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Abstract

The problem of reproducing high dynamic range images on devices with restricted
dynamic range has gained a lot of interest in the computer graphics community.
There exist various approaches to this issue, which span several research areas in-
cluding computer graphics, image processing, color vision, physiological aspects, etc.
These approaches assume a thorough knowledge of both the objective and subjec-
tive attributes of an image. However, no comprehensive overview and analysis of
such attributes has been published so far.

In this contribution, we present an overview about the effects of basic image
attributes in HDR tone mapping. Furthermore, we propose a scheme of relation-
ships between these attributes, leading to the definition of an overall image quality
measure. We present results of subjective psychophysical experiments that we have
performed to prove the proposed relationship scheme. Moreover, we also present
an evaluation of existing tone mapping methods (operators) with regard to these
attributes. Finally, the execution of with-reference and without a real reference
perceptual experiments gave us the opportunity to relate the obtained subjective
results.

Our effort is not just useful to get into the tone mapping field or when imple-
menting a tone mapping method, but it also sets the stage for well-founded quality
comparisons between tone mapping methods. By providing good definitions of the
different attributes, user-driven or fully automatic comparisons are made possible.

Key words: high dynamic range, tone mapping, image attributes, visual
perception, psychophysics, subjective testing, evaluation of methods
PACS: 07.05.Pj, 07.05.Rm, 07.68.+m
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1 Introduction

The dynamic range of visual stimuli in the real world is extremely large.
A high dynamic range (HDR) image can be generated either synthetically or
acquired from the real world, but the conventional media used to present these
images can only display a limited range of luminous intensity. This problem,
i.e., displaying high contrast images on output devices with limited contrast,
is the task of high dynamic range imaging, and it is approached by HDR
tone mapping. A number of different tone mapping methods (operators) have
been proposed in history [1,2]. However, also due to their sheer number, the
advantages and disadvantages of these methods are not immanently clear, and
therefore a thorough and systematic comparison is highly desirable.

The field of tone mapping (TM) assumes extensive knowledge of findings from
various scientific areas. In order to conduct a comparison of TM methods, it is
necessary to settle upon a set of image attributes by which the images produced
by the methods should be judged. These attributes are not independent, and
their interrelationships and the influence on the overall image quality need
to be carefully analyzed. This is useful not just for comparing existing HDR
approaches, but for evaluating future ones as well. The human visual system
(HVS) is extremely complex and, besides highly focused laboratory studies,
there is a lack of comprehensive user experiments we could build on.

In this contribution, we give a comprehensive list of most of the important
attributes involved in the evaluation of a TM method, and we show which
relationships exist between the basic attributes by means of two different sub-
jective testing methods. Namely, we investigate the perceived quality of the
images produced by particular TM methods with and without the possibility
of direct comparison to the original real-world scenes. The evaluation of the
attributes and their relationships leads to the definition of an overall image

quality. This metric can be used to judge how well a given TM method is
able to produce naturally looking images. Furthermore, we present the most
comprehensive comparison to date in terms of the number of TM methods
considered, including 14 different methods.

The article is organized as follows. In Section 2, we overview the previous
work on comparison of TM methods and other related work. In Section 3,
we introduce and describe the term “overall image quality”. In Section 4, we
give a survey of the most important image attributes for tone mapping, and
we describe how different methods reproduce these attributes. In Section 5
we propose a new scheme of relationships between the image attributes. In
Section 6 we describe the two applied experimental methods based on human
observations, and finally in Section 7, we show and discuss the results of these
experiments. The survey of image attributes and the relationships (Sec. 4, 5)
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is extended from [3] and incorporates our new findings.

2 Previous Work

The history of evaluation of TM methods is short. The following works (the
only ones, to our best knowledge) were published only in the last few years.
This is due to the recent increase in published TM methods on one hand,
and due to the very high time, implementation, human, and other demands
involved in such an evaluation on the other hand. While this section surveys
the previous work, we relate our results to these works in Section 7.5.

Drago et al. [4] performed a perceptual evaluation of six TM methods with
regard to similarity and preference. In their study, subjects were asked to rate
a difference for all pairwise comparisons of a set of four HDR images tone
mapped with six TM methods (24 images in total) shown on the screen. A
multidimensional perceptual scaling of the subjective data from 11 observers
revealed the two most salient stimulus space dimensions. The authors unfolded
these dimensions as naturalness and detail and also identified the ideal pref-
erence point in the stimulus space. These findings were then used for a final
ranking of the six TM methods.

In 2005, Yoshida et al. [5] compared seven TM methods using two real-world
architectural interior scenes. The 14 observers were asked to rate basic image
attributes (contrast, brightness, details) as well as the naturalness of the im-
ages. The results of this perceptual study exhibited differences between global
and local TM methods. Global methods performed better than local meth-
ods in the reproduction of brightness and contrast, however local methods
exhibited better reproduction of details in bright regions of images.

Kuang et al. [6] tested eight TM algorithms using ten HDR images. The au-
thors implemented two paired comparison psychophysical experiments assess-
ing the color and grayscale tone mapping performance respectively. In these
tests, 30 observers were asked to choose the preferred image for each possible
pair. The results showed the consistency of tone mapping performance for gray
scale and color images. In the continuation of this research [7], Kuang et al.
removed two TM methods and added two new images to the group of input
stimuli. The authors examined the overall image preference (using paired com-
parison performed on an LCD desktop monitor) and preferences for six image
attributes (using a rating scale) – highlight details, shadow details, overall
contrast, sharpness, colorfulness, artifacts. The results show that shadow de-
tails, overall contrast, sharpness, and colorfulness have high correlations with
the overall preference. More recently and parallel to our work, Kuang et al. [8]
used three indoor scenes and 19 subjects to evaluate 7 TM algorithms. Using

4



two paired comparisons, the authors evaluated image contrast, colorfulness
and overall accuracy. The results showed that bilateral filtering [9] generated
more accurate results than other algorithms. Results of the three experiments
performed by Kuang and colleagues are summarized in [10].

Ledda et al. [11] ran an evaluation of six TM methods by comparing to the
reference scenes displayed on an HDR display. This HDR display allowed au-
thors to involve many (23) input scenes. Subjects were presented three images
at once (the reference and two tone mapped images) and had to choose the
image closest to the reference. Statistical methods were used to process sub-
jective data and the six examined methods were evaluated with respect to the
overall quality and to the reproduction of features and details.

Ashikhmin and Goyal [12], parallel to our work, demonstrated that using real
environments is crucial in judging performance of TM methods. The authors
compared five TM methods using four real-world indoor environments plus
two additional HDR images. 15 subjects were involved in three ranking exper-
iments: first two tests (preference and fidelity) were performed without ground
truth while the third (fidelity) was conducted with reference (real scene). The
results indicate that there is statistically no difference between preference and
fidelity when there is no reference (i.e. equivalence of liking and naturalness
criteria). However, the results show a difference in subject’s responses for the
fidelity test with reference and without reference.

In the field of HDR displays, Yoshida et al. [13] analysed the reproduction of
HDR images on displays of varying dynamic range. The authors ran two per-
ceptual experiments to measure subjective preferences and the perception of
fidelity of real scenes. 24 participants, 25 HDR images and 3 real-world scenes
were involved in the experiments. An outcome of this work is the analysis how
users adjust parameters of a generic global TM method to achieve the best
looking images and the images that are closest to the real-world scenes. Akyüz
et al. [14] investigated how LDR images are best displayed on current HDR
monitors. In two subjective experiments, authors exhibited 10 HDR images to
22 and 16 subjects, respectively. The results show that HDR displays outper-
form LDR ones and that LDR data do not require sophisticated treatment to
produce a HDR experience. More surprisingly, results show that tone mapped
HDR images are statistically no better than the best single LDR exposure.

Some exciting contributions were published in the domain of image quality
measurement of ordinary LDR images (see the book by Janssen [15] for an
overview on this topic). Rogowitz et al. [16] conducted two psychophysical
scaling experiments for the evaluation of image similarity. The subjective re-
sults were compared to two algorithmic image similarity metrics and analyzed
using multidimensional scaling. The analysis showed that humans use many
dimensions in their evaluations of image similarity, including overall color ap-
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pearance, semantic information, etc.

We find related work also in the field of psychophysical color research and
photography, e.g. Fedorovskaya et al. [17] varied chroma of 4 input images
to determine its effect on perceived image quality, colorfulness and natural-
ness. Results indicate that the enhancement of colorfulness leads to higher
perceptual quality of an image. Savakis et al. [18] performed an experiment on
image appeal in consumer photography. While image quality is generally an
objective measure, image appeal is rather subjective. During the experiment,
authors showed 30 groups of prints to 11 people. The task of each subject was
to select such a picture from each group that would receive the most atten-
tion in a photo album. Moreover, subjects had to comment the positive and
negative attributes they used for the selection of the picture. The results show
that the most important attributes for image appeal fall into the groups of
composition/subject and people/expression, leaving objective attributes less
significant.

Jobson et al. [19] investigated contrast and lightness in visually optimized
LDR images. The authors approach the lightness as the image mean and the
contrast as the mean of regional standard deviations. Inspecting these mea-
sures, the authors experimentally show that visually optimized LDR images
are clustered about a single mean value and have high standard deviations,
i.e. both the lightness and contrast are improved with the latter being more
affected.

Differently from the mentioned approaches, we adopt both a direct rating
(with reference) comparison of the tone mapped images to the real scenes,
and a subjective ranking of tone mapped images without a real references.
This enables us to confront the results from these two subjective experiments.
Moreover, we present a methodology for evaluating TM methods using gen-
erally known image attributes. With 14 methods in total, and three typi-
cal real-world HDR scenes, the subjective studies carried out to confirm this
methodology also contain one of the most comprehensive comparison of TM
methods. We have already presented [3] preliminary ideas of this project and
we conducted an initial pilot study to examine the experimental setup. It
was observed that the overall image quality is not determined by a single at-
tribute, but rather a composition of them. Next, we published [20] the results
concerning the indoor scenes. Encouraged by these findings, we conducted a
full experiment (we extended the input stimuli group by two another, differ-
ent outdoor scenes), the results of which, including a thorough discussion, new
statistical methodology etc. are presented in this contribution.
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3 Overall Image Quality

In this section, we motivate and describe a measure which is useful for deter-
mining the performance of a particular TM method.

The first question is whether it is possible at all to find an optimal or “exact”
method to tone map an arbitrary HDR input image, based on human vision.
Unfortunately, the answer seems to be negative. Take for example a beach
scene, where the absolute illuminance is often above 50,000 lux. A captured
photograph of that scene, viewed under normal room illumination (about 200
lux), can never reproduce the same amount of colorfulness, because this is
a psycho-physiological effect that depends on the absolute illuminance (vivid
colors start to be perceived above 2000 lux). Therefore, a natural reproduction
is only possible to a limited degree.

Another important question is the intent of the reproduction. The classical
perceptual approach tries to simulate the human vision process and design
the TM method accordingly. For example, a scene viewed at night would be
represented blurred and nearly monochromatic due to scotopic vision. How-
ever, if it is important to understand the fine details or the structure of the
visible lines in the result, i.e., the content of the image, the same scene would
be represented with full detail, which would be called the cognitive approach.
If the goal is only the pleasant appearance of the image, we speak about an
aesthetical approach. Any given TM method will realize a mixture of these
three approaches, with a different weighting given to each [21].

In this contribution, we concentrate on the perceptual approach, and aim
to characterize the overall image quality resulting from a TM technique in
a perceptual sense. In addition, we have chosen a number of important im-
age attributes which are typically used to characterize tone mapped images,
and study how well TM methods reproduce these attributes: brightness, con-
trast, color, detail, and artifacts. The chosen attributes are mostly perceptual,
but contain cognitive and aesthetics aspects as well. Beyond these attributes,
which are related to color and spatial vision, there are some other important
aspects and some “special effects” which can improve or modify the final ap-
pearance. Since some of the attributes are not independent (as we will explain
later), we propose a scheme of relationships between them (Fig. 6). The goal
of this work is to investigate the influence these attributes have on overall
image quality, based on a subjective study.
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4 Image attributes

In this section we briefly survey particular image attributes for tone mapping,
and we list some typical TM methods that attempt to reproduce them cor-
rectly. As this part has the character of a survey, an informed reader can skip
directly to the experiments described in Section 6.

4.1 Brightness

Brightness is a quantity that measures the subjective sensation produced by
the absolute amount of luminance [22]. More specifically, brightness is the
attribute of a visual sensation according to which an area appears to emit more
or less light [23]. The magnitude of brightness can be estimated for unrelated
visual stimuli (since it is an absolute unit) as well as for related visual stimuli.
Lightness is defined as the attribute of a visual sensation according to which
the area in which the visual stimulus is presented appears to emit more or less
light in proportion to that emitted by a similarly illuminated area perceived
as a ”white” stimulus [23]. Lightness has thus meaning only for related visual
stimuli. As lightness is judged with reference to the brightness of a ”white”
stimulus, it may be considered a special form of brightness measure that could
be referred to as relative brightness [23]. In this study, we are interested in the
quality of reproduction of an “overall” brightness of a given HDR scene.

Stevens and Stevens, see [24], proposed an expression for the apparent bright-
ness, but although the expression gives a convenient relationship between lu-
minance and brightness for simple targets, the overall brightness of an image is
more complex. A method by Tumblin and Rushmeier [25] attempts to preserve
the overall impression of brightness using a mapping function that is based on
the model by Stevens and Stevens [24]. This mapping function matches the
brightness of a real world luminance to the brightness of a display luminance.
Recently, Krawczyk et al. [26] proposed a method which aims for an accurate
estimation of lightness in real-world scenes by means of the so-called anchoring
theory of lightness perception. The method is based on an automatic decom-
position of the HDR image into frameworks (consistent areas). Lightness of a
framework is then estimated by the anchoring to the luminance level that is
perceived as white, and finally, the global lightness is computed.

4.2 Contrast

Image contrast is defined in different ways, but it is usually related to varia-
tions in image luminance. There exist various basic formulae for computation
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of contrast, see the thesis by Winkler [27] for an overview. Matkovic et al. [28]
proposed a complex computational global contrast measure called Global Con-
trast Factor that uses contrasts at various resolution levels in order to compute
overall contrast. In this study, we think about overall contrast in a similar way.

Ward’s [29] initial TM method focuses on the preservation of perceived con-

trast. This method transforms input luminance to output luminance using
a scaling factor. The computation of the factor is based on Blackwell’s [30]
psychophysical contrast sensitivity model. Because Ward’s method scales im-
age intensities by a constant, it does not change scene contrasts for display.
Almost the same principle of contrast preservation is exploited also in other
methods [31,32].

Advanced local TM methods (e.g., the method by Reinhard et al. [33] or by
Ashikhmin [34]) are based on a multi-resolution decomposition of the image
and approximate contrast in a way similar to Peli [35], see Fig. 1. Mantiuk
et al. [36] proposed a framework for perceptual contrast processing of HDR
images. The authors define contrast as a difference between a pixel and one
of its neighbors at a particular level of a Gaussian pyramid. This approach
resembles the gradient-domain method by Fattal et al. [37].

Fig. 1. Peli’s local band-limited contrast on three different spatial resolutions
(top-left: original image).
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4.3 Reproduction of colors

The sensation of color is an important aspect of the human visual system
(HVS), and a correct reproduction of colors can increase the apparent realism
of an output image. One important feature of the HVS is the capacity to see
the level of colors in a bright environment. This ability, measured as color
sensitivity, is reduced in dark environments, as the light sensitive rods take
over for the color-sensitive cone system, see Fig. 2. As the luminance level is
raised, the cone system becomes active and colors begin to be seen. Further-
more, the HVS has the capability of chromatic adaptation. Humans are able
to adjust to varying colors of illumination in order to approximately preserve
the appearance of object colors. See Fairchild’s book [24] for more information
on color appearance modeling.

Fig. 2. Simulation of color sensitivity. Left: original image – no color sensitivity
simulation, Right: simulation of the loss of color sensitivity in the dark.

The TM method by Ferwerda et al. [31] captures changes in threshold color ap-
pearance by using separate TVI (threshold versus intensity) functions for rods
and cones and interpolation for the mesopic luminance range. Ward et al. [32]
used a very similar approach. Pattanaik et al. [38] proposed a comprehensive
multi-scale model that accounts for changes both in threshold color discrim-
inability and suprathreshold colorfulness. Using opponent color processing,
the model is able to handle changes in chromatic and luminance-level adapta-
tion as well. In their work, Reinhard and Devlin [39] adapted a computational
model of photoreceptor behavior that incorporates a chromatic transform that
allows the white point to be shifted.

4.4 Reproduction of details

The reproduction of details is an issue mainly in very dark and very bright
areas, because truncation of values occurs most frequently in these areas as
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a result of the dynamic range limitations of the output device. The simplest
methods (e.g., linear scaling or clamping) will usually reduce or destroy im-
portant details and textures (see Fig. 3). On the other hand, the effort to
reproduce details well is a potential cause of artifacts.

Fig. 3. Reproduction of details in a very bright area. Left: global TM method exhibits
the loss of details. Right: details preservation owing to mapping by a local method.

Several TM methods focus especially on the reproduction of details. Tumblin
and Turk’s LCIS method [40] produces a high detail, low contrast image by
compressing only the large features and adding back all small details. The idea
of compressing just the large features and then adding subtle non-compressed
details is also used in the methods based on the bilateral [9] and trilateral
filter [41].

A different approach was presented by Ward [32]. Ward’s method based on
histogram adjustment aims to preserve visibility, where visibility is said to be
preserved if we can see an object on the display if and only if we can see it
in the real scene. Ward’s method does not strive to reproduce all the details
available, but exploits the limitations of human vision to reproduce just the
visible details. Also, most local TM methods try to preserve detail along with
contrast.

4.5 Artifacts

As a consequence of tone mapping, artifacts may appear in the output image.
The artifacts are degrading the overall quality of the output image. Some local
TM methods [42,43] exhibit typical halo artifacts, see Fig. 4. These artifacts
are caused by contrast reversals, which may happen for small bright features
or sharp high-contrast edges, where a bright feature causes strong attenuation
of the neighboring pixels, surrounding the feature or high-contrast edge with
a noticeable dark band or halo.

Another possible artifact of TM methods stems from the superficial handling
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of colors. Many TM methods use very simple rules in handling of the colors,
e.g., doing the HDR to LDR transformation just for the luminance component
with consequential restoration of the color information. Apart from poor values
for the color reproduction image attribute, this can also lead to visible color

artifacts like oversaturation, see Fig. 4. Closely related to color artifacts are
quantization artifacts, especially in dark regions, which stem from applying
transformations (like gamma correction) to a low-precision representation of
color values.

Fig. 4. Halo artifacts and oversaturation. Left: HDR image after successful tone
mapping without halo artifacts. Right: the same image after tone mapping using
the local method exhibiting a massive amount of halo artifacts. Both images exhibit
oversaturation.

4.6 Special attributes

The following image attributes show up just under special conditions and we
do not consider them in our current experiments, in favor of the basic ones.
Moreover, we avoided testing of glare and visual acuity simulation, because
these effects are usually implemented in the same way as a postprocess after
the TM step. However, we present these attributes here to complete the survey
of image attributes for tone mapping and it will be an interesting task to
include them in future special evaluations.

Visual acuity is the ability of the HVS to resolve spatial detail. The visual
acuity decreases in the dark, since cones are not responding to such low light
levels. It is interesting that simulating this phenomenon, i.e., reducing the
detail in an image, actually enhances the perceptual quality of the image.

Owing to the scattering of light in the human cornea, lens, and retina, and
due to diffraction in the cell structures on the outer radial areas of the lens,
phenomena commonly referred to as glare effects [44] are seen around very
bright objects, see Fig. 5. Since the dynamic range of traditional output de-
vices is not sufficient to evoke such phenomena, we must simulate the human
response artificially to improve the perceptual quality of the image.
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Fig. 5. Bloom (veiling luminance) simulation. Left: the original scene without bloom
simulation, Rigt: the same scene with bloom simulation.

5 Attribute relationships

In the previous sections, we have surveyed the image attributes that are im-
portant for tone mapping and influence the overall quality of the output image.
These attributes are not independent, and we present a description of their
interrelationships in this section.
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Glare
Reproduction

Colour
Reproduction

Artifacts

Visual
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Fig. 6. The relationships between image attributes. The attributes we did not eval-
uate in subjective perceptual experiments are in dashed boxes.

We propose the scheme shown in Fig. 6 to illustrate the relationships between
the attributes. The overall image quality, our measure, is determined by
all the attributes. It depends strongly on the overall perceived brightness,
i.e., highly illuminated scenes should be reproduced bright, while dim scenes
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should appear dark. Apparent contrast should also be reproduced well to make
the result natural. The reproduction of details or rather the reproduction of
visibility of objects is certainly essential to make the output image appear
natural. Furthermore, since we are typically facing a limited display gamut,
the reproduction of color is an important factor for perceptual quality as well.
The simulation of visual acuity loss can significantly improve the perceptual
quality of dim or night scenes, while the simulation of glare can enhance the
perceptual quality of the dark scenes with strong light sources. There is no
doubt that the presence of disturbing artifacts degrades perceptual quality.
But there are also important interrelationships of the attributes:

The perception of brightness is affected greatly by the contrast arrangement

(i.e., by the semantics of an image). Fairchild [24] described the effect of image
contrast on the perceived brightness and concluded that the brightness typi-
cally increases with contrast. It has been shown that brightness increases as a
function of chroma (Helmholtz- Kohlrausch effect). Moreover, the simulation
of color appearance at scotopic levels of illumination can substantially change
the perceived brightness. Finally, the simulation of glare plays an important
role for the brightness perception. The glare simulation increases the apparent
brightness of light sources.

It was shown that contrast increases with the luminance (Stevens effect,
see [24]). Since we can identify the contrast at different spatial resolutions,
the perception of contrast is obviously affected by the reproduction of details.
The experimental results of Calabria and Fairchild [45] confirmed that the
perceived contrast depends also on image lightness, chroma and sharpness.

Colors are related to brightness, because the colorfulness increases with the
luminance level (e.g. the Hunt effect [24]).

The reproduction of details is strongly affected by the simulation of the vi-

sual acuity. Since there are available data that represent the visual acuity (e.g.,
Shaler’s curve), these data place limits on the reproduction of fine details, and
may also be utilized to verify the perceptual quality of detail reproduction.
Furthermore, the visibility preservation diminishes the reproduced details us-
ing a threshold function (e.g., the threshold versus intensity curve, TVI). The
simulated glare can obscure otherwise reproducible details near strong light
sources.

Using subjective testing results, Spencer et al. [44] verified that the simu-

lation of glare can substantially increase the apparent brightness of light
sources in digital images.

In the scheme of relationships (Fig. 6), we can identify attributes that represent
limitations of the HVS: the simulation of glare, the simulation of visual
acuity and (in part) the reproduction of color (in the sense of simulation of
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the scotopic vision). These attributes enhance the perceptual quality of the
output image, but are not desirable when the goal is different, for example
when we aim to reproduce as many details as possible.

6 Subjective perceptual studies

We have conducted two separate and technically different subjective percep-
tual studies – 1) a rating-based experiment with reference real-world scenes
and 2) a ranking-based experiment with no references, see Fig. 7. These ex-
periments were conducted to encourage the proposed idea of an overall image

quality measure and to verify the correlations to and between the image at-
tributes shown in Fig. 6. Moreover, the execution of two principally different
studies gave us the opportunity to relate the obtained subjective results. Fi-
nally, we used the results of perceptual studies to evaluate the strengths and
weaknesses of 14 TM methods.

Fig. 7. Example of subjective perceptual experiments setups. Left: rating experiment
with real references, Right: ranking experiment without references.

Prior to the main experiments we have conducted a pilot study to examine the
setup and to verify that subjects were able to rate “soft-copy” images against
the real scenes (i.e. rating experiment verification). During this study we have
also fine-tuned the parameters of several TM methods, and we have refined
instructions given to subjects. Preliminary ideas of the project as well as the
results of our pilot study have been presented in [3].

It is worth noting that apart from the evaluation of the 14 involved TM meth-
ods, the results concerning the relations of image attributes and overall per-
ceptual quality of an image are totally independent on any particular TM
method or on the values of its parameters (i.e. the 14 tone mapped images
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Min Max Mean Dynamic range

night scene -2.33 2.77 -0.99 5.13

indoor scene -1.09 4.27 0.82 5.37

outdoor scene 0.63 6.08 2.69 5.45

Table 1
Numerical luminance values (log10[cd/m2]) for the experimental HDR images.

represented a collection of natural input visual stimuli in our subjective per-
ceptual studies). We believe that the collection of images we used is much
more natural than the usual artificial stimuli used in vision science for narrow
perceptual studies, where images are very simple derivations of an original
LDR image (thresholding, scaling, chroma variations, or so).

6.1 Subjective testing setup

We have arranged three representative HDR real-world scenes for our experi-
ments: a typical real-world indoor HDR scene, see Tab. 3, a typical HDR out-
door scene, see Tab. 4, and a night urban HDR scene, see Tab. 5. We acquired
a series of 15 photos of each scene using a digital camera (Canon EOS300D,
Sigma DC 18-200) with varying exposure (fixed aperture f/11, varying shutter
speeds) from a locked-down tripod. The focal length was around 50mm (crop
factor equivalent) for all scenes – which in case of 35mm SLR corresponds
to the normal FOV of an observer. The HDR radiance maps were recovered
from the recorded series using the method of Debevec and Malik [46]. The
dynamic ranges of the resulting HDR images of the indoor scene, outdoor
scene and night urban scene were about 105 : 10−1cd/m2, 106 : 101cd/m2, and
103 : 10−3cd/m2 respectively (numerical values as reported by the pfsstat

utility 1 are summarized in Tab. 1), luminance histograms are shown in Fig. 8.

-3 -2 -1 0 1 2 3 4

night scene

-1 0 1 2 3 4

indoor scene

1 2 3 4 5 6 7

outdoor scene

Fig. 8. Luminance histograms (log10) of the experimental HDR images, from left:
night scene, indoor scene, outdoor scene.

We transformed these input HDR images using 14 different TM methods, so
that we obtained 14 LDR images 2 per scene for investigation. We attempted

1 Available at http://www.mpi-inf.mpg.de/resources/pfstools/
2 All the tone mapped images as well as the original HDR images are available on
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to include the largest possible amount of methods (see [1,2] for an overview)
into the evaluation, and came up with the 14 techniques (see Table 2) to
be included into our experiment (abbreviations are used through the entire
paper); for the resulting images see Tables 3, 4, 5. All the evaluated methods
were implemented by the first author with some discussions and help from the
original authors of these methods.

Abbreviation Method description Publication Global/Local

Ashikhmin02 A Tone Mapping Algorithm for
High Contrast Images

[34] L

Chiu93 Spatially Nonuniform Scaling Func-
tions for High Contrast Images

[42] L

Choudhury03 The Trilateral Filter for High Con-
trast Images and Meshes

[41] L

Drago03 Adaptive Logarithmic Mapping For
Displaying High Contrast Scenes

[47] G

Durand02 Fast Bilateral Filtering for the Dis-
play of HDR Images

[9] L

Fattal02 Gradient Domain High Dynamic
Range Compression

[37] L

LCIS99 Low Curvature Image Simplifier [40] L

Pattanaik02 Adaptive Gain Control for HDR Im-
age Display

[48] L

Reinhard02 Photographic Tone Reproduction
for Digital Images

[33] L

Schlick94 Quantization Techniques for Visual-
ization of HDR Pictures

[43] L

Tumblin99 Revised Tumblin-Rushmeier Tone
Reproduction Operator

[49] G

Ward94 A contrast-based scalefactor for lu-
minance display

[29] G

Ward97 A Visibility Matching Tone Repro-
duction Operator for HDR Scenes

[32] G

Linear Clip Manual linear clipping G

Table 2
Abbreviations of evaluated tone mapping methods

The sequence of 14 LDR TM images represented the input visual stimuli for
each observer, all the testings were performed under controlled ambient lumi-

the web pages of the project: http://www.cgg.cvut.cz/˜cadikm/tmo
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nance level. A total number of 20 subjects aged between 26 and 52 were in-
volved in our experiments. All participating subjects had normal or corrected-
to-normal vision and were non-experts in the field of tone mapping. In the two
experimental studies, we collected in total 3(scenes) ·(10+10)(subjects) ·6(attributes) ·

14(methods) = 5040 values of observation scores.

In the first experiment, based on rating (see Fig. 7 - left), we simultane-
ously presented an original (real-world) HDR scene and the appropriate
TM images of this scene to human observers. In order to keep the illumi-
nation moderately constant, we performed all the testing procedures at the
same time of the day as the HDR image was acquired, continually inspecting
the illumination conditions using an exposure meter. The TM images were
shown separately in random order on a calibrated monitor 3 to a group of 10
subjects. The task of each subject was to express the overall image quality,
and the quality of reproduction of basic attributes – overall brightness, overall
contrast, reproduction of details, overall reproduction of colors, and the lack
of disturbing image artifacts for a particular image by ratings (on the scale
1–10, where 10 represents the best result, while 1 is the worst) with respect
to the actual scene. All subjects were verbally introduced to the experiment
and they were instructed to ”Rate the images on how close the particular
image attribute matches in appearance to the real-world scene” (attribute re-
production results) and to ”Rate the images on how close the overall match in
appearance is to the real-world scene” (overall image quality results). To avoid
any confusion, subjects were personally informed that we were interested in
quality of reproduction (not the amount or quantity) of inquired image at-
tributes (e.g. “Less detail in the image than in the ground truth is bad, more
detail in the image than in the ground truth is bad as well, the closer to the
ground truth the better the score should be.”) and that they should judge only
the particular attribute and avoid any influence of other attributes. Subjects
sat at the place of the camera at common viewing distance from the display
(approximately 60cm) and they were able to directly observe both the real
scene and the display. However, subjects were always instructed to take some
seconds to adapt to each. The procedure took approximately 45 minutes for
one observer and one scene. We chose the rating scale method in this experi-
ment to stimulate observers to do the direct comparison of the TM image to
the real scene.

In the second experiment, based on ranking (see Fig. 7 - right), we investi-
gated what happens when subjects have no possibility of directly comparing
to the ground truth (or are not affected by a previous experience with the real
scene). A group of 10 observers (different ones than in the first experiment),

3 FSC P19-2, 19-inch LCD display, with maximum luminance of 280 cd/m2. We
used manufacturer’s ICC profiles (D65) for both the monitor and the camera to
perform the colorimetric characterization of the devices.
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who have never seen the real HDR scenes and had therefore virtually
no idea about the attributes of original scenes, was selected. The task of each
subject was to order (rank) image printouts resulting from the 14 methods ac-
cording to the overall image quality, and the quality of reproduction of overall
contrast, overall brightness, colors, details, and image artifacts. Similarly to
the first experiment, all subjects were verbally introduced to the experiment
and they were instructed to “Rank the printouts on how close the particular
image attribute matches in appearance to a hypothetical real-world scene,”
the idea being that when a human views an image, she always forms a mental
model of the original scene. Thus description of image attributes was the same
as in the first experiment, but observers were instructed to “Imagine how the
original real-world scene would look like” and rank the printouts accordingly.
The procedure took approximately 35 minutes for one observer and one se-
ries of input images. The investigated printouts were high-quality color image
printouts on a glossy paper of the same 14 tone mapped images as in the first
experiment. 4 Printouts were observed in an office under standard illumination
of approximately 550lux.

7 Results and discussion

In order to make the results of two conducted experiments comparable, we
converted the rating observation scores to the ranking scale by computing the
ranks of observations for each person and attribute with adjustment for ties (if
any values were tied, we computed their average rank) prior to the following
evaluations. For example, a rating observation vector X is converted to the
rank vector X

′ as follows:

X = ( 3 7 2 6 2 1 5 6 9 5 6 8 8 4 )

X
′ = ( 4 11 2.5 9 2.5 1 6.5 9 14 6.5 9 12.5 12.5 5 )

We analyzed the data using non-parametric statistical tests. 5 Moreover, we
also converted these rank order data using the Thurstonian model (condition
D) [50,51] to interval scales. Tables 3, 4, 5 show the numerical results sep-
arately for each scene, while interval scales are shown along with standard
errors in Fig. 9 (overall average results), in Fig. 11 (average values for each
experiment), and Fig. 13 (overall image quality ratings for each input scene for
each experiment). We describe and discuss the obtained results in the follow-

4 A HP Color Laserjet 3500 was used, with the manufacturer’s ICC profile to per-
form colorimetric characterization, in order to achieve a reasonably comparable color
representation as in the first experiment.
5 Since we have non-normally distributed observation values (rank orders), we use
nonparametric tests throughout this paper.
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Table 3
Strengths and weaknesses of evaluated TM methods – indoor scene. In bold:
average ranking scores (1st line) and average rating scores (3rd line); in italics:
standard deviations for ranking (2nd line) and for rating scores (4th line). The
higher values represent the higher reproduction quality.
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Table 4
Strengths and weaknesses of evaluated TM methods – outdoor scene. In bold:
average ranking scores (1st line) and average rating scores (3rd line); in italics:
standard deviations for ranking (2nd line) and for rating scores (4th line). The
higher values represent the higher reproduction quality.
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Table 5
Strengths and weaknesses of evaluated TM methods – night scene. In bold: average
ranking scores (1st line) and average rating scores (3rd line); in italics: standard
deviations for ranking (2nd line) and for rating scores (4th line). The higher values
represent the higher reproduction quality.
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Qrating Qranking

overall quality 2.7984 4.5823

brightness 2.2857 2.7648

contrast 1.2857 0.3984

details 0.1429 3.8353

colors 1.2857 3.6545

artifacts 0.1231 1.3740

critical value Qcrit = 5.99

Table 6
Results of two separate Friedman’s tests for the effect of input scenes

ing text: Sections 7.1 and 7.2 statistically prove that neither the experimental
setup nor the choice of scenes has a systematic influence on the results. In
Section 7.3 we discuss the results of examined TM methods in comparison
to each other. In Section 7.5 we quantify the relationship between image at-
tributes proposed in Section 5. Finally, in Section 7.5 we compare our results
to results obtained in previous work.

7.1 Effects of input scenes and methods

First, we have to inquire if the input scene has a significant systematic effect
on the evaluation of the methods and image attributes. We use the Friedman’s
nonparametric two-way analysis of variance (ANOVA) test [52] for each image
attribute independently for ranking and rating datasets. We state the null
hypothesis H0 as follows: there is no significant difference between observation
values for the input scenes.

We summarize the results for all image attributes in Table 6. If the value
of Friedman’s statistics Q is higher than the tabellated critical value Qcrit,
we reject the null hypothesis H0. For all the cases we use a significance level
of p < 0.05. As we can observe in the Table 6, we can not reject the null
hypothesis for any of the attributes for both experimental setups. This means
we were not able to find a statistically significant difference between the three
input scenes and we can thus proceed with the evaluation independently of
the input scenes.

Next, we have to verify that there are significant differences between the TM

methods and the evaluation of TM methods thus makes sense. We use Fried-
man’s analysis independently for ranking and rating, with the null hypothesis
H0 : there is no significant difference between observation values for 14 evalu-
ated methods.
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Qrating Qranking

overall quality 85.093 110.98

brightness 72.772 83.494

contrast 87.782 92.531

details 56.826 89.617

colors 91.939 111.91

artifacts 75.833 92.768

critical value Qcrit = 19.16

Table 7
Results of two separate Friedman’s tests for the effect of input methods

The results are summarized in Table 7. Since all obtained Q values are much
higher than Qcrit, we reject the null hypothesis for all attributes. This means
we found significant differences between the method scores for all attributes
and both experiments and we can proceed with the evaluation of TM methods.

7.2 Effect of the experimental setup

The next question is if there is a statistically significant difference between
the data obtained from the two different experimental setups (two conducted
psychophysical experiments). Recall that in the rating experiment, observers
were able to directly rate the quality of image attributes against the real refer-
ence (real HDR scene), while in the ranking experiment they had to rank the
images according to the quality of image attributes without knowledge of the
original scene, see Fig. 7. The second experiment, even though without refer-
ence, was not a simple preference experiment, since observers were instructed
to rank images according their mental model of the original real-world scene.
We chose two different evaluation methods because unlike in the second ex-
periment, in the first experiment we did not want to show all the 14 images
simultaneously with the reference scene. We rather wanted to stimulate the
observer to rate a single image against the real reference, thus slightly elimi-
nating the ranking of tested images, however it is sometimes a hard task. The
rating scale was chosen so that the scores were in the interval [1, 10].

To examine the differences between the rating and ranking experiments 6 for
each attribute we used the Kruskal-Wallis test [52] (nonparametric version of
one-way ANOVA). The critical value for the test (ν = 14 · 10 · 3 − 1 = 419
degrees of freedom) is χ2

crit = 467.73. All the obtained results of the test were

6 Recall that the rating is converted to ranking by computing the ranks of obser-
vations for each person and attribute with adjustment for ties.
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V ∗

INDOOR V ∗

OUTDOOR V ∗

NIGHT

overall quality -0.2016 0.0000 0.0000

brightness 0.7928 0.0000 1.0296

contrast 0.8021 0.3077 0.1156

details -0.1077 -0.1287 0.4361

colors 0.4008 -0.7951 -0.1773

artifacts 0.0000 0.2068 0.0000

critical value V ∗

crit = 2.394

Table 8
Results of Profile analysis

much smaller than the critical value, therefore we did not detect any significant
difference between experiments for any attributes using the nonparametric
ANOVA.

Since using the Kruskal-Wallis test we did not find any statistically signifi-
cant differences between the rating and ranking experiments, we also applied
another more rigorous test, the profile analysis [53,54], to the observed data.
Profile analysis is a nonparametric test used to verify that changes in a par-
ticular stochastic variable have the same tendency for several different objects
(rating and ranking experiments in our case). We state the null hypothesis
H0 as follows: the mean values of observation vectors Xrati

and Xrani
, where

Xrati
and Xrani

is a vector of observed values from the rating and ranking ex-
periment respectively, differ just in shift (we say they have parallel profiles).
According to the profile analysis process, we compute the test quantity V ∗

t for
each variable t and we reject H0 if V ∗

t is higher than the computed critical
value V ∗

crit.

First, we calculated H0 for the ranking and rating results for the profiles
over the scenes for each image attribute separately. The observation vec-
tors were then: Arati

= (AINDOORrati
, AOUTDOORrati

, ANIGHTrati
) and Arani

=
(AINDOORrani

, AOUTDOORrani
, ANIGHTrani

) where A denotes particular image at-
tribute, and ADESK∗i

, AWINDOW∗i
, and ANIGHT∗i

are the observation values for
the Desk, Window and Night scene respectively. The obtained profile analysis
results are summarized in Table 8. These results show that we can not reject
H0 for any attribute, this means we did not find a significant differences in
profiles for each input scene for the rating and ranking experiments.

Next, we averaged the scores for the input scenes for each attribute for each
experimental setup separately and we performed another profile analysis over
the following vectors: Xrati

= (OIQrati
, Brirati

, Conrati
, Detrati

, Colrati
, Artrati

)
and Xrani

= (OIQrani
, Brirani

, Conrani
, Detrani

, Colrani
, Artrani

), where OIQ∗i
,
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Source SS df MS F p

experimental setup -0 1 -0 -0 1

input scene 0 2 0 0 1

TM method 5936.1 13 456.62 49.96 0

subject (observer) 0 9 0 0 1

Residual 7439.4 814 9.13

Total 13376 839

Table 9
Results of non-parametric MANOVA test (where SS denotes Sum of Squares, df
means Degrees of Freedom, MS denotes Mean Square, F is F value, and p is p-value
for the null hypothesis).

Bri∗i
, etc. are averages over input scenes for image attributes overall image

quality, brightness, etc. for rating and ranking experiments. The critical value
is in this case V ∗

crit = 2.6383 and the resulting values are V ∗

OIQ = −0.3489,
V ∗

Bri = −0.4791, V ∗

Con = 0.0565, V ∗

Det = −0.1409, V ∗

Col = −0.0404, V ∗

Art =
0.1727. Since the V ∗

crit is higher than the resulting V ∗ for all image attributes,
profile analysis did not find a significant difference in the rating and ranking
observation data.

Finally, to account for all the factors (i.e. ‘subject (observer)’, ‘TM method’,
‘input scene’ and ‘experimental setup’) together in one statistical test, we
utilized the recently published permutational multi-factorial MANOVA [55].
This test is a non-parametric analogy of the parametric multi-factorial mul-
tivariate ANOVA [56]. Results of permutational MANOVA (summarized in
Tab. 9) show that the factors ‘subject’, ‘input scene’ and ‘experimental setup’
are statistically not significant, i.e. scenes, subjects and types of experiment
do not have a significant effect on the resulting scores. The only significant
main effect is with the factor ‘TM method’, which means that there are sig-
nificant differences in responses of subjects depending on the type of the TM
method. This correlates with the results reported above, and again justifies
our experimental setup. Moreover, we also inquired interaction effects and
found a significant effect of ‘input scene’ × ‘TM method’ – which means that
the scores depend on the combination of scene and input method, i.e. there
probably exist methods whose performance differs for particular input scenes.

In this section, we made a lot of effort to find a statistically significant dif-
ference between the two experiments, but we have not found one. This is a
very interesting and important result, because it suggests that for a perceptual

comparison of TM methods it is sufficient to use ranking without a reference
experimental setup. This type of psychophysical testing is much cheaper in
terms of money and time than the setup with original scene and ratings.
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Fig. 9. Overall accuracy scores for all examined TM methods. Left to right: overall
perceptual quality, reproduction of brightness, reproduction of contrast, reproduc-
tion of details, reproduction of colors, lack of disturbing artifacts. In each chart the
higher value represents the higher reproduction quality.

7.3 Evaluation of HDR tone mapping methods

We should stress here again that all our evaluations are targeted at the percep-
tual dimension of TM, i.e. the holy grail is to reproduce the visual sensation
of the real HDR scene as closely as possible (as opposed to for example infor-
mation preservation). Moreover, since all the evaluated methods were imple-
mented personally by the first author of the paper, the results in this section
represent also the “achievability” of the results. We do not claim that slightly
better results for a particular method could not be achieved after a thorough
artificial parameter tuning. We have tested three different HDR scenes with
a variety of characteristics, but other input scenes may potentially lead to
slightly different results. We should also stress that our evaluation does not
reflect computation time, implementation difficulties and other factors, that
are also significant in practical applications of TM methods.

The observed values represent the quality of reproduction of a particular image
attribute, and not its amount. For example the average observation values
for the reproduction of details show the quality of reproduction of details,
not the amount of details. Subjects were instructed to rank/rate the images
accordingly, therefore too many or too few details are both rated worse than
the right amount of details.
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Fig. 10. Left: average overall image quality with confidence intervals. Circles show
OIQ means with 95% confidence intervals (horizontal axis) – the higher value the
better quality. Right: average Mahalanobis distances of overall image quality for all
methods.

7.3.1 Overall results

The overall results (see interval scores shown in Fig. 9) suggest that the best

overall quality is generally observed in images produced by global TM methods
(TM curves). Interestingly, the average best score is achieved by the simplest
possible approach, the manual linear clipping of luminance values! However,
this is not such a surprising result, because also our previous pilot studies [3]
have shown the superiority of global approaches in the perceptual dimension
of TM. A possible explanation of this is also suggested by our analysis (see
Section 7.4): the proper reproduction of overall image attributes (overall con-
trast, overall brightness, colors) is essential for the natural perception of the
resulting image, more so than local attributes. The HVS is evidently highly
sensitive to any disruptive factors in the overall image attributes, far more than
to the absence of some image details. Recall that the group of six best-rated
TM methods contains just one local approach – the method Reinhard02 [33],
but an essential part of that method is basically a global TM method with
advanced parameter estimation.

The worst rated methods were Fattal02 – the gradient-based approach, which
we believe is a good method, but not so for perceptual applications, and an
early local approach Chiu93. At the bounds of the quality interval, the best
and the worst methods exhibit also the lowest variance, while the middle
zone with often uncertain judgments has higher variances. The observers have
typically the same opinion about the best/worst question, but difficulties with
the evaluation of some similar cases.

The plot of means of the overall image quality attribute (obtained by a non-
parametric MANOVA test [55]) with 95% confidence intervals shows the cate-
gorization of TM methods more clearly (see Fig. 10 (left)). As we may observe,
there are no statistically significant differences in the overall image quality for
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the first six methods, which are largely the global tone mapping methods (vi-
sualized in blue). The second group (black color) comprises in fact deeply local
TM approaches that operate averagely in the perceptual dimension of HDR
tone reproduction. Finally, in the third group (red color) are perceptually not
satisfactory methods. In Fig. 10 (right) we show the dendrogram of distances
of overall image quality between the enquired methods. This graph also shows
the described clustering of the methods into three groups.

The evaluation of artifacts (the higher value the better quality, i.e. the less
amount of artifacts) shows another interesting result. The approach by Rein-
hard et al. shows high variance in this attribute, because it produced two
relatively good images, but one with very disturbing artifacts, see Table 4.
Due to the nature of Reinhard’s method, the artifacts could not be completely
avoided.

7.3.2 Comparison of the two experiments

In Fig. 11 we show average results for the two performed experiments sepa-
rately. These results indicate how well the methods performed in rating (with
reference) and ranking (without a reference) experiments. Similarly to overall
results, methods Chiu93 [42] and Fattal02 [37] performed constantly worst in
both experiments. In the rating experiment, Reinard02 [33] exhibits the best
scores in all attributes but the artifacts, where it is the third worst rated (alike
in the ranking experiment). In the ranking experiment, the linear clipping ex-
hibits constantly the best scores in all attributes.

Generally, the results exhibit similar trends for all the enquired attributes
as suggested by statistical analysis in previous sections. The relations of two
experiments for each image attribute are visualized in Fig. 12 along with linear
fit and coefficients of determination R2 (R2 is a measure of the global fit of the
model; R2 = 1 would indicate that the fitted model explained all variability,
while R2 = 0 indicates no linear relationship between the results of our two
experiments.) The highest agreement between two experiments is for overall
contrast, overall image quality and for the lack of artifacts attribute. The
lowest agreement exhibits the detail attribute and we deal with this result in
the next section.

7.3.3 Comparison of the results for input scenes

Statistical analysis as reported in Section 7.2 suggests that even though our
input scenes do not have a systematic effect on obtained results, there probably
exist methods whose performance differs for particular scenes. To examine this
effect of the input scenes on the results further, we show the overall image
quality scores separately for each scene, see Fig. 13. We notice rather similar
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Fig. 11. Accuracy scores for rating (with a reference) experiment (top) and for
ranking (without a reference) experiment (bottom) for all examined TM methods.
Left to right: overall perceptual quality, reproduction of brightness, reproduction of
contrast, reproduction of details, reproduction of colors, lack of disturbing artifacts.
In each chart the higher value represents the higher reproduction quality.

trends in results for the two outdoor scenes (outdoor and night scene), while
the indoor scene exhibits a slightly different pattern. Since there is a book
with tiny writing which dominates the indoor scene, perhaps, there is a higher
stress on reproduction of details in this case.

Notice that methods visualized in shades of blue color perform very well for at
least two scenes. Chiu93 and Fattal02 on the other hand perform constantly
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Fig. 12. Relations of the ranking experiment (vertical axes) and rating experiment
(horizontal axes) interval scale results for all image attributes.
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Fig. 13. Overall image quality scores for each input scene. Rating (with a reference)
experiment results (left) and ranking (without a reference) experiment results (right)
for all examined TM methods. Left to right: night scene, indoor scene, outdoor scene.

poorly over all scenes in both tests. Pattanaik02 shows interesting consistent
behavior – it performs very well for the night scene, averagely for the indoor
scene, and poorly for outdoor scene. In case of the indoor scene, LCIS99 and
Choudhury03 show the highest discrepancy between rating and ranking ex-
periments. In this case, subjects in the rating experiment perhaps put more
stress to the detail attribute at a disadvantage of other attributes while sub-
jects in the ranking experiment not that much. This is in accordance with
results reported in Section 7.3.2, where the detail attribute exhibited the low-
est agreement.
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7.4 Overall image quality and relationships of attributes

Beyond the discussed results, we analyzed the dependencies of overall image

quality on the quality of reproduction of the five evaluated perceptual image
attributes. Our investigations are formulated by means of the experimental
results in five-dimensional functions, namely as the dependence of the overall
image quality on the brightness, the contrast, the color, the detail reproduc-
tion, and the artifacts attributes.

We used different methods to fit functions to the attribute observation scores
receiving the best approximation to the independently observed overall im-
age quality. Using the simplest approach, multivariate linear regression, we
obtained the following result:

OIQ = 0.07 · Bri + 0.37 · Con + 0.06 · Det + 0.36 · Col + 0.21 · Art , (1)

where OIQ is an overall image quality function, Bri , Con, Det , and Col , rep-
resent the quality of reproduction of brightness, contrast, details, and colors,
respectively, all in the interval of [0, 1] (0 meaning the worst reproduction). Art

denotes the artifacts attribute in the interval of [0, 1] (1 meaning no artifacts).
To state how well the model explains the data, we computed the coefficient
of determination: R2 = 0.76. The high value of R2 shows in our case that the
linear regression approach is reasonable (a satisfactory value of R2 for psy-
chophysical experiments is over 0.7). In a second step, we determined which
of the attributes actually contributed to the model. For this, we used the p-
values of each attribute:
pBri = 0.8624, pCon < 0.0001, pDet = 0.0390, pCol < 0.0001, pArt < 0.0001.
The only p-value that is higher than the threshold 0.05 is the brightness at-
tribute, which means that the reproduction of brightness does not significantly
influence the model. Furthermore, we can observe in the equation (1) that the
overall contrast has the biggest weight factor and the detail reproduction the
smallest one. This result may look surprising, as one would expect details to be
more important. However, the global appearance of an image seems to depend
much more on the quality of reproduction of other image attributes (contrast,
color) and this confirms the good results of global TM methods as described
in section 7.3.

The low factor of brightness reproduction deserves special attention – it means
that the brightness factor does not contribute to the proposed linear model.
This could be caused by the fact that there is not a significant difference
in reproduction of this attribute between the methods. However, we have
found a significant difference in brightness already, see Section 7.1. To have
another guideline, we computed the Spearman correlation coefficients between
attributes, see the Table 10. These results show that there is a significant
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OIQ Bri Con Det Col

brightness (Bri) 0.58

contrast (Con) 0.80 0.64

details (Det) 0.66 0.60 0.66

colors (Col) 0.80 0.59 0.77 0.67

artifacts (Art) 0.65 0.43 0.55 0.55 0.56

Table 10
Spearman correlations between the qualities of reproduction of image attributes.

correlation between the brightness quality and the overall image quality. In
the same time (not being in contradiction), the equation (1) suggests that the
impact of brightness quality spreads into the other attributes, it reveals itself
only indirectly. This effect is perhaps the best example that the basic attributes
are very coherent or inseparable. Incidentally, the equation (1) shows which

attributes we should test if we want to compare TM methods. There is no
significant reason to evaluate the brightness since its effect is included in other
attributes. The details quality attribute shows a similar Spearman correlation
coefficient and weight factor in formula (1) as the brightness. However, because
of its very small p-value, it contributes directly to the overall image quality,
in contrast to the brightness.

Finally, we used multiple linear regression to examine the image attribute re-
lations (Fig. 6), with the following results:
Bri = 0.35 · Con + 0.26 · Det + 0.13 · Col + 0.0004 · Art .
R2 = 0.69, pCon < 0.0001, pDet < 0.0001, pCol < 0.0001, pArt = 0.99.
Since the p-value of artifacts is over the 0.05 threshold, this result implies the
idea that image artifacts do not contribute significantly to the perception of
brightness quality.
Con = 0.22 · Bri + 0.14 · Det + 0.49 · Col + 0.12 · Art .
R2 = 0.67, pBri < 0.0001, pDet < 0.0001, pCol = 0.001, pArt = 0.001.
Det = 0.25 · Bri + 0.19 · Con + 0.30 · Col + 0.23 · Art .
R2 = 0.56, pBri < 0.0001, pCon < 0.0001, pCol < 0.0001, pArt < 0.0001.
Col = 0.10 · Bri + 0.50 · Con + 0.23 · Det + 0.12 · Art .
R2 = 0.66, pBri < 0.0001, pCon < 0.0001, pDet < 0.0001, pArt < 0.0001.
Art = 0.08 · Bri + 0.23 · Con + 0.34 · Det + 0.27 · Col .
R2 = 0.39, pBri = 0.99, pCon < 0.0001, pDet < 0.0001, pCol < 0.0001.

Due to rather small values of the coefficient of determination R2 we can not
make a deeper observation from the above equations. However, they show ev-
idence of the relations between the attributes and their approximate weight
factors. Moreover, it is evident that the basic attributes are very hard to sep-
arate. As we predicted in Section 5, there are cross effects, or more complex

33



basic factors, which are not directly observable. However, for the amount of
observation data we have, the linear regression approach is very reasonable
and satisfactory, since we would need extremely large psychophysical experi-
ments (with hundreds of subjects) for non-linear fits with cross effects of image
attributes.

7.5 Comparison to other studies

In this section we discuss and relate our results to other studies. However, a
complete direct comparison is not possible, because we have evaluated more
methods than the previous studies, and the aims of particular studies were
slightly different. We should emphasize that our study was targeted to the
natural reproduction of real scenes. Since our experimental input data are
bound to natural scenes, the global TM methods (and local methods with a
proper global part) were generally ranked better than the ‘detail-hunting’ and
non human vision-aware approaches 7 . Our results show that the quality of
reproduction of overall brightness, overall contrast and colors is much more
important than the reproduction of details when naturalness is ranked in real
scenes.

Still, the good performance of global methods is perhaps the most surprising
result of our study. However, this is in a good accord with a recent psy-
chophysical evaluation performed by Akyüz et al. [14], who show that outputs
of sophisticated TM methods are statistically no better than the best single
LDR exposure. Results of Yoshida et al. [5] also show distinctions between
global and local methods, more specifically global methods performed better
in the reproduction of brightness and contrast, while local methods exhib-
ited better reproduction of details in bright regions of images. Even though
Yoshida et al. claim that local methods perform better, we do not interpret
their results so for the perceptual dimension, since (as one may see) in their
results for naturalness (i.e. overall image quality) the first and the second best
rated (out of seven) methods are global TM curves (Ward97 and Drago03).
In the results of Ledda et al. [11] two investigated global methods performed
averagely, in favor of the iCAM [57] and Reinhard02 methods, but note that
these methods are very strong in their global parts 8 . Looking at the results in

7 Our results show that statistically, global techniques frequently outperform local
TM approaches, even though local methods are generally claimed to perform better.
Evidently this doesn’t hold for all scenes, as can also be seen in our results. However,
this is also a trend which matches our subjective personal experience.
8 iCAM is generally a local method, but the adaptation values (for both luminance
and colors) are calculated using a heavily blurred source image (very wide gaussian),
so that the method has a very strong global part and the method behaves to a big
extent close to a global one.
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the naturalness dimension reported by Drago et al. [4], we do not see the dis-
tinction between global and local methods, since Tumblin99 performs the best,
but Ward97 is interestingly rated the worst. However, we should recall that
observers did not have any reference in this experiment. Contrary to our re-
sults, Kuang et al. [10] report that local methods outperform global methods.
However, basically the only global method that appears in their experiments
is Ward97 with quite compelling results. To sum up: our results imply and
we strongly believe that for a good performance in a perception targeted TM
task, a TM method needs to have a significant global TM part. Then, the
result may be sometimes enhanced using a local part that does not vanish in
the global trend, e.g. [58].

The question of correlation between the accuracy and preference experiments

is also very interesting. Ashikhmin and Goyal [12] demonstrate that using real
environments is crucial in judging performance of TM methods and clearly
show that that there is a difference in subject’s responses for a fidelity test with
reference and without reference. Contrary to that, Kuang et al. [10] report a
very strong correlation between the accuracy and preference experiments and
state that one can use preference experiments in place of accuracy experi-
ments with a real-world reference. Our results are perhaps closer to Kuang
et al., since we did not detect statistically significant differences between the
two performed experiments. However, our results do not exhibit as strong a
correlation as that of Kuang for overall image quality, and specifically not for
overall brightness and reproduction of the details attributes.

Comparing particular method performances is quite tricky, since the results of
TM methods may depend on implementation, and used parameters. Our re-
sults are in a good agreement with the evaluation performed by Drago et al. [4],
where the Reinhard02 method was ranked the best and Schlick94 method
was also ranked quite well. The difference is in Ward97 (histogram-based ap-
proach), where authors deliberately omitted the human-based ceiling function
(we did not) and therefore the method favors the reproduction of details at
the expense of naturalness. The consequences of Kuang et al. [6,8] are also
similar to ours: Fattal02 was considered not very natural while Reinhard02
(photographic mapping) was nearly the best ranked; we did not test iCAM.
The only difference is with Durand02 (bilateral filtering method), which was
ranked the best in Kuang’s study (in our overall ranking Durand02 performed
averagely). We believe this is caused by the implementation of the bilateral fil-
ter, since Kuang et al. use their specific modification of the original algorithm.
We, in accordance with the original method description [9], have compressed
the base layer using a scale factor in the log domain. More plausible global
compression would result in a positively better outcome, but we aimed to
compare purely the original approaches. This supposition is also supported
by the conclusions of Ledda et al. [11], where the bilateral filtering approach
performed the worst while other overlapping methods show perfect agreement
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as well (in the overall similarity test). Similarly to our results, in Yoshida et
al. [5], the best-natural rated method was the Ward97, which is in accord with
our results. The other results could not be compared easily, since Yoshida et
al. tested the values (amount) of attributes while we inquired the reproduction
quality of attributes.

8 Conclusions

In this article, we presented an overview of image attributes for tone mapping
that should facilitate access to the existing tone mapping literature. Since the
attributes are intimately related, we have proposed a scheme of relationships
between them. Moreover, we have proposed a measure for the overall image

quality, which can be expressed as a combination of these attributes based on
psychophysical experiments. We have verified the proposed ideas by means of
two different psychophysical experiments.

The presented overview of image attributes is helpful for getting into the
tone mapping field, or when implementing or developing a new tone mapping
method. On the other hand, the identification of the relationships between
the attributes is very useful for the subjective comparison of tone mapping
methods. For example, we have found that overall brightness need not really
be observed when there are the other attributes available. It also simplifies
the comparison process by reducing the actual number of attributes that can
be used to evaluate a tone mapping method. Finally, it represents the initial
effort to design a truthful, objective comparison metric for high dynamic range
images.

Using the results of two different experimental studies, with three typical
real-world HDR scenes and 14 different tone mapping methods evaluated,
this contribution presents one of the most comprehensive evaluations of tone
mapping methods yet. Although there has been a lot of nice results in the
field of local TM methods published, our results imply that the global part
of a tone mapping method is most essential to obtain good perceptual results
for typical real world scenes.

An interesting and important result of the two different testing methodologies
used (rating with reference and ranking without reference) is that almost all
of the studied image quality attributes can be evaluated without comparison
to a real HDR reference.

The question remains how to numerically assess the quality of reproduction
of particular image attributes. Although some approaches were proposed in
literature [15,28] this area deserves further investigation and perceptual verifi-
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cation. In the future, we will conduct consequential tests targeted on individ-
ual image attributes to be able to computationally assess the overall quality
of tone mapping methods.
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