Institut fur Computergraphik und Institute of Computer Graphics and

Algorithmen Algorithms
Technische Universit Wien Vienna University of Technology
Karlsplatz 13/186/2 emait
A-1040 Wien technical-report@cg.tuwien.ac.at
AUSTRIA .
other services

Tel: +43 (1) 58801-18601 http://www.cg.tuwien.ac.at/
Fax: +43 (1) 58801-18698 ftp://ftp.cg.tuwien.ac.at/

TECHNICAL REPORT

On Visualisation and Reconstsréjtction from Non-uniform Point
S

Erald Vugini, Torsten Mller and M. Eduard Giller

TR-186-2-08-13
December 2008






On Visualisation and Reconstruction from Non-uniform Point
Sets

Erald Vugini, Torsten Mller and M. Eduard Giller
December 17, 2008

Abstract filtering, analysis, and rendering of data are most effi-
cient on uniform representations. Hence, there are two
In this paper we present a novel framework for the vgompeting efforts to deal with non-uniform data: a) cre-
sualization and reconstruction from non-uniform poirte novel and efficient tools that directly work on them,
sets. We adopt a variational method for the reconstri@-b) convert the non-uniform representation into an ef-
tion of 3D non-uniform data to a uniform grid of choficient intermediate uniform representation and apply
sen resolution. We will extend this reconstruction t3fandard tools. Both approaches have advantages and
an efficient multi-resolution uniform representation dfisadvantages. In this paper we make a contribution
the underlying data. Our multi-resolution representt@wards the latter approach. Among other things, this
tion includes a traditional bottom-up muilti-resolutiotvill allow us to better exploit the capabilities of mod-
approach and a novel top-down hierarchy for adapti®&" GPUs. In Section 2 we will contrast these two ap-
hierarchical reconstruction. Using a hybrid regulariz&roaches further and review alternative works.

tion functional we can improve the reconstruction re- ' :
b ?n order to find the best way to capture the non-uniform

sults. Finally, we discuss further application scenari%s . : .
. . .data onto a uniform grid, we first need to analyze the
and show rendering results to emphasize the effective-

. nature of the given data. While one reason for non-
ness and quality of our proposed framework. By means. o . )
- . uniformity is the ability to capture different scales of
of qualitative results and error comparisons we deman

strate superiority of our method compared to competihrﬁcormat'on density (e.g. mathematical §|mulat|on of
methods. shiock waves), another reason for non-uniform data rep-

resentations could come from imprecise measurement
Keywords:Non-uniform  Representation,  Multi-geyices (e.g. ultrasound) or sparse representations (e.g.
resolution, Variational Reconstruction, Regularizalioncompressive sensing). While in the former case multi-
resolution representations might be most suitable, in the
. latter case a single flat representation might be all that
1 Introduction is needed. Therefore, we develop some heuristics, based
on a statistical analysis, to adapt to either scenario.

The traditional sources of volumetric data are simula- . . .
this paper we propose a uniform representation con-

tions as well as data acquisition devices on uniforf i £ Bosoll ficients which defineCa
(Cartesian) lattices. In an effort to study larger and morey g OF B-Spline coetlicients which detin con-

complex problems, there has been a move toward ngRuous function across the whole volume. Our main

uniform data representation, since they offer a way BQntributions area) a statistical a_pproach for sglect-
adapting the measure location (or sample points) Ing the resoluyon of reconstruction for 'non-unn.‘orm
cording to the importance (variance) of the data. E atasets (Section 4.1) a bottom-up multi-resolution

amples include a) simple data loss during data com ramid (Section 4.2)c) a novel top-down adaptive

nication in sensor networks, b) Doppler measuremer']"E%t'.'res‘)lUt'o,n sgheme (Sectlon 4.3), ad).ja. novel
rid regularization functional for the variational ap-

or other novel acquisition models (polar or spiral) fo'?y h leadi ) d Secti
tomography and magnetic resonance imaging, andpé?ac eading to improved accuracy (Section 5).

adaptive and moving mesh approaches in mathematigd compare our approaches with similar approaches,
simulations in the physical sciences. that perform a resampling of the data domain on a va-
While the acquisition of data on non-uniform grids hasety of different data sets (Section 6). Conclusions and
become wide-spread, the available tools for processiidgas for future work are summarized in Section 7.



2 3 VARIATIONAL RECONSTRUCTION BASICS

2 Related Work since B-splines are very good approximators of thin-
plate splines, which in turn are widely used RBFs in
There is a considerate body of literature on the renderiagproximation theory. Further, our B-spline basis will
of non-uniform data without any resampling steps (sée anchored on a regular grid, preventing the need to
e.g. 2, 27, 21, 18]). While there are very good reasorsgore the grid geometry explicitly and opening the door
to adapt such an approach for rendering, we postuléne efficient multi-resolution representations.
here that an intermediate transformation onto a regufgiigovindan et al. [3] proposed to use B-splines in
data structure opens up the possibilities for much maiemuilti-grid framework for the reconstruction of non-
sophisticated data processing in general and hencefaitiform 2D data. Vugini et al. [26] extended these ideas
focus on such a pipeline. for 3D volumes and proposed a block-based variational
A number of approaches have been proposed for thefi@construction technique for large datasets. In this paper
construction of non-uniformly sampled data, especiaNye build on these ideas.
for one- and two-dimensional signals. Most of the metMulti-resolution approaches have been introduced to
ods are based on the reconstruction of the data by satdprove the rendering speed as well as the quality of
ing large systems of equations [11, 12]. However, thelie data representation adaptively while minimizing the
use of basis functions with infinite support makes thememory overhead [22]. Generally, the visual importance
impractical to use for real-time visualization applicasf the local data points is based on the distance to the
tions, where finite support reconstruction kernels avéewer and other user-selected criteria. Cignoni et al. [8]
desired. Nielson [19] presented an overview of sevefabpose a multi-resolution technique for rendering tetra-
approximation techniques for non-uniform point setaedral meshes with scattered vertices obtained from any
While each technique performs best only in particul8D data. Lamar et al. [16] present an adaptive multi-
cases, the use of local compact operators is consideresblution rendering technique based on a hierarchical
the fastest approach. octree scheme. Entezari et al. [10] propose a multi-
The necessity of basis functions with infinite suppof€solution approach using wavelet concepts and alter-
comes from a desire of reconstructing bandlimited sigate lattices.
nals. Unser [25] suggests to replace the concept of baBased on the data structure, multi-resolution schemes
limitedness by minimume-error projection on a space o&n be divided into regular schemes [16] (e.g., oc-
shift-invariant functions. A more general overview ofrees) and irregular schemes [15] (e.g., adaptively re-
modern non-uniform reconstruction techniques in shifined meshes). Our scheme adopts concepts from both
invariant spaces has been summarized by Aldroubi atldsses. It is a multi-level hierarchy where the first level
Grochenig [1]. represents the coarse resolution and has a regular rep-

Perhaps the most popular shift-invariant spaces sesentation. Additional levels encode the errors and are
based on Radial Basis Functions (RBFs). They hagfined adaptively. The structure of the refined cells is
been used for surface [2, 20, 7] as well as volumetgain regular.

ric [14, 13, 28] approximation and reconstruction tecfi-he proper continuous interpolation between differ-

nigues. Our focus is on volumetric data. ent octree levels has remained a challenge in multi-

Jang et al’s [14] method is formulated as an iteratifgSelution volume rendering. Beyer at al. [5] minimize
algorithm for finding the centers and weights of thggndering artifacts between block-boundaries by over-
RBFs using a PCA-based clustering technique applyil@Ping data blocks. Ljung et al. [17] propose a multi-
truncated Gaussians as basis functions. This technid@eolution interblock interpolation that permits extreme
suffers from high-encoding times and is suited be@panges in resolution across block bogndar_|es.AIIthese
for locally isotropic structures. Later they [13] adaptPProaches ensure onlyCd continuity in their render-
their technique to ellipsoidal basis functions (EBFs)?9 algorithms. The multi-resolution function in our ap-
The high computational cost is still the main bottlg?roach is a hierarchical sumﬁ?contmuous functions,
neck of this approach. Welsh and Mueller [28] intrggNSuring the? continuity over the entire domain.

duce a method for converting regular volumes to non-

uniform spherical and ellipsoidal Gaussian RBFs a .. .
render them via splatting. %' Variational Reconstruction Ba-

Our approach uses B-splines as basis functions. B- SICS

splines, with their smoothness and compact support, of-

fer optimal conditions for fast and accurate reconstrudariational reconstruction is a well-known technique
tion results. They are related to RBF-based approaclagplied to solving ill-posed problems such as the recon-



4.1 Single Resolution 3

struction from non-uniform point sets. The variationat.1  Single Resolution

functional is formulated as the sum of two terrasthe

sum of squared errors, arfi) the regularization term Increasing the resolution results in a decrease of the
that controls the smoothness of the solution. The figftror, since the oscillations of the data can be cap-
part guarantees that the solution is close to the samisleed with more precision. Finding the optimal resolu-
points, while the second part ensures that there aretio® (Nx x Ny x Nz) would therefore require estimating
discontinuities in the reconstruction. the error. We propose to do so by simply looking at the
Given a set of sample point® = (.yi,z), i = error within a single grid cell. If there are many non-
1,2,...,M, let f; be the scalar values associated vgth uniform points crammed into a cell, and their standard

We define the B-spline approximation through the forrl€viationo is too large, we should be alarmed. There-
N1 fore, we propose to use the average standard deviation,

defined as:
Fip) =Y «B3(p—k) 1) _
kZO Skeo Ok
3 . . . NX . Ny . NZ
wheref°(p) is the tensor product of cubic B-spline ba-
sis functions and where we dendte= (N, Ny,N,) the as an indicator for the proper uniform grid resolution.

resolution of the axis-aligned bounding box of our nof Section 6.1 we analyze a number of data sets in or-
uniform data set. Although cubic B-splines do not enjq¥er to arrive at a reasonable threshold. Our idea is mo-
the interpolation property, they have the maximal ordgyated by the strong correlation observed between the

of approximation for a given integer support, providingsconstruction error and the average standard deviation
the best quality for a given computational cost [23]. I5f point values.

order to find the coefficients; the following cost func-
tion is minimized:

®3)

Oavg =

M 4.2 Bottom-up Multi-Resolution Pyramid
CF)= 3 IF ()~ il +A [[[ IDPFIPaxaydz@)  (BMRP)

where A is a parameter that controls the smoothne$bere are many scenarios where we observe a large vari-
and the second term is the regularization term that useee in the density of the data points. Hence, finding a
Duchon’s seminormBPF [9]. single resolution to minimize the error in a uniform rep-
The key idea of the variational reconstruction is to exesentation leads to very large data sets with lots of re-
press the second term of Eq. 2 by means of the first te@isndancy. In such a case, it is typical to encode the data
and then minimize the err@(F) with regard to the B- in a multi-resolution pyramid. One usually starts with
spline coefficientsy in Eq. 1. Once we solve the equathe highest resolution and gradually finds coarser repre-
tion, we haveN, x Ny x N, B-spline coefficients definedsentations. To tackle this problem we propose a multi-
at each reconstruction-grid position. We can compusolution scheme based on the interscale relation of the
F(p) (aC?-continuous function) at any position insidd3-splines of odd degree:
the volume, using a 64 point neighborhood using Eqg. 1. X X
For a deeper insight into the method we refer the reader B”(E) = z h(k)B”(F —k) 4)
to Arigovindan [3].

whereh(k) is the binomial filter [4].

4 Single and Multi-Resolution Re- We consider a 3D signal being represented by a set of
. coefficientscll) at scalej:
construction

N-—1
The key issue in resampling a non-uniform point set into F(j)(p) :i C|(<j)l3'3(£ —k) (5)
a uniform representation is the selection of resolution. K=0 2!

This will be the central question we are trying to answer

in this section. We first assume that we only afford @sing results from multi-resolution analysis the same
single resolution and we make suggestions on how tkignal can be represented at a finer s¢ale 1) by the
resolution can be best obtained. This is applicable fovefficientscli~Y, which are obtained by first upsam-
non-uniform data, where the distribution of samples fging ¢!l and then filtering witth(k). In the same fash-
even (in the sense of a discrepancy measure), e.g., ultoa; by using the inverse transform of Eq. 4 we can fil-
sound data or seismic data. ter and downsample th#)) to get a projection of these



4 5 IMPROVING REGULARIZATION

coefficients to the space spanned by the coarser cogifigcequre 1 C\(/J) = AMR(Volume V, point sefR, with
cientscli*1), For a specific scal¢ we denote the up- valuesfy, level j)

samp!ing and downsampling processlyandD; re- 1: determine the resolution N for volume ¥ (Nmax)
speciively. 2: determine the B-spline representatignwith coef-
We initially estimate the coefficients at the finest resolu- ficientsoy

tion and then process them to create a top-down hierag: or all cells U of grid Vdo

chy of coarser resolutions. We obtain the coefficients of.  gstimate reconstruction erres = R, — fy of all
the coarser resolution ¢ 1) by downsampling from the pointsRy inside the cell U

finer resolution {): ¥V = D;c). Ignoring the finer . s (eu is too large) AND (Ry| > M) then
resolution completely, would create an error at s¢§ j+1) _ . .
i.e., el =cli) —pchg“). By saving the coarser%lile ' ig /= AMR(U, Ry with valueszy, level j +
coefficients and also part of the error volumes (where end)if

the error is high) we can reconstruct the data at a finesr: end for

resolution with little or no error. '

For example, for a signal which we want to reconstruet -
with the finest resolution ol x Ny x N, using three Procedure 2 Evaluate Functiorfy at (x,y,2) for Vol-
levels of hierarchy, we first estimate the finest coefffMe . —

cientsc© by minimizing Eq. 2. Then, by using the in- L evaluatefv(x,y,2) by using coefficientsy
terscale relation we estimaté’ andc?, as well agl® 2 if (X,¥,2) is in composite cell hen

ande). In our scheme we save ont? and parts of 3:  Evaluate Functiofy at(x,y,z) for Volume U
€9 ande, which we denote}) ande}”. When visu- . elsreeturnFV(x, ¥.2)+Fuxy.2)

alizing the data, we can either use the coefficia®s

: . 6. returnky(x,y,z)
for a coarse resolution representation, or the approxiz. o4 if

mationstV) = U;c@ + e} or &@ = Ugc) + el fora
finer resolution representation.

This approach requires an explicit intermediate reprerocedure 1 starts by determining the resolution of the
sentation of the finest resolution, which might not belume V (line 1). This is done based on tbg,g as-
feasible computationally. Hence, we propose a novel slimption. However, the chosen resolution cannot ex-
gorithm to build an adaptive multi-resolution data strue¢eed a maximum resolutidmax. Given a resolution we

ture. can then determine the B-spline coefficieagsfor this
resolution using Equation 2 (line 2). For each cell of this
4.3 Adaptive Multi-Resolution (AMR) resolution, we will determine whether we should recur-

sively subdivide (line 5). This is based on the cell recon-
Whenever outaygdemands a resolution that is too largstruction error (computed in line 4) as well as whether
to handle directly, we decide to create a multi-resolutidhe number of points in the cell is above a threshdld
representation starting from the coarse resolution fir&nce we determine that we should subdivide the given
This prevents us from having to compute the higheggll, we only reconstruct the error functioR,(— fv) in
resolution explicitely. Estimating a reasonable coarkge 6.

resolution is typically tied to hgrdware cqnstraints: ONrocedure 2 is used during the raycasting process. It
should not choose a very high resolution, such thg{oses the B-spline coefficients to use in Eq. 1 accord-
it compromises real-time rendering or analysis perfqggly. If the point is in a composite cell, it recursively

mance, yet, it should not be too coarse to avoid storiggys the error estimation of each level of the hierarchy.
too many levels in the hierarchy. We call this maximum

resolutionNmax. Next, we determine whether each cell

of the coarse resolution should be subdivided or not, i.e., . . .

whether it is composite or not. This is done based on §n | mproving Regmanzatlon

error criterion. These steps applied recursively will cre-

ate a multi-resolution hierarchy, that adapts to the vaRegularization provides a framework for converting ill-
ance in the data. What follows is pseudo-code outlinimpsed problems into well-posed ones by restricting the
this algorithm as well as the procedure to use the multiemain of possible solutions via smoothing constraints.
resolution hierarchy to determine the value of the funéwigovindan et al. [3] suggest using Duchon’s semi-
tion. We will use the notation introduced in Section 3.norms DPF) for regularization. Fopp =1 andp = 2



6.1 Determining thethreshold gayg 5

this norm yields a minimization of an energy funcwe would ideally vary the value dfl, reconstruct us-
tional associated with a membrane and a plate modelirgg this resolution and measure the errd, @nd N,
spectively [9]. Here, we propose a hybrid regularizaticare determined by the proper aspect ratio of our un-
functional in order to reduce reconstruction errors falerlying axis-aligned bounding box enclosing the given
anisotropic signals. The main motivation for this ideaon-uniform data points). Unfortunately, this is compu-
lies in the fact that cubic B-splines have a better r&tionally infeasible. Hence, in the search for a good
sponse to high frequencies, that can be detected and peairistic, we did indeed reconstruct a number of test
served by convolving the signal with a Laplacian regaiata sets under various resolutions and measured the re-
larization kernel [25]. The regularization functional eonconstruction RMS of the point set as well as the average
sists of the sum of second degree derivatives when cubéciance of point values (as opposed to the reconstruc-
B-splines are used as a basis function for reconstructition error) in each cell, according to Equation 3. The re-
sulting relationship for the Bypass data set can be seen
Ro(F,A) =A /// (dZF)? +(d7F)?+(dsF )*dxdydz  in Fig. 1. We found a similar relationship in all test data
(6) sets (a complete listing can be found in Fig. 7 and Fig. 8
where (d2F)?, (d2F)? and (d2F)? are the directional in the supplemental material.)
second degree derivatives Bf In order to deal with
anisotropic characteristics we extend Eg. 6, so that we

can achieve a different regularization in each direction.

Based on this analysis, we suggest, that a value of
Ra(F, Ax, Ay, Az) :///)\X(dfF)2+)\y(d§|:)2+)\Z(d22|:)2dxdyag,g = 0.05 yields a low RMS. In order to use this ef-
7 fectively for an unknown data set, we start from a low
(7 : .
. L . value of Ny and increase it until the value kg falls
Eqg. 7 provides a very good application scenario in case . .
-2 o elow the desired valuegg,g monotonically decreases
when we have apriori knowledge of the directional vari-: : : .
. with the increase of resolution). Typically we doublg
ance of the data we are reconstructing. In other cases, we

suggest a pre-estimation of the variance of direction'gIeaCh step, usinl = 8 as a starting resolution. Once

gradients and hence settidg Ay, A, accordingly to an Oavg has a value lower than the specified threshold we

; . . . . then refine the exact value o with a binary-search

inversely proportional formula. A high variance in the
ST method.

x-direction for example, means we should set a lower

Ax and vice-versa.

6 Implementation and Results Arigovindan et al. [3] suggested a heuristic such that
the number of uniform points is 4-5 times the number of

Our test platform is an Intel Dual Core 2.70 GHz proce80n-uniform points (i.e.Nx- Ny - Nz ~ 5- M). With our

sor machine with 6GB of RAM. We tested our framg?€uristic, on the other hand, we sometimes find a four-

work on several data either given from originally noriMe Sparser representation to be good enough.

uniform data, or obtained by taking Laplacian points

from a uniform dataset [26]. Unless stated otherwise c1r

testings are done using Eq. 6 where weset 0.3. In 4
order to evaluate the quality of our reconstruction, v
use the Root Mean Square error (RMS) defined as f 3t
lows: S
m
M(F(x.yi,z)— )2 100 2 %
RMS— >it (F(%,Yi,Z )7 ) >
M MaXyaiue 1t
whereMaxyqjyeis the maximum value in the given poin /
set. % 05 1 15 2

Average Standard-Deviation

6.1 Determining thethreshold gayg

In order to determine an appropriate resolution for a uriigure 1: Graph showing relation of RMS ¢qyq for the

form grid representation of our non-uniform data pointBypass dataset. A hairline shows the suggested thresh-
old of gayg



6 6 IMPLEMENTATION AND RESULTS

6.2 Single-Resolution and Improving Reg- such a scenario using the Laplacian points from the
ularization Tooth dataset. We compute the errors at the non-uniform
points used for the reconstruction as well as at all the
A GPU-based raycaster is implemented for the singdeiginal uniform data points. While our approach has
resolution rendering. The renderer is developed insitle same error rates in both cases, Jang et al. [14, 13]
the VolumeShop platform [6]. The rendering integral ishow a significant increase in the reconstruction error at
evaluated at each point along the ray by using Eq.tlhe non-input points, which is quite visible.

On the fly gradient estimation is used by taking partighe Synthetic Chirp is a synthetic radial sinusoidal wave
derivatives of the function defined in Eq. 1 and applygith a spatial frequency that decreases from the cen-
ing the fact that the derivative of a B-spline of degreeter to the edges. We create a non-uniform point set by
is a B-spline of degrea— 1 [24]. It can be defined aseyaluating the Chirp function for 75,000 random points.

follows: The function is changing very fast in the plane (the
ap"(x) 1 1 screen plane), while it is changing very slowly along the
v B (x+ E) —B"(x— é) (9) zaxis. In order to reduce the reconstruction error a lower

smoothness control along they plane is required. In

Table 1 compares our hybrid regularization to tHgd- 3 We show the original dataset, our reconstruction
method presented in [26]. We used uniform data, coMith @ regularization term as defined in Eq. 6 as well
puted and thresholded their Laplacian to keep 20% With a directional regularization term as defined in Eq.
the original points and reconstructed the complete urfi-All thrée cases were reconstructed on a@# x 64
form data set from this sparse representation. We &5'—d' ;elected basgd on t_m%"g thre;hold. Thgre IS a
serve a 20%-60% improvement in the reconstruction &learimprovementin the visual quality when directional
ror compared to the results Vugini et al. [26] present [f9ularization is used; the error is reduced by 54%.
their work.

Table 2 compares our method to the work presented®8 Bottom-up Multi-Resolution Pyramid
Jang et al. [14, 13]. Our method has lower reconstruc-

tion errors and improves computation time by severd order to implement our BMRP scheme we need to
orders of magnitude. find an error threshold, that determines which detail co-

efficients to keep. In our experiments we found that

keeping 20% of the coefficients with the highest error
Table 1: RMS errors and computation times (in mifn each level is a good trade-off between storage over-
utes) for different non-uniform datasets created by takead and accuracy. Although these error coefficients can
ing 20% of Laplacian points from their original uniformye anywhere in the volume, they are still located on a
representation. Here we use our hybrid regularizatigfiform grid. Hence, using a run-length encoding data
(Eg. 6) withA = 0.3, while in [26] the results are ob-strycture, we found that for 20% of the points of a uni-
tained by using Duchon’s regularization ahé= 1.0.  form dataset we need approximately 40% of the storage
required for the entire uniform dataset.

Dataset | RMS and Times (min)
Name Size [ Ourmethod _ [26] The Bypass dataset consists of 421 timesteps of a sim-
Engine 256x256x128 0.94 — 108 224 _—1.08 ulation from a laminar-turbulent transition in a bound-
Tooth 256x256x160| 0.18 —1.88 0.23 —1.88 ary layer that is subject to free stream turbulence.

CT-Head ~ 256x256x224 1.17—2.60 293—2.60  Each timestep is represented by 7,929,856 non-uniform

CT-Chest  394x394x24Q 0.60 —5.08 1.31—5.08 L o S . )

Carp 256x256x512 025—573  0.50 —5.73 points in a curvilinear grlq with unlf(_)rm spacing across
the x and z axes and with non-uniform spacing along
the y axis. The visualization of this simulation is of

So far we computed the error only at the points used fgireat importance to better analyze how the "bypass”
the reconstruction (the input-points). However, an inef the Tollmien-Schlichting (TS) waves develops. In

portant measure of the quality of reconstruction is titeg. 4 we show timestep 360 from this dataset (fo-
quality of the reconstruction at other locations. Sinaaising on the "bypass” process, i.e., the creation of
the ground truth is not given, this is typically hard teortex-shape structures) reconstructed with our BMRP
evaluate. Instead we took a dataset given on a unifoapproach. There is a visible difference in the level of
grid, created a non-uniform version by removing 80%etail in the different resolutions. The file size for sav-
of its values (according to a Laplacian threshold) ariig c(?, eE;o), andeE;l) together is 49% of the size of the

reconstructed it on the original grid. In Fig. 2 we showon-uniform dataset. In Fig. 5 we show the relation of
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Table 2: RMS errors and computation times (in minutes) féfiedént non-uniform datasets for our approach, the
method in [14] and in [13]. Size (MB) in the third and fifth calm shows the storage (in megabyte) required for
the non-uniform dataset and the reconstructed dataspeatdgely. The resolutions in our approach are selected
based on th@yg threshold.

Dataset | RMS and Times (min)
Name Points  Size(MB) Resolution Size(MﬂB)Our method  [14] [13]
o]] 29,094 0.44 38x40x38 0.220.19—0.07 1.02—1.10 1.08—0.21
Natural Convection 68,921 1.05 61x61x61 0.80.63—0.07 151—6.95 141—4.16
Synthetic Chirp 75,000 1.14 64x64x64 1.0.12—0.08 3.06—229 1.37—36.4
Bypass 7,929,856 121 766x92x192 51.6R.61 —6.40 3.38— 3987 3.33— 3889
Blunt-Fin 40960 0.63 93x36x25 0.321.14—0.12 158—6.83 1.41—5.38

Figure 2: Renderings of the Tooth dataset: a) original unmifalataset; b) reconstruction from 2,110,259 non-
uniform points using our method. The resolution of recardton is selected the same as in the original
256x256x160. The RMS error is 0.19 at the input points, atfl @t the entire uniform volume. c) Reconstruction
from the same set of input points using RBFs proposed in [Il4¢.RMS error is 1.26 at input points, and 2.87 for
the entire volume, d) Reconstruction from the same set aftippints using EBFs as proposed in [13]. The RMS
error is 0.76 at input points, and 2.45 at the entire unifoolume

the RMS error to the percentagese? andelV, justi- borders of the cells in each direction by a specific num-

fying to keep only 20% of the error coefficients in eacber of voxels of value zero (here the voxel size depends

level. on the resolution of the cell). Taking into consideration
the finite support of cubic B-splines, extending by two
voxels in each direction ensures that the function repre-

6.4 Adaptive Multi-Resolution senting the cell smoothly goes to zero as it approaches
these extended borders and is zero-valued everywhere

To visualize the multi-resolution hierarchy we haveeyond them.

adapted our CPU-based raycaster to implement Proce-

dure 2. R . . . .
Taking into consideration rendering performance a suit-
One of our main concerns is the continuity or smootlable choice ofNmax could be 8, 16, or 32. In fact, in our
ness preservation through different levels of resolutioexperiments we chose 32 for the initial level, but exper-
However, since each level of the hierarchyd% con- imented with differentNmay for the subsequent levels.
tinuous and we are simply adding these levels, the Tihe decision whether a cell has to be refined is based
nal result remains @2 continuous function. In order toon the error of reconstruction of that cell (see line 5 in
avoid any discontinuity at the boundaries, we extend tReocedure 1). The error threshold is always setto 1.0. In
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Figure 3: Rendering of the Chirp dataset: a) the originalarm data b) reconstructed from 75,000 non-uniform
points using regularization as defined in EqA6=£ 0.3), RMS is 1.12 with a reconstruction time of 0.08 min, c)
reconstructed from 75,000 non-uniform points using reggdgion as defined in Eq. A = Ay =0.3,A, = 1.0),
RMS is 0.51 with a reconstruction time of 0.08 min.

Figure 4: Perspective renderings of the Bypass dataseistiogsof 7,929,856 non-uniform points, reconstructed
using our BMRP scheme (finest resolution 1€8P20x256): a) coarser representation reconstructed fiéhtoef-

ficients, b) finer representation reconstructed f@h= U ,-c(2> + e%l), where we used 20% of the points from the
el error volume, c) finest representation reconstructed 0= U;& + e, where we used 20% of the points

from the error volume?, RMS is 0.6, d) finest representation reconstructed wherased 100% of the points
from the error volumes® andeY, RMS is 0.4.

order to prevent the subdivision of cells with only fevadaptive resolution we increase the storage requirement
non-uniform points we se¥l = 100. per level, but achieve a better approximation of the data.
The X38 dataset consists of 3482 non-uniform When using the adaptive resolution the impact of the
points emulating the X38 Crew Return Vehicle. It is ird or higher levels in the reconstruction error is very
typical dataset where 99% of its points are concentrat@all. For the Bypass dataset there is no refinement in
in about 5% of the volume. In Fig. 6 we show the datasiével three since no cell has an error higher than 1.0.
reconstructed with our multi-resolution scheme consist addition we also analyzed the impact of the thresh-
ing of two levels. Due to the aspect ratio of the axisid M. Lowering this threshold, lowers the error, but in-
aligned bounding box, the coarse resolution 82817 creases the storage requirements drastically. Since the
with an RMS of 6.31. minimal refinement of the composite cells $8512,
Table 3 summarizes several scenarios we tested to dring a thresholt!l set to 100 is sensible.

lyze the behavior and performance of our method. In all

cases we specified the coarse resolution to be 32, while .

for the composite cells we either selected 8, 16 or ah Conclusion and Future work

adaptive resolution by using tlmg threshold. Using a

resolution of 8 requires more levels of resolution in otn this work we presented a framework for reconstruc-
der to capture the data accurately, however, the stordiga and visualization of non-uniform point sets on uni-
per level is reduced. By using a resolution of 16 or gorm grids using B-spline basis funcions. Our technique
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Table 3: AMR results for different datasets and settingse Shows the storage requirements in MB, Sub shows
the resolution of reconstruction of the composite celks (ieither fixed or selected adaptively (adp) based on the
Oavg assumption), Thresh is the minimum number of points for Whicell can be subdivided, Cells is the number
of composite cells in each level of the hierarchy and Timggpiminutes.

Dataset | Level 1 | Level 2 | Level 3

Name Size  Sub ThreshRMS Times Size] Cells RMS Times  Sizd Cells RMS Timing  Size
X38 511 8 100 | 6.39 0.03 0.05 136 2.66 0.07 0.27 1765 1.99 0.27 3.46
X38 511 16 100 | 6.39 0.03 0.05 136 1.67 0.17 2.13 651 1.60 0.58 10.18
X38 5.11 adp 100 | 6.39 0.03 0.05 136 1.60 0.52 3.14 33 1.58 0.03 0.18
Bypass 121 8 100 | 4.33 0.52 0.01 938 241 1.22 1.84 13270 1.54 1.95 25.99
Bypass 121 1% 100 | 4.33 0.52 0.01] 938 0.79 1.72 14.66 - - - -
Bypass 121 adp 100 | 433 052 001 938 034 753 5891 - - - -
X38 5.11 adp 50 | 6.39 0.03 0.05 183 1.59 0.55 332 292 155 0.25 1.37
X38 5.11 adp 10| 6.39 0.03 0.05 427 1.33 0.58 3.58 7535 0.97 5.03 28.63
X38 5.11 adp 1639 003 0.05 787 130 0.63 3.88 17948 0.75 12.43 81.60

100

80 60 40 20 0

% of e© % of e

Figure 6: The X38 aircraft dataset from 3232
non-uniform points rendered with our multi-resolution

Figure 5: Graph showing relation of RMS to the pegcheme consisting of two levels.
centages o&® andelV) for the Bypass dataset.
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Figure 7: The relation of RMS (as computed in Equation 8 vsatferage standard deviatiog,g as computed in

Equation 3 for several non-uniform datasets.
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