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Abstract— Interactive steering with visualization has been a common goal of the visualization research community for twenty years,
but it is rarely ever realized in practice. In this paper we describe a successful realization of a tightly coupled steering loop, integrating
new simulation technology and interactive visual analysis in a prototyping environment for automotive industry system design. Due
to increasing pressure on car manufacturers to meet new emission regulations, to improve efficiency, and to reduce noise, both sim-
ulation and visualization are pushed to their limits. Automotive system components, such as the powertrain system or the injection
system, have an increasing number of parameters, and new design approaches are required. It is no longer possible to optimize
such a system solely based on experience or forward optimization. By coupling interactive visualization with the simulation back-end
(computational steering), it is now possible to quickly prototype a new system, starting from a non-optimized initial prototype and the
corresponding simulation model. The prototyping continues through the refinement of the simulation model, of the simulation param-
eters and through trial-and-error attempts to an optimized solution. The ability to early see the first results from a multidimensional
simulation space — thousands of simulations are run for a multidimensional variety of input parameters — and to quickly go back
into the simulation and request more runs in particular parameter regions of interest significantly improves the prototyping process
and provides a deeper understanding of the system behavior. The excellent results which we achieved for the common rail injection
system strongly suggest that our approach has a great potential of being generalized to other, similar scenarios.

Index Terms—Interactive computational steering, interactive visual analysis, simulation, common rail injection system.

1 INTRODUCTION AND RELATED WORK

Increasing complexity and a large number of control parameters make
the design and understanding of complex systems (such as automo-
tive engines) impossible without simulations. Strict emission rules
and regulations force car manufacturers to design improvedengines,
in very short time [2]. To meet those requirements, car manufacturers
use simulations as a cost-efficient, and often the only possible way to
design systems with desired characteristics. They use manytypes of
simulation, including Computational Fluid Dynamics (CFD).

In this paper, we describe results from a recent project where the
need for interactive steering emerged. We used interactivevisual anal-
ysis to support an interactive design process. In contrast to the usual,
very time consuming 3D CFD simulation, 1D CFD that is alternatively
used in injection system simulation can be computed very fast. It is
possible to run tens of thousands of simulations for a large set of pa-
rameters. However, the brute force approach, where a simulation runs
for all possible parameter combinations, is often not feasible. Instead,
interactive simulation steering helped us to insure a reasonably short
design time. A pure numerical optimization is sometimes toocomplex
and a user often gets only the final results, without proper insight.

The background of this work was the task to design an injection
system. We developed a steering framework to support this task. Our
interdisciplinary project setup provided us with valuablefeedback dur-
ing the design process in terms of the usefulness of the proposed ap-
proach and suggested improvements. We started from a simplemodel
and gradually made it more and more complex.

One of the important parts of the automotive engine system isthe
injection system. The piezoelectric stack actuator is the main com-
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ponent of the injection system model [5]. When an input voltage is
applied, the electric field across the ceramic layers of the stack actu-
ator induces a mechanical strain. The strain results in an elongation
of the stack that exhibits the rate-independent hysteresisbetween the
electric voltage (force) and mechanical strain (displacement).

We identified tasks that can be generalized to other problemsand
illustrated how we designed and tuned the model. The model com-
plexity did not allow us to run all possible simulations at the begin-
ning and to analyze the results. Such an approach would also result
in numerous unnecessary simulation runs and would waste time and
computational resources. Furthermore, we did not have a complete
model at the beginning. It was gradually built as we gained insight
during the design process. Our approach, the use of interactive visu-
alization and coordinated multiple views as a steering mechanism for
simulation, proved to be very efficient. In this paper we showhow
the tight integration of visualization and simulation can significantly
improve an engineer’s workflow as compared to decoupled systems.
The excellent results which we achieved for the common rail injection
system and the very positive feedback from domain experts strongly
suggest that our approach has a great potential and can be generalized
to other, similar scenarios.

The decoupling of simulation and analysis can present signifi-
cant obstacles and make it very difficult to effectively manage large
amounts of simulation data [18]. We should be able to interactively
steer computations, change simulation parameters or representation
and immediately see the simulation results. Computationalsteering
and interactive visualization emerged in 1980s and 1990s assome of
the most useful visualization paradigms for computationalscience [3].

Many simulations are computationally intensive and may require
interpolation for sensitivity analysis and optimization.Sensitivity
analysis and optimization require the domain expert to interpolate the
observed simulation data. This interpolating function is ametamodel
of the underlying simulation model which is treated as a black box. An
example is the Kriging interpolator representing a global metamodel
that covers the whole experimental area [19]. However, we can also
iteratively refine the simulation model. That way we can refine both
the simulation parameter values and the simulation model.

The simulation output data is often visualized using scientific visu-
alization methods [6]. Using visualization and spatial tools to under-



stand complex systems is not a new idea. James C. Maxwell, oneof the
most important physicists of the nineteenth century [22], often used
visual-spatial thinking. An excellent example of his approach is a con-
struction of 3D clay model of a surface based on Willard Gibbs’ work.
We’ve come a long way since those early beginnings. However,think-
ing about the science is still at the core of scientific visualization [8].
The most important scientific visualization research problems include
perceptual issues, human-computer interactions, global/local visual-
ization, feature detection and visual abstraction, to namea few [8].

Computational steering integrates modeling, computation, data
analysis, visualization, and data input components of a simula-
tion [18]. However, integrating a simulation within a computational
steering can be a very difficult problem. We need to address four facets
of the problem [9]: control structures, data distribution,data presen-
tation, and user interfaces. Since computational steeringis a highly
interactive process, the user interface is a critical component of a com-
putational steering environment [16]. Kreylos et al. [12] describe a
system for real-time interactive visualization of computational fluid
dynamics (CFD) simulations that allows a user to place and manip-
ulate visualization primitives during an ongoing simulation process.
Vetter and Reed [23] described performance monitoring, control, and
interactive steering of computational grids. Wenisch et al. [24] demon-
strated computational steering of CFD simulations on distributed com-
puters.

There is extensive literature about user interface and visualization of
simulation data from an engineering perspective. Laramee et al. [13]
use different flow visualization methods to show various aspects of the
simulation data to support insight and visual analysis of the coolant
flow through the cooling jacket of a car engine. Konyha et al. [11] use
3D icons to analyze simulation data of chain and belt drives.Matković
et al. [15] describe a method for the analysis of a fuel injection system
that provides a highly abstract view of the injection system.

Using multiple, interactively linked views of the same dataset al-
lows the user to productively combine the information gathered from
the different views [7]. Doleisch et al. [4] use multiple linked views
for analysis of CFD simulation data. More advanced multipleview vi-
sualization systems can be freely configured [17] and provide flexible
coordination of views [20]. As the number of linked views andthe
amount of coordination increases, it may be necessary to visualize the
visualization’s structure and operation [21].

2 COMPUTATIONAL/INTERACTIVE/SIMULATION STEERING

We used our previously developed coordinated multiple views visu-
alization tool ComVis [15] and extended its functionality to inter-
face it with the simulation tool HYDSIM which is a part of the AVL
Workspace [1]. In this way a steering framework has been established
and used in the project.

The initial design goal for the visualization tool ComVis was rapid
prototyping of new visualization techniques within the scientific con-
text. As a consequence the tool was designed to be flexible in away
that it is easy to add new views and support new data types. Thetool
is intuitive to use and supports advanced interactions (multiple, itera-
tive brushing). As a result, the tool is easy to use for domainexperts
from different domains (medical, engineering, etc.), and can use/read
generally used data formats to provide access to existing data.

The simulation tool, HYDSIM, is a modular program for the dy-
namic analysis of hydraulic and hydro-mechanical systems.It is based
on the theory of fluid dynamics (1D) and vibration of multi-body sys-
tems (2D). The user defines a model using 2D graph-like structures
with icons and connecting elements. The defined model provides a
general representation of the system topology. For each element (rep-
resented by an icon) the user can specify properties for the particular
case. Once the user completes a definition of the model, the simu-
lation provides output parameters values. In a typical workflow, a
domain expert analyzes these results and, if necessary, modifies the
simulation model and repeats the simulation until the desired results
are achieved. Earlier we pursued an alternative approach tocompute a
very large set of simulations runs at once (offline) and analyze the re-
sults afterwards [10, 15]. Although this was a significant improvement

Fig. 1. An iterative approach to prototyping. A combination of the sim-
ulation and visualization tools and related data allows us to design at
different levels of abstraction. We distinguish three levels of the inter-
active steering process depicted with loops A, B, and C. The first loop,
loop A, is based on the available simulation results. We explore them,
get insight and store results (snapshots). If this is not sufficient, new
simulation results can be generated (loop B). The simulation model is
still not changed, only parameters are being refined. Finally, it is also
possible to change the simulation model (loop C).

compared to the traditional way, we still had to specify all combina-
tions of input parameters in advance.

Our new framework makes it possible to define new simulations
using the visualization tool. The visualization tool is used for the anal-
ysis and steering of the simulation. That makes it easy for the domain
expert to generate new simulations and to refine or to filter the simu-
lation dataset. Each simulation has a set of control (input)parameters
and a set of output parameters that are computed for a given input. The
main idea is to run many simulations with different control parameter
settings (they are defined by lower limit, upper limit, and step size),
and to use multiple, coordinated views to understand the model and to
support the expert in injection system design.

We provide four basic operations: refining or coarsening some con-
trol parameters (changing the step); narrowing down the control pa-
rameter interval (changing boundaries); adding new control parame-
ters; and removing some existing control parameters. If we represent
data in tabular form, the basic operations correspond to adding and
removing rows (refinement and filtering parameters) or adding or re-
moving columns (adding or removing parameters).

The domain expert estimates the coarse boundaries of the parame-
ters, runs a sufficient number of simulations and sees what parameter
values make sense and what values are not allowed based on theoutput
values. In the case of fuel injection systems, the injected fuel mass was
one of the output parameters often used to identify parameter values
that are not allowed. If there is not enough injected fuel or if there is
too much injected fuel, the engine will not run properly.

We use an iterative approach (Figure 1). The domain expert uses
the simulation tool to create the initial simulation model,specify the
initial control parameter values and produce simulation results (Fig-
ure 1, steps 1, 2, and 3). Only a part of the injection system ismodeled
in detail while the rest is replaced with modelled “ideal” values. These
ideal values became the target when we refined the model. The goal
is to create a simulation model and to determine the control parameter
values that produce the simulation results that are as closeas possible
to the idealized result. We repeat the process at three different levels.



The user first designs a very simple simulation model and setsthe pa-
rameters. The user then extends the simulation model and provides the
parameters for a more complex model that represents the second level.
Finally, the user defines the complete simulation model thatmakes it
possible to go back and forth between different levels (as itis often the
case during prototyping) and to change already tuned parameters.

The domain expert carries out the interactive steering process at
three different levels. The first level of iterative prototyping focuses
on the already generated simulation results. The expert uses the vi-
sualization tool to investigate the simulation results and, by extensive
use of brushing and linking, can get insight and create first reports
(snapshots) about the current prototype results (Figure 1,steps 4 and
6).

If the current simulation results are not sufficient, the expert can
proceed to the second level. The second level of iterative prototyping
involves refining the control parameter values (Figure 1, step 5), gen-
erating new simulation results using the current simulation model and
then returning to the first level of prototyping. The expert can do it in
an interactive way and request new simulation results from the simu-
lation tool. As new simulation results are computed, the data in the
visualization tool is automatically updated. During this process visual
analysis can proceed and benefit from better data resolution.

Based on the insight from the data, the expert may decide to refine
the simulation model. At the third level of iterative prototyping the
expert uses the simulation tool to update the simulation model and
then returns to the second level of prototyping. As this is a larger step
which makes it necessary to change internal data representation, the
expert has to wait until initial setup is completed and the first results
for new model are ready. This can take a few minutes. Once the first
set of simulation results is computed and the visualizationtool updates
the internal structure, the whole process becomes interactive again.
The simulation results are uploaded on the fly as they are computed.

In our implementation we always define the model using the HYD-
SIM tool. The HYDSIM creates simulation definition files and runs
the simulations. As simulations are computed, output files are created,
one directory for each simulation run. Our visualization tool, ComVis,
reads the first simulation results, builds the internal datamodel, and
visual analysis starts. The visualization tool checks for new output
files and loads them when they are available. ComVis offers a pos-
sibility to specify new simulation parameters, as well. If the user re-
quests new simulations from the visualization, ComVis creates HYD-
SIM input files and starts HYDSIM. HYDSIM generates new output
files which are then automatically loaded into the visualization tool.
Model changes are done in HYDSIM, and in these cases ComVis has
to recalculate internal data structures which usually takes a while (min-
utes). Once the new model is created, first simulations are computed,
the internal data structures needed for visualization are created, and
the process continues in a usual way.

3 RAPID VISUAL PROTOTYPING AND THE DESIGN OF A COM-
MON RAIL INJECTION SYSTEM

We used the developed prototyping tool to design a common rail injec-
tion system. We selected this task for two reasons, i.e., theavailability
of fast simulation algorithms and the importance of injection in an
overall Diesel engine efficiency and emission characteristic.

There are many (often conflicting) goals of a Diesel engine design,
including high power, good fuel efficiency, meeting emission regula-
tions, low noise levels, and drivability [14]. The fuel injection system
is the key Diesel engine component to achieve the goals. The common
rail injection system has several attractive characteristics: injection
pressure and quantity can be controlled with a high degree offlexi-
bility, multiple fuel injections are possible within one injection cycle
and the time and duration of the injections can be controlledprecisely
by the engine control unit based on the engine speed and load.These
characteristics are key factors in meeting current and future (very de-
manding) emission regulations.

The common rail injection system consists of two parts, one hydro-
mechanical and one electronic. The hydro-mechanical part determines
the simulation model, while the electronic part determinesthe actua-

Fig. 2. The final injection simulation model and the four main blocks.
The blocks represent logical grouping that has no influence on the model
topology. An actual injector, used for each cylinder in a car engine, is
shown on the right. The control parameters are depicted in red, and the
output parameters in blue. The exact description of the parameters is
too long for this caption and can be found in the main text, instead.

tor control parameters. Our goal is to design both parts by iteratively
adjusting the simulation model and the control parameter values.

We start by providing the end result of the design process (Figure 2).
The reason for that is to provide the context and the basic expertise for
the system design, something that experts already have. Themain
assembly components of the injector are the piezo actuator with the
hydraulic amplifier (Block III from figure 2), the control valve with a
certain control volume (Block II) and the nozzle (Block I). The piezo
actuator governs the motion of the control valve.Block IV is the fuel
supply from the common rail, which is not analyzed in this work.

Once the simulation model is created, the expert has to set upthe
control parameters (the parameters listed in red in Figure 2). For each
set of the control parameters the output parameters are computed (the
parameters listed in blue in Figure 2). All of the control parameters
in our case are scalar values, and all of the output parameters are time
series data. An additional control parameter is the actuator (the top-
most element in the Figure 2) behavior. We model the actuatorcurve
depicted in Figure 3 using a set of scalars, determining the start and
duration of the pilot and main injection, their maximum amplitudes,
and opening and closing times.

The model has 11 control parameters and setting them is the main
task of the injection system design. The actuator curve parameters are



Fig. 3. The actuator, the top most element in the model in Figure 2, is
modeled using these parameters. This is the only set of control param-
eters that will be changed during the engine operation. Depending on
the operation point (speed and load), the electric managing unit (EMU)
will select the shape of actuator curves.

Fig. 4. A simplified model used in the first iteration. We use only one
section and the rest is represented by an ideal actuator. Once the sim-
plified model is tuned, we gradually extend it to include the rest of the
model, as shown in Figure 2.

also set, but they vary, based on the crankshaft load and speed, during
the actual engine operation. The electronic control unit (ECU) of a car
engine controls these curves. ECU has a lookup map of all possible
curves and selects a curve based on the current crankshaft load and
speed. If a car runs downhill at a certain speed, the crankshaft load
can even be negative, so the actuator curves are chosen accordingly.
On the other hand, for a high crankshaft load and a certain speed,
the actuator curves and resulting injection have completely different
shapes. However, a detailed discussion of injection curve modeling is
out of the scope of this paper.

One design option [10, 15] is to run the simulation for all possible
combinations of parameters and to explore the system. If we use ten
values per control parameter, there are 1011 possible combinations of
control parameter values. Since we can run about ten simulations per
minute (for the model in Figure 2), we would need 1010 minutes, or
more then 19,000 years to complete all simulation runs. It isclear that
such simulation time, even on a large cluster, is not feasible. Instead,
we start with a simplified model, use interactive visualization to drill
down the control parameter space, and once the initial control param-
eters are fixed, the simulation model is extended.

3.1 First Model

We start with a simplified model (Figure 4),Block I from Figure 2 with
the actuator directly added on the top. This is supposed to bea direct

Table 1. Control Parameters for the first case.

Parameter Min Max Step
d sac 0.7 0.9 0.05
alpha seat 40 65 5
c turb 0.8 1.0 0.05
m ju 0.7 0.9 0.05

Table 2. Target Parameters for the first case.

Parameter Target range (mg)
Pilot in jected mass 2 – 2.5
Main in jected mass 17 – 22

actuator with simple characteristics. We tune the nozzle first.
We use only four control parameters (Table 1). It takes about12

minutes to calculate 750 cases (60 simulations per minute for this sim-
pler model). After this setup time, we explore the first data set to
achieve a certain amount of injected fuel during the pilot and main
injection. The target values were set according to Table 2.

We compute the calculated output parameterinjected massas a
function of time. It is a cumulative mass over time. The valueat
the end corresponds to the totaly injected mass during injection. As
we are interested in the injected mass after the first pilot injection and
after the main injection, we aggregated the injected mass curves so to
have the injected mass after first pilot and the total injected mass. We
brush now the scatter plot depicting these two aggregated parameters.
Figure 5 a shows this case.

At the same time, other coordinated views show the control param-
eters (Figure 5a, scatter plots in the first column) causing the targeted
injected mass. We can clearly see that the wanted injected mass is pos-
sible only for some combinations of nozzle diameter (d sac) and angle
of needle seat (alpha seat), and for all combinations of flow discharge
coefficient (m ju) and turbulent flow coefficient (c turb). We refine the
selection by selecting high pressure (as far as possible forthe given
target) and the desired needle acceleration. Figure 5b illustrates the
selections (brushes 2 and 3). Note the zoomed-in scatter plot of accel-
erations which helped in the selection.

The allowed control parameter space has narrowed significantly
(Figure 5b, scatter plots in the first column), and the expertcan now
select the first parameters (Table 3). Note that this is a quite coarse
estimation. The parameters are fine-tuned at a later stage. However,
even this coarse case shows which input ranges make no sense.

3.2 Second Model

We refine the simplified model (Figure 4) to create a more detailed
model containingBlock II. The actuator with the control valve is
placed on top ofBlock II now. This actuator is described in Figure 3.
We tune this part using the fixed control parameters forBlock I. We are
interested in the control volume size (CV size) and in the inlet/outlet
throttle flow resistance (Z inl andZ out). 1,100 simulations are com-
puted (20 simulations per minute since the simulation time changes
with the model complexity). For the same target values as in the first
case, we set the control volume size to ten. Figure 6 shows theparallel

Table 3. Control Parameters selected for First Model.

Parameter Target range (mg)
d sac 0.75
alpha seat 50
c turb 0.9
m ju 0.7



Fig. 5. Multiple coordinated views show control and output parameters. a) We brush target values for the injected fuel mass. All combinations
of c turb and m ju can produce the desired output (second scetterplot) while only some combinations of d sac and alpha seat are possible. b)
Further refinement of targets using additional brushes for pressure and acceleration helps us to narrow possible parameters and to estimate input
parameters for the first step.

Fig. 6. Second Model: The parallel coordinates view of the control pa-
rameters for the target values. Note that only low CV sizevalues are
possible, while there are many combinations of Z inl and Z out which
allow the desired output.

coordinates view of the control parameters for the target values.
If we look at the mass rate curve view now, a new, interesting phe-

nomenon can be observed (Figure 7). Note the width of curves at
injections. There are some curves starting later and some starting on
time. The actuator on the top is fixed, i.e., it has always the same input
curve (Figure 3). This means that some of the parameter combina-
tions can cause an injection delay. Injection delay is the time period
between the injection reaction and the actuator action. In our case this
is the difference between the start of the pilot (or main) injection as
depicted in the curve view and the actuator starting times (P f irst or
M f irst). This is a surprising finding, since we did not expect that this
delay would show up at this stage of modeling.

The injection delay is an unwanted behavior and we have to be sure
that it does not happen in the final model. Compared to the first, sim-
plified model, the control volume which is placed just above needle
top is not directly connected to the actuator any more. It is working
in close correlation with two orifices (inlet and outlet) that supply the
volume with fuel and drain it. We have to be sure that delay is as small
as possible at this stage of modeling.

The correlation between the mass flow rate through the nozzle
(massrate) curves and the control volume size (CV size) is easy to
detect. Simple brushing shows that the larger the control volume size

is, the narrower (less injected fuel) the curves are. Figure7 depicts
the curves selection for the maximum values ofCV size. The inlet and
outlet flow resistance (Z inl andZ out) are more challenging and to in-
vestigate this problem we refine the model. New limits and step sizes
are selected using the visualization tool and new simulations are ini-
tiated. The control volume size is set to the minimum,CV size= 10,
and new flow resistance parametersZ inl andZ out are set (Table 4).
The simulation tool is started and the visualization gets updated as
new simulations are computed. The visualization tool checks if new
data is available and automatically loads it. Since we do notchange
the model in this case, the update of the internal data and itsrepresen-
tation is straightforward. During this process we continuethe visual
analysis and exploration. In this particular case, approximately 1,680
new simulations are computed, and iteratively loaded. Of course, the
user can stop the simulation or request another refinement atany time.

We used the multiple view setup to observe what is happening.
The target values for the injected mass, pressure in the SAC volume
P sac, and the needle acceleration are set, and flow resistance param-
eters show a linear dependency. Figure 8 shows the flow resistance
parameters on the top and the mass rate curves in the bottom. Note the
much denser parameter space due to the refinement. After a detailed
exploration, we are able to remove the influence of the parameters on
the delay. We understand what is going on, the delay turns outto be
logical, and the parameters are set to 1.6 and 2.6 forZ inl andZ out.

3.3 Third Model

We are ready for the final step now where we further extend the model.
It now corresponds to the model in Figure 2. Note that the control pa-
rameters forBlock I andBlock II are set (but they can be changed) and
we tune the last part now. There are four parameters in the last block:

Table 4. Refined Control Parameters for Second Model in order to in-
vestigate injection delay.

Parameter Range Step
Z inl 1,0 - 2.0 0.025
Z out 2.0 - 3.0 0.025



Fig. 7. Massrate curves for the second model. a) Many curves of dif-
ferent widths, showing significant delays for some parameter combina-
tions. b) The selection corresponds to the maximum values of CV size,
such curves would result in insufficient fuel mass. Note also that pilot
injections are completely missing in this selection.

Fig. 8. The scatterplot shows refined input parameters. We have se-
lected desired output parameters (on views which are not displayed in
the image) and the selection is shown in red. The massratecurves have
a desired shape now. The linear correlation of Z inl and Z out is unex-
pected.

the bypass flow resistance (ResBypass), the outlet flow resistance
(ResOutlet), the effective flow area at the bypass seat (Area Bypass),
and the effective flow area at the valve seat (AreaValve).

Due to the model complexity we now calculate approximately ten
simulations per minute. 900 parameter variations are set and we start

Fig. 9. Two scatterplots showing the control parameters for the final
model. We further refine the Area Bypassand Area Valve parameters.
The red points correspond to selected desired output parameters.

Fig. 10. Combinations of the control parameters as created during the
iterations. We have a coarse mesh of parameter values at the begin-
ning, and we refine them twice during the process. All combinations of
the control parameters are shown here, we can hide unwanted iterations
during the analysis, if necessary.

the visual exploration. In contrast to the simple parameterrefinement,
the step change here represents a model change. Internal data struc-
tures in the visualization tool have to be changed. This is considered
to be a larger step and the user has to wait a few minutes for thefirst
results. Once the simulation software computes the initialresults, pa-
rameter refinement can be done on the fly. During parameter refine-
ment we continue the visual analysis and the data is automatically up-
dated. The target values for the injected fuel mass (pilot and main)
remain the same. The actuator is still fixed.

Figure 9 shows the parameters after the target values were selected.
Two parameters have no significant influence, the target values can
be achieved with all possible combinations of the flow resistances
ResBypassandResOutlet. We set the values to 2.0 and 1.0, respec-
tively. The other two parameters show a far more interestingbehavior.
A wide range of parameter values are initially investigated. It is suc-
cessively refined as we realized where we need more information.

Figure 10 shows the parameters as computed at the end. We use two
iterations, we refine the parameters once and then refine a subrange of
parameters once more. This represents parameter refinement, and the
data in the visualization tool is updated as new simulationsare com-
puted. During computation we continue the visual analysis.Output
values are used to steer the refinement. Based on the output values we
decide where to refine input parameters.

Figure 11 shows an example of the output parameter values as they
are computed in various steps. Resulting outputs from various iter-
ations are highlighted in the figure in order to illustrate results from
various iterations.

Figure 12 shows the target injected mass, the correspondingpres-
sure, control parameters, and mass rate curves. Note the scatterplot on



Fig. 11. Six scatterplots showing output parameters as computed during six iterations of simulation steering. We can see there are many scattered
values in the beginning. We then used interactive brushing in other views to get insight on how these output parameters are changing. Finally we
can identify the desirable area, and the simulation results are refined in that area.

Fig. 12. The final model. The target injected mass on the left is defined using a quite narrow range here. The corresponding pressure, input
parameters and mass rate curves are shown. Everything seemed to be correct in this simulation model.

Fig. 13. With the final model fixed, the actuator curves are varied. Quite surprisingly, there are unwanted peaks in the output curves for multiple
parameters. Red ellipses show these peaks. It is not intuitively clear why and when they occur, and we explored it in more details. The assumption
that all parameters are set and that actuator variations are just a routine fails and we had to go several steps back and run new simulations.
Corresponding values of M int are shown in the scatter plot on far right. Note the puzzling oscillating behavior.

the far left showing the same data (also in Figure 11) as the scatterplot
from the very first model (Figure 2). The scatterplot in Figure 12 is
zoomed in and shows the data from the final iteration only. We are far
off the target values at the beginning and by successive refinement and
simulation steering we achieve a finer granularity around the target
area.

3.4 Final Model

We now set the final control parameters. Any of the data pointsof the
injected mass shown in Figure 12 can be selected. They all result in a
desired behavior. We have to select one set, however, as theycan not
be changed later. Due to the wanted pressure and needle acceleration,
we select the effective flow area at the valve seat —AreaValveand the
flow discharge coefficient —m ju to be 0.071 and 0.54, respectively.
Our injector now is set.

The actuator on the top used to drive the injection in a real setup
was fixed up to now. As stated before, the ECU of the engine will
change the actuator during operation. Our parameters, on the other
hand, remain the same. They cannot be changed at runtime.

The last task is to check if the parameters also yield satisfying out-
put for various actuator curves. We vary the actuator settings and again
several times refine the parameters. Eventually we are satisfied and
want to see all the response curves for all the combinations of actuator
parameters (1,600 combinations are chosen).

To our great surprise, we see that some curves exhibit a very unusual
behavior. The curve views in figure 13 show the response curves for

Needleacceleration, and pressures in the nozzle and control volumes,
P nozleandP control, with the undesired peaks marked with red el-
lipses. Those peaks indicate system oscillations at specific points. Any
oscillation in system is dangerous and undesired. The amplitude of any
oscillation may rise above system limits for some unknown situations.

Now we have to find the reason for these oscillations in order to
predict and avoid such a behavior. Furthermore, especiallyfor the
fuel injection system, any kind of secondary oscillations may open the
nozzle at the wrong time and lead to fuel inflow in the combustion
chamber and an undesirable combustion process.

To investigate the oscillations further, we isolate the peaks using a
line brush in the curve view. The tool allows to simply draw a line
across the curves, and all curves crossing the line will be selected. The
composite brushing functionality is supported as well.

The scatter plot in Figure 13 shows pilot and main injection inter-
vals, P Int andM Int, with the peaks selected. An unexpected and
very interesting finding is the pattern at which peaks appearat 3M Int
values. It shows oscillating behavior in the parameter space. We can
easily skip those values, and program the ECU not to use theseparam-
eter values.

However, puzzled by this discovery, we want to investigate this phe-
nomenon further. We go back one more time. The parameters with
most influence up to now:m ju, Area valve, Area BypassandM int
are varied once more. Undesirable peaks are present again, but the
control parameters are chosen to be far away from the settings which
caused them. The previously set parameters are changed, andthe in-



Table 5. Final control parameters. The Block IV parameter values are
not analyzed at this stage (listed for the sake of completeness).

Param. Name Description Final Value
I 1 d sac Sac diameter 0.75mm
I 2 alpha seat Needle seat angle 50degrees
I 3 c turb Turbulent coefficient 0.9
I 4 m ju Flow discharge coefficient at nozzle holes 0.6
II 1 CV size Size of control volume 10mm3

II 2 Z inl Inlet flow resistance in control volume 1.6
II 3 Z out Outlet flow resistance out of control vol. 2.6
III 1 ResBypassFlow resistance through bypass 2.0
III 2 ResOutlet Flow resistance through outlet 1.0
III 3 Area BypassBypass effective area 0.032mm2

III 4 Area Valve Valve effective area 0.07mm2

IV 1 HPP LengthLength of high pressure pipe (fixed) 300mm
IV 2 RV Size Common Rail volume size (fixed) 30cm3

jector is finally set. Table 5 shows the final values of the control pa-
rameters.

4 CONCLUSION

The coupling of interactive visualization with the simulation back-end
facilitates fast prototyping of a system under development. We start
from a non-optimized initial prototype and the corresponding simu-
lation model and through an iterative process, going back and forth
between different levels of abstraction, we refine the simulation model
and design a system that meets the requirements. In doing so we are
significantly reducing the number of simulation runs.

The brute force approach requires to run simulations for allpossible
combinations of the control parameter values which is not computa-
tionally feasible. The described approach requires only several thou-
sands simulation runs to find a design that meets the requirements.

The interdisciplinary setup of this project allowed to develop this
steering solution in the context of a real-world problem. Itwas very
rewarding to see how the tool facilitated new discoveries (Section 3.4),
even quite surprising ones. The discoveries provided much better in-
sight and allowed us to anticipate and address oscillation problems and
thus create a much better design. Engineers still only seldom use inter-
active visualization and usually analyze simulation results using static
2D charts, depicting few simulation runs simultaneously inmost cases.
They also use automatic optimization methods, but our approach of-
fers completely new view and insights.

The three levels of iteration (simulation data, control parameters
values, simulation model) provide different levels of interactivity.
While viewing the simulation data is done in real-time, changing the
simulation model introduces a noticeable delay. However, since we
can go back and forth between different levels, instead for waiting
for the simulation model update to propagate to the simulation data,
we use the simulation data level and continue our analysis until new
simulation data are generated. This approach is rather general and ap-
plicable to a wide range of design problems.

We plan to explore a variety of design problems and related solu-
tions to identify some design patterns. We will further improve the
interactivity of the developed tool. Some semi-automatic support for
drill-down, possibly involving approaches to (semi-) automatically de-
tect a region which seems to be out of the range of interest will be re-
searched as well. Finally, we will explore a collaborative,multi-user
version of the tool to “share” the design process among several experts.
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visual analysis and exploration of injection systems simulations. InProc.
of the IEEE Visualization 2005, pages 391–398, 2005.

[16] J. D. Mulder, J. J. van Wijk, and R. van Liere. A survey of computational
steering environments.Future Generation Computer Systems, 15(1):119–
129, 1999.

[17] C. North and B. Shneiderman. Snap-together visualization: a user inter-
face for coordinating visualizations via relational schemata. InProc. of
the Working Conf. on Adv. Vis. Interfaces, pages 128–135, 2000.

[18] S. G. Parker, C. J. Johnson, and D. Beazley. Computational steering:
Software systems and strategies.IEEE Computational Science & Engi-
neering, 4(4):50–59, 1997.

[19] W. C. M. van Beers and J. P. C. Kleijnen. Kriging interpolation in sim-
ulation: a survey. InProc. of the 36th Winter Simulation Conf., pages
113–121, 2004.

[20] C. Weaver. Building highly-coordinated visualizations in improvise. In
Proc. of the IEEE Symp. on Inf. Visualization 2004, pages 159–166, 2004.

[21] C. Weaver. Visualizing coordination in situ. InProc. of the IEEE Symp.
on Inf. Visualization 2005, pages 165–172, 2005.

[22] T. G. West. Images and reversals: James Clerk Maxwell, working in wet
clay. ACM SIGGRAPH Computer Graphics, 33(1):15–17, 1999.

[23] J. S. Vetter and D. A. Reed. Real-time Performance Monitoring, Adap-
tive Control and Interactive Steering of Computational Grids. Interna-
tional Journal of High Performance Computing Applications, 14:357–
366, 2000.

[24] P. Wenisch and C. van Treeck and A. Borrmann and E. Rank and
O. Wenisch. Computational Steering on Distributed Systems: Indoor
Comfort Simulations as a Case Study of Interactive CFD on Super-
computers.Int. Journal of Parallel, Emergent and Distributed Systems,
22(4):275–291, 2007.


