
Pixel Accurate Shadows with Shadow Mapping

Christian Luksch∗
MatNr. 0525392

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Abstract

High quality shadows generated by shadow mapping is still an
extensive problem in realtime rendering. This work summarizes
some state-of-the-art techniques to achieve pixel accurate shadows
and points out the various problems of generating artifact free
shadows. Further a demo application has been implemented to
compare the different techniques and experiment with alternative
approaches.

Keywords: Pixel Accurate Shadows, Shadow Mapping, Deferred
Shading

1 Introduction

The shadow mapping algorithm introduced by Williams [Williams
1978] is an efficient way to determine the shadow projected by
a light in a scene. Thereby the light-view depth values are
rendered to a texture which is used to classify the visibility of
the scene-fragments relative to the light. In theory this algorithm
has very little limitations and performs well on modern graphics
hardware. On the other hand shadow mapping hugely suffers from
aliasing artifacts, which all together make pixel accurate shadows
for all kinds of scenes and camera positions very difficult.
Shadow mapping aliasing will occur when there is not enough
information in the shadow map to do an accurate shadow test for a
fragment. Because of the finite resolution of the shadow map, for a
fragment in eye-space the corresponding depth value in light-space
can only be approximated by sampling the nearest value or doing
some sort of interpolation. The lack of accuracy causes a blocky
appearance and unaesthetic incorrect shadowing results.

In the following sections we give a brief overview of typical shadow
mapping problems and previous work. Then we give insight into
our demo application and details of our implementation.
In Section 6 we present our research on confidence-based shadows
and introduce a new technique to guarantee pixel accurate shadows.
Then we review two techniques, Parallel Split Shadow Maps
[Zhang et al. 2006] and Fitted Virtual Shadow Maps [Giegl and
Wimmer 2007a]. We analyze their practicality for pixel accurate
shadows, propose improvements and give details of our own
implementations. Section 9 handles shadow map biasing, describes
the ID-buffer concepts and compares results in our test scene.
Finally, we summarize the discussed techniques in a comparison,
followed by the conclusion.

∗e-mail: christian.luksch@aon.at

2 Shadow Mapping Problems

The whole shadow mapping process suffers from two types of
aliasing artifacts, perspective and projection aliasing. Additionally
there is a self shadowing problem and the fact that shadow maps
can not be filtered like common textures.

Perspective aliasing: In a perspective view object near the camera
are larger than distant objects. When the shadow map is rendered
the scene is regularly sampled, which results in undersampling near
the camera and oversampling in the distance.

Projection aliasing: This type of aliasing is independent of the
camera, it only depends on the angle between the light direction
and the surface normal. If the angles is almost perpendicular, the
surface area has barley any shadow map resolution. It is difficult to
counteract this and cannot be solved by a simple global method.

Incorrect Self-Shadowing: The shadow map can be seen as
regular grid of depth samples taken from the scene, which
are resampled during the shadow test. This lead to incorrect
self-shadowing artifacts. Therefore some sort of distinction or
biasing must be used.

Shadow Map Filtering: Filtering is very important to hide
undersampling artifacts or to get anti-aliased shadow outlines
in oversampled areas and increases the overall shadow quality.
Common texture filtering can not be used, because interpolated
depth values make no sense along object edges and will still
generate sharp outlines. Special for shadow mapping developed
filtering techniques has to be used.

Several techniques have been developed to improve the quality of
the shadow mapping algorithm. The next section gives a brief
overview and classifies these techniques.

3 Previous Work

Most of the shadow mapping techniques try to overcome the
aliasing artifacts, which are the result of undersampling due to
limited resolution. The ideal solution would be a depth sample in
light space for each fragment in screen space. This approach has
been followed by Timo Aila in ”Alias-Free Shadow maps”[Aila
and Laine 2004]. Unfortunately, this requires irregular shadow
map samples, which makes it hard to implement the algorithm
efficiently.

Many pixel exact shadow mapping techniques use some sort of
hierarchical tiling to achieve the required sampling resolution
where it is needed. To this class of algorithms belongs Adaptive
Shadow Maps [Fernando et al. 2001], Tiled Shadow Maps [Arvo
2004], Queried Virtual Shadow Maps [Giegl and Wimmer 2007b]
and Fitted Virtual Shadow Maps [Giegl and Wimmer 2007a].

A widely used class of techniques are those that create a
view-dependent reparameterization of the shadow map, so that
there are more samples close to the view point. In this category

belongs Perspective Shadow Mapping (PSM) [Stamminger and
Drettakis 2002], Trapezoid Shadow Mapping (TSM) [Martin
and Tan 2004] and Light Space Perspective Shadow Mapping
(LiSPSM) [Wimmer et al. 2004].
In comparison to standard shadow mapping the complexity of these
techniques is almost the same, which makes them practical for
real-time rendering. However, the quality depends on the view
point and will change when the camera moves, which even can
get as bad as standard shadow mapping in the so called Duelling
Frusta Case, where the view direction is almost parallel to the light
direction.

Another category of techniques are those that split the view frustum
in smaller parts and create a shadow map for each of them.
A possible partitioning scheme is to split by the face edges of
the view frustum seen from the light, which allows to build a
reparameterization for each face to optimize the sample positions.
Another possibility is to slice the view frustum along the view
axis (z-partitioning) [Zhang et al. 2006]. It can be combined with
shadow map reparameterization as well.

In the paper Warping and Partitioning for Low Error Shadow Maps
[Lloyd et al. 2006] the aliasing error of the latter two classes of
techniques is extensively analyzed. It is shown that z-partitioning
used with a warping technique like LiSPSM should be the best
scheme to render shadows in scenes with a high depth range to
reduce perspective aliasing. This will be elaborated in Section 7.

Scherzer et al. [Scherzer et al. 2007] presented a technique
that reuses already rendered shadow information through temporal
reprojection and use a confidence-based method to merge with
the shadow rendered in the next frame. A single reparameterized
shadow map is rendered each frame to achieve a high frame rate.
With additional jittering exact shadows will be produced after a
certain number of frames.

Beside these techniques shadow map filtering will also be required
to render artifact free shadows. Percentage Closer Filtering (PCF)
is a widley used technique. Another approach is Variance Shadow
Mapping (VSM), which enables to use common hardware texture
filters and makes large filter kernels more efficient. [Donnelly and
Lauritzen 2006]

4 Implementation Overview

To compare and evaluate differences between various shadow
mapping techniques, it is important to have a common test basis.
We implemented our own application, which is a powerful tool to
experiment with alternative approaches and it gives more control
over the implemented techniques. Only a few other published
shadow mapping demo applications exist and most of them only
support a single technique.
Our application has been implemented in C++ and uses the DirectX
9 graphics API. The test system is a Core2Duo @ 3Ghz with 4GB
Ram and a Nvidia GeForce 8800 GTS with 640MB video ram.

We used two test scenes, one random generated terrain with
numerous static and dynamic objects, in which the large size and
perspective aliasing plays a major role. Second a scene with the
power plant mesh which has lot of fine structures and much more
projection aliasing. Screenshots can be found in Figure 1.
Further a set of camera positions has been composed that show
various cases of shadowing scenarios. Thereby comparable
analyses can be done at different times and also allows accurate
benchmarking.

5 Deferred Shadowing

Deferred Shadowing is a technique base on deferred shading
to apply multiple shadow maps with preferably less overhead.
Deferred shading first renders all for shading needed surface
properties like surface normal, material color and specular
exponent to a full screen render target. For shadowing the fragment
world position is also stored in some way. The actual shading is
done in a final full screen pass, whereby just only visible fragments
get shaded, unlike common forward rendering. Furthermore,
deferred shading enables an efficient way to render numerous
lights, since the shading is shifted to screen space.
Because an arbitrary number of shadow map should be used, our
implementation uses an accumulative render target to store the final
overall shadow test result, which is used instead a single shadow
map in the final pass when the fragments get shaded.
Such a technique requires hardware support of multiple render
targets, floating point render targets and full 32-bit floating point
accuracy.

5.1 Fragment World Position

As mentioned above the world position is required for shadow
testing. The straightforward solution would be to directly store
the World Position in an 128-bit 4 channel floating point render
target. This will assure that no precision is lost, but it will
also consume much memory bandwidth and unless the graphics
hardware supports multiple render targets with different bit depths,
storing color and surface normal is more complicated, because
everything has to be packed in another 128-bit render target.
On second thought the World Position can also be recovered with
the fragment screen position and its depth, so that a single 32-bit
render target for the fragment depth is sufficient. Therefore either
the linear eye depth or the projected depth can be used.

To recover the world position from linear eye depth either the view
vector needs to be interpolated over the full screen quad or it also
can be reconstructed through the fragment screen position (texture
coordinate) and using the inverse view matrix to get the world
position. The following equation shows the implementation using
the fragment screen position sxy to calculate the partial view vector
vxy and use it to recover the world position wpos:

vxy =

((
2sx
−2sy

)
+

(
−1− 1

rtWidth
1+ 1

rtHeight

))
·matInvPro j (1)

wpos =

depthl ·

vx
vy
1

1

 ·matInvView (2)

It is very important to use the exact fragment center, which is
achieved through the offset 1

rtHeightWidth under DirectX 9, but
generally it depends on the rasterization rules of the graphics API.
To recover the world position from the projected depth a similar
equation can be used.

In comparison the world position recovered from the linear depth
is nearly the same as the original world position. The projected
depth varies slightly in the result which probably comes from loss
of accuracy, but on average it is almost the same and can be used

Figure 1: Screenshots of the demo application. Terrain scene (left) and power plant (right).

too without any concerns. The projected depth could also be read
directly from the z-Buffer, which is possible with DirectX 10 on
every graphics hardware. Under this circumstance this type of
implementation should be more efficient and be preferred over
separate rendered linear depth.

5.2 Implementation Details

In our implementation the following scheme of render targets is
used:

• Material Properties: 8-bit per channel ARGB (32-bit)

• Compressed Surface Normal: 2 channel 16-bit floating point
(32-bit)

• Depth / World Position: either 32-bit or 128-bit four channel
floating point

• (32-bit ID-Buffer)

The surface diffuse color is stored in the first render target. The
alpha channel could be used for the specular exponent.

Compressing the surface normal is suggested in many other
deferred shading implementations. Thereby only Nx and Ny is
stored and the z-component can be recovered through:

Nz =
√

1−Nx
2−Ny

2 (3)

Assuming that in view space all surface normals have a positive
z-component, this equation is always true, but in practice this can
not be assured. Therefore a bit to store the sign of Nz is borrowed
from the material properties, so that the normal can be recovered
correctly.

The purpose of the ID-Buffer will be discussed in section 9.1.

A good discussion on deferred shading can be found in Nvidia’s
GPU Gems 2 by a developer of the game S.T.A.L.K.E.R.
[Shishkovtsov 2005].

6 Confidence-Based Shadows

To generate a high accuracy shadow a very high resolution shadow
map would be required in a dimension that is far beyond graphics
hardware capabilities. A series of slightly jittered shadow maps can
be used to simulate higher shadow map resolutions. To combine
the single shadow maps to a final result a confidence value is used
to preserve the best samples [Scherzer et al. 2007].
When a fragment of the scene is shaded, it is transformed into
light-space and the nearest depth value is read from the shadow

map. Unfortunately, the exact depth value is only known at the
center of a texel, which usually will not be hit. Therefore, we also
store a confidence value of this shadow test in the accumulation
shadow buffer, based on the distance to the nearest texel center,
where the depth information has been taken from. This can easily
be determined through the texture coordinate tc and the resolution
sm:

con f = 1−max
(
|{tcx · smxl}−0.5|, |{tcy · smyl}−0.5|

)
·2 (4)

Figure 2: Illustrates the confidence of the sampling position of a
projected shadow map. The confidence is high (red) at the center of
the shadow map texels, because that is where the depth values has
been rendered. The farther apart the lower the confidence.

Figure 2 visualizes this confidence value. Such a confidence value
is bound to the light space and the shadow map resolution. This
will be relevant in the discussion in section 6.5.

6.1 Jittering

The next step is to generate a series of shadow maps with different
rasterization. This is achieved by rendering each shadow map
with an translation offset along the light view plane in sub-pixel
scale. To be able to reproduce the same result the series of random
numbers has to be the same. Therefore, the Halton sequence
numbers are very convenient, because they guarantee a nearly
uniform distribution and appear to be random at the same time. A
illustration of the generated sample positions is shown in Figure
3. It shows that doubling the sample points results in an evenly
refinement, which is important when a suitable sample number hat
to be chosen.

A different rasterization can also be achieved by rotating the light
view, thereby the rotation angle should be taken from a Halton
sequence. This method can be combined with translational jittering
as well.

6.2 Accumulation

With every new pass the different rasterizations contribute new
shadow information. There are several ways to achieve this, thereby

Figure 3: Sample positions of the Halton sequence with 5, 10, 20
and 40 sample points.

it has to be discovered when to stop rendering new passes and if the
result is actually the exact one.

The first implemented method draws only shadow fragments with
a certain confidence, we will refer to this method as Simple
Confidence. This will draw dots at the center of the shadow map
texel. After enough passes to cover the whole texel have been
rendered, a continuous shadow in a higher quality is generated.
Thereby a certain confidence value always requires a certain
number of passes to cover the sample area, whereby the quality
is also increased by a certain factor. At this point a characteristics
of the Halton sequence can be seen. The even distribution of the
sample points approximately refines by doubling the number of
samples, whereby the simulated shadow map resolution is doubled.
The sequence of useful number of sample points is shown in Figure
3. A number in between is not that optimal, because it does not
evenly cover the whole texel. Also a minimum of five samples
should be used which is the first number where the simulated
shadow map resolution is approximately doubled.
Figure 4 shows the first five samples with a very high confidence
value and a low shadow map resolution to visualize the process.
For this technique the confidence value and number of passes has
to be configured manually and it has to be ensured that the whole
texel is covered.
A problem is that the shadow outline also increases in relation to
the size of the projected shadow map texels and the configured
confidence value.

Figure 4: Translational jittering using the first five offsets given by
the Halton sequence. The points represent the jittered texel centers
and the grid the unjittered shadow map.

Based on the insight gained from the first method, an advanced
method to accumulate confidence-based shadows has been
developed, which will be referred as Adapted Confidence.

To no longer depend on configuring the confidence value and
a fixed number of passes, new fragments are only rendered if
their confidence value is higher than the current one regardless
of its shadow. This principle can easily be implemented using
an additional hardware depth buffer which holds the current
confidence. This method also obtains that the shadow is always
continuous and not composed by dots, which allows to stop at any
pass without leaving falsely unshadowed holes.

However, an automatic stopping criteria can not be used, because
each pass only simulates a higher shadow map resolution, which
only increases the confidence value of the shadow tests, but there is
no correlation to the scene properties. Unless we know how much
confidence is required, such a method is not possible.

6.3 Optimal Confidence

An efficient pixel exact shadowing method should adapt on the
unique scene properties of each setting. The required shadow map
resolution has to be evaluated, which has to be done on fragment
basis.
So far our method increases the accuracy of the shadow test globally
by simulating higher shadow map resolutions with each additional
pass through jittering. Actually each fragment requires a certain
minimum shadow map resolution to be exactly shadowed, which is
equivalent to a certain confidence value. To adapt the quality locally
it is required to know which confidence is needed per fragment.
This value depends on how the shadow map is projected onto a
fragment. To approximate this projection we use the neighbouring
fragments and project all to light-space and calculate their shadow
map texture coordinates. The spanning area gives information of
the required confidence. This process is illustrated in Figure 5.

Figure 5: Illustrates how the optimal confidence is calculated.
For each fragment the neighboring fragments are projected to
light-space and the minimum texture coordinate distance is used
to determine the required confidence. It also shows a case of
discontinuity.

We calculate the distances to the neighboring fragments and use the
minimum distance tcDistmin to determine the required confidence
optCon f in the following way:

optCon f = 1− tcDistmin · smSize (5)

In the case of discontinuities this still gives a stable result.

The optimal confidence is calculated in a separate pass after the
scene is rendered and stored in full-screen texture.
This factor is now used to bias the confidence written to the depth
buffer f inalCon f , in such way that the value will be 1 once
the required confidence is reached and will not get overwritten

anymore.

f inalCon f = saturate(con f +(1−optCon f)) (6)

With this method it is possible to use occlusion queries to determine
when to stop rendering new passes. The number of rendered
fragments gives an approximation of how far the shadow is
converged. We use a simple heuristic with two thresholds to
configure the stopping criteria. The process is aborted when less
than ε fragments are rendered for N passes. Such a rule is
reasonable, because even when zero fragments have been rendered
in the last pass, it is not guaranteed that all fragments reached their
required confidence and a new rasterization still might contribute
new fragments.

Figure 6 visualizes the required confidence calculated with this
method. The high perspective aliasing in this setting shows that
uniform shadow mapping requires a shadow map resolution about
50 times of the current one near the camera, on the other hand the
distribution with LiSPSM is well balanced.

Figure 6: Minimum required confidence (red: high, blue: low)
needed to generate pixel accurate shadows. (a) uniform shadow
mapping, (b) LiSPSM.

6.4 Early Results

The number of passes or achievable shadow quality with the
adapted confidence method depends on the initial shadow map
sample distribution. On settings where LiSPSM can already
eliminate most of the perspective aliasing, in a few passes
projection aliasing artifacts can be eliminated very well. However,
in the duelling frustum case where only uniform shadow mapping
can be used, the required confidence can get to high in some areas
to get a pixel accurate result in a practical number of passes.
Figure 7 shows such a duelling frustum case, but there are
no objects very close to the camera so that the undersampling
is moderate. It compares uniform shadow mapping with
confidence-based shadow rendered in 20 passes and using a 20482

shadow map. (b) has been rendered with the simple confidence
method using a confidence threshold of 0.5, thereby the increased
shadow outline, which is about half a shadow map texel, can be
noticed. (c) uses the adapted method and blending with the optimal
confidence. The outlines look very fringed, because the required
confidence is still not reached. This effect is only in dimension

Figure 7: Comparison of uniform shadow mapping with a 20-pass confidence based shadow. (a) uniform shadow mapping (b) simple
confidence based shadow: drawing dots with conf > 0.5 (c) adapted confidence based shadow accumulated with optimal confidence.

of one pixel, nevertheless, blending or blurring should hide it very
well.

A problem is that shadow map filtering to generate smooth
shadow outlines does not work with confidence-based shadow
accumulation. Pixel exact anti-aliased shadow outlines would
require a much more expensive accumulation.

6.5 Further optimizations

Looking at Figure 6 brings ideas for further optimizations.

6.5.1 LiSPSM n-Parameter Jittering

LiSPSM uses a parameter that controls the balance of the quality
between front and back. The required confidence in Figure 6 (b)
indicates a very well balanced sample distribution. It is the result of
the automatic calculation of the LiSPSM n-parameter according to
the paper. A detailed explanation how the n-parameter works can
be found in [Wimmer et al. 2004].
The idea is to vary this n-parameter to focus more samples in the
front or the back. This will faster converge to an exact shadow
result.
The implementation showed that it definitely brings some
improvement and reduces the number of required passes, but to
find the optimal amount of jittering is not easy and does not yield
the same result in all cases. Furthermore, if confidence-based
accumulation should be used, a different reparameterization would
mean another required confidence and therefore two confidence
values from different passes have no relation and actually can not
be compared. When the confidence values are biased by the optimal
confidence the confidence-based accumulation is correct again,
but it means that the optimal confidence has to be recalculated
whenever n is changed.

Figure 8 compares translational jittering (a) with our
implementation of n jittering (b) after 10 passes confidence-based
shadow accumulation. A 10242 shadow map has been used,
whereby markedly biasing artifacts occur near the far plane, but
increasing the bias to an artifact free amount would cause hugely
misplaced shadows. The biasing problem is also discussed in
section 9.

Figure 8: Comparison of translational (a) with n (b) jittering after
10 passes with a 10242 shadow map.

Translational jittering produces perfect shadows near the camera,
but it is not capable of completely removing the biasing artifacts in
the distance after 10 passes. With additional n jittering the markedly
biasing artifacts nearly vanish, while the shadow quality near the
camera marginally loses some accuracy, however, this can be tuned
by the way the n-parameter is jittered. Overall, this is an additional
jittering method that should be used if such biasing artifacts are
problematic.

6.5.2 Frustum Reduction

Another approach is to always use uniform shadow mapping,
thereby the shadow near the far plane converges first and no shadow
further refinement is required in the backmost area, which means
that the shadow frustum can be reduces. In our implementation a
factor determines in which steps the frustum will be reduced. The
factor can be determined with a similar method described in section
7.2 using equation 15, but the difference is that whole frustum is
shadowed and therefore does not apply the exact same way and
undersampling along the view direction rather occurs. A slightly
higher factor may be needed, which may results in a few more
required passes than with frustum splitting.

Since confidence-based shadow accumulation should be used, the

calculated required optimal confidence has to be adapted to the
new projection of the reduced frustum. Due to a frustum reduction
results in an uniform increment of the sampling rate in the focused
area, the original calculated optimal confidence can simply be
scaled by:

f inalCon f = saturate(con f +(1−optCon f) · freduced/ f), (7)

where f is the view frustum far plane distance and freduced the
current reduced far plane distance.

The exact method is to test the backmost area that will be reduced
whether the shadow is converged. This can be determined by
using hardware occlusion queries in a pass that draws pixel only
of fragments in this depth area that have not reached the optimal
confidence. Now jittering is continued until the occlusion query
returns a value below a certain threshold. It turns out that the
shadow sometimes does not converge fast enough in the back,
because of projection aliasing. A suitable occlusion query threshold
is hard to find, because it depend on the scene. Therefore , it takes
many passes until the front shadow quality is usable. Hardware
occlusion query also cost quite much performance.
An other method is to reduce the frustum every pass and stop after
a certain number. It does not guarantee an exact shadow result, but
it comes quite fast to a useful result without remarkable artifacts.

Figure 9 shows the shadow result after 5 (a) and 10 (b) passes using
a 2048 shadow map and a reduction factor of 0.55. Less passes
or a lower factor will leave pixels that have wrong shadow results
(c), however, by not using the confidence-based accumulation and
by simply overdrawing the shadow result with the new one, these
artifacts would be resolved. Nevertheless, most of the shadow maps
would be wasted and frustum splitting with focusing on the depth
tile would make more sense.
In comparison to frustum splitting the quality is similar, but thereby
already 5 slices were sufficient to generate an acceptable shadow
result (d), furthermore, shadow map filtering can be used.

Figure 9: Frustum reduction by factor 0.55 after 5 (a) and 10 (b)
passes. (c) reduction factor of 0.45 and 5 passes with wrong shadow
results. (d) comparison to frustum splitting in 5 slices with optimal
tiling and α = 0.8.

Overall, the result is quite similar to frustum splitting or
z-partitioning and sometimes even superior, because of additional
jittering. The total rendering costs of our frustum reduction
approach are mostly higher due to parts of the shadow frustum
are rendered several times. However, in a case where the light
direction is almost parallel to the view direction, z-partitioning also
has to render lots of shadow casters several times and the shadow
frusta of the slices will overlap. Considered differently the frustum
reduction always proceeds like in such a case and additional uses
confidence-based accumulation.

7 Frustum Splitting

This technique is based on the observation that objects in different
depth layers from the camera require a different shadow map
resolution, which is achieved by splitting the view frustum in depth
slices (z-partitioning) and a shadow map is rendered for each. It is
also known as Parallel Split Shadow Mapping (PSSM) introduced
in [Zhang et al. 2006] or Cascaded Shadow Mapping, which has
been implemented, but the details remains unpublished.

PSSM has originally been designed to optimize the distribution of
shadow map samples for a fixed number of slices over the whole
frustum only considering perspective aliasing. From analysing
the aliasing error an optimal logarithmic split scheme has been
evaluated. In practice this distribution is not very well when only a
few slices are used, therefore, an adjustable mixture of logarithmic
and uniform splitting to find the split position is:

Clog
i = n(n/ f)i/n (8)

Cuni f orm
i = n+(n− f)(i/m) (9)

Ci =
Clog

i +Cuni f orm
i

2
+δbias (10)

Ci is the distance of the i-th split plane, n and f are the frustum
near and far plane distance and m the total number of slices. With
δbias the split position an be adjusted for according to practical
requirements of application.

For rendering m shadow maps are allocated and rendered
successively, with DirectX 10 this even can be done in a single pass.
Then for shadowing the depth slice of a fragment is calculated and
the proper shadow map and light-space transformation is selected
in the shader. They showed that already 4 slices with 5122 shadow
maps can generate a better result than a single 10242 shadow map
and is similar than the result with a reparameterization like LiSPSM
which, however, can not be used in all cases.

7.1 Improvements

A drawback that becomes noticeable, especially when shadow map
filtering is used, is that the transition of the different slices can be
visible, because of an abrupt change of the sampling rate, however,
if undersampling is avoided it does not matter. Figure 10 illustrates
such a transition. Without filtering the transition is not directly
visible, but filtering hugely emphasizes it.

In many cases a combination with LiSPSM can further optimize
the sample distribution and reduces the average error, which also
produces smoother transitions between the slices. Lloyd et al. also
suggest this combination. [Lloyd et al. 2006] They further analysed
a combination with face partitioning, where the view frustum is
splitted by its face edges, whereby even in a duelling frustum
case a reparameterization can be used. However, the number of
required shadow maps increase drastically and a similar result can
be generated with only a few more depth slices too, as long as the
shadow map resolution is sufficient.
Because our implementation already has a confidence based
technique we also can use this to accumulate the shadow maps of
the depth slices together. Thereby, the bounding box of the light
frustum for each depth slice is used to clip the shadow, instead of
testing the fragments only if it is in the depth slice. This always
uses the entire shadow map and the highest confident samples are
selected which moves the borders slightly backwards.

Figure 10: Illustration of transitions between the depth slices:
Power plant scene shadowed with 3x512 PSSM (a) without filtering
(b) 3x3 Gauss PCF.

The combination of the uniform and logarithmic split scheme, like
equation 10, results indeed in an optimal average distribution of
samples, however, close to the camera the error can be noticed
clearly. With LiSPSM this can often be eliminated, but because we
yield a high quality shadow with at least one sample per fragment in
all cases, this is not satisfying. To settle more samples close to the
camera we use an adjustable linear interpolation of the logarithmic
and uniform split scheme:

Ci = αClog
i +(1−α)Cuni f orm

i (11)

This allows an easy way to balance the quality. A combination with
0.75<α<0.85 results in a desired behaviour. Figure 11 shows a
case with perspective aliasing and shadows projected towards the
camera and therefore a bad shadow quality near the camera (a). A
higher α-value increases, the quality near the camera, while in this
setting no quality change in the back can be seen (c). This case
also allows a well reparameterization, whereby the quality can be
increased similar than with a higher α-value (b), the different with
LiSPSM and an α-value of 0.8 is not that big.
In the terrain scene a slight quality loss in the back is noticeable,
but in cases where LiSPSM does not work are still good shadows
near the camera.

Further the resolution of the shadow map needs to be increased at
least to the size of the view port, when a sampling rate of at least one
per fragment should be reached, otherwise the sample resolution
would not even be able to cover this horizontal. For present
common resolutions a 20482 shadow map is required. When the
implementation is not that much limited by shadow map rendering
the performance loss will be tolerable. We noticed a 30 percent
frame rate drop between 20482 and 10242.

With the new splitting scheme nearly every case of our terrain
scene is covered with enough shadow map samples and shadow
map filtering can be used without any concerns. However, in the
power plant scene cases where either the seams between the slices
are visible or where there are not enough samples near the camera,
can be found, because there are much more fine shadows projected
over large distances and there is generally more projection aliasing.
The only solution is to use more slices. The costs for rendering
more passes can be very different, but it is mostly significant less
than linear, when the shadow casters of every slice are culled
properly. Because our system renders one shadow map after
another and uses it to shadow the scene immediately, we can easily
use an approach with a dynamic number of slices.

Figure 11: Comparison of different values for α and combination
with LiSPSM with 4x1024 PSSM and 3x3 Gauss PCF.

7.2 Optimal Tiling

In a simplified case where the shadow receiver is a plane and the
shadow map is projected on it, the projected size of a fragment
can be simply determined. We assume the camera to be on plane
level, then the width of a projected texel is the crucial parameter to
estimate when the sampling rate becomes less then one sample per
fragment, because of perspective aliasing. Only taking width into
account is generally sufficient for this simplification, because the
ratio between width and height depends on the angle of the camera
in relation to this plane and only in the case where the camera looks
orthogonal to the plane the ratio will be one. However, the shadow
map projection is still considered orthogonal to the plane, which
will not be given in an usually case and the projection angle to
the plane could be considered too. This might only make sense
for a terrain szene e.g., where the ground plane can be seen as the
terrain, therefore the projected texel size could be estimated more
accurately on the terrain, but on other geometry or in an arbitrary
szene no such plane exists and therefore we always consider a plane
through the camera view direction and orthogonal to the shadow
map projection.
The following sketch illustrates a shadow map aligned for the last
slice of a view frustum seen from light. From this setting an
automatic estimation to set the split planes will be derived.

Known parameters are the distance of the far plane f , the shadow
map resolution smRes, the view port resolution res and the
projection matrix opening angle α . The width at the far plane f w
therefore is determined by:

f w = 2 f tan
(α

2

)
(12)

Because the opening angle differs from which side the shadow map
is projected, the opening angle α is not clearly given. Therefore, we
make an further simplification and assume f w = σ f . A practical
opening angle is about 60 to 90 degree, then σ should be set to

Figure 13: Results with PSSM; 6 20482 slices. (a) Case with usually bad projection aliasing on the vehicle. (b) Power plant scene where
shadows are projected over large distances on steep surfaces. (c) Visualization of shadow map alignment. Perspective aliasing is no problem
anymore, because there are always enough samples, furthermore, no transitions are visible.

Figure 12: View frustum and shadow map projection of a slice.
Distance dτ where one shadow map sample is projected to one
fragment on the screen should be found.

about 1.5. The width of a shadow map texel in world space is:

dw =
fw

smRes
(13)

The split distance dτ where the projected texel width approximates
ρ is:

dτ =
dw · resavg

ρ
(14)

To have one shadow map sample per fragment ρ should be set to
1, but due to our simplifications and because there usually is also
projection aliasing, ρ can be set to a value less or greater than 1
depending on the application.

Equation 14 is now used to determine the first split plane, because
further slices have a similar geometry reapplying this scheme will
lead to a reduction by the same factor. This factor can directly be
calculate using:

f =
resavg ·σ
ρ · smRes

(15)

This equation is only valid if

resavg ·σ
smRes

<ρ (16)

is preserved, otherwise the factor f will be >1 and therefore the
split plane would be outside the view frustum.

With the reduction factor f the view frustum is splited successively,
which is continued until the new split distance dτ is less than near
plane distance n, however, this often leads to an unpractical number
of slices, therefore, a value to determine maximum number of slices
is additionally used and the last two slices are simply split by
equation 11.

7.3 Results and Summary

PSSM gives a well distributed shadow quality with certain number
of passes, whereby the rendering costs scale predictable with the
scene. However, there are many cases with less shadow map
samples near the camera. This can be well tuned with the adjustable
combination of the uniform and logarithmic split scheme, but a
pixel accurate result can still not be guaranteed.

To get pixel accurate shadows our optimal tiling estimation delivers
the reduction factor for frustum splitting to overcome perspective
aliasing. This factor can also be considered as tuning parameter
to determine the number of required slices with a logarithmic
split scheme which strongly depends on the view port and camera
parameters. For a 1280x1024 view port resolution with a 60 degree
camera opening angle about 6 slices each with a 20482 shadow map
are sufficient to get a nearly pixel accurate result in most test case.
However, a higher opening angle would clearly increase the number
of required slices or force to use a higher resolution shadow map.
It might also be considered that if many slices are used, the required
resolution along the view direction in a slice will be reduced, then
a non-square texture with less resolution along the view axis could
be used to save some fill rate. This, however, does not apply to a
case where the light is nearly parallel to the view direction.

Figure 13 shows some results generated with PSSM. With the
auto tiling estimation the optimal number of slices for perspective
aliasing is known, hardly any shadow artifacts can be noticed.
Cases (a) and (b) are extreme cases which usually have clearly

Figure 14: Results of FVSM with a 20482 shadow map resolution and 3x3 Gauss PCF shadow map filtering. (a) shows the quadtree like
refinement of the shadow map resolution. (b) and (c) show a comparison with a different quality trade off parameter ξ .

aliasing artifacts. Image (c) also shows the alignment of the shadow
map slices. When the sampling rate becomes critical horizontal, a
new slice begins and there are always enough samples to have one
per fragment.

Furthermore, in most cases less slices would have produced a
similar result and there often is no visible shadow in some slices.
A more extensive scene analysis would be required to fully adapt
on the visible area and scene properties. Such an approach, but in
combination with a shadow map tiling instead of frustum splitting
is followed by Giegl et al. Fitted Virtual Shadow Maps [Giegl and
Wimmer 2007a] discussed in the next section.

Overall, PSSM can eliminate aliasing artifacts quite well by only
using a few passes. The rendering costs can also be predicted very
well when a constant number of slices is used, therefore, it is well
suited for realtime applications and has already been used in recent
games.

8 Tiling Techniques

A further class of techniques simulate a high shadow map resolution
by tiling the shadow map and refine it in a hierarchical update
process. One of the first published approaches is Adaptive Shadow
Maps (ASM) [Fernando et al. 2001]. It originally has not been
designed to fit on the GPU, whereby most of the work is done
on the CPU and therefore, does not perform very well. In 2005
an implementation of ASM on current graphics hardware has been
published, but it is still limited by many expensive CPU readbacks.
[Lefohn et al. 2005]

Another technique which simulates high resolution shadow maps
is Queried Virtual Shadow Mapping (QVSM) [Giegl and Wimmer
2007b] and the improved version Fitted Virtual Shadow Maps
(FVSM) [Giegl and Wimmer 2007a]. Thereby a virtual shadow
map is splitted in equally-sized tiles. During the rendering the
virtual shadow map is refined in a quadtree like fashion only where
necessary. To accumulate the shadow result a similar approach like
described in section 5 is used, which performs the process with little
overhead.
The original QVSM uses hardware occlusion queries to measure the
improvement and stop the refinement when it drops under a certain
threshold. In the paper also some further optimizations to improve

the performance are described, but they are negligible, because the
whole process has been adapted with FVSM.

FVSM first makes an extensive scene analysis to determine which
resolution is needed in each tile. Therefore the output of the
first deferred rendering pass is transferred to the CPU and then
the bounding box in light-space of each screen space fragment
is calculated. It is similar to our approach of calculating the
optimal confidence described in section 6.3, but it separately
handles required u and v shadow map resolution. They render
a 256x256 image of the scene whereby the required resolution
and the shadow map tile of each fragment is calculated. This
image is then transferred into the system RAM and each tile
is statistically analysed to reject outliers by the CPU. After that
a quad-tree like structure called the ”Shadow Map Tile Grid
Pyramid” (SMTGP) is merged up from the tiles. In the rendering
process this pyramid is traversed from top down, whereby a
shadow map is rendered, if the required resolution can be covered
by the supported texture resolution of the graphics hardware,
otherwise the sub-tiles are processed while different required u-
and v-resolution are considered too. Now it is guaranteed that
only required tiles to avoid undersampling are rendered without
using any hardware occlusion queries. Furthermore, an easy to use
quality vs performance trade-off ξ , which simply shifts the required
resolution, whereby the quality is equally reduces, can be used.

We also implemented our own version with some variations of
this technique, whereat we entirely calculate the bottom level of
the SMTGP on the GPU, however, whereby the statistical analysis
comes rather short. The exact require resolution is calculated for
256x256 shadow map tiles and the averaged for 64x64, which
turned out to be accurate enough. LiSPSM has also been disabled
because it often produces very bad quality in the distance, which
leads to suboptimal tiling.
Figure 14 shows results generated with our implementation. In (a)
the rendered tiles in a quadtree like refinement can be seen. Image
(b) and (c) compare the result with a different quality parameter
ξ . Furthermore, we only used a 20482 shadow map, because it
turned out that the number of passes only increases slightly, but is
still faster in comparison to 40962. Probably because our culling
keeps the overall rendering cost nearly the same and therefore the
rendering is rather fill rate limited.

Overall FVSM performs much better than QVSM and is a well
suited technique to shadow large-scale dynamic scenes without

shadow artifacts, however it requires distinct more passes than
PSSM, but on the other hand it completely adapts on all shadow
scenarios and thereby also projection aliasing.

9 Shadow Biasing

When the shadow map is sampled to do the shadow test, the sample
position usually is not exactly at the texel center, whereby the
nearest sample must be taken which will be different than the real
one, especially when there is a lot of undersampling. A simple case
is illustrated in Figure 15.

Figure 15: Shadow map resampling during the shadow test.

The different resampling lead to incorrect self-shadowing artifacts
characterized by shadowed spots in the middle of a lit surface,
which is called ”shadow acne”. A simple solution for this problem
is to add a certain bias to the depth value before the shadow test,
which has to be manually configured for each setting. Polygons
with no depth slope hardly need any biasing, while for polygons
that are almost parallel to the light direction a big bias is required.
This can be achieved by using slope-scale biasing, where the bias
is altered dependent on the depth slope of the polygon.
Because the bias has to overcome the deviation in every case a quite
large value might be needed, especially when shadow map filtering
is used. Although the shadow map samples are well distributed
in view space when LiSPSM is used, the bias has to be set to a
very large value, because the reparameterization results in shadow
map samples far apart from each other near the far plane observed
in world space in which the bias has to be set. This leads to
noticeably misplaced shadows, also called ”peter panning”. Figure
16 compares uniform shadow mapping with the smallest suitable
(a), LiSPSM and the same bias (b) and LiSPSM with a suitable
bias (c).

Figure 16: Comparison of different bias values with uniform
shadow mapping and LiSPSM (constant / slope-scale bias). The
shadow map resolution is 4096.

A possible solution would be to adapt the bias depending on the
distance to the camera.

Biasing with confidence-based shadows is no real problem, because
only high accurate samples are visible in the final result. The same
applies for frustum splitting. Thereby, the bias can be configured
for the first or last depth slice. Because the sampling rate of the
other slices is in relation to the shadow map area between the two
slices, this factor can be used to scale the biasing value, whereby
hardly any misplaced shadows can be noticed. The same factor
has been used to scale the confidence in section 6.5 when the
frustum is reduced. However, we found cases where biasing is still
problematic.

Results of confidence-based frustum reduction (a) and PSSM (b) at
a biasing critical point is show in Figure 17.

9.1 ID Buffer

Another simple solution for the biasing problem is to use an ID
buffer [Forsyth 15. May 2007] that stores the object or polygon ID
instead or additionally to the depth value. A 16-bit value to store the
ID would already be sufficient. The shadow test then checks if the
surface ID stored in the ID buffer is equal to its own ID, hence the
surface is lit, otherwise it is shadowed. However, it is not that easy,
because edge acne will occur if the object behind gets hit instead.
This can be solved by sampling the nearest four neighbours and
only shadow the surface if all four IDs do not match. The only
side effect is that the shadow shrinks, which can be clearly seen in
Figure 17 (c).

Rendering object IDs can be easily achieved, by passing an
additional parameter to the fragment shader when an object is
rendered and write it together with the depth to the shadow map.
When the objects are shaded their IDs can be used to determine
inter object shadows without any bias and use the common depth
comparison with a suitable bias for self shadowing, which already
removes most of the peter panning syndrome. Tom Forsyth
describes an approach that stores both, ID and depth in an 8-bit ID
+ 8-bit depth buffer. This is enough for at least 256 objects and if
the IDs are assigned carefully it should be sufficient for even more,
because only objects close to each other have to be differentiable.
The depth also only covers every object by itself, because the depth
is only needed for self shadowing.

Figure 17: Shadow result in an biasing problematic case (far plane:
500 units, pipe diameter: 0.05 units). (a) PSSM with scaled bias
per depth slice, (b) Frustum reduction with a similar configuration
than (a), (c) LiSPSM and ID buffer instead of depth test.

The better way would be to entirely use polygon IDs. One way
would be to roll out the geometry and fill it with unique IDs for
each polygon which, however, makes usage of indexed geometry

impossible. A much easier and better solution is possible with the
DirectX 10 API, thereby the primitive ID system value can used
and added to the object ID to generate the IDs.
Because our implementation is based on DirectX 9, we used
a simple hack to achieve a similar result. In a second pass
which renders the deferred ID buffer, we generate a value from
a combination of the position and the normal vector in the vertex
shader. Then it is added to the object ID and the flat shading mode
is used to draw the ID buffer. The same is done to render the shadow
map. Because flat shading uses the output value of the first vertex
to fill the entire polygon, it does not properly work with indexed
geometry, which generates some artifacts in our scene, but a brief
impression of the capabilities of using the polygon ID is possible.
Figure 17 (c) shows the result of this implementation with LiSPSM,
compared to the nearly exact shadow generated in (a) and (b). Spite
the artifacts because of the fine shadow structures, ID buffers work
very well and especially remove peter panning artifacts of objects
in the terrain scene when LiSPSM or uniform shadow mapping is
used.

10 Comparison

This section compares the presented techniques in our two test
scenes, a terrain and the power plant. A performance benchmark
had been made, where each technique had to render ten different
camera settings for three seconds. All techniques had been
configured with practical settings to achieve the best possible
shadow quality with the least required rendering costs. The test
system was a Core2Duo @ 3Ghz with 4GB Ram and a Nvidia
GeForce 8800 GTS with 640MB video ram. Figure 18 shows the
achieved frames per second (FPS) in both scenes.

Figure 18: Performance comparison between Adapted Confidence,
Frustum Reduction, Frustum Splitting and Shadow Map Tiling.

Because a previous performance analysis showed that a 20482

shadow map is the most efficient on the test system, this setting
had been used with all techniques.

Adapted Confidence: To get a well initial shadow map alignment,
LiSPSM had been used. The stopping criteria was when less than
3000 pixels had been refined in the last pass. In some unfavorable
conditions the shadow only converged very slowly and the process
had to be aborted after 30 passes, whereby the shadow outlines
were still fringed. The graph shows that the performance strongly
depended on the setting and overall was clearly below all other.

Frustum Reduction: The number of required passes depends on
the visible depth range and only a few were mostly sufficient. Most
camera settings could had been rendered in a useful frame rate.
However, a pixel correct shadow result is not guaranteed and in
a few cases some artifacts could had been seen.

Frustum Splitting: To get nearly perfect shadows in all settings,
five slices had been configured. A constant high frame rate had
been achieved in nearly all settings. Transitions were not visible.

Shadow Map Tiling: The scene analysis keeps the number of
required passes quite low and does not cost much performance
itself. Overall the performance was almost on the top, whereat
artifact free pixel correct shadow had been rendered.

This final table puts all techniques together and compares some
important aspects against each other:

Pixel Accurate Passes Implementation Artifacts
Adapted yes many complex fringed outlines
Reduction optional few complex marginal
Splitting no few simple (transitions)
Tiling yes average complex none

11 Conclusion

Deferred shading or shadowing is definitely the way to go when
multiple shadow maps should be accumulated successively. The
additional rendering cost in the first pass already compensate when
the scene has a high depth complexity and when expensive shading
computations should be done in the fragment shader, which is the
case especially in the power plant scene.
Culling of shadow casters with techniques like PSSM or FVSM was
also very important to keep the frame rate up to an interactive level.

We have shown that confidence-based techniques can produce very
accurate shadows. With the optimal confidence and occlusion
queries it is possible to automatically adapt on the scene properties,
but the number of required passes can exceed the practical limit.
Therefore, a combination with temporal reprojection [Scherzer
et al. 2007], is possibly a better way to accumulate high quality
shadows when the frame rate is high enough.

Furthermore, frustum splitting turned out to be a very powerful
technique to overcome perspective aliasing, but the only way to
completely avoid undersampling would be to make an extensive
scene analysis to set optimal splits. FVSM does this and uses a
simple shadow map tiling approach to refine the shadow quality,
but it seem not to be the best way to tile the shadow map, because a
nearly exact shadow result can be generated with only a few frustum
splitted slices in most cases as well.

References

AILA, T., AND LAINE, S. 2004. Alias-free shadow maps. In
Proceedings of Eurographics Symposium on Rendering 2004,
Eurographics Association, 161–166.

ARVO, J. 2004. Tiled shadow maps. In CGI ’04: Proceedings of
the Computer Graphics International, IEEE Computer Society,
240–247.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In SI3D ’06: Proceedings of the 2006 symposium on
Interactive 3D graphics and games, ACM Press, 161–165.

FERNANDO, R., FERNANDEZ, S., BALA, K., AND GREENBERG,
D. P. 2001. Adaptive shadow maps. In SIGGRAPH
2001, Computer Graphics Proceedings, ACM Press / ACM
SIGGRAPH, 387–390.

FORSYTH, T., 15. May 2007. Shadowbuffers. http:
//home.comcast.net/~tom_forsyth/papers/Tom_
Forsyth_Shadowbuffers_GDC2007_small.ppt.zipl.

GIEGL, M., AND WIMMER, M. 2007. Fitted virtual shadow
maps. In Proceedings of Graphics Interface 2007, Canadian
Human-Computer Communications Society, 159–168.

GIEGL, M., AND WIMMER, M. 2007. Queried virtual shadow
maps. In Proceedings of ACM SIGGRAPH 2007 Symposium on
Interactive 3D Graphics and Games, ACM Press, 65–72.

LEFOHN, A., SENGUPTA, S., KNISS, J., STRZODKA, R., AND
OWENS, J. D. 2005. Dynamic adaptive shadow maps on
graphics hardware. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Sketches, ACM, 13.

LLOYD, B., TUFT, D., YOON, S., AND MANOCHA, D. 2006.
Warping and partitioning for low error shadow maps. In
Proceedings of the Eurographics Symposium on Rendering
2006, Eurographics Association, 215–226.

MARTIN, T., AND TAN, T.-S. 2004. Anti-aliasing and continuity
with trapezoidal shadow maps. In Proceedings of the 2nd EG
Symposium on Rendering, Eurographics Association.

SCHERZER, D., JESCHKE, S., AND WIMMER, M. 2007.
Pixel-correct shadow maps with temporal reprojection
and shadow test confidence. In Rendering Techniques
2007 (Proceedings Eurographics Symposium on Rendering),
Eurographics Association, 45–50.

SHISHKOVTSOV, O. 2005. GPU Gems 2. ch. Deferred Shading in
S.T.A.L.K.E.R., 143–166.

STAMMINGER, M., AND DRETTAKIS, G. 2002. Perspective
shadow maps. In SIGGRAPH ’02: Proceedings of the
29th annual conference on Computer graphics and interactive
techniques, ACM, 557–562.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph. 12, 3, 270–274.

WIMMER, M., SCHERZER, D., AND PURGATHOFER, W., 2004.
Light space perspective shadow maps.

ZHANG, F., SUN, H., XU, L., AND LUN, L. K. 2006.
Parallel-split shadow maps for large-scale virtual environments.
In VRCIA ’06: Proceedings of the 2006 ACM international
conference on Virtual reality continuum and its applications,
ACM Press, 311–318.

