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Abstract
We introduce a new concept for a geometrically based feature preserving recon-
struction technique of n-dimensional scattered data. Our goal is to generate
an n-dimensional triangulation, which preserves the high frequency regions via
local topology changes. It is the generalization of a 2D reconstruction approach
based on data-dependent triangulation and Lawson‘s optimization procedure.
The definition of the mathematic optimum of the reconstruction is given. We
discuss an original cost function and a generalization of known functions for
the n-dimensional case.

1 Introduction

The continuous reconstruction from discretely sampled data is an important
part of data processing. Reconstruction is necessary to determine values at
arbitrary positions, not just where the data sample is available. Such discrete
data sets can be acquired by digital photography in 2D or computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) in 3D. Another way of data
acquisition is mathematical simulation of certain phenomena used, e.g., in fi-
nite element methods.

In this work we introduce a reconstruction technique based on topological
changes of triangulations. The topology of the resulting mesh is driven by the
features represented in the data. Our optimization process turns an arbitrary
triangulation of discretely sampled data into a feature-preserving mesh.

The most common reconstruction technique for regularly placed data is
convolution-based resampling using reconstruction filters. The drawback is
that the features having other directions than the directions of the applied
1D basis functions are not reconstructed very well. This results in blurry
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artifacts at the border between different features. Geometrically based recon-
struction, denoted as data-dependent triangulation (DDT) was introduced by
Dyn et al. [6]. In Fig. 1 the output from convolution and triangulation based
techniques is shown, at 1000% magnification. This kind of triangulation allows
the generation of inevitable long and tiny triangles to preserve high-frequency
features, and can be applied for any distribution of scattered data. The origi-
nal DDT is limited to two dimensions and its extension to higher dimensions
is not trivial. Its generalization into arbitrary dimension is the main scope of
our work. In volume graphics this method can be applied for reconstruction
using both regular and irregular grids. Therefore the target applications are
tasks, where the reconstruction of sharp features is crucial. In this work we
show the reconstruction results of this technique on regularly placed samples.

Fig. 1. Reconstruction result with bicubic filtering (left), data-dependent triangu-
lation (right) at 1000% magnification.

The contributions of this paper are the following:

• n-dimensional reconstruction using a data-dependent triangulation
approach

• a mathematical definition of the optimal reconstruction using tri-
angulations

• a new cost function and generalization of existing functions.

This paper is structured as follows. In Sect. 2 we briefly survey previous
work on DDT. Section 3 defines basic concepts of n-dimensional triangula-
tions and the problem of the extension to higher dimensions is highlighted. In
the same section the n-dimensional DDT is introduced. Section 4 presents a
feature-preserving triangulation-algorithm and estimates the usability of the
approach. In Sect. 5 we show a number of examples that demonstrate the
effectiveness of our concept. Finally, in Sect. 6 we draw conclusions from the
results and we outline future work possibilities.
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2 Related Work

A general notion for interpolating given scalar data over an n-dimensional
domain is called scattered data interpolation, and mathematically can be ex-
pressed as:

F (xi,1, xi,2, . . . , xi,n) = zi , i = 1, . . . , m ,

where V = {Vi = (xi,1, xi,2, . . . , xi,n) ∈ Rn} is a set of not all cohyperplanar,
distinct points in the domain space, and zi are the measured data values.
The goal of the reconstruction is to evaluate the function value F (x) for an
arbitrary point of the domain. In the rest of this section we give a short review
of the related research work done in this field.

Data-dependent triangulation (DDT) is a geometrically based reconstruc-
tion technique developed by Dyn et al. [6]. It is a special case of optimal
triangulations. A general survey on optimal triangulations was done by Bern
and Eppstein [2]. DDT fits the measured data values with a triangle mesh,
creating a piecewise linear interpolation. In contrary to other mesh generation
methods, it maps the alignment of edges to the underlying data and organizes
the simplicial structure into a feature-preserving mesh. The quality of the re-
sulting triangulation is defined through a special function called cost function
and the optimization process. Several algorithms have been developed and dif-
ferent optimization techniques have been applied to generate DDT in the 2D
case. A genetic optimization technique was introduced by Kolingerová [10].
The DDT technique combined with simulated annealing was first introduced
by Schumaker [18]. Typically, the above mentioned approaches assign the cost
function values to the edges in the triangulations. Brown [4] came up with cost
assigning to vertices. This idea is called vertex-based DDT, and it is a useful
improvement of the basic approach.

The application of the DDT to image reconstruction has been done by
Yu et al. [22]. Improving the image reconstruction quality has been the scope
of our previous work [21]. Kreylos et al. [11] used DDT for image compression
with a mesh decimation process, based on a simulated annealing optimization
technique. A real-time version, limited to regularly placed image data was
presented by Su and Willis [20]. The results from this simplified version are not
as convincing as from other triangulation-based techniques. Battiato et al. [1]
used the concept of a triangulation-based technique for creating vector format
images from raster data.

Feature-preserving triangulations for volume data sets with a mesh refine-
ment technique was studied by Marchesin et al. [14] and Roxborough and
Nielson [17]. Both methods are based on the longest edge split approach.
Other reconstruction techniques are numerical methods applicable for scat-
tered data reconstruction, like C1 methods in the 3D case by Nielson [16].
These techniques are not as good as a polygonal representation, which has
better visual structuring and easier handling when compared to an analytical
description.



4 Z. Tóth, I. Viola, A. Ferko, and M. E. Gröller

An initial approach to extend DDT to 3D has been proposed by Lee [13].
Lee used the simulated annealing technique to get an optimal data-dependent
mesh. This may result in artifacts, as we will show later in Sect. 5. In the
literature, there is no description of the n-dimensional case. In the following
section we introduce the general approach to n-dimensional triangulation.

3 N -dimensional Triangulation

A correct description of triangulation in arbitrary dimension requires to use
some definitions from simplex theory. We selected Edelsbrunner‘s and Shah‘s
terminology [7].

The convex hull (conv) of k+1 affinely independent points in Rn, marked
as set T , is a k-simplex, denoted by σT , where 0 ≤ k ≤ n. For subsets U ⊆ T ,
simplices σU are called faces of σT . A collection of simplices, K, is a simplicial
complex if:

(i) The faces of every simplex in K are also in K .
(ii) If σT , σT ′ ∈ K, then σT ∩ σT ′ = σT∩T ′ .

Let V be a finite point set in Rn. Usually a triangulation of V is defined
as a simplicial complex so that V is the set of 0-simplices (vertices) and the
underlying space of the complex is the convex hull of V. A simplicial complex
K is a triangulation of V if:

(i) Each vertex of K is a point in V .
(ii) The underlying space of K is conv(V ) .

The content of the n-simplex is its generalized volume (in 2D area, in 3D
volume, etc.).

From the definition of the triangulation above we can see that it is a C0

continuous reconstruction. The number of possible valid mesh configurations
is exponential in the number of elements in the discrete data set.

Traditional (not data-dependent) triangulations usually avoid the genera-
tion of long, bad shaped k-simplices (triangles), because these simplices are
not well suited for finite element methods used in simulations. However, such
simplices are very suitable for reconstruction of areas where a function has
high derivatives in one direction as compared to other directions. In images
(2D domain case) such areas correspond to edges, in volume data (3D domain
case) to surfaces of volumetric features. Our goal is to reconstruct feature
boundaries sharply and to correctly use a reconstruction grid which adapts to
the underlying data structures.

In Fig. 2 a part of an image with a boundary between two constant regions
is shown. The reconstruction process first converts the image into a height-
field representation based on the underlying sample (pixel) values. The height
represents the intensity value at a particular pixel position. The initial trian-
gulation is iteratively optimized in order to preserve the feature boundaries.
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The differences to the initial mesh appear only close to the feature boundary.
Figure 2 shows of the final height-field of the feature-preserving triangulation.

Fig. 2. Shape of the triangles at the border between different features.

In DDT applications cost functions are used to control the shape of the
resulting mesh. The task of the optimization process is to improve the mesh
via topological changes with regard to the cost function. Cost functions in
2D can be assigned to vertices (vertex based DDT), to edges, or to triangles.
Most of the existing functions are defined for edges. Generally, cost functions
assign a cost to every k-simplex in the triangulation, according to some local
(not strictly geometrically based) property, where k = 0, . . . , n and n is the
dimension of the domain space of the scattered data.

Different triangulations in 2D have the same number of edges. Thus,
a topological change can not alter the number of edges in 2D. The goal of
the reconstruction is to minimize the sum of the cost function weights of
particular simplices. We get a structurally identical problem to the minimum-
weight triangulation-problem [8], where the task is to find the triangulation
with the minimum cost:

cost(Koptimal) = minK∈Ω(
∑

e∈K(cost(e)))

Koptimal is the triangulation generating the minimum sum among all possible
configurations marked as Ω and e are simplices assigned with the cost function.
The NP-hardness of this problem was shown by Mulzer and Rote [15]. Only
its approximation can be computed in polynomial time. In previous work the
global optimum for DDT was not defined and various heuristics were used for
local improvements [11, 22].

A generalization to higher dimensions based on a constant number of sim-
plices (edges in the 2D case) is not straightforward. The number of simplicial
components of the n-dimensional triangulation in 3D and higher dimensions
depends on the specific triangulation. For example if in 3D we decide to assign
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costs to faces (2-simplex), the sum changes not only due to the optimization
steps but also depends on the number of faces in the triangulation (see Fig. 6).
It is necessary to find a solution independent of mesh-connectivity changes.
A vertex-based DDT satisfies this criterion, because the number of vertices
(0-simplices) remains unchanged. However, designing a cost function for the
vertex-based approach is not an intuitive task even in the 2D case. In higher
dimensions this becomes even more difficult.

Our solution is based on the observation that the convex hull of the scat-
tered points also remains unchanged. This means that the content is constant
irrespective of the triangulation, and the task of reconstruction can be for-
mulated as follows: the optimization process in the n-dimensional case should
assign low weights to n-simplices which are well aligned with the underlying
data. This means minimizing the weighted volumes of n-simplices summed
over the entire space of the convex hull. The exact mathematical description
is given as follows:

cost(Koptimal) = minK∈Ω(
∑

σn∈K(V (σn) · w(σn)))

σn is an n-simplex, V (σn) is its content, and the assigned weight function
is w(σn). Koptimal is the simplicial complex with minimal weighted volume
in the set of possible configurations denoted as Ω. This observation is useful
only if we can easily and intuitively find feature-preserving weight functions.
A simple approach can use the variance property for weight assignment. Such
an idea can be based on the preservation of low variance regions. Therefore
the generation of (n−1)-simplices (faces) with low variance is preferred. This
implies a weight function based on the variance of the function values in the
n-simplex

w(σn) = V ariance(zn1 , zn2 , . . . , znn+1) ,

where w(σn) is the weight function for the σn n-simplex and zni , i =
1, 2, . . . , n + 1 are the known function values in the simplex vertices. Fig-
ure 3 illustrates the example of a 3D domain case of a triangulation on a
given surface. If the second type of triangulation will be chosen (see Fig. 6
image on the top right), the weighted volume value will be higher.

Fig. 3. Example of correct tetrahedralization according to the face variance.



N -dimensional Data-Dependent Reconstruction 7

Another useful property of triangulations in arbitrary dimensions is that
(n − 1)-simplices not lying at the boundary of the convex hull are exactly
shared with two n-simplices. In 2D triangulations each interior edge is shared
exactly by two triangles, in 3D each interior triangular face is shared exactly
by two tetrahedrons, etc. This allows us to generalize most of the known cost
functions from the 2D case for the (n − 1)-simplices. Each n-simplex con-
tains (n+1) of (n− 1)-simplices, for which the generalized feature-preserving
cost can be evaluated. Averaging of these values gives a feature-fitting weight
function for our technique. We illustrate this on a concrete cost function gen-
eralization to arbitrary dimensions. We have chosen a cost function from the
2D case with the most convincing result, i.e., Sederberg‘s cost function [22]. In
Fig. 4 the cost function dependency for DDT is shown over a planar domain.
T1 and T2 are triangles on the generated piecewise linear surface. They share
a common edge, denoted as e. Sederberg‘s cost function is based on the angle
α between the gradients of the planes containing triangles T1, T2, weighted by
the magnitude of the gradients:

cost(e) = ‖ � P1‖ · ‖ � P2‖ · (1 − cos(α)) = ‖ � P1‖ · ‖ � P2‖ −�P1 · �P2

�P1, �P2 are the gradients of the planes containing T1, T2, and ‖P1‖, ‖P2‖
are their magnitudes. Angle α is the angle between these gradients.

x

y

F( , )x y

e

T
1

T
2

V
1

V

V
3

V
4

( , )x y
1 1

( , )x y
2 2

( , )x y

( , )x y
4 4

2

3 3

Fig. 4. Illustration of geometric dependencies in 2D data dependent triangulation.

Its straightforward generalization to higher dimensions looks as follows:

cost(σn−1) = ‖ � P1‖ · ‖ � P2‖ −�P1 · �P2 ,

where linear polynomials P1(x ) and P2(x ) represent the hyperplanes. These
hyperplanes are calculated from the n-dimensional domain and the function
values of the data function:

Pi(x ) = ai,1x1 + ai,2x2 + . . . + ai,nxn + ai,n+1 , i = {1, 2} .

�Pi is the gradient of the hyperplane, and ‖ � Pi‖ is the magnitude of the
gradient:

�Pi = (ai,1, ai,2, . . . , ai,n) , i = {1, 2} ,

‖ � Pi‖ =
√

a2
i,1 + a2

i,2 + . . . + a2
i,n , i = {1, 2} .
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With the help of these generalized cost functions we can describe a feature-
preserving mesh, as follows:

w(σn) =

∑
σn−1∈σn

cost(σn−1)

(n + 1)

σn is an n-simplex and w(σn) is its weight function. The generalized cost func-
tions of the (n − 1)-dimensional subsets (faces) of this simplex are averaged.
The (n − 1)-simplices are marked in the sum as σn−1.

Other geometrical properties can also be involved in the weight function
design. On the basis of the shape of (n − 1)-simplices we can consider their
weighted sum instead of the unweighted sum. Having feature-fitting weight
functions the task is to solve the construction of an optimized mesh. This
problem is treated in the next section.

4 Content-Based Data-Dependent Reconstruction

As we mentioned earlier, the feature-preserving property of the reconstruction
technique is achieved by specific quality-improving operations on the topology
of the triangulation. In 2D this kind of topology transformation is called edge
flip and it changes the topology as follows: In Fig. 4 the edge e can be replaced
with the edge V1 −V3 if the four vertices form a strictly convex quadrilateral.
Via flip improvements the cost of the triangulation is decreased iteratively,
and we are getting a feature-preserving mesh. The 2D triangulation algorithm
based on this idea is called Lawson‘s optimization process [12].

In higher dimensions the notion of an edge flip generalizes to bistellar flips.
Bistellar flips include removals from and insertions into triangulations. We are
interested only in such transformations where the number of vertices does not
change. This general topological operation is based on Radon‘s theorem from
convex geometry [7]. Each transformation can be interpreted as a projection
of a simplex into a lower dimension. The views of the simplex from antipodal
points of view in the direction of the projection introduces the two configu-
rations, before and after the flip, as is illustrated in Fig. 5. For example if we
project a tetrahedron into a plane we get an edge flip. Projections which cause
degeneracies in the projected complex can be interpreted as bistellar flips of
lower dimension in the simplex (of lower dimension) where the degeneracy
occurred.

Let us describe the set of bistellar flips in 3D:

• A face can be changed into an edge as is illustrated in Fig. 6 (top
part). This is called a 2–3 flip.

• An edge can be changed to a face as is illustrated in Fig. 6 (top
part). This is called a 3–2 flip.
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A

BnD ( -1)Dn( -1)Dn

Fig. 5. Illustration of the bistellar flip. A and B are the antipodal points of view
of the projection of an n-simplex (center) to a lower dimension (left, right).

• A degenerate case occurs when six vertices form four adjacent
tetrahedrons with one common edge as is illustrated in Fig. 6 (bot-
tom part). If four of these vertices are coplanar and the remaining
vertices are divided by this plane, there are two possible ways how
to tetrahedralize this structure. This operation is called 4–4 flip.

In higher dimensions the situation is the following:

• Let us consider an n-dimensional space, and a simplicial complex
M of n-simplices which share a common edge. If M has n + 2
vertices and forms a convex space then there exist exactly two
triangulations of M. One that includes the common edge and one
that instead includes a hyperface formed by the vertices not related
to the removed edge.

• All other possibilities are degeneracies and can be described as
bistellar flips in lower dimension.

Unlike in the 2D case it is not proven that with these bistellar flips one
can get from an arbitrary triangulation to any other possible configuration.
To our knowledge it is proven only in the 3D case when triangulating a convex
polytope [3].

Another possibility for mesh improving is to investigate more complex
topological transformations, like the edge-removal operation in the 3D case.
It is a transformation that removes a single edge from the mesh along with all
tetrahedra that contain it. This operation can be composed from a series of
bistellar flips, but in that way the optimalization can get stuck in local optima.
An effective implementation was discussed in the work of Shewchuk [19].

To make our concept more general we define the set TK of topological
transformations of triangulation K. The members of this set can be selected
arbitrarily. Reconstruction will be done considering the members of this set.
Good reconstruction results can be expected from a set of TK, that gener-
ates all possible topological transformations at the given dimension. We are
interested in those topological operations, which remove a specific k-simplex
k = 1, . . . , n−1 and change the topology of n-simplices containing the removed
k-simplex.
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Fig. 6. Illustration of the 2–3 flip and 3–2 flip topological transformations (top
image) and the 4–4 flip topological transformation (bottom image).

Let us have a triangulation K for the n-dimensional domain. The k-simplex
k = 1, . . . , (n − 1) is locally optimal with regard to TK and to a given cost
function if:

• the k-simplex cannot be removed from the triangulation by apply-
ing one of the topological transformations from TK

• there is a topological transformation in TK that removes the
k-simplex (let us denote this k-simplex as flippable), but the tri-
angulation cost does not decrease after the applied changes.

Triangulation K is locally optimal if topological transformations from TK can-
not improve its weighted content.

We introduce the generalization of Lawson‘s algorithm which creates lo-
cally optimal DDT. The pseudocode of the algorithm is presented in Fig. 7. At
first an initial triangulation is generated, as it is written in line2. We suggest
for this purpose the Delaunay triangulation. The initial triangulation should
connect each vertex with its closest neighbors. Due to the duality with Voronoi
diagrams, the Delaunay triangulation satisfies this criterion. Creation of good
initial triangulations speeds up the running time, as the algorithm needs less
iterations to converge to a locally optimal solution. For image and volume
data-reconstruction this means the following: The optimization process will
leave the initial triangulation unchanged in low frequency areas, only in high
frequency areas it will generate long feature-preserving simplices.

After creating the initial triangulation its weighted content is evaluated
in line3. The oldCost variable is used to store the triangulation cost of the
previous iteration step. Two lists are initialized in line5 and line6. Listactive
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contains all the simplices whose local optimality is tested in the given itera-
tion step. In the beginning this list contains all 1, . . . , n − 1 simplices of the
triangulation K. The second list Listcandidate is the container of simplices
whose local optimality could change due to the applied transformations from
TK. We denote these simplices with σk. At the beginning of the optimization
process Listcandidate is set to empty. In a given iteration local optimality of
the members of Listactive are tested. If there exists a cost-reducing topologi-
cal transformation from TK then it is applied. The tested simplex is removed
from Listactive. Into Listcandidate those simplices are added whose local opti-
mality could change. At the end of each iteration step Listactive is empty and
Listcandidate contains all the simplices that will be tested in the next iteration
step. The algorithm stops, if the triangulation cost did not improve in the last
iteration step. This procedure results in a locally optimal triangulation K with
regard to a set of topological transformations TK and a given cost function.

It is evident that the described algorithm stops after a final number of
iteration steps. In each step we decrease the overall cost of the triangulation
and the number of possible triangulations is finite. The described idea of
a weighted content-based DDT can be used with other optimization techniques
also. It is possible to construct a simulated annealing, look-ahead, or genetic
optimization approach based on this idea.

5 Experiments and Results

DDT triangulations can be computed by stochastic processes. Such a tech-
nique is the simulated annealing optimization approach. Its usage can improve
the approximation level of the algorithm to achieve results which are closer
to the global optimum than the described generalized Lawson‘s optimiza-
tion process. However, according to our experience simulated annealing does
not create convincing results. The initial stages of simulated annealing ap-
ply topological transformations on the mesh which increase the cost of the
triangulation. This results in long, bad shaped simplices in areas without
high-frequency features. Our goal was to create these bad shaped simplices
only at high frequency areas. In Fig. 8 a comparison between results from
Lawson‘s optimization process and the simulated annealing technique is de-
picted, both using Sederberg‘s cost function. The reconstruction is displayed
at 600% magnification. The mesh of the resulting triangulation and the re-
constructed 2.5D terrain are also shown. In low frequency areas (e.g., cheek
area below the eye) simulated annealing creates long and tiny triangles. Their
generation is in this case undesired. From the mathematical point of view
this observation for image and volume data reconstruction can be formulated
as follows: A high-quality reconstruction should give a good approximation
of the minimum-weight triangulation, but should not change the topology in
low-frequency regions.
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Generalized Lawson‘s optimization process
Input: scattered data
Output: locally optimal triangulation

1 begin
2 create the initial triangulation K;
3 Cost = cost(K);
4 oldCost = Cost + 1;
5 Listactive = {∀σk ∈ K, k = 1, . . . , n − 1};
6 Listcandidate = ∅;
7 while (Cost < oldCost)
8 {
9 for (Listactive members)
10 {
11 if (not locally optimal)
12 {
13 apply transformation from TK;
14 remove from Listactive;
15 for (σk whose local optimality could be changed)
16 {
17 if (σk is not member of Listactive and Listcandidate)
18 add σk to Listcandidate;
19 }
20 }
21 else
22 remove σk from Listactive;
23 }
24 oldCost = Cost;
25 Cost = cost(K);
26 Listactive = Listcandidate;
27 Listcandidate = ∅;
28 }
29 locally optimal K created;
30 end

Fig. 7. The pseudocode of the n-dimensional DDT algorithm.

In Fig. 9 a comparison between a convolution based approach – trilinear
interpolation, and DDT in 3D – using the generalized Lawson‘s optimization
with bistellar flips and the variance-based weight function, is shown. The
artificial test data set was a sphere embedded into a cube at 32 × 32 × 32
resolution. One can see that the surface of the sphere is reconstructed better
by the DDT approach.

In Fig. 10, we have reconstructed the hydrogen dataset of resolution
32 × 32 × 32. In the left image trilinear reconstruction has been used which
resulted in clearly noticeable staircase artifacts. These artifacts are eliminated
in the right image, where the DDT-based reconstruction scheme has been ap-
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Fig. 8. Results from Lawson‘s optimization process (upper row), and from sim-
ulated annealing (lower row) at 600% magnification. The last column shows the
triangulation of the height field.

Fig. 9. Results from trilinear interpolation (left), and from the generalized Lawson‘s
optimization DDT approach with the variance-based weight function and bistellar
flips (right).

plied. This observation indicates the superiority of feature-preserving DDT
reconstruction over traditional trilinear interpolation.

The implementation of the 3D DDT was done with the CGAL 3.1 li-
brary [5]. For the rendering of the datasets the VTK 5.0 library [9] was used.
This software tool works with both structured (rectilinear) and unstructured
grids. The possible differences caused by the usage of different renderers are
minimized in this way.
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Fig. 10. Hydrogen dataset: The left image shows the result from trilinear inter-
polation suffering from noticeable artifacts. The right one shows improved results
achieved by DDT-based reconstruction with the bistellar flips and the variance-based
weight function.

In Sect. 3 two types of weight functions have been described: the variance-
based approach and an approach based on the generalization of existing cost
functions to higher dimensions. There is a significant difference between these
techniques. The variance-based weight function is clearly a C0 continuous
approach and depends only on the data values from the tested n-simplex
vertices. The weight function based on generalized cost functions has different
properties. It depends on the data values from the tested n-simplex vertices
and on the vertices of n-simplices which share with the tested one a common
(n−1)-simplex. For this reason these weight functions can be classified as near
C1 continuous weight functions. Because of this difference the running time
of the DDT with the variance-based cost function is lower than the running
time of the DDT with generalized cost functions. The reason is that the weight
function evaluation is computationally cheaper, and the number of simplices
whose local optimality could change is smaller.

6 Conclusions and Future Work

We have introduced a new method using topological changes for n-dimensional
data-dependent triangulation. This enables a better visualization of the local
topology of sharp features both for regular and sparse grids in arbitrary di-
mensions. The topology of the reconstruction grid is driven by the topology
of the underlying data. The potential of this new reconstruction technique
results in many future work directions:
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Our feature preserving triangulation can be used for data compression.
If we assign a cost to vertices we have information about how important the
vertices are. With mesh decimation techniques the non important vertices can
be removed.

A straightforward use of the described technique for the reconstruction of
time-varying volume data is possible. Here reconstruction errors from known
image processing methods are more disturbing than in a static reconstruction.

Optimal triangulations in 2D are relatively well explored. Higher dimen-
sional optimal triangulations represent a novel area for investigation. We hope
that our contribution improves the theory in this research area and its appli-
cation provides a new tool for practical scattered data reconstruction.
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