

4.1 Single Resolution

Increasing the resolution results in a decrease of the
error, since the oscillations of the data can be cap-
tured with more precision. Finding the optimal resolu-
tion (Nx ×Ny ×Nz) would therefore require estimating
the error. We propose to do so by simply looking at the
error within a single grid cell. If there are many non-
uniform points crammed into a cell, and their standard
deviationσk is too large, we should be alarmed. There-
fore, we propose to use the average standard deviation,
defined as:

σavg =
∑N−1

k=0 σk

Nx ·Ny ·Nz
(3)

as an indicator for the proper uniform grid resolution.

In Section 6.1 we analyze a number of data sets in or-
der to arrive at a reasonable threshold. Our idea is mo-
tivated by the strong correlation observed between the
reconstruction error and the average standard deviation
of point values.

4.2 Bottom-up Multi-Resolution Pyramid
(BMRP)

There are many scenarios where we observe a large vari-
ance in the density of the data points. Hence, finding a
single resolution to minimize the error in a uniform rep-
resentation leads to very large data sets with lots of re-
dundancy. In such a case, it is typical to encode the data
in a multi-resolution pyramid. One usually starts with
the highest resolution and gradually finds coarser repre-
sentations. To tackle this problem we propose a multi-
resolution scheme based on the interscale relation of the
B-splines of odd degree:

β n(
x
2 j ) = ∑h(k)β n(

x
2 j−1 −k) (4)

whereh(k) is the binomial filter [4].

We consider a 3D signal being represented by a set of
coefficientsc( j) at scalej:

F( j)(p)=

N−1
2 j

∑
k=0

c( j)
k β 3(

p
2 j −k) (5)

Using results from multi-resolution analysis the same
signal can be represented at a finer scale( j −1) by the
coefficientsc( j−1), which are obtained by first upsam-
pling c( j) and then filtering withh(k). In the same fash-
ion, by using the inverse transform of Eq. 4 we can fil-
ter and downsample thec( j) to get a projection of these
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coefficients to the space spanned by the coarser coeffi-
cientsc( j+1). For a specific scalej we denote the up-
sampling and downsampling process byU j andD j re-
spectively.
We initially estimate the coefficients at the finest resolu-
tion and then process them to create a top-down hierar-
chy of coarser resolutions. We obtain the coefficients of
the coarser resolution (j +1) by downsampling from the
finer resolution (j): c( j+1) = D jc( j). Ignoring the finer
resolution completely, would create an error at scale( j),
i.e., e( j) = c( j) −U jc( j+1). By saving the coarser scale
coefficients and also part of the error volumes (where
the error is high) we can reconstruct the data at a finer
resolution with little or no error.
For example, for a signal which we want to reconstruct
with the finest resolution ofNx ×Ny ×Nz, using three
levels of hierarchy, we first estimate the finest coeffi-
cientsc(0) by minimizing Eq. 2. Then, by using the in-
terscale relation we estimatec(1) andc(2), as well ase(0)

ande(1). In our scheme we save onlyc(2) and parts of

e(0) ande(1), which we denotee(0)
p ande(1)

p . When visu-
alizing the data, we can either use the coefficientsc(2)

for a coarse resolution representation, or the approxi-

mationsc̃(1) = U1c(2) +e(1)
p or c̃(0) = U0c̃(1) +e(0)

p for a
finer resolution representation.
This approach requires an explicit intermediate repre-
sentation of the finest resolution, which might not be
feasible computationally. Hence, we propose a novel al-
gorithm to build an adaptive multi-resolution data struc-
ture.

4.3 Adaptive Multi-Resolution (AMR)

Whenever ourσavgdemands a resolution that is too large
to handle directly, we decide to create a multi-resolution
representation starting from the coarse resolution first.
This prevents us from having to compute the highest
resolution explicitely. Estimating a reasonable coarse
resolution is typically tied to hardware constraints: one
should not choose a very high resolution, such that
it compromises real-time rendering or analysis perfor-
mance, yet, it should not be too coarse to avoid storing
too many levels in the hierarchy. We call this maximum
resolutionNmax. Next, we determine whether each cell
of the coarse resolution should be subdivided or not, i.e.,
whether it is composite or not. This is done based on an
error criterion. These steps applied recursively will cre-
ate a multi-resolution hierarchy, that adapts to the vari-
ance in the data. What follows is pseudo-code outlining
this algorithm as well as the procedure to use the multi-
resolution hierarchy to determine the value of the func-
tion. We will use the notation introduced in Section 3.

Procedure 1 c( j)
V = AMR(Volume V, point setPV with

valuesfV , level j)
1: determine the resolution N for volume V (≤ Nmax)
2: determine the B-spline representationFV with coef-

ficientscV

3: for all cells U of grid Vdo
4: estimate reconstruction errorεU = FV − fV of all

pointsPU inside the cell U
5: if (εU is too large) AND (|PU | > M̃) then
6: c( j+1)

U = AMR(U, PU with valuesεU , level j +
1)

7: end if
8: end for

Procedure 2 Evaluate FunctionFV at (x,y,z) for Vol-
ume V

1: evaluateFV(x,y,z) by using coefficientscV

2: if (x,y,z) is in composite cell Uthen
3: Evaluate FunctionFU at (x,y,z) for Volume U
4: returnFV(x,y,z)+FU (x,y,z)
5: else
6: returnFV(x,y,z)
7: end if

Procedure 1 starts by determining the resolution of the
volume V (line 1). This is done based on theσavg as-
sumption. However, the chosen resolution cannot ex-
ceed a maximum resolutionNmax. Given a resolution we
can then determine the B-spline coefficientscV for this
resolution using Equation 2 (line 2). For each cell of this
resolution, we will determine whether we should recur-
sively subdivide (line 5). This is based on the cell recon-
struction error (computed in line 4) as well as whether
the number of points in the cell is above a thresholdM̃.
Once we determine that we should subdivide the given
cell, we only reconstruct the error function (FV − fV ) in
line 6.

Procedure 2 is used during the raycasting process. It
choses the B-spline coefficients to use in Eq. 1 accord-
ingly. If the point is in a composite cell, it recursively
adds the error estimation of each level of the hierarchy.

5 Improving Regularization

Regularization provides a framework for converting ill-
posed problems into well-posed ones by restricting the
domain of possible solutions via smoothing constraints.
Arigovindan et al. [3] suggest using Duchon’s semi-
norms (DpF) for regularization. Forp = 1 and p = 2
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this norm yields a minimization of an energy func-
tional associated with a membrane and a plate model re-
spectively [9]. Here, we propose a hybrid regularization
functional in order to reduce reconstruction errors for
anisotropic signals. The main motivation for this idea
lies in the fact that cubic B-splines have a better re-
sponse to high frequencies, that can be detected and pre-
served by convolving the signal with a Laplacian regu-
larization kernel [25]. The regularization functional con-
sists of the sum of second degree derivatives when cubic
B-splines are used as a basis function for reconstruction:

R2(F,λ ) =λ
∫∫∫

(d2
xF)2 +(d2

yF)2 +(d2
zF)2dxdydz

(6)
where (d2

xF)2, (d2
yF)2 and (d2

zF)2 are the directional
second degree derivatives ofF . In order to deal with
anisotropic characteristics we extend Eq. 6, so that we
can achieve a different regularization in each direction.

R2(F,λx,λy,λz)=
∫∫∫

λx(d
2
xF)2+λy(d

2
yF)2+λz(d

2
zF)2dxdydz

(7)
Eq. 7 provides a very good application scenario in cases
when we have apriori knowledge of the directional vari-
ance of the data we are reconstructing. In other cases, we
suggest a pre-estimation of the variance of directional
gradients and hence settingλx, λy, λz accordingly to an
inversely proportional formula. A high variance in the
x-direction for example, means we should set a lower
λx and vice-versa.

6 Implementation and Results

Our test platform is an Intel Dual Core 2.70 GHz proces-
sor machine with 6GB of RAM. We tested our frame-
work on several data either given from originally non-
uniform data, or obtained by taking Laplacian points
from a uniform dataset [26]. Unless stated otherwise our
testings are done using Eq. 6 where we setλ = 0.3. In
order to evaluate the quality of our reconstruction, we
use the Root Mean Square error (RMS) defined as fol-
lows:

RMS=

√
∑M

i (F(xi ,yi ,zi)− fi)2

M
×

100
MaxValue

(8)

whereMaxValue is the maximum value in the given point
set.

6.1 Determining the threshold σavg

In order to determine an appropriate resolution for a uni-
form grid representation of our non-uniform data points,

we would ideally vary the value ofNx, reconstruct us-
ing this resolution and measure the error (Ny and Nz

are determined by the proper aspect ratio of our un-
derlying axis-aligned bounding box enclosing the given
non-uniform data points). Unfortunately, this is compu-
tationally infeasible. Hence, in the search for a good
heuristic, we did indeed reconstruct a number of test
data sets under various resolutions and measured the re-
construction RMS of the point set as well as the average
variance of point values (as opposed to the reconstruc-
tion error) in each cell, according to Equation 3. The re-
sulting relationship for the Bypass data set can be seen
in Fig. 1. We found a similar relationship in all test data
sets (a complete listing can be found in Fig. 7 and Fig. 8
in the supplemental material.)

Based on this analysis, we suggest, that a value of
σavg = 0.05 yields a low RMS. In order to use this ef-
fectively for an unknown data set, we start from a low
value ofNx and increase it until the value ofσavg falls
below the desired value (σavg monotonically decreases
with the increase of resolution). Typically we doubleNx

in each step, usingNx = 8 as a starting resolution. Once
σavg has a value lower than the specified threshold we
then refine the exact value ofNx with a binary-search
method.

Arigovindan et al. [3] suggested a heuristic such that
the number of uniform points is 4-5 times the number of
non-uniform points (i.e.,Nx ·Ny ·Nz ≈ 5 ·M). With our
heuristic, on the other hand, we sometimes find a four-
time sparser representation to be good enough.

0 0.5 1 1.5 2
0

1

2

3

4

Average Standard−Deviation

R
M

S
 E

rr
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Figure 1: Graph showing relation of RMS toσavg for the
Bypass dataset. A hairline shows the suggested thresh-
old of σavg
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6.2 Single-Resolution and Improving Reg-
ularization

A GPU-based raycaster is implemented for the single
resolution rendering. The renderer is developed inside
the VolumeShop platform [6]. The rendering integral is
evaluated at each point along the ray by using Eq. 1.
On the fly gradient estimation is used by taking partial
derivatives of the function defined in Eq. 1 and apply-
ing the fact that the derivative of a B-spline of degreen
is a B-spline of degreen−1 [24]. It can be defined as
follows:

∂β n(x)
∂x

= β n−1(x+
1
2
)−β n−1(x−

1
2
) (9)

Table 1 compares our hybrid regularization to the
method presented in [26]. We used uniform data, com-
puted and thresholded their Laplacian to keep 20% of
the original points and reconstructed the complete uni-
form data set from this sparse representation. We ob-
serve a 20%-60% improvement in the reconstruction er-
ror compared to the results Vuçini et al. [26] present in
their work.

Table 2 compares our method to the work presented by
Jang et al. [14, 13]. Our method has lower reconstruc-
tion errors and improves computation time by several
orders of magnitude.

Table 1: RMS errors and computation times (in min-
utes) for different non-uniform datasets created by tak-
ing 20% of Laplacian points from their original uniform
representation. Here we use our hybrid regularization
(Eq. 6) with λ = 0.3, while in [26] the results are ob-
tained by using Duchon’s regularization andλ = 1.0.

Dataset RMS and Times (min)

Name Size Our method [26]

Engine 256x256x128 0.94 — 1.28 2.24 — 1.28
Tooth 256x256x160 0.18 — 1.88 0.23 — 1.88
CT-Head 256x256x224 1.17 — 2.60 2.93 — 2.60
CT-Chest 394x394x240 0.60 — 5.08 1.31 — 5.08
Carp 256x256x512 0.25 — 5.73 0.50 — 5.73

So far we computed the error only at the points used for
the reconstruction (the input-points). However, an im-
portant measure of the quality of reconstruction is the
quality of the reconstruction at other locations. Since
the ground truth is not given, this is typically hard to
evaluate. Instead we took a dataset given on a uniform
grid, created a non-uniform version by removing 80%
of its values (according to a Laplacian threshold) and
reconstructed it on the original grid. In Fig. 2 we show

such a scenario using the Laplacian points from the
Tooth dataset. We compute the errors at the non-uniform
points used for the reconstruction as well as at all the
original uniform data points. While our approach has
the same error rates in both cases, Jang et al. [14, 13]
show a significant increase in the reconstruction error at
the non-input points, which is quite visible.

The Synthetic Chirp is a synthetic radial sinusoidal wave
with a spatial frequency that decreases from the cen-
ter to the edges. We create a non-uniform point set by
evaluating the Chirp function for 75,000 random points.
The function is changing very fast in thexy plane (the
screen plane), while it is changing very slowly along the
zaxis. In order to reduce the reconstruction error a lower
smoothness control along thexy plane is required. In
Fig. 3 we show the original dataset, our reconstruction
with a regularization term as defined in Eq. 6 as well
with a directional regularization term as defined in Eq.
7. All three cases were reconstructed on a 64×64×64
grid, selected based on theσavg threshold. There is a
clear improvement in the visual quality when directional
regularization is used; the error is reduced by 54%.

6.3 Bottom-up Multi-Resolution Pyramid

In order to implement our BMRP scheme we need to
find an error threshold, that determines which detail co-
efficients to keep. In our experiments we found that
keeping 20% of the coefficients with the highest error
in each level is a good trade-off between storage over-
head and accuracy. Although these error coefficients can
be anywhere in the volume, they are still located on a
uniform grid. Hence, using a run-length encoding data
structure, we found that for 20% of the points of a uni-
form dataset we need approximately 40% of the storage
required for the entire uniform dataset.

The Bypass dataset consists of 421 timesteps of a sim-
ulation from a laminar-turbulent transition in a bound-
ary layer that is subject to free stream turbulence.
Each timestep is represented by 7,929,856 non-uniform
points in a curvilinear grid with uniform spacing across
the x and z axes and with non-uniform spacing along
the y axis. The visualization of this simulation is of
great importance to better analyze how the ”bypass”
of the Tollmien-Schlichting (TS) waves develops. In
Fig. 4 we show timestep 360 from this dataset (fo-
cusing on the ”bypass” process, i.e., the creation of
vortex-shape structures) reconstructed with our BMRP
approach. There is a visible difference in the level of
detail in the different resolutions. The file size for sav-
ing c(2), e(0)

p , ande(1)
p together is 49% of the size of the

non-uniform dataset. In Fig. 5 we show the relation of
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Table 2: RMS errors and computation times (in minutes) for different non-uniform datasets for our approach, the
method in [14] and in [13]. Size (MB) in the third and fifth column shows the storage (in megabyte) required for
the non-uniform dataset and the reconstructed dataset, respectively. The resolutions in our approach are selected
based on theσavg threshold.

Dataset RMS and Times (min)

Name Points Size(MB) Resolution Size(MB)Our method [14] [13]

Oil 29,094 0.44 38x40x38 0.22 0.19 — 0.07 1.02 — 1.10 1.08 — 0.21
Natural Convection 68,921 1.05 61x61x61 0.870.63 — 0.07 1.51 — 6.95 1.41 — 4.16
Synthetic Chirp 75,000 1.14 64x64x64 1.001.12 — 0.08 3.06 — 229 1.37 — 36.4
Bypass 7,929,856 121 766x92x192 51.620.61 — 6.40 3.38 — 3987 3.33 — 3889
Blunt-Fin 40960 0.63 93x36x25 0.321.14 — 0.12 1.58 — 6.83 1.41 — 5.38

a) b) c) d)

Figure 2: Renderings of the Tooth dataset: a) original uniform dataset; b) reconstruction from 2,110,259 non-
uniform points using our method. The resolution of reconstruction is selected the same as in the original
256x256x160. The RMS error is 0.19 at the input points, and 0.18 at the entire uniform volume. c) Reconstruction
from the same set of input points using RBFs proposed in [14].The RMS error is 1.26 at input points, and 2.87 for
the entire volume, d) Reconstruction from the same set of input points using EBFs as proposed in [13]. The RMS
error is 0.76 at input points, and 2.45 at the entire uniform volume

the RMS error to the percentages ofe(0) ande(1), justi-
fying to keep only 20% of the error coefficients in each
level.

6.4 Adaptive Multi-Resolution

To visualize the multi-resolution hierarchy we have
adapted our CPU-based raycaster to implement Proce-
dure 2.

One of our main concerns is the continuity or smooth-
ness preservation through different levels of resolution.
However, since each level of the hierarchy isC2 con-
tinuous and we are simply adding these levels, the fi-
nal result remains aC2 continuous function. In order to
avoid any discontinuity at the boundaries, we extend the

borders of the cells in each direction by a specific num-
ber of voxels of value zero (here the voxel size depends
on the resolution of the cell). Taking into consideration
the finite support of cubic B-splines, extending by two
voxels in each direction ensures that the function repre-
senting the cell smoothly goes to zero as it approaches
these extended borders and is zero-valued everywhere
beyond them.

Taking into consideration rendering performance a suit-
able choice ofNmax could be 8, 16, or 32. In fact, in our
experiments we chose 32 for the initial level, but exper-
imented with differentNmax for the subsequent levels.
The decision whether a cell has to be refined is based
on the error of reconstruction of that cell (see line 5 in
Procedure 1). The error threshold is always set to 1.0. In
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Figure 3: Rendering of the Chirp dataset: a) the original uniform data b) reconstructed from 75,000 non-uniform
points using regularization as defined in Eq. 6 (λ = 0.3), RMS is 1.12 with a reconstruction time of 0.08 min, c)
reconstructed from 75,000 non-uniform points using regularization as defined in Eq. 7 (λx = λy = 0.3, λz = 1.0),
RMS is 0.51 with a reconstruction time of 0.08 min.

a) b) c) d)

Figure 4: Perspective renderings of the Bypass dataset consisting of 7,929,856 non-uniform points, reconstructed
using our BMRP scheme (finest resolution 1024x120x256): a) coarser representation reconstructed fromc(2) coef-

ficients, b) finer representation reconstructed fromc̃(1) = U jc(2) +e(1)
p , where we used 20% of the points from the

e(1) error volume, c) finest representation reconstructed fromc̃(0) =U j c̃(1) +e(0)
p , where we used 20% of the points

from the error volumee(0), RMS is 0.6, d) finest representation reconstructed where weused 100% of the points
from the error volumese(0) ande(1), RMS is 0.4.

order to prevent the subdivision of cells with only few
non-uniform points we set̃M = 100.

The X38 dataset consists of 323,192 non-uniform
points emulating the X38 Crew Return Vehicle. It is a
typical dataset where 99% of its points are concentrated
in about 5% of the volume. In Fig. 6 we show the dataset
reconstructed with our multi-resolution scheme consist-
ing of two levels. Due to the aspect ratio of the axis-
aligned bounding box, the coarse resolution is 32x23x17
with an RMS of 6.31.

Table 3 summarizes several scenarios we tested to ana-
lyze the behavior and performance of our method. In all
cases we specified the coarse resolution to be 32, while
for the composite cells we either selected 8, 16 or an
adaptive resolution by using theσavg threshold. Using a
resolution of 8 requires more levels of resolution in or-
der to capture the data accurately, however, the storage
per level is reduced. By using a resolution of 16 or an

adaptive resolution we increase the storage requirement
per level, but achieve a better approximation of the data.
When using the adaptive resolution the impact of the
third or higher levels in the reconstruction error is very
small. For the Bypass dataset there is no refinement in
level three since no cell has an error higher than 1.0.

In addition we also analyzed the impact of the thresh-
old M̃. Lowering this threshold, lowers the error, but in-
creases the storage requirements drastically. Since the
minimal refinement of the composite cells is 83 = 512,
having a threshold̃M set to 100 is sensible.

7 Conclusion and Future work

In this work we presented a framework for reconstruc-
tion and visualization of non-uniform point sets on uni-
form grids using B-spline basis funcions. Our technique
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Table 3: AMR results for different datasets and settings. Size shows the storage requirements in MB, Sub shows
the resolution of reconstruction of the composite cells (i.e., either fixed or selected adaptively (adp) based on the
σavg assumption), Thresh is the minimum number of points for which a cell can be subdivided, Cells is the number
of composite cells in each level of the hierarchy and Timing is in minutes.

Dataset Level 1 Level 2 Level 3

Name Size Sub Thresh RMS Times Size Cells RMS Times Size Cells RMS Timing Size

X38 5.11 83 100 6.39 0.03 0.05 136 2.66 0.07 0.27 1765 1.99 0.27 3.46
X38 5.11 163 100 6.39 0.03 0.05 136 1.67 0.17 2.13 651 1.60 0.58 10.18
X38 5.11 adp 100 6.39 0.03 0.05 136 1.60 0.52 3.14 33 1.58 0.03 0.18
Bypass 121 83 100 4.33 0.52 0.01 938 2.41 1.22 1.84 13270 1.54 1.95 25.99
Bypass 121 163 100 4.33 0.52 0.01 938 0.79 1.72 14.66 - - - -
Bypass 121 adp 100 4.33 0.52 0.01 938 0.34 7.53 58.91 - - - -
X38 5.11 adp 50 6.39 0.03 0.05 183 1.59 0.55 3.32 292 1.55 0.25 1.37
X38 5.11 adp 10 6.39 0.03 0.05 427 1.33 0.58 3.58 7535 0.97 5.03 28.63
X38 5.11 adp 1 6.39 0.03 0.05 787 1.30 0.63 3.88 17948 0.75 12.43 81.60
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Figure 5: Graph showing relation of RMS to the per-
centages ofe(0) ande(1) for the Bypass dataset.

is efficient and produces reliable results with small er-
rors. We improve our reconstruction results by introduc-
ing a new regularization functional. We introduce a new
link between non-uniform representations and the in-
terscale B-spline relation in a multi-resolution context.
We show the performance and quality of our technique
when compared to other competing techniques.

In the future we plan to improve on our work by:a) ana-
lyzing possible statistical formulations for an automatic
setting of theλ parameters controlling the smoothness,
b) extending our framework to vector and time-varying
data,c) providing a GPU implementation of the CPU-
based multi-resolution raycaster.

Figure 6: The X38 aircraft dataset from 323,192
non-uniform points rendered with our multi-resolution
scheme consisting of two levels.
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Figure 7: The relation of RMS (as computed in Equation 8 vs. the average standard deviationσavg as computed in
Equation 3 for several non-uniform datasets.
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Figure 8: The relation of resolution of reconstruction vs. average standard deviationσavg as computed in Equation 3
for several non-uniform datasets.


