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Abstract

This paper proposes a novel technique for the direct
comparison of a surface model with the corresponding
industrial CT volume. We do not require the genera-
tion of a mesh from the CT scan and instead perform
comparison directly with the raw volume dataset. Our
technique uses the information from the surface model
to locate corresponding points in the CT dataset. We
then compute various comparison metrics to perform
distance analysis and normal analysis. The metrics are
presented to the user both visually as well as quanti-
tatively. The comparison techniques are divided into
two groups namely geometry-driven comparison tech-
niques and visual-driven comparison techniques. The
geometry-driven techniques color code the datasets and
render distance glyphs to provide an overview, while
the visual-driven techniques can be used for a local-
ized examination and for determining precise informa-
tion about the deviation between the datasets.

1 Introduction

Comparison of two almost identical datasets is very im-
portant for the continuously rising demands of quality
control in industrial engineering. Recently there has
been a whole body of work in the area of variance com-
parison between two surface models. Originally, the ba-
sic intent for the comparison of two surface models was
to measure the differences introduced during the simpli-
fication of mesh datasets. The high number of vertices
and edges are hard to process in real time due to the
limited processing power available in hardware. There-
fore it is necessary to simplify the datasets by reducing
the number of triangles in planar areas and keeping the
resolution of the mesh in curved regions. This initiated
research to simplify mesh datasets in such a way that

the rendering speed is maximized while the mesh dis-
tortion is limited. Distortions introduced through mesh
simplification led to research on the variance compari-
son between mesh datasets.

In the manufacturing industry, it is necessary to pro-
duce mechanical parts as close to the computer aided
design model (CAD) of the part as possible. Engineers
use CAD tools like AutoCAD, Catia, ProEngineering
etc. for designing, which are purpose built tools for en-
gineering drawings. The CAD model is considered to
be the ground truth during the manufacturing process.
To verify the accuracy of the production process, man-
ufactured parts are scanned with an industrial computed
tomography (CT) machine. The volumetric dataset ob-
tained from the CT scan is then compared to the CAD
model of the part (called surface model henceforth). The
variance comparison between the two datasets is sup-
posed to clearly identify erroneous regions in order to
improve the production process.

The most common method for variance comparison is
to generate an iso-surface mesh from the CT scan and
to compare the two surface models. This may not be
the ideal case. First, the generation of a mesh from the
CT dataset requires a surface extraction algorithm, typ-
ically involving reconstruction artifacts. Here we ob-
serve a loss of important high frequency information.
Additionally, if we also try to simplify the mesh dataset,
then there is a further deviation from the ground truth.
Second, mesh generation for a given iso-value may not
be interactively possible during the comparison process.
Therefore, the need to do a comparison with a higher
or lower resolution mesh may lead to a delay in the ex-
amination process. Third, a CT dataset goes beyond a
surface model and has information about the interior of
the mechanical part as well. Loosing this information
limits the examination possibilities of the CT dataset.
Figure 1 shows a designed CAD model in (a), direct vol-
ume rendering (DVR) of the industrial CT scan in (b)
and an iso-surface mesh extracted from the CT scan
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(a) CAD

(b) CT scan

(c) Iso-surface mesh

Figure 1: (a) CAD model of test-part-1. (b) Direct volume rendering of test-part-1, manufactured according to (a)
and scanned with an industrial CT machine. (c) Iso-surface mesh extracted from the volumetric dataset in (b).
Zoom-ins of the volumetric dataset and the iso-surface mesh are shown in (b) and (c) respectively. Reconstruction
artifacts are visible in (c). The surface model of test-part-1 consists of 200,000 triangles and its volumetric dataset

has a resolution of 561x559x436.

in (c). In figure 1(c), all the internal information of the
volumetric dataset is lost. Areas marked with black rect-
angles in figure 1(b) and (c) are shown as zoom-ins. We
observe reconstruction artifacts in figure 1(c).

In this paper we present a novel system to per-
form variance comparison directly between the sur-
face model (which is the ground truth) and the raw
dataset obtained from the industrial CT scan. As we
compare the surface model directly with the volumet-
ric dataset, we successfully avoid reconstruction arti-
facts (section 4). The proposed method is implemented
on the Graphics Processing Unit (GPU) and thus pro-
vides an interactive variance comparison. We avoid de-
lays in the examination process by embedding the com-
plete comparison pipeline in a single system (section 4).

Our system uses DVR for visualizing the raw datasets.
Techniques for the exploration of the volumetric
datasets can be easily integrated into the proposed sys-
tem. We thus combine volume visualization and vari-
ance comparison in our system, which are both working
interactively but independently. The visualization tech-
niques help the user both in searching for the deviations
and in precisely and quantitatively viewing the devia-
tions. We do not assume any prior information about
the shape or topology of the datasets being compared.
The geometry-driven and visual-driven variance com-
parison techniques are detailed in sections 3.2 and 3.3
respectively. We include an iterative closest point algo-
rithm (ICP) for dataset registration (section 3.1) in our
system. The impact of the errors introduced by the reg-
istration in the measurement process is analyzed in sec-
tion 4.

2 Previous Work

Large numbers of triangles are inefficient to render and
also hard to stream over a network. Subsequently, algo-
rithms are proposed to simplify meshes [3], [13]. Mesh
simplification distorts the original shape to some extent
and therefore techniques are proposed to measure the
differences between the two meshes.

Metro [4] is a general tool designed to compare two sur-
faces. One of the surfaces is scan converted to a set
of points and then the distance between each point and
the other surface is measured. Aspert et al. [1] pro-
pose to use the Hausdorff distance for measuring dif-
ferences which is computationally and memory wise ef-
ficient. Pichon et at. [11] propose to use the gradient of
the Laplacian equation to locate corresponding points
on the two surfaces. The corresponding points are then
used to measure distances between the surfaces. They
argue that the Hausdorff distance fails to consider the
variation in shape. We calculate uncertainties in the
datasets to cater for the shape variations.

A variety of metrics and visualization techniques are
proposed by Zhou and Pang [16] to measure mesh dif-
ferences and present the information visually. The com-
bination of metrics and visualization methods intends
to help users test and calibrate various mesh simplifica-
tion algorithms and find what suits their specific require-
ments.

Turk presents an algorithm [13] to create multiple levels
of detail from a surface model. Samples are randomly
distributed over the surface and subsequently a relax-
ation process spreads them uniformly. In the final step
the user can choose a surface from a discrete set of sur-
faces to perform comparison. The generation of a sur-
face model and variance comparison are two separate



processes. The method proposed by Turk can be used
to avoid delays in the variance comparison process by
generating multiple surface models with different levels
of detail in advance.

Weigle and Taylor [15] investigate visualization meth-
ods for distance and local shape comparison. Their
study shows that glyphs are better in conveying devi-
ation information between surfaces than color coding
alone. They use intersecting surfaces with known align-
ment for their study.

The above mesh comparison techniques do not need reg-
istration. As the simplified mesh is extracted from the
original mesh, both meshes are perfectly aligned. In
the case of a surface to a CT dataset comparison, where
both datasets originate from a separate process, there is
a need to perform registration. We have included an it-
erative closest point algorithm [2], [10] for dataset reg-
istration. A survey of registration algorithms specific to
medical datasets is provided by Wang et al. [9].

There has been some recent work on the variance com-
parison between a surface model and an industrial CT
dataset. These methods however introduce a prelim-
inary step to the variance comparison process, where
an iso-surface mesh is generated from the CT dataset.
Heinzl et al. [6] propose a technique for generating a
feature preserving mesh from a CT dataset. They use
filtering to suppress noise and a watershed segmenta-
tion to create a binary dataset. In the final step a surface
model is created using elastic surface nets, which is then
used for variance comparison. There is a whole body of
work in the area of surface extraction, which is consid-
ered to be out of scope for this work.

Geomagic Qualify [12] is a well-known software prod-
uct, used for quality control in industrial engineering.
A surface model and an iso-surface mesh of the volu-
metric dataset are inputs to this tool. It uses a point-set
to point-set or a best fit alignment algorithm for regis-
tration and then performs distance analysis between the
two datasets. Results are presented as a color coded sur-
face. Methods for extracting an iso-surface mesh from
a volumetric dataset [14], [5], [6], [8] have to be used in
a preprocessing step for performing comparisons using
Geomagic Qualify. Geomagic Qualify works indepen-
dently from the surface extraction process and therefore
assumes no reconstruction artifacts during the compari-
son process, although such errors are introduced in the
pre-processing step.

3 Variance Comparison

Our variance comparison system is divided into
geometry-driven and visual-driven comparison tech-
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Figure 2: Variance comparison, system overview.

Geometry-driven comparison techniques (distance and
normal analysis) color code the datasets and render
glyphs. Visual-driven comparison techniques provide
localized variance information in a graphical and quan-
titative way.

niques. Geometry-driven techniques provide an overall
visualization of the variance between the surface model
and the volumetric dataset. Visual-driven techniques are
used on top of the geometry-driven comparison tech-
niques for a user guided analysis and for obtaining pre-
cise quantitative information. The use of graphics hard-
ware makes all this possible in real time.

An overview of our system is shown in figure 2. The
output of the rigid registration process is a transforma-
tion matrix. The transformation matrix is applied to the
surface model which is transformed to closely match
the orientation and scaling of the volumetric dataset.
Both types of comparison, i.e., geometry-driven and
visual-driven comparison techniques, query the regis-
tered surface model for the necessary information but
work completely independent from each other. The re-
sults of the query, meta data from the CT dataset, and
the chosen visualization technique are used to compute
quantitative data and to produce images. Images gener-
ated through geometry-driven and visual-driven analy-
sis techniques are displayed in separate windows. The
user can employ the geometry-driven and visual-driven
analysis techniques simultaneously.

Geometry-driven comparison techniques consist of dis-
tance analysis and normal analysis. Distance analysis
calculates the deviation between the surface model and
an interface in the volumetric dataset as Euclidean dis-
tances. It also measures the uncertainty of the evaluated
distance. Normal analysis precisely locates differences
in curvature and compares the surface smoothness of the
two datasets.
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We provide ray-profile analysis and an innovative magic
lens as building blocks of the visual-driven comparison.
Ray-profile analysis visually presents the data and devi-
ations at a user specified location and also displays the
information quantitatively. The magic lens is used for
two purposes. First, itis used to zoom-in/out of the volu-
metric dataset. Second, it extracts the variance between
datasets at a user specified neighborhood and displays
the deviations using glyphs, i.e., 3D box plots.

3.1 Surface Model to CT Dataset Regis-
tration

The iterative closest point algorithm (ICP) performs
rigid registration and produces a transformation matrix
as output. The output matrix transforms (translation,
uniform scaling and rotation) the surface model (mov-
ing dataset) to closely orient it to the CT dataset (fixed
dataset).

The algorithm iteratively produces a matrix to trans-
form the moving dataset. After each iteration, the mean
square error between the datasets is calculated (equa-
tion 1). The iteration continues until the mean square
error becomes stable, i.e., there is no change in error
from one iteration to the next. At this point, the compos-
ite matrix of all the transformations and the final error of
the registration process are returned. In equation 1, nis
the number of reference points, s; and my depict points
on the fixed and moving datasets respectively, gr and
gr represent quaternions for rotation and translation re-
spectively and R(gr) is the rotation matrix formed from
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Specification of points in the volume data is a two step
process. In the first step, the user employs a transfer
function to volume render the CT dataset. The points
can then be chosen by simply clicking on the rendered
image. Our system casts a ray along the viewing di-
rection from each point specified by the user. Edge de-
tection is performed on the profile of the opacity values
encountered along the ray, to locate a point in the vol-
umetric dataset. Registration in not the major scope of
our work. We performed it with high accuracy (see sec-
tion 4). More automatic registration techniques have not
been investigated but might be possible.

3.2 Geometry-Driven Variance Compari-
son

Geometry-driven variance comparison is composed of
distance analysis and normal analysis methods. Both of
these analysis methods require the specification of a cor-
responding point in the CT dataset for each surface point
on the surface model. Starting from a surface point we
have to locate the corresponding point in the volumet-
ric data. The search direction is approximately along
the surface normal. In high curvature areas the search
should be extended to nearby directions as well to en-
sure robustness.

(@ (b)

density d
first order derivatives d’

ray direction

(©) (d)

ray direction

Figure 3: (a) Pairs of red and green lines depict the space
in which we search for a corresponding point in the
volume data (gray object) for each surface point (black
sphere) on the surface model (blue rectangle). The dou-
ble cone in (b) has an opening angle equal to twice the
search-angle. Multiple rays are cast, starting from the
surface point (apex of the double cone) and directed to-
wards the base of the double cone. Edge detection is
performed along the density profiles of each ray. A den-
sity profile and the first order derivative of a density pro-
file are illustrated in (c) and (d) respectively. The dashed
brown line in (d) shows a threshold for the first order
derivative. The first peak or valley with absolute value
above the threshold is considered an interface point (red
Cross).

Consider the blue rectangle and the gray object in fig-
ure 3(a) to be a surface model and a volumetric dataset
respectively. Black spheres represent surface points and
a pair of red and green lines originating from each sur-
face point indicate the space in which we search for a
corresponding point in the volume data. The space is
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larger for surface points in high curvature regions (see
the surface point at the corner in figure 3(a)).

For each triangle of the surface model we evaluate a
facet normal and the three vertex normals. The angle
between the facet normal and each of the vertex nor-
mals is computed and the maximum of the three an-
gles is stored. We call the maximum angle evaluated
as search-angle henceforth. The search-angle indicates
the local curvature of the surface model. In areas of
high curvature, a large search-angle will be calculated
whereas the search-angle will approach zero in planar
areas of the surface model. In figure 3(b) we indicate
the search-angle as a red arc between the facet normal
(black arrow) and one of the vertex normals (green ar-
row) of the blue triangle. Using the search-angle we can
construct a double cone with the opening angle set to
twice the search-angle. The double cone is depicted in
figure 3(b) with the apex of the double cone placed on
the surface of a triangle.

We then extract the spatial locations and the normal vec-
tors for a set of uniformly distributed surface points on
the triangles of the surface model. At each surface point
the apex of a double cone is placed and the cone axis is
oriented along the surface normal. The triangle there-
fore bisects the double cone at its apex (figure 3(b)). We
call the nappe of the double cone that lies on the front
face of the triangle as outside nappe, while the nappe on
the back face of the triangle is called inside nappe. The
double cone defines a region in which we can search for
an interface point in the volumetric dataset. An inter-
face point found inside the double cone will be asso-
ciated with the surface point of the triangle for further
computations.

In order to search for an interface point in the vol-
ume data, we start from the surface point and traverse
the volume data along various rays distributed inside
the double cone. The rays originate from the surface
point and are directed towards the two bases of the dou-
ble cone. The density profile of each ray is used to
identify the interface point as the position with high-
est/lowest gradient magnitude (first order derivative is
a maximum/minimum and the second order derivative
is zero). The gradient magnitude must be greater than
a user specified threshold to be considered an interface
point. Thresholding is necessary to filter out noise. The
interface point with minimum distance to the surface
point is stored for further processing. A density pro-
file of aray is illustrated in figure 3(c). The graph of the
first order derivative of such a density profile is drawn
as a blue curve in figure 3(d). The dashed brown line
shows a threshold for the first order derivatives. The
first peak or valley with absolute derivative above the

threshold is considered an interface point in the volu-
metric dataset. The interface point is depicted as a red
cross in figure 3(c) and (d).

As we find an interface point in the volumetric dataset,
we store its spatial location, the nappe (inside or outside)
in which the interface point was found and the gradi-
ent. The information extracted from the surface model
and the CT dataset provide all the required parameters
to evaluate the metrics for distance analysis and normal
analysis.

3.21 Distance Analysis

The computationally intensive step of finding a corre-
sponding interface point in the volume data for each sur-
face point on the surface model has already been done.
The distance analysis shows the deviation between the
datasets as Euclidean distances. For two datasets with-
out any deviations, the spatial locations of the surface
points and the corresponding interface points should be
exactly the same. We compute the differences between
the spatial locations on the surface model and their cor-
responding interface points in the CT dataset. We also
have information about the nappe of the double cone in
which the interface point was found. Using this infor-
mation we color code the dataset for distance analysis.
Figure 4(a), (b) and (c) show test-part-1, test-part-2, and
test-part-3 respectively. The surface model of test-part-2
consists of 152,054 triangles and its volumetric dataset
has a resolution of 408x351x355. The surface model
of test-part-3 has 11,424 triangles and the resolution of
the volume data is 256x256x256. The test-parts are ren-
dered using distance analysis with distances measured
in millimeters. The color scale used for color coding is
shown on the right of figure 4. The distance has positive
sign if the interface point is found in the inside nappe of
the double cone.

Investigations have shown glyphs to be better for visu-
alizing variances than color coding alone [15]. Figure 5
shows test-part-4 rendered using our distance analysis
technique. The surface model of test-part-4 consists of
25,880 triangles and its volumetric dataset has a reso-
lution of 329x527x181. We render distance glyphs on
the zoom-in of the user specified area (black rectangle).
The arrow of the distance glyph is aligned with the nor-
mal vector of the surface and the diameter of the disc is
proportional to the base of the double cone. The color
of the disc indicates if the deviation was found in the
inside nappe (yellow), outside nappe (blue) or no devia-
tion was recorded (white).

We only consider the minimum distance between the
surface model and the interface of the volumetric dataset
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(a) Test-part-1 (distance analysis)

(b) Test-part-2 (distance analysis)
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(c) Test-part-3 (distance analysis)

Figure 4: Test-part-1 (a), test-part-2 (b) and test-part-3 (c) rendered using distance analysis. The distances are
measured in millimeters and the view port is set to 512x512.

Figure 5: Distance glyphs are rendered on the zoom-in
of test-part-4. The color scale is the same as in figure 4.

for distance analysis. The technique does not take the
interface shape into consideration. The results have un-
certainty in high curvature regions which needs to be
highlighted. For uncertainty measurement we look for
the maximum distance from the surface point to the in-
terface in the volume data. The search for the maxi-
mum distance is conducted in the neighborhood of the
ray along which the minimum distance was found. The
neighborhood for searching the maximum distance has a
radius of one voxel. We choose a radius of one voxel, as

the search space should be smaller than the smallest fea-
ture in the dataset and any feature less than the size of a
voxel is not detectable in the volumetric dataset anyway.

Figure 6(a) illustrates the uncertainty measurement pro-
cess. Let us assume that the closest interface point was
found along the ray which starts from the surface point
(cone vertex) and extends towards the black sphere de-
picted on the base of the cone. In the neighborhood
around that ray (brown cone), we search for an interface
point with maximum distance to the surface point. The
difference between the minimum and the maximum dis-
tance from the surface point to the interface in the vol-
ume data is considered the uncertainty of the distance
measurement.

The uncertainty in the case of test-part-4 is shown in
figure 6(b). It becomes apparent that areas of high cur-
vature and rough surfaces which are highlighted using a
dotted and a dashed oval respectively, have higher un-
certainty.

3.22 Normal Analysis

Normal analysis is proposed as an efficient method to
compare surface smoothness. Normal analysis com-
pares the orientation of the normal vectors extracted
from the surface model with the gradients obtained from
the CT dataset. The angle between the normal vector
and the gradient indicates the variance in the curvature
of the surface model and the interface of the CT dataset.
Normal analysis is easy and efficient to compute given
that the surface points and the corresponding interface
points are already evaluated.
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Figure 6: The maximum distance to the interface point
is searched in the neighborhood (brown cone) of the
ray (cone vertex to black sphere) along which the min-
imum distance to the interface point was recorded. Un-
certainty rendering for test-part-4 is shown in (b). A
dotted and a dashed oval highlight areas of high curva-
ture and rough surfaces respectively.

The type of variance shown by normal analysis may
pass undetected by distance analysis. Consider the black
surface in figure 7(a) to be on a surface model with the
normal vector indicated by a black arrow. The interface
of the volume data (blue surface) overlaps the surface
model in the area marked with a red oval. The distance
analysis will report no deviation in such a case, however,
there is a deviation in the orientation of the two datasets
as the normal vector and the gradient do not point in
the same direction. Such deviations can be emphasized
correctly using normal analysis. Normal analysis will
report a constant deviation along the entire surface in
this example.

Figure 7(b) shows test-part-1 rendered using normal
analysis. Normal analysis detects deviations at the
edges and the rough surfaces. As the volumetric dataset
is generated from an industrial process, it does not
match the smoothness and exactness of the surface
model, especially at the edges. The zoom-in in fig-
ure 7(b) shows that the top of test-part-1 has a rough
surface. This roughness is not visible using distance
analysis in figure 4(a). The color scale can be changed
dynamically by the user. We emphasized the response of
the normal deviation by appropriately setting the color
scale as shown in figure 7(b).

3.3 Visual-Driven Variance Comparison

Visual-driven variance comparison techniques are
grouped into ray profile analysis and magic lens dis-

degrees

(b)

Figure 7: (a) Normal analysis emphasizes deviations in
the orientation of the surface model and the interface
of the volume data. (b) Test-part-1 rendered using nor-
mal analysis. The zoom-in shows roughness at the top
of the dataset. The roughness is not recognizable using
distance analysis.

plays. Ray profile analysis displays the accurate devia-
tion between the datasets both as a 2D plot and as quan-
titative numbers. A magic lens is used to zoom-in/out of
the dataset and to view the variance graphically.

Ray profile display is generated by plotting the first
derivative of the density values encountered by the ray.
The location of the surface point is marked on top of the
graph. The peaks and valleys in the graph show the in-
terface points. The user can see the deviation between
the surface points extracted from the surface model and
the interface points evaluated from the ray profile. This
provides precise information about the deviations in the
datasets.

Figure 8 shows two ray profiles generated from test-
part-4 locations marked with two black crosses. The
vertical red lines depict the surface points on the sur-
face model. The blue graph shows the first order deriva-
tives of the density values encountered by the ray, along
which the interface point in the volume data was found.
The peaks in the blue graphs are the edges detected in
the volume dataset. The horizontal distance between a
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Figure 8: Two ray profiles are extracted from the loca-
tions marked with crosses on test-part-4. The ray profile
on the left shows no variance whereas the ray profile on
the right reports a deviation of 0.2 mm. The horizontal
difference between the red line (surface point) and the
peaks in the graph (interface points) depicts the devia-
tion between the datasets.

In the ray profile on the left in figure 8, we observe that
the surface point (red line) and the interface point (peak)
overlap and thus there is no deviation between the two
datasets. The ray profile on the right in figure 8 however
shows a deviation of the surface model from the volu-
metric dataset as there is a horizontal difference between
the red line and the nearest peak. Our system reported a
deviation of 0.2 mm.

A magic lens can provide a precise graphical view of
the variance by means of 3D box plots. The 3D box
plots are rendered in a user specified area and each 3D
box plot shows the minimum, the maximum, the mean
and the standard deviation of the variance between the
two datasets at each location. The box plots are oriented
along the normal vectors of the surface model and the
diameter of the box plots is directly proportional to the
base of the double cone in which the interface point was
searched (see figure 9). They therefore encode distance
values, uncertainty and the dependent variables (normal
vector and the base of the double cone).

Figure 10 shows 3D bhox plots over a user specified
area (black rectangle) on test-part-4. The length and di-
ameter of a cylinder depict the standard deviation of the
variance between datasets and the base of the double

P
Base of the double cone

Figure 9: 3D box plot: combined visualization for dis-
tance analysis and uncertainty.

cone respectively. The white ring around the cylinder
depicts the mean distance between the surface point and
the interface of the volume data. The black discs at the
bottom and on top of the box plot show the minimum
and the maximum distances respectively. A 3D box plot
similar to a plane disc indicates no difference in the min-
imum, maximum and the mean distance recorded be-
tween the two datasets. The measurement is most cer-
tain in areas where flat 3D box plots are rendered. The
difference between the mean and the minimum distance
and the maximum and the minimum distance indicate
the reliability of the distance analysis.

4 Resaults

We implemented our variance comparison system on a
Pentium 4, 3.4 GHz CPU and an NVidia GeForce 8800
graphics board. The system renders the volumetric data
and the surface model side by side (volume view, sur-
face view). Both the views are synchronized and any
operation (rotation, scaling, ray profile analysis etc.) on
one view modifies the other view accordingly.

We maintain a central queue for the events performed in
the synchronized mode. An operation initiated on one of
the datasets, also pushes an event into the central event
queue and releases a signal. The other dataset pops the
event from the queue and executes it. We implement
first-come, first-served scheduling for the central queue.
As we perform all the rendering (of surface model and
of the CT dataset) and computationally intensive opera-
tions on the GPU, the complete system operates in real
time and the convoy effect is successfully avoided.
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Figure 10: 3D box plots over a user selected area of
interest (black rectangle). Box plots containing long
cylinders (large standard deviation) and large differ-
ences between minimum and maximum distances depict
areas of higher uncertainty. The size of the box plots can
be scaled dynamically.

The industrial computed tomography of mechanical
parts consists of fabrication artifacts and measurement
errors. Quality assurance engineers are primarily con-
cerned about the fabrication artifacts as they are intro-
duced during the manufacturing process and should be
minimized for a high quality product. Measurement er-
rors are introduced into the volumetric dataset by the
measurement process. Both types of errors are present
simultaneously in any industrial CT scan. We can how-
ever minimize reconstruction artifacts and perform reg-
istration with high accuracy. This ensures that the re-
construction and the registration process do not have any
serious impact on the measurement of the fabrication ar-
tifacts.

We evaluate our registration algorithm by successively
performing registration between test-part-4 and a fea-
ture preserving mesh [6] of test-part-4. We use a feature
preserving mesh for testing purposes so that the fabrica-
tion artifacts and the measurement errors are minimized
and we can monitor the registration error. We measure
the mean square error between the mesh and the test-
part-4 (see figure 11) and recorded an average registra-
tion error of 0.0152 mm. We specified 6 control points

on both the datasets and the registration algorithm con-
verged in 3.5 iterations on average.
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Figure 11: Mean square error produced by point-set
to point-set registration on test-part-4 (60x100x30 mm).
Graph shows the results of 20 such experiments.

Experiment number 18 produced a very high error com-
pared to the rest of the experiments. The ICP registra-
tion algorithm requires user interaction and the large er-
ror in experiment 18 is produced due to a bad specifica-
tion of control points. The maximum fabrication and
measurement artifact found in test-part-4 is 1.93 mm
and the mean variance recorded is 0.27 mm. The av-
erage registration error introduced by the ICP algorithm
is considerably lower than the mean and the maximum
deviation in the dataset.

Reconstruction artifacts are introduced while extract-
ing a mesh from a volumetric dataset. We use a syn-
thetic dataset with known fabrication artifacts to eval-
uate our technique. Measurement and registration er-
rors are not present in a synthetic dataset and this pro-
vides a good opportunity to analyze the effect of recon-
struction artifacts on the measurement of fabrication ar-
tifacts. Figure 12(a) shows a surface model of a cube
dataset and (b) shows a volume datasets with known fab-
rication artifacts. Fabrication artifacts are marked with
an oval. The surface model consists of 12,288 triangles
and the volume data has a resolution of 256x256x256.

We generated a feature preserving mesh [6] of the vol-
umetric dataset and compared it with the surface model
using Geomagic Qualify (see figure 12(c)). Reconstruc-
tion artifacts are visible in the deviations shown by both
zoom-ins. A deviation is also reported at the vertical
edge of the mesh (zoom-in at the bottom) even though
there is no variance there. The deviation at the edges
is purely caused by the reconstruction artifacts. Fig-
ure 12(d) shows the variance comparison using our sys-
tem. Our system correctly calculates no deviation on
the edges (zoom-in at the bottom). The fabrication ar-
tifacts in the volumetric dataset are also reported cor-
rectly (zoom-in on top). The color coding is smooth and
we do not observe any reconstruction artifacts.
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(d) Our approach: surface model to volume data comparison

Figure 12: (a) Surface model. (b) Volume data with
known fabrication artifacts. Artifacts are highlighted
with a black oval. (c) Variance comparison between
a surface model and a feature preserving mesh of (b).
(d) Direct variance comparison between a surface model
and the volume data.

The comparison of the maximum and average deviation
evaluated by Geomagic Qualify and our technique is

given in table 1. Our method calculates the deviation
very close to the original. Geomagic Qualify reports
the maximum deviation close to the ground truth but the
average deviation has a large error. Reconstruction of
a mesh from the volume data introduces artifacts dis-
tributed over the entire mesh. This is why the average
error reported by Geomagic Qualify is very small com-
pared to the original deviation. As we avoid reconstruc-
tion artifacts, our calculations are more accurate.

Table 1: Maximum and average deviation (voxels) re-
ported by Geomagic Qualify and our system.

Ground truth | Geomagic | Our technique
Maximum 8.485 7.95 8.91
Average 3.42 0.195 351

The earlier solutions proposed for variance compari-
son are divided into two major steps. For instance,
Heinzl et al. [6] propose a robust surface detection
pipeline for effective variance comparison. They extract
a feature preserving mesh from the raw dataset and then
perform comparison between the surface model and the
extracted mesh. The mesh extraction part consists of a
four step pipeline. In the first three steps, an anisotropic
diffusion filter, a gradient filter and a watershed segmen-
tation are in turn applied to the raw dataset. In the final
step before generating the mesh, constrained elastic nets
are applied. The mesh is then compared to the surface
model using some existing variance comparison tool.
We combine the entire variance comparison process into
a single, interactive system.

Table 2 shows the performance of our system, in com-
parison to the robust surface detection pipeline [6]. The
bottle neck in earlier methods has been the surface ex-
traction process. The surface extraction took very long
compared to the comparison process because of param-
eter tweaking. Our method is more automated and re-
quires much less user interaction. A screen shot of our
system is shown in figure 13.

Table 2: Comparison of the performance of our system.

Test-part-1 | Test-part-4
Distance analysis (our method) 0.051 sec 0.033 sec
Robust surface detection pipeline 10.23 min 4.58 min
Distance analysis (Geomagic) 9.31 sec 8.51 sec

Distance glyphs and the 3D box plots are additional vi-
sualizing techniques for showing deviations and uncer-
tainties. We showed our work to two domain experts to
calibrate the usefulness of our visualization techniques.
Both of the experts have used various variance compar-
ison systems in their professional capacity. They were
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provided a short explanation of the functionality of the
distance glyphs and 3D box plots and then they experi-
enced our proposed visualization techniques on a known
dataset.

They were both very interested in using distance glyphs
to visualize deviations as compared to color coding
alone. They acknowledged that they acquired a lot more
valuable information about the surface (surface normal),
the measurement process (base of the double cone) and
the deviations using distance glyphs. One expert liked
the idea of showing glyphs in a user specified area
whereas the other expert had no specific preferences.

The experts also appreciated the idea of showing the
uncertainty of the measurement process along with the
distance analysis. They were able to retrieve all the in-
tended information from the 3D box plots but one expert
proposed to somewhat reduce the amount of information
in the 3D box plots. Both of them however were inter-
ested in using 3D box plots in their present form due to
the combined visualization of uncertainty and distance
analysis.

All the information shown by distance glyphs is in-
cluded in the 3D box plots as well. Nevertheless, both
experts were equally interested in using both the tech-
niques in their professional work. One of the experts
preferred 3D box plots over distance glyphs.

5 Conclusion and Future Work

We have presented a variance comparison system that
compares a surface model directly to the industrial CT
scan of specimens, especially in the preproduction phase
and for first part inspection of new industrial products.
We avoid intermediate steps for data enhancement and

Figure 13: Variance comparison system.

surface extraction. Two sets of tools, namely geometry-
driven and visual-driven techniques provide comprehen-
sive comparison opportunities. The system is imple-
mented on graphics hardware and all the proposed meth-
ods work in real time.

In the future we intend to expand the toolset by plug-
ging in more volume visualization and exploration tech-
niques. For instance, feature extraction methods like
region growing and 2D histograms can help inspect
the concealed structures within the CT data [7]. We
use a semi-automatic algorithm for registration. We
achieve high accuracy but more automatic registration
techniques can be further investigated. Feature-based
registration algorithms can be modified to register a sur-
face model to a volumetric dataset.
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