
D I P L O M A R B E I T

Penta G – A Game Engine for
Real-Time Rendering Research

ausgeführt am Institut für

Computergraphik und Algorithmen
der Technischen Universität Wien

unter Anleitung von
Privatdoz. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

durch

Dey-Fuch Chiu

Schneckgasse 12
3100 St. Pölten

1. Mai 2008
Datum Unterschrift

Abstract

Scientific research often necessitates the usage of middleware for proof-of-
concept implementations. In computer graphics, rendering engines are a
type of middleware used for such a purpose. For real-time rendering, how-
ever, rendering engines often do not provide all functionality that is required,
as in real-time, a certain degree of user interactivity aside from graphics is
necessary, or can be the center of research. Furthermore, some modern re-
search also explores interactivity with non-visual perceptual channels such
as audio. Full game engines provide that functionality, however most state-
of-the-art game engines are only available through expensive or exclusive
licenses, or are completely unavailable for scientific research.

This thesis presents the design, implementation and adaptation process
of a state-of-the-art game engine that was tailored specifically for research
purposes. This game engine includes all the necessary components to build
real-time-interactive computer graphics applications and has been used in
several research projects such as the EU GameTools Project and the EU
Crossmod Project.

Kurzfassung

Wissenschaftliche Forschung erfordert häufig Middleware für die Implemen-
tation von Machbarkeitsdemonstrationen. In der Computergrafikforschung
werden hierfür Rendering Engines hinzugezogen. In der Echtzeitgrafik ist
allerdings oft mehr Funktionalität nötig als es Rendering Engines bieten
können, da in Echtzeit typischerweise Benutzerinteraktion erforderlich ist,
oder dies sogar Teil der Forschungsthematik sein kann. Weiters existieren
moderne Forschungszweige, die auch die Interaktivität mit nicht-visuellen
Wahrnehmungskanälen wie etwa Audio untersuchen. Vollwertige Game En-
gines verfügen über diese Funktionalität, allerdings sind die meisten Game
Engines entweder nur über teure Lizenzen verfügbar, oder werden für wis-
senschaftliche Forschungszwecke überhaupt nicht angeboten.

In dieser Diplomarbeit wird der Entwurf, die Implementation sowie die
Anpassung einer modernen Game Engine beschrieben, die spezifisch für die
Echtzeitgrafikforschung entwickelt wurde. Diese Game Engine enthält alle
nötigen Komponenten um echtzeit-interaktive Computergrafikprogramme zu
entwickeln und wurde bisher schon in mehreren Forschungsprojekten verwen-
det wie etwa dem EU-Gametools-Projekt sowie dem EU-Crossmod-Projekt.

Contents

1. Introduction . 8
1.1 Scope and Focus of the Work 8
1.2 Introducing GebauzEngine . 9
1.3 Penta G Development History 9
1.4 Structure of the Thesis . 10

2. Engines in Research . 11
2.1 Graphics Hardware and Real-Time Rendering 11

2.1.1 What is “Real-Time”? 11
2.1.2 The Rendering Pipeline 12
2.1.3 Advancements of Graphics Technology 16
2.1.4 Application Programming Interfaces (APIs) for Graphics 18
2.1.5 Arriving at Middleware – Rendering Engines 23

2.2 Types of Middleware . 24
2.2.1 Rendering Engines . 24
2.2.2 Scenegraph Libraries 24
2.2.3 Game Engines . 25

2.3 Examples of Middleware in Research 26
2.3.1 OGRE 3D . 26
2.3.2 OpenInventor . 26
2.3.3 Java3D . 27
2.3.4 NVIDIA SceneGraph 27
2.3.5 OpenSceneGraph . 27
2.3.6 OpenSG . 27
2.3.7 Performer . 28
2.3.8 YARE and YARE2 . 28

2.4 Game Engines in Research – Usage Scenarios 28
2.4.1 Research Test Beds . 28
2.4.2 Paper Demos . 29

2.5 A Requirements List for Research Game Engines 29
2.5.1 Layered Design . 29
2.5.2 Extensible Rendering System 29

Contents 5

2.5.3 Reducing Overengineering 30
2.5.4 Comprehensive Toolset 30
2.5.5 What is not required 31

3. Designing a Game Engine for Research 32
3.1 Introduction . 32

3.1.1 Approach . 32
3.1.2 Content-Driven Development 33
3.1.3 Asset Tool Chain . 33

3.2 Software Design . 34
3.2.1 Overview . 34
3.2.2 Utilized Libraries and APIs 34
3.2.3 Collaboration Structure 36

3.3 Development Tools and Standards 36
3.3.1 Development Environment 36
3.3.2 Directory Structure . 37
3.3.3 Debugging and Memory Leak Tracking 38
3.3.4 Performance Testing 38
3.3.5 Code Style Guideline 39
3.3.6 Documentation . 40

3.4 Structure of the Engine . 40
3.4.1 Core . 40
3.4.2 File System . 44
3.4.3 Graphics . 44
3.4.4 Input . 55
3.4.5 Audio . 56
3.4.6 Parser . 56
3.4.7 Application Framework 58

3.5 Asset Pipeline . 58
3.5.1 Toolchain Structure . 58
3.5.2 Collaboration with the Engine 59
3.5.3 Material/Effect System 60

3.6 Anatomy of a minimal GxEngine Application 62

4. Building a Game for Research – Penta G 67
4.1 Introduction . 67
4.2 Game Object Hierarchy . 67

4.2.1 Start Position Object 68
4.2.2 Environment Models 68
4.2.3 Actors . 68
4.2.4 Waypoints . 70

Contents 6

4.2.5 Particle Systems . 71
4.2.6 Actions . 71
4.2.7 Touchfields . 71
4.2.8 Scripting Cameras . 71
4.2.9 Portals . 71
4.2.10 Sound Entities . 71
4.2.11 Light Controllers . 72

4.3 The Asset Pipeline on Application Level 72
4.4 Game Logic and Scripting . 72

4.4.1 Main Loop . 72
4.4.2 Game States . 73
4.4.3 Scripting System . 74

4.5 The Rendering Pipeline . 75
4.6 Advanced Features and Technologies 77

4.6.1 Multiple Render Targets and Postprocess Effects 77
4.6.2 Parallax Mapping . 78
4.6.3 Omnidirectional Shadow Mapping 81
4.6.4 Coherent Hierarchical Culling 84
4.6.5 Depth Impostors . 88
4.6.6 Reflections and Refractions with approximate Raytracing 90

4.7 Comparison with requirements list 91
4.7.1 Layered Design . 91
4.7.2 Extensible Rendering System 91
4.7.3 Reducing Overengineering 91
4.7.4 Comprehensive Toolset 92

4.8 Performance . 92

5. Penta G in Research . 95
5.1 The EU Gametools Project 95

5.1.1 Introduction . 95
5.1.2 Penta G as a Demo Game 95
5.1.3 Penta G in GTP Research 98

5.2 The EU Crossmod Project . 98
5.2.1 Introduction . 98
5.2.2 Eyetracking for Perception Experiments 98
5.2.3 Spatial Audio Rendering 99

6. Summary and Future Work . 100
6.1 Conclusion . 100
6.2 Future Work . 101

Contents 7

A. Importing Model Data to Penta G 103
A.1 Prerequisites . 103
A.2 Creating the Model . 103
A.3 Exporting the Model . 104
A.4 Tweaking and converting the Model 104
A.5 Loading the Model in Penta G 106

B. Building a Level for Penta G . 109
B.1 Prerequisites . 109
B.2 Introduction to the Level Editor 109
B.3 Creating Static Level Geometry and Lights 110
B.4 Making the Level work in Penta G 110
B.5 Creating Dynamic Level Geometry 110
B.6 Placing AI Controlled Objects and Pickups 110
B.7 Adding a simple Trigger Script 111
B.8 Testing in Penta G . 114

List of Figures . 115

List of Tables . 116

List of Listings . 117

Bibliography . 118

Acknowledgements . 124

Chapter 1

Introduction

In this chapter the scope and focus of the work described in this thesis will
be outlined, and the game engine that is described in this thesis will be
introduced. Finally, we will give a short development history of the game
that was created using that game engine.

1.1 Scope and Focus of the Work

This thesis describes the design, implementation and application of a game
engine as well as a demo game utilizing that engine that was developed for
research purposes. Numerous engines – both pure rendering engines as well as
full frameworks for games – exist that are currently being used in research for
creating demo programs and proof-of-concept implementations of techniques
and algorithms.

The scope of the game engine described in this thesis was not to create yet
another rendering engine, but to create both a full-featured game engine as
well as an actual game, including the asset and workflow pipeline required to
create content. While real-time graphics research often has access to a variety
of graphics middleware, it is rare that current-generation game engines as
well as actual games including their content as well as tools are available to
researchers. Typically a commercial game engine and game becomes available
to the public – and thus for research – years after that engine has become
technically obsolete.

Therefore, the major focus of this work was to create also a full game that
utilizes current-generation technologies, in order to provide research with not
only a game and rendering engine, but also with all the necessary tools and
the asset pipeline. This also enables scientists to work in a real-world-scenario
environment when conducting research.

Chapter 1. Introduction 9

1.2 Introducing GebauzEngine

The underlying low-level framework created in the scope of this thesis was
named GebauzEngine, or GxEngine for short. It provides access to rendering,
filesystem, input and audio functionality. This thesis describes the second
iteration of that engine (version 2.0). The first version – which was also
already used for some research [26] – only acted as a prototype and had to
be majorly refactored into version 2.0.

On top of that engine, a full game was built and various content tools
created. The game built on top of that engine was named “Penta G”. In the
next section, a brief development history will be given.

1.3 Penta G Development History

Penta G and thus the GebauzEngine started as a demo game for the Euro-
pean Union GameTools Project (see Chapter 5.1). The goal was to create a
state-of-the-art game and engine that would showcase some of the GameTools
Project’s technologies.

Fig. 1.1: GameTools demo game Penta G.

Penta G was completed in Summer 2007 after approximately a year of
development with a total of three core team members. The game was show-
cased to various participating research institutes of the GameTools Project

Chapter 1. Introduction 10

and was met with positive response. It also had exposure to game industry
events and exhibitions as a representative demo of the GameTools Project.

When Penta G was nearing completion, researchers of the Crossmod
Project (see Chapter 5.2) inquired about utilizing Penta G for their per-
ceptual interaction research. Hitherto only videos of retail games had been
used for eyetracking experiments. Having access to Penta G on a source code
and source asset level was a benefit as experiments could be custom-tailored
for the research focus. Another branch of the Crossmod Project used Penta G
for their spatial audio perception research, effectively utilizing and modify-
ing the audio subsystem of the GebauzEngine. Chapter 5 will describe how
Penta G was used in research in more detail.

1.4 Structure of the Thesis

The thesis will be structured as follows:

• Chapter 2 introduces the forms of middleware commonly used in real-
time computer graphics research as well as outlines the specific prob-
lems with each of them. A list of requirements a game engine must
fulfill in order to solve these problems is subsequently proposed.

• Chapter 3 describes the design processes that went into the game engine
in terms of software design, underlying graphics hardware and APIs,
and the asset and workflow pipeline.

• Chapter 4 presents a demo application implemented using the game
engine and the technologies used, and finally compares it to the re-
quirements list from Chapter 2.5.

• Chapter 5 is devoted to the two research projects that have used
Penta G for research: the GameTools Project and the Crossmod Project.
A detailed description of how Penta G was used in each of them will
be given.

• Chapter 6 summarizes the efforts made in this thesis and evaluates the
result.

• The Appendix provides guides on how to create content for Penta G.

Chapter 2

Engines in Research

This chapter explores the reasons and benefits of using graphics middleware
in the context of rapidly advancing graphics technology. Futhermore, an
overview is given on the types of graphics and game middleware commonly
used in real-time rendering research. After briefly giving exemplary usage
scenarios of using game engines in research, we arrive at a requirements list
for a game engine intended for research purposes.

2.1 Graphics Hardware and Real-Time Rendering

The following section gives an overview over real-time rendering and graph-
ics application programming interfaces to analyze the necessity for graphics
middleware.

2.1.1 What is “Real-Time”?

Rendering describes the process of generating an image of a scene from a dif-
ferent description of that scene. Photorealistic rendering typically researches
techniques and algorithms that improve the realism of the images generated,
often at the cost of rendering speed.

Real-time rendering, on the other hand, focuses on techniques that may
also strive for realism and depiction of “physically correct” phenomena, but
within real-time constraints.

Real-time systems are defined as systems that contain operations which
have a time constraint. In other words, the correctness of the system be-
haviour does not depend purely on the logical results of the operations de-
fined within the system, but also on the time in which these operations are
carried out. These time contraints by which operations must yield results
are called deadlines [37].

In real-time rendering systems, such a deadline is defined by the maxi-
mum time a single frame may take to render an image. The inverse of the

Chapter 2. Engines in Research 12

frame render time is called the frame rate and is measured in frames per
second (fps). Thus, the maximum frame time also defines a minimum frame
rate. In general, a real-time rendering system can be considered interactive
when it renders output at a minimum at 15 frames per second [62], or ap-
proximately 66 milliseconds per frame. Thus, the deadline for each frame of
an interactive real-time rendering system is approximately 66 milliseconds
measured from the start time of the rendering process of that frame. For
truly fluid movement and animation, however, approximately 60 frames per
second are necessary as a minimum, as framerates below that threshold re-
sult in stuttering movement. Therefore in the scope of this thesis a rendering
system will be considered real-time when its output reaches 60 frames per
second.

A real-time system may or may not meet its deadlines. In the case of not
meeting its operational deadlines, three cases can be classified [37]:

• Soft deadlines are time constraints that, when not met, still yield uti-
lizable results.

• Firm deadlines on the other hand describe deadlines where the results
have no utility when the time constraint is not fulfilled.

• Hard deadlines result in a so-called catastrophic event in the case of
failing to meet the deadline.

According to these definitions, real-time rendering systems can be classi-
fied as soft real-time systems, as even when the deadline for a single frame
is not met, the rendering frame rate will be lower, but the output – the
generated image – still has utility as long as it is rendered correctly.

2.1.2 The Rendering Pipeline

The traditional real-time rendering pipeline consists of three major stages [62]:

• The application stage holds higher-level information of the scene, and
possesses the information necessary to break the scene data down to
single render calls – these render calls are called batches and pass ge-
ometry such as vertex buffers down to the geometry stage.

• The geometry stage takes the geometry passed from the application
stage, sets up triangles and transforms the vertices. It may also calcu-
late per-vertex lighting information.

Chapter 2. Engines in Research 13

• Finally the rasterizer stage fills each triangle and calculates the final
color value of each pixel by interpolating information from each vertex
of a triangle.

Each of these stages can be further broken down into a pipeline of its
own. The application stage is processed in software, on the main processor
(CPU), while the others may or may not be executed in graphics-specific
hardware. Section 2.1.3 will give an overview over such graphics processors
and their functionality.

The Application Stage

The application stage contains the entire logic of the program, takes user
input and manages the state of the program. It also prepares the state
information it wants to visualize in a way that can be processed by the
next stage, the geometry stage. How this stage is implemented in detail
depends on the task and type of the program. Since this stage runs entirely
in software, it is not necessary to structure this stage in the form of a pipeline
with substages.

Typically this stage holds scene information, updates it according to the
goal of the application (such as performing collision detection between scene
objects), and processes geometry primitives such as triangles, points, lines
into a form the geometry stage expects. It may also do calculations to reduce
the amount of information sent to the next stage, effectively reducing the
workload the geometry stage has to process. This can be performed by
determining the visibility of geometric components of the scene – a process
called Visibility Culling.

The Geometry Stage

The geometry stage takes the rendering primitives provided by the applica-
tion stage and processes them so that the following stage, the rasterizer stage,
may compute the final color of each pixel or fragment. In order to do that,
it needs to transform the geometric data to view space, (optionally) perform
lighting calculations, project the geometry to screen space, perform view-
port clipping and finally map the result to individual pixels for the rasterizer
stage. Figure 2.1 illustrates the substages of the geometry stage.

In a 3D rendering pipeline, several coordinate systems exist, determined
by the position and orientation of each point in the system relative to the
origin. Geometric data from meshes and models are saved in object-relative
space, or model space. Such a model or mesh may be positioned and oriented
arbitrarily in the world, or several instances of the same model may exist that

Chapter 2. Engines in Research 14

Fig. 2.1: The geometry stage.

all differ in positioning, orientation, or other arbitrary affine transformations.
In this world space, each vertex of the model or mesh possesses a different
position and orientation than in model space. The process of calculating
the resulting world space vertex position from the vertex position stored in
model space by using a specified transformation is called transforming. The
transformation itself is typically specified by a 4x4 matrix, as such as matrix
can store single transforms such as translation, rotation, scaling, shearing, as
well as the result of a series of such transforms. Such a chaining is achieved
by multiplying matrices together.

Aside from model and world space, the most commonly used coordinate
frames are the camera-relative view space (sometimes called eye space), and
the post-projection 2D screen space. Other spaces exist and may be used
depending on the specific algorithm such as light space. The exact orientation
of the coordinate axis (x/y/z) of each coordinate system depends on the
system that specifies it (such as an application programming interface).

In the geometry stage the model and view transform stage uses the model-
to-world matrix and the world-to-view matrix to transform each vertex of
the rendering primitives supplied by the application stage into view space.
Typically these two matrices are concatenated by multiplying them together
for efficiency reasons, so that transforming with a single matrix directly yields
the view space coordinates [30].

Afterwards, per vertex lighting calculatings occur in the lighting stage.
The application stage may specify various light sources to be active and
determine their parameters. Vertex lighting calculations result in lighting
values or color values based on lighting terms that are interpolated over a
polygon, resulting in a shading scheme named Gouraud Shading [27]. Light-
ing may also be calculated in world space, depending on the application and
system.

The projection stage transforms the vertices from view space into an unit
cube called the canonical view volume. Depending on how the geometry is
warped during this transform, we can identify two classes of projection trans-
formations: perspective projections and parallel projections. Perspective Pro-

Chapter 2. Engines in Research 15

jections simulate the real-world effect of distant objects appearing smaller
than close objects, while parallel projections – also called orthographic pro-
jections – preserve the parallel property of edges that were parallel before
projections. By dropping the Z coordinate from the resulting vertices – which
are stored in normalized device coordinates – the transformation from 3D to
2D space is achieved. As result we receive a two-dimensional collection of
vertex positions that determine how the previously three-dimensional objects
would look like in 2D space. The Z coordinate is not completely dropped,
however, since it may play a role in per-pixel visibility calculations such as
Z testing later on.

Clipping cuts away parts of the polygon objects that are outside the unit
cube since those parts will not be visible in the final image. Finally, screen
mapping – which can be considered another transform – computes screen
device coordinates from the normalized device coordinates by mapping the
normalized coordinates onto a viewport with a specific width and height.

The rasterizer stage then processes these polygons to generate the final
image.

On modern graphics processing units (GPUs), the entire geometry stage is
implemented in hardware, and made programmable through the use of vertex
shaders. More complexity and flexibility has been added, so the description
of this pipeline may not exactly match a specific implementation on a modern
GPU.

The Rasterizer Stage

The rasterizer stage is responsible for processing data input from the geom-
etry stage in order to output resulting pixel values. Depending on the sys-
tem, such pre-display pixels may be called fragments such as in the OpenGL
application programming interface (see Section 2.1.4). Figure 2.2 shows a
representative structure of the rasterizer stage.

Fig. 2.2: The rasterizer stage.

From the processed primitives of the geometry stage, the rasterizer stage
sets up triangles and interpolates per-vertex values across their surface, cal-

Chapter 2. Engines in Research 16

culating the fragments that make up the single triangles. For each fragment
per-pixel operations are executed, which take the interpolated per-vertex
values to calculate the output color.

Aside from information interpolated from vertex data, the rasterizer stage
may also use additional data to combine the final pixel from. One type of
such input data may be texture data, and the process of reading data from
a texture is called texture sampling and the resulting read-out data is called
a texel. Texture images can be used to easily increase the optical fidelity of
the resulting image by adding fine details that are not feasible to be added
geometrically.

When using per-pixel lighting, lighting is not performed in the geometry
stage, but in the rasterizer stage. The geometry stage merely provides the
necessary interpolated input data to the rasterizer stage, such as the per-pixel
normals interpolated from the polygon vertex normals. The lighting term
itself is then calculated in the rasterizer stage, resulting in an interpolation
or shading scheme called Phong Shading. Using additional data such as
textures containing normals, it is possible to add fine lighting detail onto
a surface. Such textures encode a normal’s x, y and z coordinate into the
red, green and blue channels of a color texture, called normal maps, and
the variation of per-pixel lighting that does not take the interpolated normal
from the geometry stage but rather the normal sampled from a normal map
is called Normal Mapping.

Finally, additional raster operations can be executed on the final color
output such as blending. This stage depends on the actual implementation
of the rendering pipeline, and may actually happen in the fragment processing
stage, or not exist at all on certain systems.

Similar to the geometry stage, the Rasterizer stage is also implemented
completely in hardware on modern GPUs. Programmable pixel shaders make
it possible to develop complex lighting schemes not hardwired to the capa-
bilities of the graphics chip.

The next section explores the gradual development in terms of hardware
acceleration of the various stages of the rendering pipeline and gives a brief
history on consumer graphics hardware.

2.1.3 Advancements of Graphics Technology

A large role in the progress made in Real-time rendering is played by the
hardware technologies developed in the past 10 years. With the introduction
of the 3dfx Voodoo 3D accelerator [2], real-time rendering hardware – which
previously existed purely in the professional domain – became affordable to
consumer audiences.

Chapter 2. Engines in Research 17

Early 3D accelerators only realized the rasterization stage in hardware;
the application and geometry stages still had to be processed in software.
However, with the advent of Hardware Transform-and-Lighting in the form
of the NVIDIA GeForce 256 graphics card [39], parts of the geometry stage
were transferred to hardware as well.

Due to the hardwired implementation of these stages in hardware, the
hardware part of the rendering pipeline could only be processed in a very
rigid way, with only limited flags or registers that could influence the path
through the rendering pipeline. Such a hardware-accelerated pipeline that
only had a rigid path through it with very limited control over the process
is called Fixed-Function Pipeline [62].

Due to the rigid nature of the fixed-function pipeline, hardware designers
added various methods of controlling the flow through the rendering pipeline
in order to add more flexibility on how vertices and fragments were pro-
cessed. Register Combiners added a form of semi-programmable logic to the
rasterizer stage, making it possible to combine samples from multiple texture
stages using a range of selectable operators [40].

Graphics accelerators gained full programmable capabilities with the de-
velopment of vertex and fragment programs, which respectively made it pos-
sible to programmatically influence the transform-and-lighting stage and the
rasterization stage by running small programs called shaders directly on the
graphics chip. Note that vertex program and fragment program are OpenGL
terminology; in Microsoft Direct3D, these programs are named vertex shaders
and pixel shaders. More details on OpenGL and Direct3D will be given in
Chapter 2.1.4.

Early pixel shader implementations on graphics chips hardly had more
functionality than the fixed-function register combiners – they could run pixel
shader programs containing a maximum of 64 instructions. Also, program-
ming shaders was mostly done in an assembly-like language.

With every new generation of graphics hardware, however, limitations
were made less restrictive, and new capabilities were added to the previously
very limited shader programs, such as the introduction of Dynamic Branching
in Shader Model 3.0 [19], and the introduction of high-level shader languages
which previously were a feature exclusive to software rendering systems, such
as in the form of the RenderMan Shading Language [50].

With Shader Model 4.0, which was introduced with the Microsoft Di-
rect3D 10 API, graphics cards also gained the ability to tesselate, alter and
generate geometry after the vertex shader stage; for this a new type of shader
called the geometry shader was added.

Graphics hardware has not only influenced the according graphics ap-
plication programming interfaces (APIs), but APIs also influenced graphics

Chapter 2. Engines in Research 18

hardware. Recent consumer hardware is often tailor-designed to Microsoft’s
DirectX specification. The next section will introduce the most important
graphics APIs in this context.

2.1.4 Application Programming Interfaces (APIs) for
Graphics

As more graphics accelerator hardware was introduced and made available
to consumer audiences, due to the multitude of different graphics processors,
it was necessary to define standards for accessing and programming such
hardware. With the introduction of affordable consumer 3D accelerators, new
such application programming interfaces (APIs) were developed or existing
ones such as OpenGL were adapted and extended to support such hardware.
This section will give an overview on some important graphics APIs that
were relevant to such consumer hardware.

OpenGL

OpenGL, or Open Graphics Library, is a set of specifications for a 3D ap-
plication programming interface originally developed by Silicon Graphics
(SGI) [56] as a successor to their previous graphics programming interface,
IrisGL [30]. It is designed to be platform-independent, and several imple-
mentations on various operating systems in software as well as hardware-
accelerated implementations for graphics hardware exist.

The OpenGL standard was previously maintained by the OpenGL Archi-
tecture Review Board (ARB), an independent consortium founded in 1992 [45]
by SGI. In 2006, the consortium voted to transfer the control over the
OpenGL standard to the Khronos Group [36].

The core OpenGL API provides programming access to the geometry and
rasterizer stages of the rendering pipeline outlined in Section 2.1.2. OpenGL
is implemented as a state machine, which means that all rendering parame-
ters such as actively bound textures, vertex buffers, shaders, as well as render
states preserve their state until it is changed by the programmer [57]. De-
pending on the concrete implementation, sometimes called the OpenGL de-
vice driver, certain features may be hardware-accelerated or software-based,
or both.

While the core API is platform-independent, OpenGL possesses a platform-
dependent layer that is used to bind a windowing system such as Microsoft
Windows or the X Window System to an OpenGL rendering context. De-
pending on the vendor of the OpenGL implementation, different extensions
may be supported that give access to extended functionality not available in

Chapter 2. Engines in Research 19

the OpenGL core API. These extensions are specified in a similar manner to
the core API in the SGI extension registry, formulated to be addenda to the
OpenGL reference manual [55]. With every version of the OpenGL specifi-
cation, some extensions become part of the core API. At the time of writing,
the current version of the OpenGL standard was 2.1, and drafts for version
3.0 have been introduced by the Khronos Group.

Several different types of extensions are specified, denoted by a certain
acronym:

• ARB extensions have been declared standard by the OpenGL architec-
ture review board, and may be part of the core in subsequent versions
of the OpenGL standard.

• EXT extensions are supported by at least two vendors, but have not
been standardized by the OpenGL architecture review board yet.

• Vendor specific extension types such as NV, ATI, SGIS, APPLE.

The application programmer can query the extensions supported by a
specific OpenGL implementation, and can thus determine whether the ap-
plication will run on the system. In more complex applications, the program-
mer may implement multiple render paths that implement different rendering
methods depending on the set of extensions supported.

OpenGL also supports programmable shaders, called vertex programs and
fragment programs respectively. Initially only programmable in shader as-
sembly language, version 2.0 of the OpenGL standard has also introduced a
high-level shader language, GLSL. GLSL is similar to the syntax of the C
programming language [35] and its parser is implemented as part of a specific
OpenGL implementation; compatibility with the OpenGL standard or with
other OpenGL implementations may therefore vary depending on the quality
of the OpenGL implementation.

Glide

Glide is an API introduced with the 3Dfx Voodoo range of graphics cards in
1995 [1]. It provided a simple interface to the rasterizer acceleration features
of the Voodoo graphics chips range. It has lost its relevance in real-time
graphics by now as it is not maintained any further and its inventing company,
3Dfx Graphics, Inc., no longer exists.

Chapter 2. Engines in Research 20

DirectX

Microsoft DirectX is a collection of application programming interfaces in-
tended for game development [19]. The DirectX API was introduced by
Microsoft in 1995 under the name “Game SDK”. During its history, several
components have been added to the DirectX API, as well as some removed
or declared deprecated. The API is based on the Component Object Model
(COM) and as such can be accessed via interface classes in an object-oriented
manner.

In its history, DirectX has contained the following components:

• DirectDraw is an API that provided access to the framebuffer and 2D
acceleration features such as hardware blitting and buffer flipping. It
has been declared deprecated on Desktop Windows operating systems
and is only maintained for the Windows Mobile platform.

• DirectSound is an audio rendering API that allowed access to audio ac-
celeration and spatial audio features of soundcards. On newer Windows
operating systems such as Windows Vista it is considered deprecated
and is only supported via a software layer. The XAudio2 API is in-
tended to replace DirectSound in March 2008.

• DirectInput provides access to input controllers consisting of keyboards,
mice, and game controllers such as gamepads and joysticks.

• DirectPlay is a deprecated networking API that provided a unified layer
for accessing networks of various protocols such as TCP/IP and IPX.
Due to the ubiquity of TCP/IP and UDP on modern operating systems,
DirectPlay is no longer necessary.

• Direct3D was developed as an API to access 3D acceleration features
of graphics cards.

• DirectShow is a video playback API that has been removed from the
DirectX SDK and is now part of the Windows Platform SDK.

• DirectMusic is an API built on top of DirectSound and provided means
to provide interactive dynamic music in interactive applications.

• XACT or Crossplatform Audio Creation Tool is an audio content au-
thoring toolset and API for both DirectSound/DirectMusic and the
XAudio API of the Microsoft Xbox360 game console.

Chapter 2. Engines in Research 21

• XInput is an input controller API supporting only the Microsoft Xbox360
controller on both Windows and Xbox360. It is intended to supersede
the DirectInput component.

• XAudio2 is the sucessor of both DirectSound and the Xbox360’s XAu-
dio API. It is implemented entirely in software and therefore does not
utilize any sound acceleration hardware except on the Xbox360 plat-
form where it uses the built-in XMA compressed audio decoding hard-
ware.

Of these components, Direct3D is the API controlling 3D rendering hard-
ware. In contrast to OpenGL, there is only one Direct3D API implementa-
tion, which transforms API calls to the underlying device via a driver layer.
A standard Direct3D installation also includes a reference rasterizer, which
implements the rendering device as a software renderer.

The existance of hardware-accelerated features is queried via a capabilities
system, where the application can get detailed information about a certain
rendering device, and decide which rendering features and algorithms to use
depending on these capability flags.

Initially, Direct3D offered two modes of operation: Immediate Mode and
Retained Mode. Immediate Mode was the mode that closely resembled other
3D APIs. The programmer had to implement a rendering queue by sending
batches of rendering primitives to Direct3D. Retained Mode, on the other
hand, provided a higher level of abstraction and offered an interface more
closely resembling a Scenegraph API.

In DirectX 7, the retained mode was dropped, and support for hardware-
accelerated transform and lighting (hardware TnL) was added. The term
“DirectX 7 compatible” became synonymous to hardware supporting this
feature.

DirectX 8 introduced programmable shaders in the form of Shader Model
1.x. Capabilities of this shader model were still limited and offered little more
than the hardwired register combiners that were available at that time. With
the DirectX 8 SDK, a new toolkit was also added: the Direct3D Extension
Library (D3DX). D3DX offered a collection of useful utility functions 3D
programmers may find useful such as simple ways to create textures from
many image formats.

With DirectX 9, Shader Model 2.0 was introduced that increased a lot
of the capabilities of shader programming, and the D3DX library vastly
extended to feature support for skinned animation, precomputed radiance
transfer calculations, mesh optimization, and more. D3DX also introduced
a high-level language for shader programming called HLSL (for “High-Level

Chapter 2. Engines in Research 22

Shader Language”). During updates to the DirectX SDK, which happened on
a bimonthly basis, only the D3DX library was updated with added features.

DirectX 9 also saw an incremental update, DirectX 9.0c, which introduced
Shader Model 3.0. Shader Model 3.0 allowed for more complex shader pro-
grams with features such as dynamic branching and looping, vertex texture
fetch, and geometry instancing.

Direct3D 10

Direct3D 10 – sometimes also called DirectX 10 – has originally been devel-
oped separately from the DirectX API collection, under the name Windows
Graphics Foundation 2.0, or WGF 2.0 [6]. It is currently only available for
Microsoft’s Windows Vista operating system.

Fig. 2.3: Direct3D 10 Rendering Pipeline.

Chapter 2. Engines in Research 23

The API deviates from previous Direct3D incarnations such as Direct3D 8
and 9 by redefining the rendering pipeline in several ways [58] (see Figure 2.3):

• Unified Shaders replace the separation between vertex and pixel shaders
in a way that, independent of the stage the shader program was used
in, the same instruction set would be made available. Every shader
stage is based on the Common Shader Core.

• Geometry Shaders were introduced as a new type of shader stage that
has access to entire primitives including adjacency information, and
the capability to amplify and de-amplify data.

• General Purpose Streams replaced the previous notions of differen-
tiating between textures (and the lookup thereof), vertex attribute
streams, and other data. It is now also possible to output pipeline-
generated vertex data into memory using the stream output stage.

Due to the API changing the traditional rendering pipeline drastically
in some ways, the API influenced the hardware design of graphics hardware
that were intended to support the Direct3D 10 API, making Direct3D 10 an
example of a software API influencing hardware design, whereas in the past
the process usually went the opposite way.

2.1.5 Arriving at Middleware – Rendering Engines

Application programming interfaces exposed the functionality of the hard-
ware in a way where programmers would no longer have to worry about
specifics of the hardware. Despite that, most APIs provide only basic sup-
port for hardware functionality, while application programmers usually also
require some higher level facilities such as resource management.

As a measure against reinventing the wheel every time a new application
is programmed, packages of commonly used routines and facilities were de-
veloped that simplify usage scenarios such as loading geometry and textures,
help with managing and cleaning up resources, and provide convenience func-
tions for complex and frequently used processes.

Such packages of useful functionality can be classified as a rendering en-
gine. Several different kinds of rendering engines exist, with varying func-
tionality. The next section will attempt to give an overview and try to define
and classify types of such middleware.

Chapter 2. Engines in Research 24

2.2 Types of Middleware

As mentioned in the previous section, graphics APIs provide access to low
level hardware functions, and functionality can be added on top of that layer
by utilizing packages or libraries called rendering engines.

This section will outline and try to define several classes of such libraries
or frameworks, and give popular examples for each of them. Wherever it is
not possible to clearly put a certain framework library into a specific class of
engine, it will be noted.

2.2.1 Rendering Engines

Rendering engines provide a means to access graphics rendering capabilities
without having to access the underlying graphics API directly. They add
another software layer to the application stage of the rendering pipeline.
Rendering engines try to simplify programming a graphics API, as well as
take over management duties such as resource management – for textures,
geometry, scene data [4].

In the context of this thesis a rendering engine will be considered any-
thing that provides a software layer to an underlying graphics API. As such,
the types of frameworks and libraries described in the following sections are
subtypes of rendering engines.

2.2.2 Scenegraph Libraries

Scenegraph libraries are a form of rendering engine that focus on the repre-
sentation of the scene in the form of graphs – collections of nodes and edges
that connect such nodes. A scene is stored as a graph where every node is a
certain scene object, and the edges define the relationship between the nodes.

Depending on the scenegraph library, nodes can be anything from geom-
etry to materials to more abstract entities. It is important to note that in
most scenegraph libraries, the scenegraph displays a logical view of the scene
in contrast to the actual rendering logic or rendering order. Scenegraph li-
braries may have a rendering queue into which renderable objects are pushed
and possibly resorted to improve the rendering efficiency.

An important feature of scenegraph libraries is the variety of operations
that can be defined via a traversal scheme. Depending on which task is
to be performed on the scenegraph, a different traversal algorithm may be
necessary. This also includes the traversal necessary to determine which
nodes to render. Typically this is achieved by a form of the visitor design
pattern.

Chapter 2. Engines in Research 25

2.2.3 Game Engines

Game engines can be considered a sub type of rendering engine, but may
also be considered of a framework that contains a rendering engine as one
of its components. A Game engine extends the functionality of a Rendering
Engine by several components that are necessary and useful for interactive
applications such as games or virtual world walkthroughs.

Interactivity and User Input

Game engines need facilities to query and interpret user input. Note that
while some rendering engines may also exhibit this functionality, many pro-
grams created in real-time rendering research simply use a platform API such
as the Windows API or a platform-independent API – such as GLUT – for
user input query.

In a game engine, user input has to be polled and queried, and mapped
accordingly to actions inside the game. Several different input controller
types need to be supported.

Interaction Logic

In a rendering engine, the main part of the program is the rendering loop.
In contrast, in a game engine, the rendering code has to coexist with the
game code, which defines the game or interaction logic. The pseudocode for
a main loop in a game engine may look like in Listing 2.1.

void Run()
{

// As long as the application is running...
while (running)
{

// Update and manage game logic
Update(elapsed_time);

// Visualize state by rendering it to screen
Render();

}
}

Listing 2.1: Standard Gameloop

The Render() function displays the scene in its current state, while the
Update() function controls and updates the game state, as well as interprets

Chapter 2. Engines in Research 26

user input and applies it to the internal state. There is a clear separation be-
tween rendering and game logic; the Render() function should not change
the game’s state at all, and therefore make it possible to call Render()
multiple times without any problem, effectively making it possible to pause
any game processing by not calling Update(). Therefore, the Render()
function does not require a parameter specifying the elapsed time since the
last frame, in contrast to the Update() function, which on the other hand
should not utilize rendering or display functionality.

Audio

An important component of many interactive applications such as games
is audio processing. Handling and initialization of audio devices should be
made simple, and the game engine typically needs facilities to link audio
output to the scene that is displayed – that is, positioning audio sources in
3D space.

2.3 Examples of Middleware in Research

This section gives brief overviews on some selected graphics middleware pack-
ages.

2.3.1 OGRE 3D

The Object-Oriented Graphics Rendering Engine (OGRE) is an open-source
rendering engine supporting output using both OpenGL as well as Direct3D [42].
It abstracts these APIs by only providing direct access to higher level scene
objects, hiding the details of actual rendering from the developer. OGRE 3D
provides its own effect and material framework similar to the HLSL Effect
Framework and CgFX, allowing for multi-platform and multi-API shader
programming. It does not provide a pre-defined scenegraph structure, but
provides a scene node class and a plugin system that allows the programmer
to implement an own hierarchical scene or spatial structure.

Ogre 3D is deliberately not a game engine. Several add-on libraries exist
that add game engine-like functionality to Ogre. OGRE 3D itself is licensed
under the GNU Lesser General Public License (LGPL).

2.3.2 OpenInventor

OpenInventor is an object-oriented scenegraph toolkit by SGI developed in
1988 under the name IRIS Inventor [44]. It was developed with the intent

Chapter 2. Engines in Research 27

to simplify OpenGL programming, and therefore is tailored for and running
on OpenGL. The scenegraph library provides a multitude of different node
classes and node types for geometry, transform groups, appearances and
materials. OpenInventor passes render states on when traversing nodes (path
inheritance), therefore the rendering of a single scene entity can be spread
out over the entire scenegraph, and nodes located deeper in the hierarchy
may therefore influence nodes locatged higher in the hierarchy.

OpenInventor and API-compatible OpenSource clones such as Coin3D [14]
have been widely used in real-time rendering and related research such as vir-
tual and augmented reality [52].

2.3.3 Java3D

Java3D is a scene graph framework for Sun’s Java platform [32], enabling it to
run across multiple platforms supporting Java. On Windows it supports both
OpenGL and Direct3D, and therefore utilizes hardware-accelerated rendering
if available. The scenegraph classes offer a variety of node types similar to
OpenInventor. In contrast to OpenInventor’s path inheritance, Java3D is
designed to keep all relevant appearance and geometry information at the
respective nodes, leading to a more modern software architecture and design.

2.3.4 NVIDIA SceneGraph

NVIDIA offers a scenegraph library in the form of the NVIDIA SceneGraph
SDK (NVSG) [41]. It runs on OpenGL and like other scenegraph libraries,
offers a multitude of node types that allow structuring the scene. Its main
specialty compared to other scenegraph libraries is that NVSG has been
designed around shaders in the form of the CgFX framework [12, 64].

2.3.5 OpenSceneGraph

OpenSceneGraph is another C++-based OpenGL-based scenegraph library
running on multiple platforms such as Windows, Linux, Mac OS X, FreeBSD,
IRIX and Solaris. It is licensed under the OpenSceneGraph Public Li-
cense (OSGPL), which is based on the GNU Lesser General Public License
(LGPL) [46].

2.3.6 OpenSG

OpenSG is also an OpenGL-based C++ framework focusing on multithreaded
rendering and clustering. It is licensed under the GNU Lesser General Public

Chapter 2. Engines in Research 28

License, and also runs on multiple platforms (Windows, Linux, Mac OS X
and Solaris) [47].

2.3.7 Performer

Performer, also known as OpenGL Performer or previously Iris Performer,
is a commercial toolkit based on OpenGL created by SGI as a alternative to
OpenInventor focusing on performance [48]. It is available for Windows, Irix
and Linux.

2.3.8 YARE and YARE2

YARE and YARE 2 (Yet Another Rendering Engine) [4] were custom-built
rendering engines developed in the environment of the Vienna University of
Technology. The first YARE was developed as a C++ based implementation
of the Java3D API for the Urban Visualization project [65] at the Institute
for Computer Graphics and Algorithms. YARE 2 has been developed by
Matthias Bauchinger for his master thesis [3] and focuses on a flexible effect
framework built on top of a multi-layered rendering framework. Except for
its name, it is otherwise unrelated to YARE.

2.4 Game Engines in Research – Usage Scenarios

This section will outline some common scenarios in which game engines are
useful for research purposes.

2.4.1 Research Test Beds

Game engines may be used for proof-of-concept implementations of new real-
time rendering algorithms and techniques. They provide a practical test bed
for evaluation of these new algorithms which may provide useful insight into
the efficiency and scalability of the researched techniques, as well as possi-
ble bottlenecks and problems. Results from such testing in an environment
close to industry practice can then be further used to modify and tweak the
algorithm to better suit and optimize the technique’s usefulness.

Previously, most of such work was done in specifically programmed demo
applications or utilizing rendering engine packages. The disadvantage of the
former lies in the rather limited scope of the demo in terms of both software
and content complexity, which may distort important results when evaluating
the new algorithm, while the latter approach has the disadvantage that most

Chapter 2. Engines in Research 29

such packages are pure rendering engines lacking features as described in
Section 2.2.3.

Ideally, such evaluations and analysis of algorithms therefore should be
done in an environment that is close to the target audience of these real-time
rendering algorithms.

2.4.2 Paper Demos

For submissions of research papers, oftentimes a demo, or a video and screen-
shots of it, may be required. By utilizing a real game engine for such tasks,
the authors immediately possess evidence that their researched techniques
do work in practice.

2.5 A Requirements List for Research Game Engines

In this section, we derive a requirements and specification list for game en-
gines intended for research by analyzing the conclusions of the previous sec-
tions.

2.5.1 Layered Design

A software design that defines components in a layer-like manner enables the
developer to choose at which abstraction level to integrate changes or which
level to build on when developing a new application running on the engine.
This flexibility of choice is necessary in research environments, since research
algorithms and techniques may sit on different levels of abstraction; some
algorithms may need access to lower-level components, others may require
to be implemented on top of a full framework.

As such, the layered design also needs to provide a way to circumvent
certain components and replace them with own implementations.

2.5.2 Extensible Rendering System

Most rendering engines provide a pre-defined rendering pipeline, into which
the application must fit their needs. Such rendering pipelines may be imple-
mented as a rendering queue, into which the application may push renderable
objects, but access to which is restricted most of the time. Details on how the
rendering pipeline is processed are often part of the internals of a rendering
engine. While a pre-defined rendering scheme simplifies actual application
programming, research development often requires heavy modification or ac-
cess to the rendering pipeline.

Chapter 2. Engines in Research 30

2.5.3 Reducing Overengineering

Overengineering can be defined as an attribute of a software design that
increases the complexity of the system faster than the benefits of such com-
plexity. Object-oriented design, as well as design patterns, are often tools and
paradigms to simplify or reduce redundant client code, make software com-
ponents more reusable, or reduce code amounts. However, these processes
also increase the risk of high inter-dependencies in code. Such dependencies
may actually make the code less reusable: an example would be a class that
was designed to be slim by deriving it from interface base classes, but there-
fore introducing a dependency on those interface base classes. Due to that
dependency, when reusing the class, all interface classes must be migrated
too.

Such high inter-dependencies may also introduce situations where a re-
placement of a framework component by an application part may prove im-
possible or difficult, as the application programmer would need to integrate
the own component into a large system of inter-dependent classes. Such sit-
uations where the application developer may want to not use a framework
component at all, and instead replace it with an own implementation, are
less prevailent for regular application developers, but may happen frequently
in research.

Therefore, when designing a framework for research with a low amount
of overengineering, there must be a focus on preventing dependencies.

2.5.4 Comprehensive Toolset

Demo programs and proof-of-concept implementations that accompany real-
time rendering research often use standard data sets to create rendering
scenes. Such standard data sets may be geometric primitives such as toruses,
cornell boxes, or more complex standard data sets such as the Stanford
Bunny.

Such scenes typically do not reflect real-world application data set be-
haviour and performance, such as games. In order to easily bring custom
data sets such as geometric models and meshes, materials, effects, textures
and full scenes into the engine, a comprehensive toolset is necessary that
enables the user to transfer closer-to-real-world assets from common content
creation applications such as Autodesk Maya or 3D Studio Max into their
own applications.

Chapter 2. Engines in Research 31

2.5.5 What is not required

Since computer graphics algorithms, and especially real-time rendering al-
gorithms, may be placed on various different levels of hardware abstraction,
access to the rendering API may be necessary, as argued in Section 2.5.1.
This also means that fully abstracting and hiding API specifics is not a
necessity, and could actually be a hindrance when access to low-level API
specifics is required. The requirement outlined in Section 2.5.2 also necessi-
tates the replaceability of lower level components that may use the rendering
API directly.

Chapter 3

Designing a Game Engine for Research

In this chapter the design decisions and processes that led to the structure
of the game engine discussed in this thesis will be introduced.

3.1 Introduction

First we describe the high-level decisions for the design approach in this
introductory section.

3.1.1 Approach

The GebauzEngine was not developed on its own, but as part of the Penta G
demo game project intended to showcase GameTools Project research results
in a real-world scenario, i.e. games (see Section 5.1).

Therefore, during the entire development of the game engine, both the
game and its engine have been developed in parallel, to ensure that features
that are being added are close to the requirements of the actual game. A
content-driven approach to engine development was chosen to ensure that
features in the engine would stay close to the needs of the content of the
game.

A strong focus was given to separating application-specific code from
framework code. Since the domain of the game engine extends to both com-
ponents, this chapter will be a discussion of both. While the access to API
functionality is handled by the GebauzEngine, and the GebauzEngine spec-
ifies some higher level facilities such as resource management, content han-
dling is done almost purely in the application domain. This was made to
ensure flexibility, as a too rigid form of content resource handling, i.e. one
implemented on framework level, could hinder development when deviations
of the defined content handling are required.

Chapter 3. Designing a Game Engine for Research 33

Fig. 3.1: Engine Layer structure.

Figure 3.1 illustrates the layered design of the engine. As illustrated, the
term game engine refers to the GebauzEngine framework as well as parts of
the actual application code.

3.1.2 Content-Driven Development

This content-driven approach resulted in the development workflow we used
for the engine and its toolset. Features that the engine required from the
tools would be incorporated into the tools, and vice versa. Together with the
requirement of avoiding overengineering (see Section 2.5), this resulted in a
toolset that is slim and not overly complex.

3.1.3 Asset Tool Chain

To ensure a content-driven approach, tools needed to be developed. The
tools aid in importing geometric assets from popular 3D content creation
applications, as well as building levels for the game. This is a key point of
the engine as due to the comprehensive editor, new content can be added
quickly. On the application side, most of the content handling is done on

Chapter 3. Designing a Game Engine for Research 34

the application level, as it should be possible to flexibly change parts of the
content pipeline such as the format of the material script system described in
Section 3.5.3. Therefore, when discussing the asset pipeline and tool chain,
most of the information relates to application code implemented in Penta G.

3.2 Software Design

This section describes the technical details of the software design.

3.2.1 Overview

The game engine and also the game built on top of it use a layered design.
The GebauzEngine provides basic facilities for access to files, rendering, input
and audio. The game itself has to implement its own game object hierarchy
and game logic. Additionally, an application framework (AppKit) has been
developed that simplifies the creation of a Windows-based application, which
runs as a separate library and thus can be replaced with other windowing
and graphical user interface (GUI) libraries such as wxWidgets or MFC.

This section describes the structure and design of the GebauzEngine. For
a detailed description of the Penta G game built on top of the GebauzEngine,
see Chapter 4.

3.2.2 Utilized Libraries and APIs

The GebauzEngine and Penta G use several underlying application program-
ming interfaces, libraries and frameworks. Most of them are integrated at
GebauzEngine level, whereever it is not, it will be specifically noted. In that
case, the integration was on application level, i.e. in Penta G, making it
possible to swap the specific library with an alternative one.

DirectX 9.0c

For rendering, the Direct3D 9 API [19] was chosen, due to its dominance
in the game industry. As a demo game intended for industry audiences, it
was a logical choice. Due to some of the techniques and algorithms used in
Penta G, Shader Model 3.0 of the Direct3D 9 API was used, enabling shader
capabilities such as longer shader programs and dynamic branching.

DirectInput was used to control input devices; however, Penta G only uses
keyboard and mouse input. General game controller input such as gamepads
and joysticks is available though, and could be easily integrated into the
actual game or any other game built upon GebauzEngine.

Chapter 3. Designing a Game Engine for Research 35

Audio output is realized via the DirectSound API, but the design of the
audio subsystem’s interface is general enough to replace DirectSound with
a different sound API such as OpenAL or XAudio2. Section 5.2 introduces
a branch of the Crossmod project that replaced the GebauzEngine’s audio
subsystem with a propietary one (XModSoundLib).

Aside from Direct3D, DirectInput and DirectSound, the GebauzEngine
also makes heavy use of the Direct3D Extension library (D3DX), which is
a library containing useful functionality on top of Direct3D. This library
also contains the DirectX Effect framework and HLSL compiler, simplifying
shader development. However, linking to D3DX introduces a dependency to
the D3DX DLL supplied with each DirectX Software Development Kit – typ-
ically named d3dx <number>.dll, where <number> is the version number
that gets incremented with every DirectX SDK iteration. For deployment,
this usually means that the D3DX DLL must be present on the target system;
since providing the DLL directly in deployments is not legally allowed by Mi-
crosoft, this means installation of the (current) DirectX Redistributable [19]
which installs all D3DX DLLs in the system.

The most important feature of the D3DX library that is used in Penta G
is the Effect Framework, which provides shader management features built
on top of the Direct3D High Level Shader Language (HLSL) that simplify
development of shaders and interoperability between different applications
supporting the Effect Framework [59].

Boost C++ Libraries

Penta G uses a minimal subset of the Boost C++ Libraries [7], specifically
the static assert feature which allows for compile-time assertions. This is
utilized specifically in the vertex buffer templates used by the Geometry
part in the Graphics subsystem described in Section 3.4.3.

DevIL

The Developer’s Image Library is a comprehensive image library that allows
reading and writing of most image file formats [31]. The GxImage class uses
this library to read in image files that may or may not be used for textures.

Unfortunately, DevIL appears to be out of maintenance, therefore in a
future version of the GebauzEngine, the usage of a different image library
(such as FreeImage) may be recommended.

Chapter 3. Designing a Game Engine for Research 36

Ogg Vorbis

For decoding of Ogg files, the engine uses the Ogg Vorbis library. This is
used in the Audio subsystem described in 3.4.5. Vorbis is an open source and
open standard codec for lossy audio compression similar to MPEG Layer 3,
or MP3 [22]. Ogg is the accompanying multimedia container format. The
Game Engine uses Ogg Vorbis-encoded files for streaming audio, but it is
also capable of using standard Windows Wave files.

Ageia PhysX

The physics simulation library Ageia PhysX SDK [49] was used for the game.
Note that PhysX is not integrated into the engine on the GebauzEngine level,
but on application code level (Penta G), making it possible for GebauzEngine
to be used with a different physics library such as Bullet [9]

Ageia PhysX supports full software physics simulation, but also enables
support for hardware-accelerated physics calculations. Its license is free to
use for non-commercial purposes.

For deployment, the PhysX driver has to be installed in the system in
order for the application to run.

3.2.3 Collaboration Structure

Figure 3.2 illustrates the collaboration between the various subsystems of the
GebauzEngine.

3.3 Development Tools and Standards

In this section, the standards and tools used for development are described.

3.3.1 Development Environment

The engine and game can be compiled in Microsoft Visual Studio 2003, 2005
and 2008. It was initially developed in Visual Studio 2003, and then mi-
grated to Visual Studio 2005. In Visual Studio 2005, deprecation warnings
will appear during compilation because 2005 includes an updated C and C++
Standard Library with safe replacements for standard C functions such as
printf() – which now has been replaced by the safer printf s() func-
tion.

Some compiler-specific features such as #pragma once, a directive that
prevents multiple inclusion of header files, were used when it made sense for

Chapter 3. Designing a Game Engine for Research 37

Fig. 3.2: Engine Subsystem Collaboration.

convenience. Since the engine is not designed to be portable, as it already has
a Microsoft Windows dependency by utilizing DirectX, this does not pose a
big problem.

3.3.2 Directory Structure

The directory structure specified in table 3.1 was used throughout the project.

Directory Content
bin Executables, DLLs and configuration files
doc Documentation and doxygen generation batchfile
include Engine include files
LatestPlayable Contains a recent playable executable build
lib Engine library files
media Game content files
sdk Libraries the game engine depends on
src Source files for the engine and game
tools Content creation tools

Tab. 3.1: Directory Structure

Chapter 3. Designing a Game Engine for Research 38

There is a separation between include and implementation files for the
engine so that the engine may be distributed in binary-only form of only a
static library and include files.

3.3.3 Debugging and Memory Leak Tracking

Memory leaks are caused by unfreed memory during the run of a program.
They can be an indication of bugs or possible problems in the program, as
well as a direct threat for the stability of the program when more memory
is frequently consumed without being freed, resulting in less memory being
available.

A common way to fight memory leaks is to track allocated memory and
check whether each allocated memory block is freed at the end of the pro-
gram. For such a purpose, the Microsoft Visual C++ Debug Heap offers
helpful functions to track and log memory allocation, and to report whether
allocated memory has already been freed.

Penta G heavily makes use of the Visual C++ Debug Heap, and also
redefines the new operator to include source code file and line information,
which is reported together with the leak information in the debugger when
a memory leak happens. The memory leak tracking is invoked by a single
line, and only compiled into the executable in Debug builds, and replaced by
empty functions in Release or Master builds.

3.3.4 Performance Testing

During development, several methods of performance testing were used. A
direct time-logging feature via performance counters was used to identify
bottlenecks or parts with low performance peaks. Intel’s VTune Performance
Analyzer [66] was used for CPU-side performance profiling. And finally,
NVIDIA NVPerfSDK has been used to analyze GPU performance.

NVIDIA NVPerfSDK includes both an SDK that can be integrated into
the application code to identify bottlenecks, as well as a useful overlay dis-
play that can be layered over the tested application called NVPerfHUD.
NVPerfHUD not only displays performance graphs, but also supports active
performance testing by freezing a frame, stepping through each render batch
call, viewing textures, and analyzing each batch call’s performance on its
own.

In order to run NVPerfHUD, the application needs to enumerate a special
render device during initialization, and ensure that the game logic processing
can handle frame times of zero, at which game processing should halt and the
game effectively pauses. In Penta G this is achieved by simply adjusting a

Chapter 3. Designing a Game Engine for Research 39

setting in the game.cfg configuration file (nv perf hud enable = true),
and launching NVPerfHUD by drag-dropping the Penta G executable onto
the NVPerfHUD icon.

After launching, NVPerfHUD can be initialized using the shortcut keys
defined previously in the NVPerfHUD launcher. After that all facilities of
NVPerfHUD such as the frame debugger, graph view, shader debugger and
texture viewer can be used to measure and analyze performance.

3.3.5 Code Style Guideline

In larger projects, the code style guide is a tool for communication within the
team of programmers. Such style guidelines ensure that the program source
code stays consistent and readable, even for developers new to the code.

In general, code style guides should have the following benefits:

• It should ensure a consistent look of the source code.

• It should enable the reader to understand the code easily.

• It should provide information to the reader which would otherwise re-
quire extra effort, such as identifying the scope of variables.

• It should enable new developers to understand most of the code imme-
diately after reading the guideline.

In the Penta G engine, the coding style emphasizes on different nam-
ing styles for variables depending on their scope, differentiating between
class member variables, variables passed via parameters, and local variables.
Classes and namespaces are also named in a way so that the reader may im-
mediately understand whether a class is part of the engine framework (where
classes are prefixed with Gx) or the application domain.

It is also part of the style guideline that each class should be contained
in its own header and source file pair, in order not to clutter source files with
multiple classes. This simplifies finding the appropiate source and header file
for a specific class as well as reduces build times, as a modification of a source
file only means a rebuild of that single class’ source file and its dependencies,
instead of a rebuild of multiple classes.

The code style is extended to the way class declarations are broken into
sections such as public methods, member variables, internal types, and mem-
ber access methods (getters and setters). It also defines how to document
the interface part of each class in order to support automatic generation of
documentation via the doxygen system, which is explained in the following
section.

Chapter 3. Designing a Game Engine for Research 40

3.3.6 Documentation

The engine is documented using the Doxygen system [18]. Every class in-
cludes a class documentation and each method of a class is documented in
a standardized way. The documentation is added as comments in the code
only in the interface/class declaration, therefore all documentation is fully
included in the include files, which also aids an include/library only distri-
bution.

3.4 Structure of the Engine

In this section, the various subsystems of the GebauzEngine will be described
in detail.

3.4.1 Core

The core part of the library contains basic utility classes for string handling,
debugging, as well as base classes for common design patterns such as the
Singleton or the Generic Factory pattern [24]. It also provides facilities for
adding some reflection support to classes and allowing classes to be instanti-
ated via their string name using a generic factory.

Table 3.2 gives an overview over the most important classes of the engine
core system.

The GxEngineCore class is a singleton that contains references to all
subsystems as the application wishes. The application instantiates and ini-
tializes the various subsystems, such as Graphics, Audio and Input, and then
registers each subsystem in GxEngineCore by calling either
SetRenderContext(), SetAudio() or SetInput().

GxTimer implements both global timer functions via static functions,
and when instantiated, also acts as a local timer. Both the global and local
timer can be paused and resumed to control time processing. It builds on
the GxPerfTimer class which implements querying a hardware performance
timer.

There is a debug logging feature built into the engine via the GxLogger
class. It can output logging messages to either the debugger or a HTML
format log file, or both. By using either gxPrint, gxWarning or gxError,
this distinction will also be reflected in the color formatting of the HTML
log file.

There is basic support for running a thread in the form of the
GxThreadTimer class. It provides a callback interface which is called pe-
riodically and executed in a separate thread.

Chapter 3. Designing a Game Engine for Research 41

GxEngineCore The central hub for the entire engine. Contains refer-
ences to the file system, render context, audio, input.

GxIRefCountable Abstract interface for classes that are reference-counted.
The initial reference count after instantiating is 1, so
every instantiated object has to be released at least once.

GxSingleton Base class for classes implementing the Singleton pat-
tern. Implements a template-based version of the Sin-
gleton pattern.

GxGenericFactory Template for easy implementation of a generic factory
pattern.

GxLogger Class that supports writing log output into the debugger
and into a HTML file.

GxSettings Implements a registry of settings from a configuration
file.

GxSettingsFile Reader/Parser for a configuration file that feeds a
GxSettings object.

GxStringList Implements a list of C++ standard strings
(std::string).

GxStringUtils Implements various static convenience functions and op-
erations on std::string.

GxThreadTimer Simplifies the task of creating a thread that periodically
calls a specified callback function.

GxPerfTimer Encapsulates a timer based on the system’s performance
counter.

GxTimer Encapsulates a timer that can be paused and used for
measuring time. The basic timing facility is based on
GxPerfTimer. The class also allows global pausing/re-
suming of all timers in the system.

GxObject Base class for classes that integrate into the class reflec-
tion system.

GxType Encapsulates a class type for the reflection system.
GxTypeInit Initializes the reflection-supporting classes of the en-

gine. Application-specific classes that require re-
flection support must be initialized after calling
GxTypeInit::InitClassDB().

Tab. 3.2: Overview over the Core classes.

Chapter 3. Designing a Game Engine for Research 42

The reflection system implements a factory which can be used to instan-
tiate objects of reflection-supporting classes by specifying the string name of
the class. It also allows for comparing the class types of instances, as well as
querying whether a certain class has been derived from another specific class.
This is done by employing the CLASS HEADER<n>() macro and the corre-
sponding CLASS SOURCE<n>(), where <n> is the number of base classes
the class derives from. Classes declared this way expose a GxType mem-
ber accessible via GetType() which contains information about the class
type and can be used to compare them. A static member function called
GetClassType() is also available to be called statically from classes with-
out having actual instance of those classes. The GxType class itself offers
methods for class type comparison and a useful IsDerivedFrom() method
that traverses the inheritance tree upwards to check whether a class type is
derived from another class type.

The GxGenericFactory template is a class template that simplifies
the process of creating a class hierarchy where each class can be instantiated
by just specifying its string name. It also provides a GxFactoryRegister
template and a FACTORY REGISTER macro which simplifies the registration
of classes into the respective Generic Factory. Listing 3.1 illustrates how these
templates and macros can be used to set up a system of classes that can be
instantiated via a generic factory.

The benefit of such a generic factory system is that the factory that
instantiates the objects possesses no dependencies on the actual classes it
instantiates. Each class that can be created through the factory simply reg-
isters itself into the factory. Furthermore, it is now possible to instantiate a
class simply by knowing its string name, which can prove useful for techniques
like serialization.

Chapter 3. Designing a Game Engine for Research 43

///
// Declaration of the Base class

class Base
{

...
};

// Define a helper macro for registration
#define REGISTER_CLASS(e) FACTORY_REGISTER(Base, e)

///
// Declaration of the Derived class

#include "Base.h"

class Derived : public Base
{

...
};

///
// Implementation of the Derived class

#include "Derived.h"

REGISTER_CLASS(Derived);

...

///
// now, we can instantiate objects of the Derived class

Base* object =
GxGenericFactory<Base>::Instance().Create("Derived");

Listing 3.1: Using the Generic Factory

Chapter 3. Designing a Game Engine for Research 44

3.4.2 File System

GxFileSystem The main central hub class for filesystem related tasks.
Manages the virtual file system that includes mount
points.

GxStream Interface for file I/O streams.
GxFileStream Implementation of GxStream for a disk file.
GxMemoryStream Implementation of GxStream for a stream that reads

from a chunk in memory.
GxFile Stub for file operations that uses a GxStream inter-

face for file manipulations. It builds several convenience
functions on top of GxStream.

GxArchive Processes an archive file which is a collection of multiple
files stored in one large file. Supports reading a single
contained file into a memory stream.

Tab. 3.3: Overview over the File System classes.

The file system subsystem contains classes for file system handling. It
allows the usage of virtual mount points and memory files through a trans-
parent file interface. It also supports archives that package multiple files into
a large one. Table 3.3 gives an overview of the subsystem.

The engine supports packed archives which can be generated using a
standalone tool. These archives pack multiple files into a single archive file,
which subsequently can be treated like a subdirectory that contains these
files.

Mount points are starting points at which the filesystem starts searching
for files when using GxFile to open a file.

3.4.3 Graphics

The graphics subsystem contains the Direct3D-based rendering classes. The
central class here is the GxRenderContext class, which handles initialization
and access to the main rendering device.

The Graphics subsystem can be subdivided into several components by
category:

• Basic Graphics classes such as GxRenderContext that cannot be put
into other categories and upon which other components are built.

Chapter 3. Designing a Game Engine for Research 45

• Resource Management classes that provide interfaces for resource man-
agement

• Geometry classes that aid in handling geometric data, vertex and index
buffers, as well as loading of model and mesh data

• Texturing classes that handle 2-dimensional and cubemap texturing

• Rendertarget classes that build on the texturing classes to provide
render-to-texture capabilities

• Material and Effect classes that implement the shader/effect framework
of the engine

Core Graphics Classes

GxRenderContext Central graphics hub class.
GxDXUtils DirectX Utility functions.
GxUtility Convenience functions for rendering 2D

quads, spheres, etc.
GxCamera Class that helps setting up the view matrix.
GxFrustum Calculates the view frustum and provides

simple functions for testing frustum intersec-
tions.

Tab. 3.4: Core Graphics Classes.

The GxRenderContext class represents the core of the Graphics sub-
system. It provides means to initialize and shut down the render device,
clearing the render device and buffer swapping. It is completely independent
of the used graphical user interface library and simply requires the Window
Handle of the viewport to be used for rendering.

Aside from GxRenderContext, the other classes listed in Table 3.4
provide convenience functionality simplifying common tasks such as frustum
intersection tests, rendering of fullscreen quads, and view matrix set-up.

Chapter 3. Designing a Game Engine for Research 46

Resource Management

The engine provides a resource interface class and a resource manager in-
terface class which simplifies adding new types of resources and adding new
resource managers that keep track of them (see Table 3.5).

GxResourceManager Resource Manager template
GxIResource Resource base interface

Tab. 3.5: Resource Management Classes.

The GxResourceManager template can be used to build a resource
manager for arbitrary resources based on the GxIRefCountable interface.
The template already handles resource list management, resource access and
destruction. The purpose of the template is to simplify building resource
managers that prevent loading the same resource multiple times.

The GxIResource interface introduces two virtual functions that are
called on render device loss and render device reset. Such a case can hap-
pen when the screen resolution changes during application runtime. In
such a case, resources that are not managed by Direct3D (utilizing the
D3DPOOL MANAGED pool) must be freed and restored. This interface sim-
plifies that process.

Geometry classes

The geometry classes in Penta G aid in maintaining models, meshes, and the
underlying vertex buffers. They also contain classes for loading of geometric
assets. Table 3.6 lists all geometry classes and important header files.

The vertex classes enable automatic generation of vertex declarations via
nested templates as described in [10]. Vertex attributes can be combined
into vertex compounds via the GxVertexComposer template via nested
templates, and the template automatically generates the appropiate vertex
description, which can then be used to create the vertex declaration required
for Direct3D. Listing 3.2 shows the declaration of some common vertex types.

GxVertexBuffer implements a single vertex buffer, and offers methods
to copy vertex data into it. The GxGeometry class builds on this and
contains an array of such vertex buffers with fixed semantics assigned, such as
vertex positions, colors, normals and texture coordinates. The class provides
means to populate the vertex buffers with vertex data, to access and modify
the vertex data, and to clear them. The Activate() method is used to
bind vertex buffers to vertex streams, which is how Direct3D renders vertices.

Chapter 3. Designing a Game Engine for Research 47

// Position only
typedef GxVertexComposer<GxPosition> V3;

// Normal only
typedef GxVertexComposer<GxNormal> N3;

// Color only
typedef GxVertexComposer<GxColor> C4;

// Position + Normal
typedef GxVertexComposer<GxPosition,

GxVertexComposer<GxNormal> > V3N3;

// Position + TexCoord
typedef GxVertexComposer<GxPosition,

GxVertexComposer<GxTexCoord2> > V3T2;

// Position + Diffuse Color + Normal
typedef GxVertexComposer<GxPosition,

GxVertexComposer<GxNormal,
GxVertexComposer<GxColor> > > V3C3N3;

// Position + Diffuse Color + Normal + 2D TexCoord
typedef GxVertexComposer<GxPosition,

GxVertexComposer<GxNormal,
GxVertexComposer<GxColor,

GxVertexComposer<GxTexCoord2> > > > V3C3N3T2;

// Subsequently, the vertex description which is
// stitched together using meta-programming can be
// accessed by calling V3::GetVertexDescription(),
// V3C3N3::GetVertexDescription(), etc.

Listing 3.2: Vertex Types using GxVertexComposer

Chapter 3. Designing a Game Engine for Research 48

Fig. 3.3: The Geometry class assigns vertex attribute buffers sequentially to
streams.

Chapter 3. Designing a Game Engine for Research 49

GxGeometry Class that represents geometry including ver-
tex streams for positions, normals, colors,
texture coordinates.

GxIMRenderer Convenience class that implements an
OpenGL-like immediate mode.

GxModelLoader Loads a model into an instance of GxModel.
GxModel Encapsulates a model with multiple meshes

that can be used for various purposes.
GxMesh Implements a single mesh as part of

GxModel.
GxSubMesh Represents a single render batch group of

GxMesh.
GxVertex.h Classes that encapsulate a single vertex at-

tribute.
GxVertexBuffer Handles access and data upload to vertex

buffers.
GxVertexComponentDesc Helper class that describes a single vertex at-

tribute.
GxVertexComposer Template that links together vertex at-

tributes to larger vertex compounds.
GxVertexDescription Handles management of vertex component

descriptions to generate vertex declarations.
GxVertexTypes.h Contains predefined vertex compound types.

Tab. 3.6: Geometry classes and header files.

Empty vertex arrays that were not populated with data are not assigned
to any vertex stream. This is illustrated in Figure 3.3. Note that it is
also possible to merge multiple vertex attributes into a single, interleaved
vertex buffer, which then gets assigned to just one vertex stream. Listing 3.3
shows some examples on how a GxGeometry instance is populated with
vertex data. During initialization, GxGeometry also handles the creation
of a vertex declaration which Direct3D uses to match stream indices to the
vertex shader varying input by matching the attribute usage type. The
created vertex declaration is also bound as the active vertex declaration in
the Activate() call. The usage types it supports are position, normal,
color, and texture coordinates. These reflect the HLSL vertex usage types
POSITION, NORMAL, COLOR and TEXCOORDn, where n is the usage index
which is used to be able to specify the same usage type multiple times.

Chapter 3. Designing a Game Engine for Research 50

Direct3D defines more usage types such as TANGENT or BINORMAL, however
those only serve as a semantic for human readability and can be replaced by
the texture coordinate usage type without loss of functionality. Therefore, in
GebauzEngine, texture coordinates should be used for all vertex input types
that are not explicitly covered by GxGeometry.

GxIMRenderer is a useful class that implements an interface similar to
the OpenGL Immediate Mode. Instead of just rendering geometry on the
fly, it can also be used to bake vertex buffers.

Fig. 3.4: Relationship of the Model Classes.

GxModel represents a single GebauzEngine model. This model can con-
tain multiple meshes which can be used for a variety of purposes such as geo-
metric level-of-detail rendering, physics geometry or shadow geometry. Each
of these meshes itself is divided into multiple submeshes which represent a
subset of the mesh which is rendered in a single draw call, utilizing a single
material. Such a submesh may therefore be considered a rendering batch
group. This relationship is illustrated in Figure 3.4. The GxModelLoader
facility enables loading of model files from an engine-propietary format.

Chapter 3. Designing a Game Engine for Research 51

GxGeometry geometry;

// Populate geometry instance with data.
geometry.Coords().Add(GxVec3f(1.0f, 1.0f, 0.0f));
geometry.Coords().Add(GxVec3f(-2.0f, 0.0f, -3.0f));
// etc...
geometry.Normals().Add(GxVec3f(0.0f, 1.0f, 0.0f));
geometry.Normals().Add(GxVec3f(0.2f, 0.6f, 0.3f));
// etc...

// Texture coordinate sets can be of different dimensions
// This example shows how to add 2d texture coordinates
geometry.TexCoords(texcoord_set).SetDim(2);
// UV coordinate 1
geometry.TexCoords(texcoord_set).AddElement(0.3f);
geometry.TexCoords(texcoord_set).AddElement(0.2f);
// UV coordinate 2
geometry.TexCoords(texcoord_set).AddElement(0.8f);
geometry.TexCoords(texcoord_set).AddElement(0.1f);
// etc...

// GxGeometry can handle both indexed and unindexed
// geometry. This example shows how to add indices.
geometry.Indices().Add(0);
geometry.Indices().Add(3);
geometry.Indices().Add(2);
// etc.

// After populating the GxGeometry with data, it can
// be uploaded to vertex buffers - the bool parameter
// determines whether GxGeometry will collapse the
// attributes into an interleaved vertex buffer.
// This also generates the vertex declaration that
// matches the data.
geometry.Init(interleaved);

// Activate() assigns the created vertex buffers
// to actual vertex streams and sets the vertex
// declaration. This has to be called before
// rendering.
geometry.Activate();

Listing 3.3: Examples of using GxGeometry

Chapter 3. Designing a Game Engine for Research 52

Texturing and Render Targets

The engine supports 2D and Cubemap textures, which are implemented as a
resource and tracked via the texture manager, which itself is derived from the
resource manager interface. Table 3.7 lists the texture classes. Section 3.4.3
also introduces the texturing classes used for render-to-texture techniques.

GxBaseTexture Texture base class.
GxTexture 2D texture class.
GxCubeTexture Cubemap texture class.
GxFont Loads and renders text using a texture font.

Tab. 3.7: Texture Classes.

Render Targets

In addition to the 2D and Cubemap texture types described in 3.4.3, vari-
ants of these texture types exist that are intended to be used as render
targets. Using these render targets, techniques that require render-to-texture
functionality can be implemented. Table 3.8 lists the classes used for this
purpose.

The render target configuration classes are helper classes that are used
to set up a system of render targets and render target textures. The user
specifies which render targets are bound to a specific configuration, and sub-
sequently activates the configuration when the application needs to render
into these render targets. The render target configuration classes then sim-
plify grabbing a render target texture that contain the rendered information.

Effect framework

The central class of the effect framework is the GxEffect class, which is
also a resource managed by a resource manager. The class represents a HLSL
effect shader contained in an FX file. The Effect Resource Manager provides
means of compiling such an FX file into binary code, and writing the binary
code to disk, for two reasons: the FX file will subsequently not need to be
recompiled, but rather loaded from its binary byte code, and some users of
the engine may want to obfuscate their FX shaders.

The Effect framework implements a large part of the HLSL Semantics
and Annotation Standard (SAS). Semantics are strings assigned to variables
in an HLSL shader, which tell the application how that variable is used. The

Chapter 3. Designing a Game Engine for Research 53

GxRenderTexture 2D texture used as a render
target.

GxCubeRenderTexture Cubemap texture used as a
render target.

GxRenderSurface Render surface part of a
cube map render target.

GxRenderTargetConfiguration Creates a 2D render target
set-up.

GxCubeRenderTargetConfiguration Creates a Cubemap render
target set-up.

Tab. 3.8: Render Target Classes.

application is then responsible of automatically setting the appropiate values
for these variables.

The HLSL Semantics and Annotation Standard defines a large set of com-
monly used variable types. Table 3.9 lists the Semantics that are supported
by the engine and will be automatically set.

Variables assigned to these semantics are set automatically with the
SetUniforms() method of GxEffect.

The effect is applied by rendering batches within a Begin()/End()
block. The ForEachPass() determines if there are render passes left.
Listing 3.4 illustrates this mechanic.

// effect is a pointer to a GxEffect instance
effect->SetUniforms();
effect->Begin();
while (effect->ForEachPass())
{

// Render batches here
}
effect->End();

Listing 3.4: Effect Rendering Passes

Parameters not handled by semantics can be set via the methods listed
in Table 3.10.

Such parameters can be set either via a D3DXHANDLE to a parameter,
which can be retrieved via the Handle() method, or via a Semantic Type.
The first method retrieves the D3DXHANDLE from the effect if that parameter

Chapter 3. Designing a Game Engine for Research 54

WORLD Object-to-World matrix
(World matrix)

WORLDINVERSE Inverse World matrix
WORLDINVERSETRANSPOSE Transposed inverse World

matrix
WORLDVIEW Combined World and View

matrix
WORLDVIEWINVERSE Inverse WorldView matrix
WORLDVIEWINVERSETRANSPOSE Transposed inverse World-

View matrix
WORLDVIEWPROJECTION Combined World, View and

Projection matrix
WORLDVIEWPROJECTIONINVERSE Inverse WorldViewProjec-

tion matrix
WORLDVIEWPROJECTIONINVERSETRANSPOSE Transposed inverse World-

ViewProjection matrix
VIEW View matrix
VIEWINVERSE Inverse View matrix
VIEWINVERSETRANSPOSE Transposed inverse View

matrix
VIEWPROJECTION Combined View and Projec-

tion matrix
VIEWPROJECTIONINVERSE Inverse ViewProjection ma-

trix
VIEWPROJECTIONINVERSETRANSPOSE Transposed inverse View-

Projection matrix
PROJECTION Projection Matrix
PROJECTIONINVERSE Inverse Projection matrix
PROJECTIONINVERSETRANSPOSE Transposed inverse Projec-

tion matrix
VIEWPORTPIXELSIZE Size of the viewport in pix-

els as float2
VIEWPORTCLIPPING Near distance, far distance,

width angle(radians),
height angle(radians) as
float4

TIME Current engine system time
LASTTIME Last frame time
ELAPSEDTIME Time between adjacent

frames

Tab. 3.9: HLSL Semantics supported by the engine.

Chapter 3. Designing a Game Engine for Research 55

SetFloat Set a float shader parameter.
SetFloat2 Set a float2 shader parameter.
SetFloat3 Set a float3 shader parameter.
SetFloat4 Set a float4 shader parameter.
SetTexture Set a texture parameter. The

supplied texture can be a 2D Tex-
ture or a Cubemap.

SetBool Set a bool shader parameter.
SetInt Set an int shader parameter.
SetTechnique Sets the active technique.

Tab. 3.10: Methods for setting effect parameters

has been queried for the first time, stores that handle in a map, and sub-
sequently returns that cached handle when asked for that parameter again.
The latter method requires a Semantic, and sets the values of the variables
that are bound to that semantic.

The vertex streams from a GxGeometry object are bound sequentially
(if they exist) to the vertex shader input structure in the following order:

• Vertex positions

• Vertex colors

• Normal vectors

• Texture coordinate layers which are also used for other purposes than
texture UV mapping (for instance, tangent space binormals)

Thus the vertex shader input layout in a specific effect file must match
both what is in the model file as well as this order.

3.4.4 Input

The input subsystem handles input controllers via DirectInput. The central
hub class is GxInput, which handles all initialization tasks. Through it the
developer can also access the keyboard, mouse and optional game controllers
plugged into the system. Table 3.11 illustrates the classes present in this
subsystem.

The input device implementations generally support querying of the cur-
rent state of an input device, as well as query whether during the last polling,

Chapter 3. Designing a Game Engine for Research 56

GxInput Handles initialization and destruction of in-
put devices, and enumeration of game con-
trollers. It is also responsible for polling all
input devices it supports.

GxInputDevice Base class for all input devices.
GxKeyboard Implements keyboard access routines.
GxMouse Implements mouse access routines.
GxController Implements routines to access game con-

trollers in a general fashion.

Tab. 3.11: Overview over the Input classes.

an input state has changed such as a keyboard key transitioning from neutral
to pushed state or vice versa.

3.4.5 Audio

The audio subsystem enables the usage of sound devices. Similar to the
graphics and input subsystems, there is a central hub class called GxAudio,
which – similar to GxRenderContext and GxInput – handles initializa-
tion tasks and acts as a hub to the audio subsystem functionality. Table 3.12
lists the relevant classes of this subsystem.

When a multiple instances of a sound are played, multiple audio buffers
are instantiated, as each sound instance – also called a voice – requires an own
audio buffer. However, when playing back the same sound multiple times,
generating multiple audio buffers with full copies of that sound sample would
unncessarily waste memory. Therefore, a DirectSound feature called buffer
cloning is used, which intantiates a copy of an audio buffer that points to
the same sample memory, thus effectively sharing the same sample memory,
allowing it to be played back multiple times with own parameters such as
panning and volume.

3.4.6 Parser

The parser subsystem is a collection of classes aiding in parsing text files. It
accepts a definition of tokens and keywords and can subsequently check an
input string for lexical correctness, and output a token stream which then
can be grammatically parsed. Table 3.13 gives a brief explanation of the
system’s components.

Chapter 3. Designing a Game Engine for Research 57

GxAudio Handles initialization and destruction tasks,
and provides simple interfaces for audio play-
back.

GxAudioBuffer Handles a single sound sample that is kept in
memory as a whole. Such sounds are called
resident samples.

GxWaveFile Handles the loading of an entire wave file
into memory. Feeds GxAudioBuffer with
a resident sample from a wave file.

GxAudioStreamBuffer Implements a buffer the sample data of which
is frequently updated. Such samples are
called streaming samples, as they are com-
monly used to continually read from an au-
dio file too large to be loaded as a resident
sample such as music.

GxIStreamSource Abstract interface implement-
ing a data source that feeds the
GxAudioStreamBuffer.

GxWaveStream Implements the GxIStreamSource inter-
face to feed a streaming sample with data
from a wave file.

GxOggStream Implements the GxIStreamSource inter-
face to feed a streaming sample with data
from an Ogg file.

GxAudioSource A separate audio voice that plays back a sam-
ple (resident or streaming). It may have po-
sitional parameters for 3D sounds.

Tab. 3.12: Overview over the Audio classes.

GxTokenizer Tokenizes a string into a token stream by lexical analy-
sis.

GxXMLParser Uses GxTokenizer to parse an XML string and con-
vert it into an XML document tree.

Tab. 3.13: Overview over the Parser classes.

Chapter 3. Designing a Game Engine for Research 58

The tokenizer can be fed with certain keywords and tokens and its scan-
ning behaviour configured such as which characters to use for commenting.
The result token stream can then be easily parsed and processed in whichever
way the developer wishes to.

3.4.7 Application Framework

The application framework (AppKit) is a small library that enables quick
development of new applications based on the GebauzEngine. It is built
directly on the Win32 API and supports simple creation of an application
main window in fullscreen or windowed, as well as a simple event routing
system.

Section 3.6 shows how to build a minimal application using the application
framework.

3.5 Asset Pipeline

This section describes the workflow of importing geometry into a format
the engine can use, and the design of the content pipeline. It will give a
mostly structural view; for a guide on creating Penta G content, refer to the
Appendix.

3.5.1 Toolchain Structure

The asset tools of Penta G consist of two primary tools: the SUX Model
Editor, and the GTP Editor. The SUX Model Editor is an asset tweaking
and import/export tool not specific to GebauzEngine but used for other
engines as well. The GTP Editor is a separate level editor for Penta G that
contains Penta G-specific functionality, but is general enough that it has been
used for non-GebauzEngine applications in the past [28].

Both tools have been written in Turbo Delphi, which is freely available
by CodeGear, the developer tools subsidiary of Borland. The reason for this
is that Delphi features a comfortable designer for graphical user interfaces.
The rendering engine that runs both tools is the SUX Engine, another game
engine that is based on OpenGL and Delphi. The main reason for using
this different engine for tools was that the SUX Engine and the SUX Model
Editor both already existed and was therefore synergetic to use instead of
reinventing the wheel.

No changes had to be made in the SUX Model Editor specifically for
Penta G, as the conversion between right-handed and left-handed coordi-

Chapter 3. Designing a Game Engine for Research 59

nates, caused by the different behaviour between DirectX and OpenGL, was
made during loading of the model format.

Figure 3.5 roughly illustrates the asset pipeline workflow, with the com-
ponents and tools necessary to create content.

Fig. 3.5: Structure of the Asset Pipeline.

3.5.2 Collaboration with the Engine

SUX models can be loaded via the GxModelLoader class. Appropiate
materials applied to that model are loaded via the system described in Sec-
tion 3.5.3. The model loader reads the model file and generates the instance
of the GxModel class that represents that model. It also provides conversion
from OpenGL’s right-handed coordinate system to DirectX’s left-handed one.
Section 3.4.3 gives a detailed description of the geometry data structures in
GebauzEngine.

Level files, which accumulate several SUX models in a level, are handled
on the application side, as level files created with the GTP Editor contain
application-specific data. This process is described in Section 4.3.

Chapter 3. Designing a Game Engine for Research 60

3.5.3 Material/Effect System

The material system uses so-called material instance scripts, which define the
shader and parameters for a single material instance of a batchgroup inside a
mesh. This system is fully implemented on application level and is therefore
replaceable. The GebauzEngine only provides an abstract material-loader
interface so that custom scripts can be created and loaded.

Material scripts reference an effect that they use, and subsequently set
parameters those effects expose. Hence, custom effect shaders can be inte-
grated into the system. The material instance scripts are edited and entered
in the SUX Model Editor application.

Material Instance Script Syntax

In the material instance scripts, each semicolon-separated line defines a state-
ment. Table 3.14 gives a brief overview over the available instructions within
each statement.

uses [fx_filename] Links the material to a specific ef-
fect file.

set [type] [var] [params] Set the value of a variable.
transparent Marks the material as one that

uses alpha-blending in order to
perform depth-sorting.

alphatest Marks the material as one that
uses alpha-testing.

Tab. 3.14: Material instance script instructions.

The set instruction sets the value of a certain variable. The first pa-
rameter it expects is the type of the variable, followed by the variable name,
and the actual value. If the variable type requires more than one value, such
as for 4-dimensional floating point variables, the values are specified using a
comma-separated list. Table 3.15 lists the available variable types.

Listing 3.5 shows an example material script.
The developer of the shader needs to set the used effect file and specify

the technique that is used. Other parameters such as textures or variables
correspond to uniform variables in the effect file, and therefore depend on
the actual effect file.

The material instance script is parsed by an implementation of the
GxIMaterialLoader interface, which is then passed to the

Chapter 3. Designing a Game Engine for Research 61

technique Specifies a technique to be used. The parameter is a
string denoting the technique.

texture2d Sets a 2d texture. Followed by a string specifying the
name of the texture variable and the texture file to be
used.

textureCube Sets a cubemap texture. Followed by a string specifying
the name of the texture variable and the texture file to
be used.

float Sets a float variable. Followed by a string specifying the
name of the float variable and the actual float value.

float3 Sets a float variable. Followed by a string specifying
the name of the float3 variable and three float values
separated by commas.

float4 Sets a float variable. Followed by a string specifying
the name of the float4 variable and four float values
separated by commas.

int Sets an integer variable. Followed by a string specifying
the name of the integer variable and the actual integer
value.

bool Sets a boolean variable. Followed by a string specifying
the name of the boolean variable and the actual boolean
value.

Tab. 3.15: Possible variable types for material instance scripts.

uses "normalmapping.fx";
set technique "parallax_glow_to_ambient";
set texture2d "colormap" "rustybox_cm.png";
set texture2d "normalmap" "rustybox_nm.png";
set texture2d "surfacemap" "rustybox_sm.png";
set float "ambientfactor" 15;
set float4 "lightdir" 0.6, 0.6, 0.2;
transparent;

Listing 3.5: Example Material Script

Chapter 3. Designing a Game Engine for Research 62

SetMaterialLoader() method of GxModelLoader. When a model is
loaded and a material loader implementation specified, the model loader will
use the specified material loader implementation and call its
CreateMaterial() method which takes a string containing the material
instance script and returns an instance of GxBaseMaterial or a derived
class.

Thus it is possible to completely replace the material instance script sys-
tem by implementing a different parser. The Penta G engine’s material script
parser is implemented in the MaterialLoader class. The existing system
already allows for high flexibility to use any effect and shader with any model,
though, so an actual custom implementation of a material loader may not
be necessary.

It is also important to note that these effect files are only read and handled
by Penta G itself, and the level editor (see Appendix B) contains its own
predefined materials for solid and transparent objects. This is because for
simplicity, the level editor does not feature all effects that the regular game
offers, as this was found to not be an important necessity. In future versions
of the editor, this restriction could be lifted in order to make the editor utilize
the same material system and effect shader files as the actual game.

3.6 Anatomy of a minimal GxEngine Application

This section will give a code example of a minimal application built on the
engine. This minimal application will do the following tasks:

1. Read settings such as fullscreen/windowed mode and resolution from a
configuration file

2. Create a window for rendering, respecting the previously read settings

3. Initialize the Direct3D render device by initializing the Graphics sub-
system

4. Initialize the Input subsystem

5. Initialize the Audio subsystem

6. Start the main game and render loop where the render device is cleared,
and its backbuffer swapped

Items 1 to 2 are handled by the Application Kit. It suffices simply de-
riving an own application class from the GxApplication class. In order

Chapter 3. Designing a Game Engine for Research 63

to listen to application events, it is recommended to also derive from the
GxIEventHandler interface, which registers the class as an event listener.
The GxApplication base class sends events to all registered event listeners
by invoking their implementation of the OnEvent() method.

Another useful class to derive from is the GxDefaultEventRouter
class. It defines several pure abstract event handler methods which are in-
voked by its OnDefaultEvent() method. An application utilizing this
base class may just call OnDefaultEvent() for every event it doesn’t want
to handle by itself, and the GxDefaultEventRouter class will re-route
the events to the appropiate virtual methods.

Listing 3.6 illustrates a basic application built in such a way that satisfies
points 1 to 2 mentioned above.

class MinimalApp :
public GxApplication,
public GxAppKit::Abstract::GxIEventHandler,
public GxAppKit::GxDefaultEventRouter

{
public:

MinimalApp();
virtual ˜MinimalApp();

virtual GxEvent::ResultType OnEvent(const GxEvent& e)
{
return OnDefaultEvent(e);

}

virtual bool OnInit();
virtual bool OnShow();
virtual void OnDestroy();

virtual void OnFrame(float frameTime);

void Update(float frameTime);
void Render();

protected:
GxRenderContext mRenderContext;
GxInput mInput;
GxAudio mAudio;

};

Listing 3.6: Minimal Application Class Declaration

Chapter 3. Designing a Game Engine for Research 64

The class also already includes member variables for the main graphics,
input and audio classes. It also implements the OnInit(), OnShow(),
OnDestroy() and OnFrame() event handler methods.

GxEvent::ResultType MinimalApp::OnEvent(const GxEvent& e)
{

return OnDefaultEvent(e);
}

bool MinimalApp::OnInit()
{

if (!mRenderContext.Init(GetMainWndHandle(), mWidth,
mHeight, mStartFullscreen))

return false;
gxEngineCore().SetRenderContext(&mRenderContext);

if (!mInput.Init(GetInstance(), GetMainWndHandle()))
return false;

gxEngineCore().SetInput(&mInput);

if (!mAudio.Init(GetMainWndHandle()))
return false;

gxEngineCore().SetAudio(&mAudio);

return true;
}

bool MinimalApp::OnShow()
{

// initialize game-relevant things here
}

void MinimalApp::OnDestroy()
{

// graphics, input, and audio get uninitialized in
their destructor

}

Listing 3.7: Minimal Application Initialization and Destruction

The OnInit() method is called right after initialization of the applica-
tion, but before displaying the main window and before starting the main
loop. OnShow() is invoked right after the main window is activated and
made visible, but also before the main loop. OnDestroy() is called after

Chapter 3. Designing a Game Engine for Research 65

exiting the main loop. These three methods are the main location where
further initialization and destruction of the application should be done, such
as for the graphics, input and audio subsystem. Their implementation thus
handles points 3 to 5 in the list mentioned above, as shown in listing 3.7.

Lastly, the OnFrame() method is called frequently when the application
is active and idle and no system messages are processed. This is the main
point where game logic and rendering should be implemented. The method
gets the elapsed time since the last call of that method, and is responsible
for handling that frame time appropiately.

Listing 3.8 shows a sample implementation that splits the method into
an own Game Update and Game Rendering part.

void MinimalApp::OnFrame(float frameTime)
{

if (frameTime > 0)
{

Update(frameTime);
}

Render();
}

void MinimalApp::Update(float frameTime)
{

// update game logic dependent on frame time
}

void MinimalApp::Render()
{

if (mRenderContext.CheckDevice())
{
mRenderContext.Clear();
gxRenderContext().BeginScene();

// do actual rendering

gxRenderContext().EndScene();
gxRenderContext().Swap();

}
}

Listing 3.8: Minimal Application Update and Rendering

Chapter 3. Designing a Game Engine for Research 66

In the rendering part, the screen is cleared and the backbuffer is swapped.
The CheckDevice() method handles render device loss and returns true
whenever rendering is possible.

This minimal application can be used as the basis for a custom application
built on the engine.

Penta G itself is also built this way, and adds a lot of additional func-
tionality in its application code domain. These parts together with the
GebauzEngine framework constitute what is called a Game Engine. The
following chapter will detail these Game Engine parts of the application do-
main.

Chapter 4

Building a Game for Research – Penta G

This chapter will describe the development of the demo game based on the
GebauzEngine called Penta G. We will present the software components of
the game that are not part of GebauzEngine but rather built on top of
it. Furthermore, we will outline the more advanced features and techniques
utilized in Penta G, and finally we will compare the game to the requirements
list we developed in Section 2.5.

4.1 Introduction

The initial purpose of the demo game and thus the reason for the devel-
opment of both the GebauzEngine and the Penta G game was to showcase
technologies of the GameTools project (see Section 5.1). It has been after-
wards extended to be used in several other research areas, as the interest
in Penta G being a state-of-the-art game and game engine fully available to
research grew.

One of the goals during the demo game development was to create a game
as professionally as possible, and as such, Penta G can be used as a test bed
for research that is very close to real-world application scenarios.

4.2 Game Object Hierarchy

Every in-game object in Penta G is derived from the Entity base class. This
base class provides virtual methods for various tasks such as updating, ren-
dering, and reading data from a level file. Table 4.1 gives an overview over
the game entity hierarchy in Penta G.

Each of these classes is also registered in the engine’s reflection system,
and thus it is possible to compare the types of entity instances, check whether
an entity instance is derived from a certain entity class, and to generate an
entity from its string name. The latter feature is used when reading a level
file: the level loading mechanism reads the string name of an entity class and

Chapter 4. Building a Game for Research – Penta G 68

thus can instantiate a class object via the reflection/factory system. Sub-
sequently, the virtual Load() method of that class instance is called. Every
entity serializes itself from the level file by implementing this method.

Game entities are well defined for a specific game, therefore a lot of the
entities presented here are specific to Penta G gameplay, which essentially
implements a standard first person shooter. A full conversion of Penta G into
a completely different game with different gameplay and game mechanics
would require the implementation of new entities, as well as discarding some
Penta G entities that have no use in that different game. However, some
more generally usable game entities also exist in Penta G, such as the particle
system classes.

Entities are managed in the EntityList class, which contains a list of all
existing entities. This list may be larger than the initial list after reading a
level file, because newly spawned entities which are generated later during
the game are also added to this list. Deleted entities are removed from this
list as well. This class also simplifies iterating through the list.

Each entity’s visibility is marked by setting a visibility flag as well as
the frame integer ID where that flag was last updated. This mechanic is
necessary for Coherent Hierarchical Culling as explained in Section 4.6.4,
but is used for generic frustum culling too.

Every entity can be named in the editor, but since that is a feature used
purely for usability, no mechanic is in place to ensure unique names.

In the following sections, some pivotal game object types will be described
in more detail.

4.2.1 Start Position Object

The start position object simply marks the point in space where the Player
Object will spawn.

4.2.2 Environment Models

Environment Models are static level geometry that themselves do not react
to physics, but are still collidable geometry. Other dynamic physical entities
can collide with environment models and will react to them. This type of
entity is the main type for building a level.

4.2.3 Actors

Actors are actively moved entities in the level, that offer more dynamic be-
haviour than environment models. They have a health property and are

Chapter 4. Building a Game for Research – Penta G 69

Entity

Action

LightController

ParticleSystem

PhysicsEntity Portal Sound SpawnPoint

StartingPosition

TouchField

WayPoint

EnvironmentModel

Actor

Projectile

FlyingEnemyShot EnemyPlasmaBallPlasmaBall

Explosion ParticleEmitter

PlasmaBallImpact

AIControlledObject BonusItem Door InteractiveObject Player RefractionObject

EnemyBall FlyingEnemy

Penta G Entity Class Hierarchy

ScriptingCamera

Fig. 4.1: Entity Hierarchy

Chapter 4. Building a Game for Research – Penta G 70

destructable. Several subtypes of actors exist and are described in the fol-
lowing sections.

The Player Object

The Player Object is a special entity that can only exist once in the entire
level. It encapsulates the player as a scene entity, so that other entities can
react to it, or influence it in other ways. It itself is a physics entity that
implements a capsule-based character controller.

User input influences movement of the player object. The player object
also updates the camera depending on its position and viewing direction,
since in a first person shooter type of game, the camera eyepoint is always
identical to the player object eyepoint.

The player object also possesses instances of the Weapon class, that im-
plement the player weapon in the game.

Interactive Objects

Interactive Objects are dynamic level geometry, that are affected by physics,
and react to forces. These are typically used for level props that can be
moved around.

AI Controlled Objects and Spawn Points

AI Controlled Objects are entities that utilize their own artificial intelligence
to move in the scene. The AIControlledObject base class provides way-
point utility functions so that classes derived from it can follow paths defined
by waypoints. It also provides means to set and follow target entities. AI
controlled objects are not placed directly, but emitted from the SpawnPoint
entity. This entity spawns AI controlled object in a user-specified frequency.
The spawn point does not start emission automatically, but only when trig-
gered via an action entity.

4.2.4 Waypoints

Waypoints are points defined in the scene by their position and radius. AI
Controlled Objects can use them to define paths to follow. A radius can be
defined so that objects using the waypoint do not move exactly to the central
position, but can also choose a random location within the radius to make
AI movement appear more natural.

Chapter 4. Building a Game for Research – Penta G 71

4.2.5 Particle Systems

Particle systems are systems that emit objects according to a certain emission
scheme. These objects are called particles, and they also move according to
well-defined schemes, including a per-particle life-time. Such particle systems
can be used to simulate atmospheric effects like fog, clouds or explosions. The
particle system classes are responsible for updating particles and rendering
them efficiently, which usually means batching particle sprites into larger
batch groups before sending them to the render device.

4.2.6 Actions

Actions are an entity type that implement a similar functionality to the
delegate design pattern [24]. They define certain predefined actions that can
be executed on either light sources or entities. Entity types handle actions
by implementing the Trigger() method that is called when an Action is
executed. A delay for waiting until the execution is initiated can also be
specified.

This class is implemented as an entity so that it can be placed and po-
sitioned in the level editor and visually edited instead of separately edited.
This is also the central class for Penta G scripting (see Section 4.4.3).

4.2.7 Touchfields

Touchfields are geometric areas in the scene that execute a TRIGGER action
when other entities enter or leave them. They can be used to trigger events
depending on the movement and placement of scene entities.

4.2.8 Scripting Cameras

Scripting Cameras provide alternative camera views for sequences and cutscenes
and can be invoked via the Action entity.

4.2.9 Portals

A portal is a simple trigger that loads a new level. This is mainly used to
load the next section when arriving at a certain point in a level.

4.2.10 Sound Entities

A sound entity can be an ambient sound, which loops infinitely, or a triggered
sound, which is activated on a trigger event. It has a position which is also

Chapter 4. Building a Game for Research – Penta G 72

applied to the sound played.

4.2.11 Light Controllers

Light Controller entities can control light sources in a variety of ways, such
as making light sources flicker or pulsate, turning them on and off, as well as
animate them. These actions are defined in the editor.

4.3 The Asset Pipeline on Application Level

The GebauzEngine only provides a basic model loading functionality. Since
a game typically requires extended functionality such as game-relevant in-
formation, the application implements an own Model class that encapsulates
the engine’s model class (GxModel) via aggregation. The application do-
main also maintains a simple list of all the models in a level, implemented in
the ModelList class.

The engine provides a material loading interface where applications can
plug in their own material script parser. Since the engine does not provide
an own material script parser, it is implemented in the application code. The
Penta G material instance script parser is executed by the model loader. The
syntax of the material instance script is explained in detail in Section 3.5.3.

The GTP Editor (see Appendix B) and the level format are also com-
pletely on application level – the engine does not have a notion of levels. The
level is basically a scene populated with game objects the implementations
of which are also contained in the application domain.

4.4 Game Logic and Scripting

This section will describe the game state logic and how the update flow from
the application main loop down to each game object’s update is structured.

4.4.1 Main Loop

Programs typically have a main loop where the application’s event processing
is handled. The application runs until it receives an event that designates a
quit command, and during that time, processes a queue of event messages
if that queue is non-empty. These events are operating system specific, for
example in Microsoft Windows they are named Windows Messages.

In times where the application is idle, i.e. there are no pending operating
system events to be processed, it can process the game itself. In the case of

Chapter 4. Building a Game for Research – Penta G 73

Penta G’s AppKit, an own event framework is provided that handles engine
events by invoking callback functions implemented as virtual functions of
an IEventReceiver-derived class. During the application main loop’s
idle time, an ON FRAME event is triggered that calls the appropiate handler
function.

That handler function subsequently has to split engine processing into a
separate Update() and Render() call. The Update() call receives the
elapsed time span since the last time it was invoked. It also has to prevent
processing when the elapsed time is zero, because delta times of zero may
influence the game logic negatively.

Ideally, the handler function also splits updating into maximum time
chunks when the elapsed time is higher than a specific threshold to ensure
that Update() always receives a small enough delta time so that processing
that may require smaller time steps is ensured to work correctly. A typical
type of processing that requires small time steps is collision detection – large
time steps may cause objects to pass through walls that should be unpene-
trable.

At the same time, the logic update needs to make sure that it works
robustly when times between frames are zero. It must both prevent division-
by-zero bugs which may happen if parts of the code divide by the frame
time, as well as make sure that when the frame time is zero, that the game
effectively pauses. This is especially important when using performance an-
alyzation tools such as NVIDIA NVPerfHUD.

4.4.2 Game States

Game States implement the game’s application flow as a state machine. A
Game State is defined as a part of the game that implements its own game
logic and that is mutually exclusive to other game states, meaning that the
game may only be in one single game state at a time. The game state
manager handles the transition between game states and ensures that the
currently active game state is properly updated and rendered.

In Penta G, the game state manager also implements a generic factory
that can create instances of game states via its string name. Each game
state must thus be registered in the generic factory. The GxGenericFactory
template included in the engine core classes provides easy to use macros to
simplify this.

Chapter 4. Building a Game for Research – Penta G 74

4.4.3 Scripting System

Scripting is the process of automating and controlling a software application
without modifying the software’s own source code. In the context of games,
scripting refers to automated processes and events that can be defined by a
level designer for purposes such as automatic sequences, cinematic cutscenes,
or event processing. In larger and general purpose game engines, scripting
is often achieved by integrating a separate scripting language on top of the
actual engine source code.

During the development of Penta G, scripting language systems such as
Lua, Boost.Python and Stackless Python were evaluated, but a more straight-
forward and restrictive scripting system was implemented instead, since such
scripting language systems added too much maintenance effort compared to
the time constraints in which Penta G had to be developed.

Action Type Result

Trigger Entity Trigger an entity.
Set Active Activate an entity.
Set Inactive Deactivate an entity.
Lock Lock an entity.
Unlock Unlock an entity.
Delete Entity Delete an entity.
Kill Entity Set an actor’s health to zero.
Inflict Damage (P1) on En-
tity

Add damage to an actor’s health.

Set Entity Model (P1) Change an entity’s assigned model.
Set Entity Position to Way-
point (P1)

Put an entity to a waypoint.

Move Entity To Waypoint
(P1) with Speed (P2)

Causes an entity to move towards a way-
point.

Turn On Light Switches on a light source.
Turn Off Light Switches off a light source.
Set Light Position (P1) Puts a light source to a specified position.
Set Light Color (P1) Changes the light source color.
Set Light Radius (P1) Changes the light source radius.
Set Actor targetable Makes an actor targetable by AI.
Set Actor not targetable Makes an actor untargetable by AI.

Tab. 4.1: Action Types. The result of most actions depends on the entity the
action is applied to.

Chapter 4. Building a Game for Research – Penta G 75

The Scripting System of Penta G uses predefined action types and relies
on the implementation of each Entity to handle the action correctly in the
context of the entity type. The central entity type for scripting is the Action
class, which connects and sends action types to actual entities. An Action
defines the actual action that has to be executed and the entities on which
the action operates, plus additional parameters such as a waiting delay after
which execution starts and some conditions. The action types available are
predefined in the engine. Table 4.1 lists the action types available in the
engine and gives a short description for each. Note that the actual result of
the action depends on how the specific target entity implements it.

Actions themselves can also be triggered by various entities that define
certain events, such as the Starting Position entity ’s “On Start Level” event
which is triggered when the player entity is spawned. Due to the generality
of the action types, most in-game scripting needs should be satisfied, and
more complex sequences can be created by chaining actions. For instance,
one could start an action when the level loads, which changes the camera
view, triggers an action that fades in from black, which in turn triggers an
action that starts playing a sound.

4.5 The Rendering Pipeline

This section describes the rendering pipeline of Penta G. Penta G applies
multiple passes to achieve its rendering output, as shown in Figure 4.2. The
render passes applied are:

1. Depth Only Pass. Establishes the Depth Buffer and renders the lin-
ear depth into the color channel for later usage. Visibility information
is established and stored.

2. Shadow Map Passes. Shadow-casting light sources render their
shadow maps into cubemap render targets.

3. Environment Map Passes. Reflecting or refracting entities require
a cubemap rendering of their surroundings.

4. Color/Glow Pass. Renders the color output and the glow buffer into
two targets in a Multiple Render Target (MRT) setup.

5. Horizontal Glow Blur Pass. Blurs the glow buffer horizontally.

6. Vertical Glow Blur Pass, Image composition. Uses 1 pass to
vertically blur the glow buffer and combine the color render output
and the blurred glow.

Chapter 4. Building a Game for Research – Penta G 76

Fig. 4.2: The Penta G Rendering Pipeline.

7. Postprocess Effects. Damage and distortion effects are applied to
the result of pass 6, and the On-Screen Heads-Up Display (HUD) is
rendered

Pass 1 uses either traditional per-entity frustum culling or Coherent Hi-
erarchical Culling (see Section 4.6.4) to determine visibility for each scene
entity. This information is subsequently stored in each entity so that subse-
quent passes do not need to newly determine visibility.

Chapter 4. Building a Game for Research – Penta G 77

Pass 2 is actually is made up of multiple passes, 6 for each shadow-casting
light source as Penta G uses omni-directional light sources emitting light
into every direction and thus also casting shadows in all directions. Despite
utilizing light source culling, effectively only rendering shadow maps for light
sources the influence radius of which are intersecting the view frustum, this
can be a performance bottleneck when a lot of light sources are visible in a
scene. This performance can be finetuned and scaled by tweaking the shadow
map sizes though.

Pass 3 is optional and is only executed when there are any visible reflecting
or refracting objects in the scene. Like the shadow map passes in 2, each
single reflecting or refracting object requires 6 passes to generate its cube
environment map.

Pass 4 is the actual scene render pass which renders color output into a
render target, but also renders the glow portions of the scene into a separate
render target. This separate render target is subsequently blurred vertically
and horizontally and finally composed together with the original color ren-
dering in passes 5 and 6.

Finally, pass 7 applies some additional postprocess effects such as a dis-
tortion effect to depict shield damage.

The post process passes (5-7) have been removed in the version for the
Crossmod Project (see Section 5.2 because for perceptual experiments, such
postprocess effects disturb results too much. For that modification, the mul-
tiple render target rendering has also been removed, so that pass 4 only
renders the color output into one render target.

4.6 Advanced Features and Technologies

This section describes some of the more advanced features some of which
were integrated for the purpose of showcasing GameTools technologies (see
Chapter 5.1).

4.6.1 Multiple Render Targets and Postprocess Effects

Several Postprocess Effects have been added to the Penta G rendering
pipeline. Postprocess effects are techniques that modify final render outputs,
and operate on them in two-dimensional image space.

In the case of Penta G, the actual scene rendering outputs into more
than one render target in a single pass. This is a feature of modern graphics
processing unit that is called Multiple Render Target Rendering (MRT ren-
dering). The pixel shader can specify which color to write to which specific

Chapter 4. Building a Game for Research – Penta G 78

render target in the MRT chain. The disadvantage is that on DirectX 9 class
hardware, MRT rendering cannot be used in conjunction with multisampling
anti-aliasing (MSAA). The advantage is that one MRT pass can prove to
be more efficient than several single passes – this is especially the case for
higher geometric complexity, as in an MRT setup, geometry only needs to
be transformed once. Penta G uses an MRT setup with two render targets:

• A color render target which contains the color rendering of the actual
scene.

• A glow buffer render target which contains the glow intensity per pixel.

The Penta G postprocess effects modify the render target and also use
the glow buffer render target (as well as possible additional textures) as
parameter source for the effect.

The effects used in Penta G include the following:

Glow Effect

This effect uses a separable gaussian blur to amplify glowing parts of the
scene, similar to the glow technique by Greg James and John O’Rorke [33].
These glowing parts are specified via the surface map texture each object in
Penta G possesses, and are rendered into the glow buffer render target. This
glow buffer is then blurred once horizontally, and once vertically, to achieve
a blur using a separable convolution Gauss filter.

In the final scene composition, this blurred glow image is superimposed
and blended onto the color render target and results in an intensified glow.
Figure 4.3 illustrates this blurring and image composition process to create
a convincing realtime glow effect.

Distortion Effect

The distortion effect used for shield damage feedback in the game is also
implemented as a postprocess effect. The goal of the effect was to achieve a
degradation of the image that is visually similar to artefacts in digital trans-
missions, such as MPEG data corruption artefacts [38]. Figure 4.4 graphi-
cally shows what this effect looks like.

4.6.2 Parallax Mapping

Normal Mapping is a way to encode surface information into texture maps to
enable highly detailed per-pixel lighting. Instead of RGB color values, each

Chapter 4. Building a Game for Research – Penta G 79

Fig. 4.3: Glow Effect Image Composition.

Fig. 4.4: Distortion Effect.

Chapter 4. Building a Game for Research – Penta G 80

(a) Regular Rendering

(b) Normal Mapping (c) Parallax Mapping

Fig. 4.5: The Effect of Normal and Parallax Mapping.

texel stores a normal vector at that point in tangent space. During lighting
calculations in the pixel shader, the normal is sampled from the normal map
and transformed into view space where lighting calculations take place.

Such normal maps can be generated from higher resolution meshes and
UV-mapping them onto lower resolution versions of those meshes [13]. In
Penta G we used traditional manual texture UV mapping inside the 3D
content creation package, and generating normal maps via additional tools,
such as the NVIDIA Normal Map Filter [51] and CrazyBump [15].

An extension to normal mapping is Parallax Mapping [34]. Additionally
to the way lighting is calculated in the normal mapping technique, a height
value is added which allows to calculate the offset by which the texel should
be moved to give high frequency surfaces a parallax effect mostly visible when

Chapter 4. Building a Game for Research – Penta G 81

changing the view direction onto the surface. In such a way, depth differences
on a surface can be rendered without increasing the geometric complexity.
Figure 4.5 illustrates the effect of this technique.

4.6.3 Omnidirectional Shadow Mapping

During development of Penta G, several shadowing techniques were eval-
uated. Two major shadowing techniques exist: shadow mapping [67] and
shadow volumes [17].

Shadow volumes use stencil buffering to track a rasterized pixel’s entering
and exiting a shadow umbra and deciding whether the shaded pixel lies within
a shadow. This shadow umbra is formed by a shadow volume by extruding
the silhouette of a shadow caster from the shadow casting light source (see
Figure 4.6). The standard algorithm first renders the scene unshadowed to
establish the depth buffer, then renders the shadow volume front and back-
faces with different stencil modes so that each pixel receives a classification
of whether it is shadowed or not. This second step nowadays can be done in
one pass; older hardware required two passes for this step. Finally, the result
of the previous steps are used to apply a shadow mask to the scene.

Shadow mapping is a class of techniques that render the scene’s depth
buffer or eye-view distances from the view of the light source, and using that
information during normal scene rendering to decide whether a rendered pixel
is inside the shadow or light by comparing its distance to the light source to
the corresponding pixel in the previously rendered light-view rendering (see
Figure 4.7).

Since shadow mapping is a texture-based technique, precision and alias-
ing problems exist which several techniques try to solve. Perspective Shadow
Mapping [60] is a technique warping the light frustum, which is essentially
the view frustum in the light-view render pass, and thus increasing effec-
tive depth resolution. An extended version, Light-Space Perspective Shadow
Mapping [70], or LiSPM in short, has been developed that calculates a per-
spective transform in light space that effectively turns all lights into direc-
tional lights without changing the light direction, preventing some artefacts
and singularities of regular Perspective Shadow Mapping. These techniques
can be combined with calculating the minimum visible area the shadow map
covers from the light and view frustum, and focusing the shadow map on this
visible portion of the scene as suggested by Stefan Brabec [8].

Both shadow volumes and shadow mapping, including LiSPSM, have
been implemented and evaluated in the pre-production prototype of Penta G.
We decided against shadow volumes due to the softer shadow borders that
shadow maps are capable of producing through techniques such as Percent-

Chapter 4. Building a Game for Research – Penta G 82

Fig. 4.6: Shadow Volume Principle.

age Closer Filtering [21]. Also shadow volumes would not have been able
to achieve correct shadowing of finely detailed scene parts realized through
alpha-testing such as grids or fences (Figure 4.8).

The final version of Penta G used uniform shadow mapping, as the qual-
ity benefit of Light-Space Perspective Shadow Maps was found to be lost
again through the temporal aliasing that happens due to the recalculation of
the shadow frustum in every frame. Also we did not focus the shadow map
because it also leads to visible temporal aliasing artefacts where shadow bor-
ders change whenever the camera view varies. Other factors for the decision
against any form of perspective shadow mapping were the relatively small
benefit in indoor scenes with small local light sources, where the area covered
by shadowmaps would in most cases be small anyway and thus the resolution
benefit of such techniques smaller than in outdoor scenarios. Furthermore,
shadow maps in Penta G are only updated when there is a significant change

Chapter 4. Building a Game for Research – Penta G 83

Fig. 4.7: Shadow Mapping Principle. The considered fragment is transformed
from eye space into light space, where the distance comparison with the sampled
shadowmap depth is made.

Fig. 4.8: Shadows cast through Alpha-Testing.

Chapter 4. Building a Game for Research – Penta G 84

within a light source’s radius, whereas focused shadow maps would require
updates with every change of the camera view.

We implemented omni-directional shadow mapping by using a cubemap
to cover the 6 directions from such a light source. The cubemap side frustums
were adjusted to use a 90◦ field of view angle so that each cubemap side render
seamlessly connects to the others. Due to the 6 directions, a light-view pass
now takes 6 actual passes, one for each cubemap side. We also did not render
the depth, but the linear fragment distance into these cubemap sides [25],
utilizing floating point render target types for the cubemap.

Due to the cubemap render targets containing the linear distance, the
comparison in the scene shadowing pass is trivial, as it’s simply a compar-
ison of the distance of the scene fragment to the light source compared to
the distance stored in the shadowmap for that fragment – if the one in the
shadowmap is less than the scene fragment distance, it means that there is
a closer object to the light source obstructing the view from the light source
to the scene fragment and thus casting a shadow on the scene fragment.

Our approach was optimized by not doing the cubemap render passes for
light sources that have no influence on the visible portion of the scene. In
order to save video memory, we also allocate only the shadow map render
targets needed for the current view, which costs a bit of performance. Pre-
viously, we implemented a caching scheme which allocated fixed statically
allocated render targets to the visible light sources, but this approach used
more video memory than the dynamic allocation.

4.6.4 Coherent Hierarchical Culling

The research field of visibility intends to develop and analyze methods and
algorithms to do more efficient or more accurate detection of visible portions
of a scene in order to minimize the rendering work by avoiding rendering of
invisible parts of the scene.

Occlusion queries have long been a feature of modern graphics processors.
They provide a method of retrieving the number of visible portions of a
series of render calls by counting the number of fragments that pass the
Z test and Alpha test and are therefore visible. Due to the asynchronous
nature of GPU-CPU intercommunication, the result of such queries cannot
be retrieved immediately after issuing those render calls. Stalling all further
rendering work on the CPU until the query result arrives, however, causes
a performance loss in most cases, as no useful work is done while the CPU
is waiting, effectively reducing or reversing the benefits of a more accurate
occlusion detection. For example, issuing a query for each object in the
scene, waiting for the result, and then render them depending on whether

Chapter 4. Building a Game for Research – Penta G 85

the result indicates if the object is visible, will in most cases be slower than
simply rendering all objects without any queries. Utilizing spatial scene
hierarchies is therefore necessary in order to cull large parts of the scene as
early as possible. Unfortunately, this hierarchical approach adds additional
necessary queries for interior non-leaf nodes, and thus can be even slower in
the worst case. This naive hierarchical approach is called the Hierarchical
Stop-and-Wait method [69].

Coherent Hierarchical Culling is a technique that tries to countermeasure
the CPU performance loss introduced by the Hierarchical Stop-and-Wait ap-
proach by performing useful calculations on the CPU during the time it waits
for the result of an occlusion query, effectively interleaving multiple queries
by queuing them and retrieving results while rendering actual geometry. This
approach has the implication that it is difficult to integrate Coherent Hier-
archical Culling into existing engines with well-defined rendering pipelines,
such as Ogre3D [42]. Penta G, however, was developed with CHC in mind
from the beginning.

The effect of frame coherence – which is the frame-by-frame similarity in
a rendering system – is exploited in order to make assumptions about nodes
in a scene hierarchy, and rendering their geometry while waiting for queries.
For instance, if a node has been found visible in the previous frame, there
is a high probability of the same node being visible in the current frame as
well. These assumptions are verified during the render of a single frame, and
can subsequently be used in the following frame.

In order to prevent occlusion query overhead introduced by having to issue
queries for interior nodes in the scene hierarchy, query results are propagated
upwards in a scene hierarchy, utilizing the fact that if a single child node in a
spatial hierarchy is visible, its parent node is also visible. Thus, interior nodes
get their visibility information indirectly by deducing visibility information
from child nodes.

Coherent Hierarchical Culling necessitates the existance of a spatial scene
bounding volume hierarchy. In Penta G, we opted for a semi-automatic ap-
proach where the top-level bounding volumes are defined by the level designer
– these consist of axis-aligned bounding boxes called view cells. The actual
entity bounding volumes are then automatically assigned to the view cells
that contain them, including updating the hierarchy for moving objects.

Further optimization that is orthogonal to Coherent Hierarchical Culling
was added by adding the possibility to link view cells together that are visible
from each other, similar to the Visibility Portal Culling technique and similar
to the mixed static/dynamic systems implemented in some state-of-the-art
game engines for next-generation consoles such as the ones developed by
Insomniac Games [29]. For the demonstration of the benefits of Coherent

Chapter 4. Building a Game for Research – Penta G 86

(a) In outdoor scenes, the viewer’s eye point typically is outside scene object bounding
volumes.

(b) In indoor scenes, rooms are part of level geometry and as such possess bounding
volumes; the viewer is always inside at least one of them.

Fig. 4.9: Indoor/Outdoor Comparison. Character Designs c© by Ben Croshaw.

Hierarchical Culling, this feature was deactivated though.
Further notice must be made to the fact that Penta G is an indoor game.

The implication of this is that in contrast to the standard implementation
and also in contrast to the pseudocode that is presented by Michael Wim-
mer and Jǐŕı Bittner [69, 5], it is always the case that the eyepoint is inside
a bounding volume (see Figure 4.9). This is an important difference be-
cause the bounding boxes of such room geometry would not be visible in a
query because their polygon faces show outwards and thus would not gener-
ate fragments during the query. This is a generalized case of the near-clipped
bounding volume case mentioned by Michael Wimmer and Jǐŕı Bittner [69].
The authors suggest to set such nodes to visible without issuing an occlusion
query. This leads to a modification of the standard algorithm for Coher-
ent Hierarchical Culling. Listing 4.1 shows the modified algorithm used in
Penta G.

A special CHC demonstration room has been included in the Penta G

Chapter 4. Building a Game for Research – Penta G 87

TraversalStack.Push(hierarchiy.Root);
while (!TraversalStack.Empty()) ||

!QueryQueue.Empty())
{
//- PART 1: process finished occlusion queries
while (not QueryQueue.Empty() &&

(ResultAvailable(QueryQueue.Font()) || TraversalStack.Empty()))
{

node = QueryQueue.Dequeue();
visiblePixels = GetOcclusionQueryResult(node);
if (visiblePixels > VISIBILITY_THESHOLD)
{

PullUpVisibility(node);
TraverseNode(node);

}
}

//- PART 2: hierarchical traversal
if (not TraversalStack.Empty())
{

node = TraversalStack.Pop();
if (InsideViewFrustum(node))
{
wasVisible = node.visible && (node.lastVisited == frameID - 1);

//- NOTE: modification of the original algorithm:
if (IsEyePointInsideNode(node))
{

node.visible = true;
node.lastVisited = frameID;

PullUpVisibility(node);
TraverseNode(node);
continue;

}

leafOrWasInvisible = !wasVisible || IsLeaf(node);
node.visible = false;
node.lastVisited = frameID;
if (leafOrWasVisible)
{

IssueOcclusionQuery(node);
QueryQueue.Enqueue(node);

}

if (WasVisible) TraverseNode(node);
}

}
}

Listing 4.1: Coherent Hierarchical Culling as utilized in Penta G

Chapter 4. Building a Game for Research – Penta G 88

demo mode, which illustrates the benefits of CHC. Figure 4.10 shows a wire-
frame comparison between Coherent Hierarchical Culling and regular frustum
culling.

(a) The Scene

(b) Frustum Culling (c) Coherent Hierarchical Culling

Fig. 4.10: CHC compared to traditional frustum culling.

4.6.5 Depth Impostors

Depth Impostors are another GameTools effect introduced by Tamás Um-
menhoffer and László Szirmay-Kalos [63]. They extend the billboard sprites
technique that is popular in realtime graphics and games. This technique
utilizes a single quad polygon face that is aligned to the view transform
in a way so that it always faces the camera. The term impostors refers
to billboard sprites used to replace three-dimensional objects in the scene.
Such impostors are frequently used for level-of-detail rendering schemes, or

Chapter 4. Building a Game for Research – Penta G 89

as components in particle systems to simulate atmospheric phenomena such
as cloud or fog.

(a) Regular Billboard Sprites. Note the clipping artefacts on
the boxes.

(b) Depth Impostors

Fig. 4.11: Depth Impostors compared to traditional billboards.

The rendering artefacts that occur with traditional billboards used in
particle systems are caused by their two-dimensional nature. As a textured

Chapter 4. Building a Game for Research – Penta G 90

flat surface polygon, such billboards possess no depth. Intersections with
other scene geometry produces highly visible clipping artefacts (See Fig-
ure 4.11(a)), and there is no lighting applied to the billboard. By storing
depth information within the billboard texture, such impostors can correctly
interact with the rest of the scene, as well as calculate lighting (see Fig-
ure 4.11(b)).

4.6.6 Reflections and Refractions with approximate
Raytracing

(a) Regular Cubemap Environment Map-
ping. Note the incorrectly reflected parts of
the floor near the sphere.

(b) Reflections using Distance Impostors

(c) Regular Refraction using an Environ-
ment Map.

(d) Refraction using Distance Impostors

Fig. 4.12: Comparison of Distance Impostors to Environment Mapping.

This method introduced by Szirmay-Kalos et al. [61] utilizes the dis-

Chapter 4. Building a Game for Research – Penta G 91

tance rendering of a scene into an cube environment map to find a point hit
by a ray fast, resulting in an approximate raytracing method that can be
used for reflections and refractions. The benefit of this technique lies in the
more physically exact way reflections and refractions appear especially for
environments close to the refracting or reflecting object. This is shown in
Figure 4.12.

The method can be scaled by specifiying the number of iterations for the
calculation. We found that the best compromise between performance im-
pact and exactness benefit was achieved with around two iterations. Higher
iteration numbers had a very high performance hit which made the method
still realtime-interactive for small-scale demo programs, but unsuitable for
games. The benefits are mostly visible for scene parts close to the reflective
or refractive object, while scene parts farther away have almost no visible
difference to traditional cube environment mapping.

4.7 Comparison with requirements list

In Section 2.5, we developed a requirements list for the game engine. This
section will evaluate and discuss to what extent each requirement has been
reached.

4.7.1 Layered Design

Penta G offers an application and an engine layer on top of direct access to
Direct3D 9, and functionality can be built on top of all of these levels. The
developer has the opportunity to build upon each of these layers, depending
on the technique to implement.

4.7.2 Extensible Rendering System

The GebauzEngine does not pre-define a rendering pipeline. The rendering
pipeline is part of the application domain, in this case the Penta G application
code, thus providing the application programmer with full access to how
objects are rendered.

As discussed in Section 4.6.4, certain algorithms assume direct access to
rendering, and Penta G has been developed with this requirement in mind.

4.7.3 Reducing Overengineering

The class structure of both the GebauzEngine and Penta G contain classes
with a low level of inter-dependencies. Most of these classes can be replaced

Chapter 4. Building a Game for Research – Penta G 92

with own implementations. Design Patterns are used to simplify code and
increase code reuse, and straightforward implementations were favoured over
large complex implementations that have a higher risk of becoming unmain-
tainable.

4.7.4 Comprehensive Toolset

The core of Penta G development was the asset pipeline. Two main stand-
alone tools – the SUX Model Editor and the GTP Level Editor – ensure a
stable and comfortable asset workflow from any 3D content creation package
to actual Penta G levels. A set of useful game object classes help in flexibly
creating game scenes for Penta G.

4.8 Performance

Due to the long and complex rendering pipeline, Penta G performance testing
proved rather complex. Some stages of the rendering pipeline proved to have
different bottlenecks than others, and there was an occasionally happening
frame-time peak due to some driver implementations with regards to shader-
recompilation. We tested Penta G on the following configurations:

1. Intel Core 2 Duo 2.4 GHz with 2 GB DDR2-RAM and NVIDIA GeForce
7950 GT 512 MB

2. AMD Athlon 64 2.5 GHz with 1 GB DDR-RAM and NVIDIA GeForce
7900 GTX 512 MB

3. AMD Athlon 64 2.5 GHz with 1 GB DDR-RAM and ATI Radeon
X1900XT 512 MB

4. Intel Core 2 Duo 2.67 GHz with 2 GB DDR2-RAM and NVIDIA
GeForce 8800 GTX 640 MB

5. Intel Pentium-M 2 GHz laptop with 1 GB DDR-RAM and NVIDIA
GeForce Go 6600 128 MB

6. Intel Core 2 Duo 2 GHz laptop with 2 GB DDR2-RAM and NVIDIA
GeForce Go 7700 512 MB

7. AMD Athlon 64 2.0 GHz with 2 GB DDR-RAM and GeForce 7800GT
256 MB

Chapter 4. Building a Game for Research – Penta G 93

On the higher specification machine configurations, Penta G ran on aver-
age at around 80 to 100 frames per second. The values shown in Figure 4.13
were measured running at a 1024x768 resolution using the FRAPS utility
for framerate measurement.

Fig. 4.13: Performance graph in the demo map.

Using NVPerfHUD for measurement on the NVIDIA-based configura-
tions, we derived the following performance conclusions:

• The game is fillrate limited when a lot of large, almost screen-filling
particles are visible, such as in the depth impostors room in the demo
map.

• The game utilizes more than 400 MB of video RAM, thus making the
512 MB configurations much better performing than the configurations
with less than 512 MB of video RAM.

• Certain effects introduce different limitations; for instance, the approx-
imate raytracing effects will create a higher pixel shader load and make
the game more pixel-shader limited.

• Due to the effective culling, occasionally there will be frame-time peaks
(peaks of low framerate for short durations) due to a part of the scene
instantly being visible, and coherent hierarchical culling taking a few
frames until it can make use of frame coherence.

Chapter 4. Building a Game for Research – Penta G 94

• On GeForce 6 class hardware (which includes also the GeForce 7 range
of hardware), the driver tries to recompile shaders when it evaluates
that such an action will result in higher performance, especially with
shaders that utilize dynamic branching. This also leads to occasional
peaks.

• On GeForce 8 class hardware and ATI Radeon X1000 class hardware,
no such peaks were noticed.

• The GeForce 8 configuration was also tested under Windows Vista, and
we also experienced smoother framerates with no or few peaks there.

Chapter 5

Penta G in Research

This section will discuss how Penta G was used for research purposes, as well
as for research-related purposes such as promotion and public relations for
the attraction of industry interest in the respective projects.

5.1 The EU Gametools Project

5.1.1 Introduction

The GameTools Project is a research project realized by the 6th Frame-
work Programme of the European Union that brought together universities
throughout Europe in an international collaborative effort to network lead-
ing computer graphics researchers with companies from the game and related
industries [54].

The project lasted from 2004 to 2007 and incorporated the research work
of several European universities and industrial partners [23]. It focused on
algorithms in the fields visibility, global illumination, and geometry. A Spe-
cial Interest Group was also maintained where interested companies could
register and benefit from the research results by getting first-hand access to
GameTools technology.

The game engine and demo game implemented in this thesis was used
both as a demonstration application as well as in several research papers
that were created as part of the GameTools project.

5.1.2 Penta G as a Demo Game

Penta G was originally tailored to be a demo game for the GameTools project
with the goal of showing that the algorithms created in the GameTools
project work in an actual game environment. The GameTools Project fo-
cused on offering its results to companies in the games industry, and there-
fore required a proof-of-concept that its technologies can work outside of a

Chapter 5. Penta G in Research 96

typical paper demo, which normally has a far smaller scale.
Three demo games have been created for this purpose: Jungle Rumble,

Have U Seen My Shadow, and Penta G. The latter two have been completely
developed from scratch for the GameTools Project. In total, Penta G devel-
opment took 11 months with 3 full-time team members.

Penta G was designed to showcase, among other non-GTP realtime graph-
ics techniques, three major GameTools effects and algorithms: Depth Im-
posters, Reflections and Refractions through approximate Raytracing, and
Coherent Hierarchical Culling. A detailed description of these effects is given
in Section 4.6.

Besides as a tech demo, Penta G has also been used for promotion and
public relations for the GameTools Project. At the time of writing, there
had been several opportunities where GameTools presented itself and its
technologies. In all of these occasions, Penta G had been used to promote
the project and to gain public interest.

Eurographics 2006

Fig. 5.1: The GameTools Demo Booth at EuroGraphics 2006.

At the Eurographics 2006 conference, the GameTools Project presented
research results and demo games on the Graphics meets Games exhibition
floor [20]. Some of the effects utilized were explained to interested visitors

Chapter 5. Penta G in Research 97

and computer graphics researchers from around the world using footage from
Penta G.

RESFEST 2006

RESFEST is a festival for digitally produced short films, documentaries and
animations, held in multiple cities world-wide each year [53]. In 2006, RES-
FEST visited 45 international cities, including Vienna, where the GameTools
Project displayed its demo games including Penta G for the purpose of demo-
ing future interactive graphics technologies.

GamesConvention Developer’s Conference 2007

The GamesConvention Developer’s Conference (GCDC) is held every year
together with the GamesConvention expo. In 2007, the GameTools Project
had the opportunity to present its results in the Science track. The presen-
tation was held by Michael Wimmer [68], and Penta G was shown as a demo
for the effects.

CeBIT 2008

Fig. 5.2: Penta G presented at the CeBIT 2008.

The CeBIT is the world’s largest computer expo, held yearly in Hannover
Germany [11]. In 2008 the CeBIT was held from March 4th to March 9th
and Penta G got a chance to be showcased for the GameTools Project at a
booth sponsored by the Austrian Computer Society (OCG) [43].

Chapter 5. Penta G in Research 98

5.1.3 Penta G in GTP Research

The scope of Penta G grew when in the second half of the project, the
potential of using the Penta G engine for research was discovered. An early
pre-production prototype of the engine had already been successfully used
in some research papers and book articles [26], and the final version of the
engine had been completely refactored into the form discussed in this thesis.
It should be noted that the final version of both the game engine and the
game itself have changed drastically compared to the version used in these
papers.

5.2 The EU Crossmod Project

5.2.1 Introduction

The European Union Crossmod Project is a research project under the “Fu-
ture Emerging Technologies Call” of the 6th framework programme explor-
ing perceptual phenomena between visual and auditory senses (crossmodal
or bi-modal phenomena) and how they can be used to create more convincing
virtual environments such as games. The project goals are examining audi-
tory, visual and audio-visual perception, develop new algorithms based on
this newly gained knowledge, and evaluate them in target applications [16].

5.2.2 Eyetracking for Perception Experiments

One track of Crossmod research is measuring, quantifying and predicting
human perception. For the measurement of human perception, eyetracker
hardware can be used. Such hardware detects gaze points, which are the
points that the user is looking at on a monitor screen. The specific hardware
used at the Institute of Interactive Media Systems at the Vienna University
of Technology uses an infrared camera to detect the eye pupils and calculates
the gaze points according to metrics configured by calibration. It is connected
to the computer via an USB interface, and communicates with software in
a server/client structure via a local TCP/IP server. To simplify getting
useful data from the eyetracking server software, a library called eyeLib has
been developed that records gaze point data such as time stamp, gaze point
coordinates and error metrics directly in a human-readable text file.

Penta G is currently being used for research in this area [16]. For this
purpose, several modifications and features had to be added:

• Connecting to the eyetracker via the eyeLib.

Chapter 5. Penta G in Research 99

• Recording a gameplay session, and replaying it at a later time.

• During replay, writing out framebuffer images and item buffer images
to disk.

• Writing out a control file which lyzer, a tool developed in the project,
can read to analyze gaze data and images side-by-side.

Item buffers are renderings of the scene where each relevant discrete scene
object is rendered in an own distinct color, which serves as a unique ID for
that object in the scene. In Penta G, the scene part granularity required
was a per-entity one (although higher levels of granularity are still possible).
Each entity receives a unique integer ID which identifies it, and that integer
ID is also rendered into the item buffer by converting it into a 32-bit RGBA
color. Subsequent queries of the item buffer translate back the RGBA color
into the previous integer object ID.

Penta G is interesting for eyetracking experiments because it provides a
game environment that is close to professionally produced commercial games,
which means that research can be conducted in a practical environment close
to reality. The asset pipeline and especially the scripting support means that
people can easily create new perceptual experiment environments. Before
Penta G, only commercial games have been used, so access to source code
and assets were not available and the breadth of data that could be extracted
was limited. With Penta G, data extraction can be done either via the
framebuffer or from the internal data of the engine.

5.2.3 Spatial Audio Rendering

Another important part of the Crossmod project is the study of the rela-
tionships between auditory and visual senses, and how they influence each
other [16]. Penta G was provided as a software toolkit to conduct this re-
search. A Crossmod Sound Engine (XModSoundLib) has been developed
and successfully integrated into Penta G by researchers of the Crossmod
project, replacing Penta G’s own DirectSound-based sound engine.

Chapter 6

Summary and Future Work

This chapter will summarize the work presented in this thesis and give an
outlook on future work related to it.

6.1 Conclusion

In this thesis we presented a game and the underlying engine that was cre-
ated for research purposes. The main goal was incorporating state-of-the-art
technology in a framework that has a minimum of overengineering to prevent
a loss of flexibility in order for researchers to be able to realize and exper-
iment with ideas quickly. Another point of focus was the intention to keep
close to real-world conditions; the game engine should perform and act like
an engine created in industrial environments.

Furthermore, we explored formal requirements for game engines intended
for research use. Providing a flexible and easy-to-use asset tool chain ensures
that experimental and demonstrational applications can be created quickly
without the hassle of integrating complicated asset transfer libraries, while
still providing the developer with the liberty to implement own rendering
methods and schemes. A content-based approach in developing the engine –
that is, developing a game built on top of the engine in parallel to the engine
itself – made it possible to perceive and analyze the important parts of the
engine and helped getting a stronger focus on features with higher impact.

In the main chapters of the thesis we provided a complete reference of
the software system which aids the reader in utilizing the engine in other
applications.

Finally, a report was given on how the engine was already successfully
used in research tasks as well as for purposes that aid research indirectly such
as promotion and public relations.

Chapter 6. Summary and Future Work 101

6.2 Future Work

While Penta G served its purpose well and outgrew its original intent of just
being a demo game, there are several points that could be improved in a
future version of the engine.

During the development, the decision of what components would become
part of the base engine framework, and which parts would stay on the ap-
plication code domain was approached in a conservative way; due to the
experience gained through the pre-production prototype engine, which had
the entire scene management on engine framework level, we realized that
carelessly putting software components into the engine domain could result
in unmaintainable code.

On the other hand, this led to many software parts integrated into the
application domain which could, at least partially, be implemented on engine
framework level. Such systems would include the basic scene object base
interface classes, the serialization system that reads scene object properties
and gamestate management. Such systems would have reduced the amount
of code necessary on application side, and thus made the game engine easier
to maintain.

The game application side also grew evolutionary and as such, has some
unnecessarily complicated constructs such as the multiple levels of game code
spread over the Application class, Main GameState class, and actual Main
Game Logic class. The rendering pipeline as implemented in the game ren-
dering class could have been made more flexible via parameters so that
there would be more graphics options such as alternatively switching be-
tween One-Pass Rendering using Multiple Render Targets and Multi-Pass
Rendering without MRTs, but with the possibility of utilizing Multisampled
Anti-Aliasing.

The engine framework’s subsystems each have a central hub class that
could be implemented as a singleton, instead of being forced to being mem-
bers of a monolithic singleton. As the subsystems are free of inter-dependencies,
the singleton creation order can be arbitrary.

With stronger in-engine serialization and factory pattern facilities, the
game entity code on application domain could have been drastically simpli-
fied. Stronger utilization of object-oriented design patterns could also have
reduced the amount of virtual methods implemented in each entity class in
the entity hierarchy.

Finally, while the engine framework is fully documented via the Doxygen
system [18] and its coding style well-defined, the application code does not
follow the same style and documentation guidelines, and as such, is harder
to read and understand. In a future game engine, the application code would

Chapter 6. Summary and Future Work 102

require to follow either the game framework’s Coding Style or define a specific
one on its own.

At the time of writing, the game engine framework, called GebauzEngine,
has already been refactored into a new version that incorporates many of the
points outlined in this Future Work section. It remains to be seen if that new
version also gains a root in research as the version described in this thesis
did.

Appendix A

Importing Model Data to Penta G

This guide will explain how to get model data into the engine.

A.1 Prerequisites

Model Data import requires the following software:

• A 3D content creation package such as Autodesk Maya or 3ds Max.

• The OGRE XML exporter plugin for that package.

• The SUX Model Editor tool.

A.2 Creating the Model

The Penta G and GebauzEngine toolchain is independent of a specific 3D
content creation package. The OGRE XML format is used for data exchange
due to the number of export plugins available for various content creation
applications, but it would be easy to implement support for a different model
exchange format such as FBX or Collada. This guide uses Autodesk 3ds Max
to illustrate the model import process.

When creating content in 3ds Max, it is important to note that only
single meshes can be exported with the OGRE XML Exporter, so if a model
contains several components, it is necessary to attach them together into a
single mesh. This can be done by converting the mesh to an Editable Poly,
and choosing Attach in the according rollout panel.

To create a single mesh that contains multiple materials, a Multi/Sub-
Object type material must be created in the Material Editor (see Figure A.1).
This is a type of material that contains multiple sub-materials, to which
integer IDs are assigned. This material ID feature can be used to assign
parts of a mesh to different sub-materials by selecting the polygons using the

Appendix A. Importing Model Data to Penta G 104

Face Sub-Object selection mode, and assigning them specific material IDs in
the rollout panel (see Figure A.2).

(a) Changing the Material
Type

(b) The Multi-Sub-Object
Type

(c) Sub-Materials

Fig. A.1: Creating a Multi/Sub-Object Material.

A.3 Exporting the Model

When the mesh is ready for export, the OGRE Exporter (Figure A.3) is used
to export the model into the OGRE XML format, which is a simple and
human-readable mesh format. Various Exporter versions may have different
settings for export such as correcting the coordinate systems or rescaling.
When the export process is done, a .mesh.xml file has been generated.

A.4 Tweaking and converting the Model

Using the SUX Model Editor, the OGRE XML file can now be imported.
Inside the SUX Model Editor, various utility functions can be invoked, but
the most necessary step is to assign correct materials to the submeshes,
which are called Material Groups in the SUX Model Editor. Each Material

Appendix A. Importing Model Data to Penta G 105

Fig. A.2: Setting Material IDs.

Group has a material, and the only necessary parameter for GebauzEngine is
the material instance script, which contains a script adhering to the syntax
described in Section 3.5.3. Since the SUX Model Editor runs on a different
engine, it is also necessary to set the appropiate material for the display in
the SUX Model Editor by setting a Material File (in this case we set it to
“materials\solidobject.material”) – this file has nothing to do with Penta G
and is simply there for the SUX Model Editor to display the model correctly.
Figure A.4 shows how to this process works. For tutorial purposes, we use
textures and shaders already included in Penta G.

Note that for Penta G purposes, tangent space data needs to be generated,
if any of the normal mapping or parallax mapping shaders are to be used.
This can also be done by choosing “Generate Tangent Space Information” in
the SUX Model Editor under “Operations”. Furthermore, it is recommended
especially for dynamic objects, but also for static level geometry, to add a
physics mesh to be used as the geometry used for physics calculations. If
none is set, the Ageia PhysX SDK tries to calculate a convex hull of the
regular mesh, but this does not always yield desirable results. The most

Appendix A. Importing Model Data to Penta G 106

Fig. A.3: Using the OGRE Exporter.

control an artist has over how the model will act physically in the scene is
by modelling a simple convex mesh to be used as a physics mesh. This is set
as an additional “LOD” in the SUX Model Editor that is named “physics”.

When all materials have been set and look correct in the SUX Model
Editor, the model is ready for export into GebauzEngine’s own propietary
format. This is achieved by simply saving the model in the SUX Model
Editor.

A.5 Loading the Model in Penta G

Now, several methods exist to use the model in Penta G. One could sim-
ply load the model via program code in Penta G, which means invoking the
LoadModel() method of the Model class. This loads the model on applica-
tion level, and handles material instance scripts via the MaterialLoader
class. On GebauzEngine level, the GxModelManager class derived from

Appendix A. Importing Model Data to Penta G 107

(a) Model after importing

(b) Setting materials

Fig. A.4: Importing and setting materials.

Appendix A. Importing Model Data to Penta G 108

the resource manager template class and can also load the model file, but
since the material instance script loader is implemented on application level,
the programmer would have to provide their own material loader.

Finally, the model can simply be used by dropping it into the Penta G
Level Editor and use them in various ways.

Appendix B

Building a Level for Penta G

The following guide describes how to create a simple level for Penta G and
demonstrates all the necessary features.

B.1 Prerequisites

This guide assumes the following prerequisites and requirements:

• Level model data, converted into the engine’s own format using the
SUX Model Editor.

• The GTP Level Editor.

• Penta G for testing the level.

B.2 Introduction to the Level Editor

The GTP Level Editor is a standalone application that is designed to create
and edit maps for Penta G. It has been programmed in Delphi, which is
a programming environment that significantly simplifies Windows GUI cre-
ation. Due to the different programming environment, the GTP Editor runs
on a different engine called the SUX Engine, which itself builds on OpenGL.
The SUX Engine was chosen as the basis for the editor because several other
tools – some of which are not Penta G-related – have already been written
in it. The Model Editor also uses the same framework.

This choice has some implications such as that the GTP Editor does not
support the Penta G material system, but implements its own and provides
some own default materials for map previewing. This might cause the level
to look different in the editor, therefore testing the level in the actual game
is important to achieve the desired visual look.

Appendix B. Building a Level for Penta G 110

B.3 Creating Static Level Geometry and Lights

It is a good idea to start with the static level geometry, which makes up
the visible portions of the level that cannot be moved around, but still are
passively affected by physics in that dynamic objects collide and interact
with them. The entity type for this task is the EnvironmentModel, which
takes a model as its main parameter. Using the level editor, we can insert
environment models into the scene and place them where we wish to.

In order to have correct lighting, we need to add light sources to the scene.
Light sources can either be plain lights or shadow casters, and a variety of
parameters can be adjusted.

B.4 Making the Level work in Penta G

After creating the static level geometry, the level cannot be viewed in Penta G
yet. The level designer still needs to create view cells in the editor, which
will define the spatial partitioning of the scene. Every entity in the level,
even initially invisible ones, must be enclosed by at least one viewcell.

And finally, a starting position for the player must be set. This can be
done by creating a StartingPosition entity in the level. Multiple such
entities can be created, but the one that is used to spawn the player must
be set in the editor in the “Edit Attributes” menu command in the “Level”
menu. Figure B.1 shows the result, which can be seen as a minimal working
level.

B.5 Creating Dynamic Level Geometry

Dynamic level geometry are props and objects that can be moved around
and are dynamically affected by physics. They are implemented using the
InteractiveObject entity type and are otherwise similar to Environ-
ment Models in that they also require a model as their main parameter. Like
Environment Models, they are simply placed in the scene using the level
editor (see Figure B.2).

B.6 Placing AI Controlled Objects and Pickups

AI Controlled Objects such as enemy entities are not placed via the editor,
but they are spawned by the SpawnPoint entity. These spawn points can
be set to emit AI controlled objects in a certain frequency. They do not
spawn enemies automatically, however, but need to be triggered.

Appendix B. Building a Level for Penta G 111

Fig. B.1: A minimal working level.

In order to trigger spawning of enemies, we can place an Action entity in
the level. This action entity should be set to the type “Trigger Entity”, with
the Target entity being the spawn point created. Now when the action gets
executed, it will send the “Trigger Entity” command to the spawn point,
which in turn will start emitting enemies. In order to execute the action,
we need to bind it to a certain event, which can be a TouchField entity’s
“OnEnter” event, or the Starting Point entity’s “On Start Level” event. The
latter will cause the spawn point to emit enemy entities as soon as the level
starts.

Pickups are placed as BonusItem entities. Before it is usable, the type
of pickup (such as a weapon or a health pickup) must be set. When these
are added as in Figure B.3, the level becomes actually playable.

B.7 Adding a simple Trigger Script

Scripting is achieved by setting Action entities, which provide predefined
action types that can be applied to entities. A more detailed description of
actions and scripting is given in Section 4.4.3

The following steps will demonstrate how to script a trigger field that will

Appendix B. Building a Level for Penta G 112

(a) Scene in the Editor

(b) Scene in Penta G

Fig. B.2: Adding interactive objects.

Appendix B. Building a Level for Penta G 113

Fig. B.3: Spawnpoint, Bonus Pickup and Trigger Actions.

start making the only light in the scene flicker as if it were defective:

• First, a TouchField, an Action and a LightController entity
must be placed in the level.

• The light controller is set to inactive, and its light animation type is
set to “Defective Flicker (even on-off time)”

• Then the touch field’s “On Enter” event is connected to the action.

• The action’s type is set to “Set Active” and the light controller is set
to be one of its targets.

The result will look like in Figure B.4. Note how the arrows visualize
the scripted connections between entities. Now when the level is executed in
Penta G, when the player enters the touch field area, the light in the room
will start flickering.

Appendix B. Building a Level for Penta G 114

Fig. B.4: A Simple Script.

B.8 Testing in Penta G

Finally, we can test the level in Penta G by setting it as the start level in
the configuration file. The level should start, and the player should be able
to pick up a weapon. When the player enters the trigger box we set, the
light should start flickering, confirming that the functionality we created is
working. For debugging purposes, everytime an action is triggered, it is also
output in the log, so the level designer can see if the actions are actually
executed.

List of Figures

1.1 GameTools demo game Penta G. 9

2.1 The geometry stage. 14
2.2 The rasterizer stage. 15
2.3 Direct3D 10 Rendering Pipeline. 22

3.1 Engine Layer structure. 33
3.2 Engine Subsystem Collaboration. 37
3.3 Geometry Class structure . 48
3.4 Relationship of the Model Classes. 50
3.5 Structure of the Asset Pipeline. 59

4.1 Entity Hierarchy . 69
4.2 The Penta G Rendering Pipeline. 76
4.3 Glow Effect Image Composition. 79
4.4 Distortion Effect. 79
4.5 The Effect of Normal and Parallax Mapping. 80
4.6 Shadow Volume Principle. 82
4.7 Shadow Mapping Principle. 83
4.8 Shadows cast through Alpha-Testing. 83
4.9 Indoor/Outdoor Comparison 86
4.10 CHC compared to traditional frustum culling. 88
4.11 Depth Impostors compared to traditional billboards. 89
4.12 Comparison of Distance Impostors to Environment Mapping. . 90
4.13 Performance graph in the demo map. 93

5.1 The GameTools Demo Booth at EuroGraphics 2006. 96
5.2 Penta G presented at the CeBIT 2008. 97

A.1 Creating a Multi/Sub-Object Material. 104
A.2 Setting Material IDs. 105
A.3 Using the OGRE Exporter. 106
A.4 Importing and setting materials. 107

List of Figures 116

B.1 A minimal working level. 111
B.2 Adding interactive objects. 112
B.3 Spawnpoint, Bonus Pickup and Trigger Actions. 113
B.4 A Simple Script. 114

List of Tables

3.1 Directory Structure . 37
3.2 Overview over the Core classes. 41
3.3 Overview over the File System classes. 44
3.4 Core Graphics Classes. 45
3.5 Resource Management Classes. 46
3.6 Geometry classes and header files. 49
3.7 Texture Classes. 52
3.8 Render Target Classes. 53
3.9 HLSL Semantics supported by the engine. 54
3.10 Methods for setting effect parameters 55
3.11 Overview over the Input classes. 56
3.12 Overview over the Audio classes. 57
3.13 Overview over the Parser classes. 57
3.14 Material instance script instructions. 60
3.15 Possible variable types for material instance scripts. 61

4.1 Action Types. 74

List of Listings

2.1 Standard Gameloop . 25

3.1 Using the Generic Factory . 43
3.2 Vertex Types using GxVertexComposer 47
3.3 Examples of using GxGeometry 51
3.4 Effect Rendering Passes . 53
3.5 Example Material Script . 61
3.6 Minimal Application Class Declaration 63
3.7 Minimal Application Initialization and Destruction 64
3.8 Minimal Application Update and Rendering 65

4.1 Coherent Hierarchical Culling as utilized in Penta G 87

Bibliography

[1] 3Dfx Interactive, Inc., San Jose, CA, USA. Glide 2.2 Programming
Guide. Programming the 3Dfx Interactive GlideTMRasterization Library
2.2. http://www.gamers.org/dEngine/xf3D/glide/glidepgm.htm.

[2] 3Dfx Interactive Inc. Defunct company, 1994-2002.

[3] Matthias Bauchinger. YARE2. http://www.yare.at.

[4] Matthias Bauchinger. Designing a Modern Rendering Engine. Design
Decisions and Implementation Details. Vdm Verlag Dr. Müller, 2008.

[5] Jǐŕı Bittner, Michael Wimmer, Harald Piringer, and Werner Purgath-
ofer. Coherent Hierarchical Culling: Hardware Occlusion Queries Made
Useful. Computer Graphics Forum, 23(3):615–624, September 2004.
Proceedings EUROGRAPHICS 2004.

[6] David Blythe. Windows Graphics Overview. In WinHEC 2005, 2005.

[7] Boost C++ Libraries. http://www.boost.org.

[8] Stefan Brabec, Thomas Annen, and Hans-Peter Seidel. Practical shadow
mapping. Journal of Graphics Tools: JGT, 7(4):9–18, 2002.

[9] Bullet physics library. http://www.bulletphysics.com.

[10] Iain Cantlay. Taming Vertex Data Using C++ Templates. Game De-
veloper Magazine, pages 34–41, October 2003.

[11] CeBIT – Centrum der Büro– und Informationstechnik (Centre of Office
and Information Technology). http://www.cebit.de.

[12] NVIDIA Cg Toolkit. http://developer.nvidia.com/object/cg_

toolkit.html.

http://www.gamers.org/dEngine/xf3D/glide/glidepgm.htm
http://www.yare.at
http://www.boost.org
http://www.bulletphysics.com
http://www.cebit.de
http://developer.nvidia.com/object/cg_toolkit.html
http://developer.nvidia.com/object/cg_toolkit.html

Bibliography 120

[13] Paolo Cignoni, Claudio Montani, Claudio Rocchini, and Roberto
Scopigno. A General Method for Recovering Attribute Values on Sim-
plified Meshes. In David Ebert, Hans Hagen, and Holly Rushmeier,
editors, IEEE Visualization ’98, pages 59–66. IEEE, 1998.

[14] Coin3D. http://www.coin3d.org/.

[15] Crazy Bump. http://www.crazybump.com.

[16] CROSSMOD – Cross–modal perceptual Interaction and Rendering.
http://www.crossmod.org.

[17] Franklin C. Crow. Shadow Algorithms for Computer Graphics. Com-
puter Graphics (SIGGRAPH ’77 Proceedings), 11(2), Summer 1977.

[18] Doxygen. http://www.doxygen.org.

[19] Microsoft DirectX. http://msdn.microsoft.com/directX.

[20] Eurographics 2006 Graphics meets Games Exhibition. http://www.cg.
tuwien.ac.at/events/EG06/program-graphicsmeetsgames.php.

[21] Randima Fernando. Percentage-closer soft shadows. In SIGGRAPH ’05:
ACM SIGGRAPH 2005 Sketches, page 35, New York, NY, USA, 2005.
ACM.

[22] Fraunhofer Society. http://www.fraunhofer.de.

[23] EU GameTools Project. http://www.gametools.org.

[24] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994–1995.

[25] Philipp Gerasimov. Omnidirectional Shadow Mapping. In GPU Gems
– Programming Techniques, Tips and Tricks for Real-Time Graphics,
pages 193–203. Charles River Media, 2004.

[26] Markus Giegl and Michael Wimmer. Queried Virtual Shadow Maps. In
Wolfgang Engel, editor, ShaderX 5 – Advanced Rendering Techniques,
volume 5 of ShaderX. Charles River Media, December 2006.

[27] Henri Gouraud. Continuous shading of curved surfaces. IEEE Transac-
tions on Computers, C-20(6):623–629, June 1971.

http://www.coin3d.org/
http://www.crazybump.com
http://www.crossmod.org
http://www.doxygen.org
http://msdn.microsoft.com/directX
http://www.cg.tuwien.ac.at/events/EG06/program-graphicsmeetsgames.php
http://www.cg.tuwien.ac.at/events/EG06/program-graphicsmeetsgames.php
http://www.fraunhofer.de
http://www.gametools.org

Bibliography 121

[28] Herbert Grasberger. Introduction to stereo rendering. Technical report,
Vienna University of Technology, Institute of Computer Graphics, 2008.

[29] Al Hastings. Occlusion – Visibility determination for static and dynamic
objects. Technical report, Insomniac Games R&D, 2007. http://www.

insomniacgames.com/tech/articles/1107/occlusion.php.

[30] Donald Hearn and M. Pauline Baker. Computer Graphics with OpenGL,
3rd Edition. Prentice Hall, 2003.

[31] DevIL – Developer’s Image Library. http://openil.sourceforge.net.

[32] Java3D. http://java3d.dev.java.net/.

[33] Greg James and John O’Rorke. Real-time glow. In GPU Gems – Pro-
gramming Techniques, Tips and Tricks for Real-Time Graphics, pages
343–362. Charles River Media, 2004.

[34] Tomomichi Kaneko, Toshiyuki Takahei, Masahiko Inami, Naoki
Kawakami, Yasuyuki Yanagida, Taro Maeda, and Susumu Tachi. De-
tailed Shape Representation with Parallax Mapping. In International
Conference on Artifical Reality and Telexistance 2001, 2001.

[35] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage, 1st Edition. Prentice Hall, Englewood Cliffs, NJ, USA, February
1978.

[36] Khronos Group. http://www.khronos.org.

[37] Hermann Kopetz. Real-Time Systems. Kluwer Academic, Boston, MA,
USA, 1997.

[38] Moving Picture Experts Group. http://www.chiariglione.org/mpeg/.

[39] NVIDIA Corporation. http://www.nvidia.com.

[40] NVIDIA Corporation, Santa Clara, CA, USA. GPU Programming
Guide. http://developer.nvidia.com/object/gpu_programming_

guide.html.

[41] NVIDIA SceneGraph. http://developer.nvidia.com/object/nvsg_

home.html.

[42] Ogre3D. http://www.ogre3d.org.

[43] Austrian Computer Society (OCG). http://www.ocg.at.

http://www.insomniacgames.com/tech/articles/1107/occlusion.php
http://www.insomniacgames.com/tech/articles/1107/occlusion.php
http://openil.sourceforge.net
http://java3d.dev.java.net/
http://www.khronos.org
http://www.chiariglione.org/mpeg/
http://www.nvidia.com
http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/object/nvsg_home.html
http://developer.nvidia.com/object/nvsg_home.html
http://www.ogre3d.org
http://www.ocg.at

Bibliography 122

[44] SGI Open Inventor. http://oss.sgi.com/projects/inventor/.

[45] OpenGL Architecture Review Board. http://www.opengl.org.

[46] OpenSceneGraph. http://www.openscenegraph.org.

[47] OpenSG. http://opensg.vrsource.org.

[48] Performer. http://www.sgi.com/products/software/performer.

[49] Ageia PhysX SDK. http://www.ageia.com.

[50] Pixar Renderman. https://renderman.pixar.com/.

[51] NVIDIA Normal Map Filter. http://developer.nvidia.com/object/

photoshop_dds_plugins.html.

[52] Gerhard Reitmayr, Chris Chiu, Alexander Kusternig, Michael
Kusternig, and Hannes Witzmann. iOrb – Unifying Command and 3D
Input for Mobile Augmented Reality. In IEEE VR 2005 Workshop on
New Directions in 3D User Interfaces, 2005.

[53] RESFEST 10. http://www.resfest.com, 2006.

[54] Mateu Sbert and Jordi Palau. GameTools: Advanced Tools for Develop-
ing Highly Realistic Computer Games. In IVth ITRA World Conference,
Alicante, 2005.

[55] D. Schreiner, editor. OpenGL R© Reference Manual: The Official Refer-
ence Document to OpenGL, Version 1.4. Addison Wesley, 2004.

[56] Silicon Graphics, Inc. http://www.sgi.com.

[57] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. OpenGL R©
Programming Guide: The Official Guide to Learning OpenGL, Version
2 (5th Edition). Addison-Wesley Professional, August 2005.

[58] Peter-Pike Sloan. Using Direct3D10. Eurographics 2006 Graphics meets
Games Track, 2006.

[59] Sebastien St-Laurent. The Complete Effect and HLSL Guide. Paradoxal
Press, Redmond, WA, USA, 2005.

[60] Marc Stamminger and George Drettakis. Perspective Shadow Maps. In
John Hughes, editor, SIGGRAPH 2002 Conference Proceedings, Annual
Conference Series, pages 557–562. ACM Press/ ACM SIGGRAPH, 2002.

http://oss.sgi.com/projects/inventor/
http://www.opengl.org
http://www.openscenegraph.org
http://opensg.vrsource.org
http://www.sgi.com/products/software/performer
http://www.ageia.com
https://renderman.pixar.com/
http://developer.nvidia.com/object/ photoshop_dds_plugins.html
http://developer.nvidia.com/object/ photoshop_dds_plugins.html
http://www.resfest.com
http://www.sgi.com

Bibliography 123

[61] Laszlo Szirmay-Kalos, Barnabas Aszodi, Istvan Lazanyi, and Matyas
Premecz. Approximate Ray-Tracing on the GPU with Distance Impos-
tors. Computer Graphics Forum, 24(3):695–704, 2005.

[62] Eric Haines Tomas Akenine-Möller. Real-Time Rendering, Second Edi-
tion. A.K. Peters, Ltd., Natick, MA, USA, 2002.

[63] Tamás Ummenhoffer and László Szirmay-Kalos. Real-Time Rendering
of Cloudy Natural Phenomena with Hierarchical Depth Impostors. In
Eurographics 2005 Short Papers, pages 65–68, 2005.

[64] Randima Fernando und Mark J. Kilgard. The Cg Tutorial. The Definite
Guide to Programmable Real-time Graphics. Addison-Wesley Longman,
2003.

[65] UrbanViz – Real-time Rendering of Urban Environments. http://www.
cg.tuwien.ac.at/research/vr/urbanviz/.

[66] Intel VTune Performance Analyzer. http://www.intel.com.

[67] Lance Williams. Casting Curved Shadows on Curved Surfaces. In Com-
puter Graphics (SIGGRAPH ’78 Proceedings), volume 12, pages 270–
274, August 1978.

[68] Michael Wimmer. GameTools: Advanced Rendering Effects for Next-
Gen Engines. GamesConvention Developer’s Conference, 2007.

[69] Michael Wimmer and Jǐŕı Bittner. Hardware Occlusion Queries Made
Useful. In Matt Pharr and Randima Fernando, editors, GPU Gems 2:
Programming Techniques for High-Performance Graphics and General-
Purpose Computation. Addison-Wesley, March 2005.

[70] Michael Wimmer and Daniel Scherzer. Robust Shadow Mapping with
Light Space Perspective Shadow Maps. In Wolfgang Engel, editor,
ShaderX 4 – Advanced Rendering Techniques, volume 4 of ShaderX.
Charles River Media, March 2006.

http://www.cg.tuwien.ac.at/research/vr/urbanviz/
http://www.cg.tuwien.ac.at/research/vr/urbanviz/
http://www.intel.com

Acknowledgements

“There has never been a cat
Who couldn’t calm me down

By walking slowly
Past my chair.”
– Rod McKuen

I would like to send my most sincere thanks to the following people:

The Computer Graphics Club at the Institute of Computer Graphics for
moral support and motivation and especially Commander Kustl for letting
me use his Toolchain and for doing his part on Penta G.

Georg Semanek for providing ideas, designs and assets to Penta G.

The Institute for Computer Graphics for providing the advisory support for
my thesis and using Penta G for further research.

The Faculty of Computer Science for granting me a generous scholarship for
this thesis, and Michael Wimmer and Werner Purgathofer for supporting
my application for the scholarship.

And finally, my family:

My mother Shiow-Yuh Chiu who always supported me in times of stress and
provided me with the freedom to choose and to take on things at my own
pace.

My late father Shang-Yi Chiu (1942-1997) who – with his ETH Zürich engi-
neering background and videogame enthusiasm – has influenced my way to
computer science, digital games and the games industry in many ways.

My cat Niaomi who passed away shortly before the completion of this thesis
and has always been just there at my side to keep me company.

	Introduction
	Scope and Focus of the Work
	Introducing GebauzEngine
	Penta G Development History
	Structure of the Thesis

	Engines in Research
	Graphics Hardware and Real-Time Rendering
	What is ``Real-Time''?
	The Rendering Pipeline
	Advancements of Graphics Technology
	Application Programming Interfaces (APIs) for Graphics
	Arriving at Middleware -- Rendering Engines

	Types of Middleware
	Rendering Engines
	Scenegraph Libraries
	Game Engines

	Examples of Middleware in Research
	OGRE 3D
	OpenInventor
	Java3D
	NVIDIA SceneGraph
	OpenSceneGraph
	OpenSG
	Performer
	YARE and YARE2

	Game Engines in Research -- Usage Scenarios
	Research Test Beds
	Paper Demos

	A Requirements List for Research Game Engines
	Layered Design
	Extensible Rendering System
	Reducing Overengineering
	Comprehensive Toolset
	What is not required

	Designing a Game Engine for Research
	Introduction
	Approach
	Content-Driven Development
	Asset Tool Chain

	Software Design
	Overview
	Utilized Libraries and APIs
	Collaboration Structure

	Development Tools and Standards
	Development Environment
	Directory Structure
	Debugging and Memory Leak Tracking
	Performance Testing
	Code Style Guideline
	Documentation

	Structure of the Engine
	Core
	File System
	Graphics
	Input
	Audio
	Parser
	Application Framework

	Asset Pipeline
	Toolchain Structure
	Collaboration with the Engine
	Material/Effect System

	Anatomy of a minimal GxEngine Application

	Building a Game for Research -- Penta G
	Introduction
	Game Object Hierarchy
	Start Position Object
	Environment Models
	Actors
	Waypoints
	Particle Systems
	Actions
	Touchfields
	Scripting Cameras
	Portals
	Sound Entities
	Light Controllers

	The Asset Pipeline on Application Level
	Game Logic and Scripting
	Main Loop
	Game States
	Scripting System

	The Rendering Pipeline
	Advanced Features and Technologies
	Multiple Render Targets and Postprocess Effects
	Parallax Mapping
	Omnidirectional Shadow Mapping
	Coherent Hierarchical Culling
	Depth Impostors
	Reflections and Refractions with approximate Raytracing

	Comparison with requirements list
	Layered Design
	Extensible Rendering System
	Reducing Overengineering
	Comprehensive Toolset

	Performance

	Penta G in Research
	The EU Gametools Project
	Introduction
	Penta G as a Demo Game
	Penta G in GTP Research

	The EU Crossmod Project
	Introduction
	Eyetracking for Perception Experiments
	Spatial Audio Rendering

	Summary and Future Work
	Conclusion
	Future Work

	Importing Model Data to Penta G
	Prerequisites
	Creating the Model
	Exporting the Model
	Tweaking and converting the Model
	Loading the Model in Penta G

	Building a Level for Penta G
	Prerequisites
	Introduction to the Level Editor
	Creating Static Level Geometry and Lights
	Making the Level work in Penta G
	Creating Dynamic Level Geometry
	Placing AI Controlled Objects and Pickups
	Adding a simple Trigger Script
	Testing in Penta G

	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Acknowledgements

