
Eurographics Symposium on Rendering 2008
Steve Marschner and Michael Wimmer
(Guest Editors)

Volume 27 (2008), Number 4

Frame Sequential Interpolation for Discrete Level-of-Detail
Rendering

Daniel Scherzer and Michael Wimmer†

Vienna University of Technology

Abstract
In this paper we present a method for automatic interpolation between adjacent discrete levels of detail to achieve
smooth LOD changes in image space. We achieve this by breaking the problem into two passes: We render the
two LOD levels individually and combine them in a separate pass afterwards. The interpolation is formulated in a
way that only one level has to be updated per frame and the other can be reused from the previous frame, thereby
causing roughly the same render cost as with simple non interpolated discrete LOD rendering, only incurring the
slight overhead of the final combination pass. Additionally we describe customized interpolation schemes using
visibility textures.
The method was designed with the ease of integration into existing engines in mind. It requires neither sorting
nor blending of objects, nor does it introduce any constrains in the LOD used. The LODs can be coplanar, alpha
masked, animated, impostors, and intersecting, while still interpolating smoothly.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Genera-
tionDisplay algorithms; I.3.3 [Computer Graphics]: Picture/Image GenerationViewing algorithms;

1. Introduction

The idea of discrete level-of-detail (LOD) techniques is to
use a set of representations with different levels of detail for
one model and select the most appropriate representation for
rendering at runtime. This selection can be based on the size
of the model on screen, distance to the camera or a more
elaborate metric like importance [SDC04].

The individual representations of one model can differ in
a number of properties, like geometrical complexity or com-
plexity of lighting. This can go as far as using impostors
or point-based approaches for some of the representations.
Because of this diversity, automatic generation of LOD lev-
els can often produce non-optimal results. In the industry,
artists often handcraft each of the representations. This re-
sults in small numbers of LODs being used, where switch-
ing from one representation to another can lead to noticeable
popping artifacts. In practice, even if the difference between
two LOD levels is very small, switching is usually percepti-
ble, because a pixel-exact match does not occur.

† e-mail: scherzer | wimmer@cg.tuwien.ac.at

Figure 1: Our technique combines two buffers containing
the discrete LODs to create smooth LOD transitions. First
and second column: buffers; last column: combination. The
top row shows the two LODs in red and blue respectively.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

D. Scherzer & M. Wimmer / Frame Sequential LOD

The straightforward solution to this problem is to re-
place the hard switch by a transition phase. In this tran-
sition phase the two adjacent discrete levels of detail are
blended [GW07]. This introduces a number of drawbacks:

1. The geometry of both representations has to be rendered
in this transition phase, thereby generating a higher ren-
dering cost than the higher quality level alone would in-
cur.

2. Possibly complex fragment shaders have to be evaluated
for the fragments of both representations.

3. State changes for enabling blending, changing geome-
try, depth-write mode and changing shaders necessary to
blend the two representations are costly on modern archi-
tectures.

4. Where the silhouette of the two representations do not
match, blending leads to semi-transparent regions of ob-
jects that should be opaque.

5. The use of blending can make it necessary to do a depth-
sort of the polygons for the objects in transition. Other-
wise, popping may occur due to the changing depth order
of semitransparent parts (e.g., in objects represented by
multiple billboards).

6. Coplanar parts of the two representations will result in
z-fighting.

Due to these drawbacks, blending is not well suited for
a practical implementation. In this paper we present an al-
gorithm that takes a completely different approach to solve
the LOD transition problem. It has none of the mentioned
drawbacks while being fast, robust and straightforward to
implement.

The algorithm is based on two main ideas: first, the two
LODs required during an LOD transition are rendered in
subsequent frames, thus avoiding to render two representa-
tions in a single frame. Second, we introduce the notion of
visibility textures to replace standard blending, which allows
for non-trivial interpolation between objects that can be user
controlled or automatically adapted for a given object, pro-
viding more plausible transitions between two object repre-
sentations than blending.

The remainder of the paper is structured as follows: After
the discussion of previous work in Section 2, Section 3 ex-
plains our algorithm in detail. Results are given in Section 4,
and conclusions and ideas for future work in Section 5.

2. Previous Work

Level-of-detail methods are generally divided into two cate-
gories: Continuous LOD and Discrete LOD [LRC∗02].

Continuous LOD methods work by creating an object
representation specific for each viewing condition for each
frame. Since similar viewing conditions result in similar rep-
resentations, the change of one representation into another
is perceived as smooth. Due to the fact that there are in-
finitely many representations, it follows that the creation

of the different representations has to be done by an au-
tomatic method, dependent on some input parameters (i.e.
error metrics) [GH98]. The problem with such automatic
methods is that they do not give satisfactory results for every
possible model and all viewing conditions [Hop96]. There-
fore most of the continuous LOD literature is specialized on
methods for a certain type of models, like in terrain render-
ing [LKR∗96].

Discrete LOD methods on the other hand use a small set
of often hand-crafted representations and try to select the
most appropriate one for a given viewing condition. These
sets are small because of two reasons: memory consumption
would explode for many representations, and the cost of an
artist designing many representations would be enormous.
Due to this small number of representations, switching from
one representation to another becomes visible and causes
popping artifacts [CS06]. One method to avoid these pop-
ping artifacts is late switching. Here switching is performed
only if the two representations have exactly the same ap-
pearance for the current viewing condition. In practice this
is quite unfeasible: First of all we often do not know when
two representations will be undistinguishable, because this
depends on numerous factors, like lighting and surrounding
objects, which we probable do not know beforehand. And
secondly, from the point-of-view of performance we want to
switch as early as possible to speed up rendering as much
as possible. LOD blending [GW07] avoids popping artifacts
for discrete LODs by alpha blending and will be discussed
in the following section.

This paper focuses on the LOD blending problem, For
an overview and in-depth discussion of individual level-of-
detail techniques that can be used as a basis for our algo-
rithm, we refer the reader to the comprehensive text by Lue-
bke et al. [LRC∗02].

3. Frame Sequential Interpolation

Our new algorithm consists of two main contributions: First,
the two LODs required for a transition are rendered in subse-
quent frames, thus avoiding the cost of having to render two
representations in one frame. Second, we propose visibility
textures as an alternative for alpha-blending in order to avoid
many of its inherent problems at overlapping silhouette re-
gions, coplanar regions etc.

3.1. LOD Transitions

An LOD transition serves the purpose of smoothly replacing
LODk with LODk+1 (or LODk−1) in order to avoid popping
artifacts. While this is straightforward for continuous LOD
methods through geomorphing, for discrete LODs it was
only shown recently that it is possible to use alpha-blending
for the transition [GW07]. The idea is to first “fade in” (using
blending) LODk+1 until both objects are completely visible,
and then “fade out” LODk. The visibility function (which

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

D. Scherzer & M. Wimmer / Frame Sequential LOD

corresponds to the alpha-function in [GW07]) used for this
is depicted in Figure 2 in the bottom row.

This approach always keeps one of the two LODs at
full visibility, therefore avoiding both LODs being semi-
transparent, because this would lead to the situation that we
could look through both LODs onto objects that should not
be visible.

fragments

LOD K+1LOD K

distance

all

0
transition

Figure 2: Transition phase from LODk to LODk+1:
left:LODk; middle: midway in the transition all fragments of
both LODs are drawn; right: LODk+1; Below: First LODk+1
is gradually introduced till all its fragments are drawn. Then
LODk is gradually removed by rendering fewer and fewer
fragments. The top two rows show the result of our method
and a false color illustration.

3.2. Frame Sequential LOD Transitions

One of the main problems of using LOD transitions as shown
above is that both LOD levels have to be rendered during
the transition phase, causing a performance drop due to the
additional geometry (which can be significant for animated
meshes) and rasterization required by the second LOD. This
is in contrast to the actual aim of LOD rendering, i.e., im-
proving performance. In this paper, we show how to render
the two LODs in subsequent frames.

For the means of our algorithm we will distinguish two
states of object instances: instances in the transition phase
between two adjacent LODs (called t-instances), and all
other objects (and their instances) that have either no LOD
or are not currently in a LOD transition phase (called n-
instances).

The central point of our algorithm is to formulate the in-
stance transition in a way that makes it possible to split the

rendering of the two LODs of every t-instance into sequen-
tial frames. Each is rendered along with the rest of the scene
into one of two off-screen buffers (the LOD buffers) and af-
terwards combined to form the final image. What makes this
approach fast is that we do the LOD level renderings in an
alternating fashion: only one LOD buffer is rendered each
frame, containing all the t-instances with one of LODk or
LODk+1, and the rest of the scene. Note that for the combi-
nation pass, we also require a depth value and an object id
per pixel for both buffers.

A sample of this is show in Figure 3: In this scene only
two different LODs are present – a red sphere (LOD0) and
a blue box (LOD1). Two instances are in transition (the in-
stances where the LODs differ in the LOD buffers left and
middle), one instance is at LOD0 (the closest red sphere) and
a lot of instances are at LOD1 (all other blue boxes). The
two LOD buffers (left and middle) are identical except for
the differences in the LODs used for the two t-instances.

Figure 3: The LOD buffers of two consecutive frames only
differ in the used LODs for t-instances (left and middle).
They are combined to create the final image (right).

One problem with frame-sequential rendering is that if the
camera moves between these two consecutive frames, the
older of the two LOD buffers will be one frame “out of date”.
In this case the two frames will not only differ in the LODs
of the t-instances, but also slightly in the view-space. We ac-
count for that possibility by accessing the older LOD buffer
via back-projection in the combination pass (see later). Sim-
ilarly, if a t-instance moves between adjacent frames, its
two LODs will not overlap completely. However, the artifact
caused by this fact is not objectionable since it corresponds
to a simple motion blur, which is expected in moving objects
anyway.

Frame-sequential rendering also allows easy integration
into existing rendering engines: The scene can be rendered
each frame as usual. The only difference is we now render to
an off-screen buffer, and the concerned parts, the t-instances,
have to be rendered differently for our algorithm. The addi-
tional combination pass discussed in the following is also
self contained and only needs access to the two LOD buffers
and the reprojection matrix.

3.3. Blending with Visibility Textures

Using alpha-blending for LOD transitions faces several
problems. Blending both LODs in the same frame buffer

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

D. Scherzer & M. Wimmer / Frame Sequential LOD

as in [GW07] requires depth-sorting all t-instances. Ob-
jects with high depth complexity or objects that are semi-
transparent themselves (e.g., billboard clouds) even require
depth-sorting individual polygons in order to avoid popping
due to changes in depth order.

These problems do not appear in frame-sequential ren-
dering of t-instances when alpha-blending is used to com-
bine the finished LOD buffers. However, alpha-blending
LOD buffers leads to problems when the silhouettes of the
two LODs of a t-instance do not match for several ob-
jects appearing behind each other: in this case, several semi-
transparent regions should be created, but the LOD buffers
do not contain any information about the objects behind the
first semi-transparent region (each LOD buffer stores only
a single depth layer). See, for example, Figure 4. In frame-
sequential LOD blending, this problem can lead to severe
popping when the transition state of objects change.

Figure 4: Blending can create an arbitrary number of LOD
blends per pixel.

We solve this problem by using visibility textures. The
idea is to change the visibility of an object by changing the
amount of rasterized fragments instead of alpha-blending.
This is quite similar to the well-known screendoor trans-
parency, where transparency is simulated using a stippling
pattern. However, visibility textures are applied in object
space instead of screen space, and allow more flexible vis-
ibility patterns. Note that visibility textures are already ap-
plied when rendering to the LOD buffers, since the resulting
visibility is order independent.

We store a 3D visibility function per object (the visibil-
ity texture) and compare it to a visibility threshold to decide
which t-instance fragments to discard. The visibility thresh-
old τ ∈ [0..1] is given by the function depicted in Figure 2.
Written as an equation: λ : R3× [0..1]→{true, f alse}

λ : (~p,τ) 7→ visTex(~p) > τ (1)

is the function that evaluates for each fragment if it should be
discarded. Here ~p is the object-space coordinate (before any
animation is applied) of the fragment, τ the visibility thresh-
old and visTex is the lookup into the visibility texture. Note
that even though the visibility function may be continuous,
the thresholding operation gives a binary result and therefore
no semi-transparent pixels appear.

The visibility texture is applied in object space because in
this way, the noise is perceived as part of the object rather
than a world-space effect. If the lookup into the visibility

Figure 5: Visibility textures (here a checkerboard pattern)
are applied before transforming an object (upper row). If ap-
plied afterwards the pattern would not follow the movement
(lower row).

texture were to take place in world space, the visibility tex-
ture would stay fixed and not move along with the object
when it is animated (see Figure 5).

By using different visibility textures one can control in
which way the fragments of a t-instance become visible. Ex-
amples include a uniform noise pattern, a function that de-
creases from the center outward, or any other function best
suited to a given object. This has the effect that the amount
and distribution of the visible fragments of an object can be
controlled (see Figure 6). Note that in practice, we use a 2D
noise texture and access it with (~p.x +~p.z,~p.y+~p.z).

Figure 6: A uniform noise visibility texture (left) applied to
three different models with visibility τ = 0.5).

3.4. Combination

Frame-sequential LOD rendering with visibility textures
generates two LOD buffers with t-instances that appear
“stippled” according to their visibility as discussed in the
previous section. These two buffers need to be combined to
give the final frame buffer. This is done in a simple screen-
space rendering pass.

We need to determine for every pixel, which of the two
LOD buffer input pixels to use. Note that the older buffer is
accessed using reprojection [SJW07]. This is done by back-
projecting each 3D pixel (we have its depth stored in the

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

D. Scherzer & M. Wimmer / Frame Sequential LOD

LOD buffer) to its position in the older LOD buffer by ap-
plying

~pold = Pold ∗Vold ∗V−1
new ∗P−1

new ∗~pnew (2)

where ~pold|new are the old and new pixel positions, Vold|new
are the view matrices and Pold|new are the projection matrice
of the old and new LOD buffers.

Pixels that back-project outside the LOD buffer have no
corresponding old LOD buffer pixel and therefore we treat
them as a special case and use only the new color. Note that
this can create minor artifacts at the viewport borders when
moving the camera. We found that these artifacts were not
noticeable in practice.

In addition to color, the LOD buffers also store the depth
and an id for all the t-instances (for n-instances we take some
default id like 0). Note that different LODs of the same in-
stance have the same id.

Three cases can occur:

1. both pixels are from n-instances
2. one pixel is from an t-instance and the other from a dif-

ferent t-instance or from an n-instance
3. both pixels are from the same t-instance (and thus from

different LOD levels)

The first is the most frequent case. No interpolation should
happen and therefore the pixel from the newer LOD buffer is
used. In the second case, the fragment is chosen according to
the stored z-values. Thus the result is the same as if the ob-
jects had been rendered to one single buffer instead of two.
The third case is the most interesting one. While it could
be handled similar to the second case using z-testing, which
would correspond to evaluating the screendoor-transparency
between the two LOD levels of the t-instance, this is not
advisable. Coplanar polygons in the two LOD would lead
to z-fighting. We therefore avoid z-testing and use the av-
erage of the two colors. This has the interesting effect that
halfway through the transition, when both LODs are fully
visible, the colors of the two LODs will be mixed where they
overlap, and thus correspond to a cross-dissolve between the
two LODs.

Note that the older LOD buffer is used solely in the ar-
eas where a transition between two LODs is taking place, so
most of the final image will consist of the new frame.

3.5. The Algorithm

In summary the algorithm works as follows:

1. First we render the scene into an off-screen LOD buffer
containing color, object id and depth.

a. All n-instances are rendered normally, and with object
id 0.

b. All t-instances are rendered using alternating LODs
and an id that is unique for this instance, while using

Equation 1 to determine for each fragment if it should
be rendered.

2. In the second pass we combine the two LOD buffers in
screen space. For the two fragments:

a. If both fragments are from n-instances, the newer frag-
ment is kept

b. If one fragment is from a t-instance and the other is
not from the same t-instance, the closer fragment is
kept

c. If both fragments are from the same t-instance, the
average of the two fragment colors is kept

4. Implementation and Results

We implemented the proposed algorithm on an Intel Core 2
Duo E6600 CPU and NVIDIA 8800GTX graphics card. We
used a uniform noise visibility texture of 64× 64 pixels for
all the images shown in this paper. We used two screen-sized
LOD buffers each consisting of color (24bit RGB), depth
(16bit float and id (16bit float), 7 bytes per pixel in total.
For a 10242 view port this amounts to 14MB of additional
memory required and for a 5122 viewport to 1.75MB. We
noticed that in practice back projection of the older LOD
buffer is often not needed because errors are hidden by the
LOD interpolation.

We evaluated our algorithm on three different test scenes
(see Figure 9). TREES is a scene with 4,000 trees, LODs
ranging from 5,000− 93,000 triangles. WINDMILLS has
4,000 windmills, LODs ranging from 100− 18,000 trian-
gles. SIMPLE consists of objects with two LODs: a sphere
and a cube of different color. The results can best be judged
from the accompanying video, which shows side-by-side
comparisons of our algorithm to both discrete LOD switch-
ing (showing popping) and LOD blending [GW07]. SIM-
PLE is in a way the worst case for LOD transition algorithms
in general because the objects match neither in color nor in
silhouettes. While our algorithm handles it correctly, noise
artifacts from the interpolation are clearly visible. WIND-
MILLS is a scene that represents a common case and is well
behaved for most LOD transition algorithms. Both blending
and our algorithm give smooth results, while our algorithm
has a higher frame rate. Note that close-up views would still
reveal artifacts in the blending approach. TREES is a scene
that shows significant artifacts for the blending approach be-
cause polygons in the semi-transparent LOD, which is not
z-tested, are not sorted correctly. Our approach works very
well for this scene. Noise artifacts are practically invisible
in this scene. In general, we conclude that the quality of the
blend is sufficient even if slight noise can be visible in patho-
logical cases (e.g. SIMPLE). Furthermore, the transition is
always smooth (unlike other approaches) and does not suf-
fer from artifacts.

Figure 8 shows performance measurements for the three
methods with varying viewport sizes for WINDMILLS. Our

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

D. Scherzer & M. Wimmer / Frame Sequential LOD

method is always faster than LOD blending. Note however
that in higher resolutions, when the application becomes
fillrate limited, our method incurs a certain performance
penalty versus discrete switching because of the final com-
bination pass. However, the fragment shaders of the objects
in this example are extremely simple and thus the penalty
looks exaggerated in comparison to the more common case
of realistic fragment shaders.

Given two LODs, one will have a higher rendering cost.
As such, in theory each alternating frame could take longer
to render (if more of the costly LODs happen to be rendered
in this frame) , causing uneven frame rates. However, during
our tests such a case never occurred. We evaluated the num-
ber of triangles rendered each frame and encountered only
differences of up to 2% between consecutive frames.

4.1. Integration into Applications

Integrating the algorithm into an existing rendering pipeline
is not very demanding. First, we must be able to change LOD
levels each consecutive frame. This is similar to standard dis-
crete LOD switching, where LOD switches could also occur
every frame. We need to insert some code into the routine
that decides which LOD level to display, for example by de-
riving from an existing LOD object class. The code checks
if the current object is in a transition phase (currently a t-
instance). If not, it behaves like a standard LOD object. If
it is in a transition phase, we use a toggle counter to de-
cide which of the two LODs will be rendered in this frame
and calculate τ by using the function shown in Figure 2. As
instance id for the item buffer we use the memory address
of the object. Please note that any parameters (like skinning
matrices) that have to be calculated on the CPU are needed
only once per frame, not for both LODs that take part in the
transition phase.

Second, we must be able to add the shader code needed
for our approach, namely the calculation of ~p in the vertex
shader and the evaluation of the visibility texture (with a po-
tential discard of the fragment) in the fragment shader. In
modern shading languages, these routines can be encapsu-
lated into subroutines that can be easily added at the begin-
ning of all relevant shaders in the application. Ideally, the en-
gine already provides a mechanism to link subroutines con-
forming to a predefined interface dynamically, otherwise the
subroutine call needs to be added manually. See the listing at
the end of this section for our implementation of these two
functions in the OpenGL shading language.

Third, we need the ability to render the scene into off-
screen buffers using multiple render targets (MRT). One ren-
der target holds the color, while the second holds id and
depth. We need these two buffers twice: in each frame, only
one color and id-depth buffer is used to write into, while the
other is accessed by the shaders. We switch between the two
buffers in a ping-pong fashion.

Figure 7: Where the silhouettes of the LODs do not match,
noise artifacts can become visible (over emphasized).

varying vec4 coord_OS;
/*vertex*/ void prepareAlternating() {

coord_OS = gl_Vertex;
}

uniform sampler2D visTexture;
uniform float tau;
/*fragment*/ void checkVisibility() {

vec2 coord_ts = coord_OS.xy+coord_OS.z;
float vis = texture2D(visTexture,coord_ts);
if(vis > tau) {

discard;
}

}
uniform int id;
gl_FragData[1].xy = vec2(gl_FragDepth,id);

4.2. Limitations

The main artifact of our method is that the pattern of the vis-
ibility texture becomes visible if the silhouettes of the differ-
ent LODs don’t match well (see Figure 7 for an example).
This happens either because the chosen LOD levels differ
too strongly, especially in the silhouette, or if the silhouettes
are transformed due to object movement (motion blur, see
Section 3.2). In general, these artifacts are relatively unob-
trusive as long as the mismatch is not too strong (e.g., fast
object movement).

Another type of artifact occurs when previously unseen
pixels appear and therefore no respective pixel in the old
LOD buffer exists, for example at the viewport borders (see
Section 3.4) or for disocclusions (if new scene parts appear
behind occluders). These artifacts are typically very difficult
to spot.

5. Conclusions and Future Work

In this paper we presented a new method of creating smooth
transitions between discrete levels of detail. Our method has
several advantages over previous approaches: It is faster be-
cause it avoids rendering transition objects twice through
frame-sequential rendering (see also drawbacks 1-3 men-
tioned in the introduction). It avoids alpha-blending artifacts
because it requires no sorting, which is achieved through vis-
ibility textures (drawbacks 4-5). Even co-planar LOD levels

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

D. Scherzer & M. Wimmer / Frame Sequential LOD

Figure 8: Frame times for discrete LOD rendering, LOD blending and our method.

pose no problem due to the use of object ids (drawback 6).
The algorithm is also more robust, straightforward to imple-
ment and easier to integrate into common rendering engines.

A possible extension for future work is the reduction of
the noise we introduced for our interpolation scheme, for
instance with a history buffer as in [SJW07] or by using
multi-sampling. Another promising avenue for further re-
search would be the topic of visibility textures, i.e., the au-
tomatic generation of an optimized visibility texture for a
given object.

Figure 9: We used three different test scenes to evaluate
our algorithm. Left: SIMPLE, middle: WINDMILLS, right:
TREES.

Acknowledgements

Thanks to Alexander Kusternig for textures and shaders.
This project was supported by the EU under the project no.
IST-014891-2 (Crossmod).

References

[CS06] CLEJU I., SAUPE D.: Evaluation of supra-
threshold perceptual metrics for 3d models. In APGV ’06:
Proceedings of the 3rd symposium on Applied percep-
tion in graphics and visualization (New York, NY, USA,
2006), ACM, pp. 41–44.

[GH98] GARLAND M., HECKBERT P. S.: Simplifying
surfaces with color and texture using quadric error met-
rics. In Proceedings of the conference on Visualization ’98

(Oct. 1998), Ebert D., Hagen H., Rushmeier H., (Eds.),
IEEE, pp. 263–270. ISBN 1-58113-106-2.

[GW07] GIEGL M., WIMMER M.: Unpopping: Solving
the image-space blend problem for smooth discrete lod
transitions. Computer Graphics Forum 26, 1 (Mar. 2007),
46–49.

[Hop96] HOPPE H.: Progressive meshes. In SIGGRAPH
96 Conference Proceedings (Aug. 1996), Rushmeier H.,
(Ed.), Annual Conference Series, ACM SIGGRAPH,
Addison Wesley, pp. 99–108. held in New Orleans,
Louisiana, 04-09 August 1996.

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W.,
HUGHES L. F., FAUST N., TURNER G.: Real-Time, con-
tinuous level of detail rendering of height fields. In SIG-
GRAPH 96 Conference Proceedings (Aug. 1996), Rush-
meier H., (Ed.), Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, pp. 109–118. held in New Or-
leans, Louisiana, 04-09 August 1996.

[LRC∗02] LUEBKE D., REDDY M., COHEN J. D.,
VARSHNEY A., WATSON B., HUEBNER R.: Level of
Detail for 3D Graphics (The Morgan Kaufmann Series
in Computer Graphics). Morgan Kaufmann, July 2002.

[SDC04] SUNDSTEDT V., DEBATTISTA K., CHALMERS

A.: Selective rendering using task-importance maps.
In APGV 2004 - Symposium on Applied Perception in
Graphics and Visualization (August 2004), ACM SIG-
GRAPH, pp. 175–175.

[SJW07] SCHERZER D., JESCHKE S., WIMMER M.:
Pixel-correct shadow maps with temporal reprojection
and shadow test confidence. In Rendering Techniques
2007 (Proceedings Eurographics Symposium on Render-
ing) (June 2007), Kautz J., Pattanaik S., (Eds.), Euro-
graphics, Eurographics Association, pp. 45–50.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

