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Abstract

High dynamic range imaging is an emerging technology, which tries to over-

come the limitations of conventional photography and film equipment. There-

with it is possible to capture high contrast scenes without clamping effects.

In order to present such scenes on conventional displays it is needed to have a

method for somehow converting the high-contrast values into the range [0,1]

preserving visual impression. This operation is called tone mapping.

Though most of the tone mapping operators are fast, they are not fast

enough to be directly used in real-time applications. Implementations pre-

sented until now have a trade-off in terms of perceivable quality to gain this

aim. This work presents an optimized operator, which is able to process data

in real-time without loosing quality using selective rendering techniques.

Kurzfassung

In den letzten Jahren wurden Methoden entwickelt um Szenen mit hohem

Dynamikumfang aufzunehmen. Diese Technik wird HDR (vom englischen

’High Dynamic Range’) genannt. Die dabei enstehenden Bilder können aber

nicht auf herkömmlichen Bildschirmen dargestellt werden. Dafür ist eine Ska-

lierung notwendig, welche die Werte in den Bereich [0,1] abbildet und dabei

den visuellen Eindruck der Szene bewahrt. Dieser Vorgang wird Tone Map-

ping genannt. Um Details einer Szene besser herauszuarbeiten ist sog. lokales

Tone Mapping notwendig. In dieser Arbeit präsentieren wir Otimierungen

um lokales Tone Mapping mit Hilfe des Grafikprozessors ohne erkennbare

qualitative Abstriche in Echtzeit durchzuführen.
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Chapter 1

Introduction

There is nothing new under the sun
but there are lots of old

things we don’t know

Ambrose Bierce

This work is about accelerating local tone mapping by exploiting compu-

tational power of the graphics processing unit (GPU) and a technique called

selective rendering which is based on psychophysical properties inherent to

the human visual system.

Attempts to accelerate local tone mapping always had a trade-off in terms

of quality. Most of the optimizations were done in resizing input data or

reducing the number of passes.

This is not a problem as long as the size of the display stays small. When

comparing the output of such real-time operators with the results of their

reference implementation, differences, like missing details, can be recognized.

We propose another approach for accelerating local tone mapping on the

GPU. We therefore use a model which is called saliency-based rendering.

Recent publications show, that this principle can be adapted for rendering

algorithms which have a high amount of computations to be done on a per-

pixel basis, e.g. ray-tracing. These processes can be optimized by selecting

the salient regions and process them in high quality, while the rest of the

(non-salient) pixels are processed in low-quality. The saliency map is based

on a first small preview rendering. This map is then used as an input for

5



CHAPTER 1. INTRODUCTION 6

the high-quality rendering pass, which is able to differentiate on a per-pixel

basis.

In this work we first explain the basics of the human visual system, which

are needed to understand the problem of contrast compression, effects caused

by the visual system and perceptual-based rendering.

HDR images and movies have to be somehow taken or generated, which

leads us to the problem of acquisition in the following section. An explanation

about the tone mapping process especially in terms of real-time applicability

and perceptual rendering is done afterwards.

An overview about related work will be presented in chapter 3. It is con-

cerned with published articles, related to tone mapping and aforementioned

topics. We will describe the implementations we used as a basis in more

detail.

We then present the concepts of our implementation, showing a general

approach of how to optimize local tone mapping operators without noticeable

loss of quality, followed by a presentation of results we retrieved, comparing

several configurations and their performance. A short summary, conclusion

and possible future work closes the work.

Related to this work, we have a patent pending with Application No. GB0709392.5,

see [ARCC].



Chapter 2

Background

What I give form to in daylight
is only one percent of what

I have seen in darkness

M. C. Escher

2.1 Human Visual Perception

Light moving through space can be seen as particles, called photons or waves

having a certain wavelength. The so called visible spectrum of light lies be-

tween 400 to 700 nanometers (nm). The human eye interprets the spectrum

of visible light, depending on its wavelength.

Color is just a representation of light-waves in our brain or as Sir Isaac

Newton formulates: “Indeed (light) rays, properly expressed, are not col-

ored“. Beside other representations, color can be described in terms of chro-

maticity and luminance. Chromaticity stands for the “colorfulness“, while

luminance represents the gray scale-level or perceived brightness of a certain

area. Given as absolute unit, luminance is often measured in cd/m2.

Fig. 2.1 depicts the basic structure of the eye. The light enters at the

cornea and is projected through the lens and the vitreous humour onto the

retina. The retina houses two types of optical sensors - rods (about 100

millions) and cones (about 7 millions). Their ability to adapt to light are

7



CHAPTER 2. BACKGROUND 8

different, 0.4 sec for the rods and 0.1 sec for the cones. Rods and cones

have their own ideal conditions of operation: while the cones best operate

at daylight and dim light, they start to loose their sensitivity at 3.4 cd
m2 and

become completely insensitive at 0.03 cd
m2 , where the rods are dominating, see

fig. 2.2. The central place of the retina, called macula, houses the majority

of cones. This area is responsible for sharp and detailed vision.

There are three types of cones, each having a distinct response curve

[Poya] and [Poyb]: the S, M and L1. The combination of the three response

curves makes up the impression of color. The three types are not equally dis-

tributed, which explains the differences perceiving the three color channels,

see fig. 2.3.

The rods are the second type of visual sensors in our eyes. They are

responsible for night vision. Rods are not able to recognize colors, which is

the reason why we are not able to distinguish colors in dark areas. They also

have short-comings related to recognizing details.

When changing from a dark room to sunlit surroundings, our eyes need

some time to adapt to the outdoor scene, as well as vice versa. Imagine

sitting in a dark room, just lit by some external tungsten light and watching

TV. When we concentrate on the TV set, everything else around the image

gets near black. When we look away from the display and look around the

room, things will be noticeable after some time - while the TV set seems now

to be very bright. This adaption process makes it possible for us to visually

perceive our surroundings at varying lighting conditions.

Contrast describes the ratio between the darkest and the lightest intensity-

value. See (table 2.1) for examples of different medias. All of them have a

relatively low contrast compared to the sun or the human visual system in

common. The limitations inherent to conventional imaging equipment lead

to a degradation of details, caused by clamping and/or linear scaling (adap-

tion) of the values to fit in the display-able range.

Painters are confronted with the same problem since beginning of their

art - how to depict high contrast scenes on paper, which has only a fraction

1S, M, L represent short (blue), mid (green) and long wavelength (red)
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Figure 2.1: The human eye, taken from [wik]

Figure 2.2: Luminance ranges of the different visual modes, taken from [FPSG]

Contrast

Newspaper 1:30

Computer monitor 1:100

Analog Camera film 1:1000

Perceivable by human eye 1:10000

Table 2.1: Typical contrast ratios
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Figure 2.3: Response curves of the three different types of cones. Data can be
downloaded from [cvr]

of the scene’s dynamic range? They overcome the natural limits in con-

trast by clever arranging layers of paint - from coarse to fine, emphasizing

local contrast and edges by strong opposing colors. They try to “compress“

the contrast while preserving the natural appeal of the depicted scene. An

example is Monet’s “Impressions at Sunrise“ (fig. 2.4). The colors of the

surroundings seem to be very dull and dark. Monet emphasizes depth by

blurring more and more. The sun and the reflections on the sea are in stark

contrast to the rest of the scene. In terms of brightness as well as in terms

of color. The opposing colors seem to further accent the sun.

One of the first attempts to retrieve a higher dynamic range in photogra-

phy has been done by Sergei M. Prokudin-Gorskii at the beginning of the 20th

century. He designed his own camera and projection-system, which allowed

colored photographs of high quality by using monochromatic film only. He

captured every color channel separately by using red, green and blue filters.

He then projected these three photographs combined using three aligned

projectors, each equipped with a filter. By changing the light source of each

projector he was able to balance the channels to achieve a colorful and vivid

picture, which had higher contrast than comparable single film methods.
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Figure 2.4: Monet’s “Impressions at sunrise“ shows the effect of combining com-
plement colors to revive the effect of strong contrast. The sun really seems to
“burn“ compared to the rest of the scene. Other impressions are also taken into
account, like the blurring due to fog on the left side of the painting

Nowadays, automatic exposure-meter systems of photo cameras allow to

select the right “frame“ of contrast which the image has to be taken with.

Because of limited contrast inherent to the film material, it does represent

only an amount of the real scenes contrast. The camera photographing Buzz

Aldrin on the moon (fig.2.5) referred to the sun’s light intensity, which is re-

flected by the moon surface. This caused the stars to be completely invisible.

The solution is to take more than one picture of the same scene, each with

different exposure time, e.g. -2EV, 0EV, and +2EV2. This is called exposure

bracketing - the sequence of produced images is called exposure latitude, see

fig. 2.6. The photograph with the lowest exposure time will be very dark,

only bright details will be noticeable. Going to the image with the highest

exposure time, everything will be very bright, light elements will produce a

streaking effect while dark details are are made visible.

2EV means Exposure Value. Zero EV is the exposure time, measured by the camera’s

sensor. Negative numbers mean underexposure, positive overexposure.
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Figure 2.5: Buzz Aldrin on the moon, conducting a seismic experiment - Where
are the stars? Image is taken from [nas]

Ansel Adams formulated and perfected this method as the zone system

[Adaed]. The images are then combined with a technique called “dodging and

burning“: During film development, regions are masked out while the rest

of the film is further processed. Parts of the photograph can be emphasized

or suppressed, details can be worked out, accentuating the image more. The

result is a photograph, which corresponds more to the human visual system,

which adapts to local contrast.

Figure 2.6: Exposure latitude
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Figure 2.7: Scene depicted with conventional and HDR method

2.2 HDR Data Acquisition

The introduction of high dynamic range imaging (HDRI) to computer graph-

ics stems from the need to model the influence of “real“ light on artificial

objects in a natural way [GC84]. Therefore physical based values are used,

which usually exceed the displayable range of [0.0, 1.0].

High dynamic range data can be acquired differently - the most prominent

methods are:

• Rendering with an HDR aware system

• Combining multiple exposures (exposure bracketing)

• Film scanning

• HDR capture devices

When creating realistic-looking artificial scenes with rendering systems,

physical based lighting is crucial. Lighting simulations, rendered objects

copied in real movies, etc. cannot be done plausibly without HDR output.

One early example is the Radiance [War] rendering system, which also intro-

duced on of the first HDR image file format [War92].

Most of the HDR images available and nearly all HDR images presented

in this thesis, are taken using multiple exposures, called exposure bracketing.

This system originally stems from analog photography and was described by

Ansel Adams [Adaed]. The basic idea is similar to film scanning - we change



CHAPTER 2. BACKGROUND 14

the exposure time of the camera, thereby creating an exposure latitude. It

is best to use a tripod and a remote control to avoid shaking. Mostly, it

is enough to take three photos of the scene. The exposure is then modified

from short (-2 steps), over normal (0 steps) to long (+2 steps), capturing

the scene with different lighting intensities. While the short exposure time

emphasizes very bright details in the scene, long exposure works out the dark

details. Those exposures are then combined with software like pfstools [hdr]

into one single HDR image.

Compared to conventional digital media, analog film has a higher con-

trast. Scanning the film by using different light intensities, it is possible to

capture the whole dynamic range on one digital HDR image. This method

is comparable to exposure bracketing.

First native HDR capturing devices are commercially available. The

surveillance camera SMaL by Cypress Semiconductor is an example. Since

their large contrast differences between outdoor and indoor, door entrances

are a preferred field for HDR enabled installments. Thereby it is possible

to capture both sceneries at the same time without loss of information and

need for further adjustments.

2.3 Tone Mapping

Tone mapping is the process of somehow scaling a high contrast scene to

obtain a low dynamic range (low contrast) representation, usable for con-

ventional displays. Otherwise the image is clamped to [0,1]. Depending

on the domain the operator is using, we differentiate between three types

[RWPD06]:

• Frequency-based

• Gradient-based

• Spatial-based

Since the spatial domain is best suited for implementing on the GPU, we

don’t further discuss the other two domains here and redirect the interested

reader to [RWPD06], [LW02] and [TT99] for further informations.
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The spatial domain operators can be divided into global and local oper-

ators, depending on the scaling they apply. Global operators tone-map the

image using the same value for all pixels, while local operators select the

scaling value, based upon the examined pixel’s neighborhood. Since global

operators only apply a unified scaling, they only need one rendering pass,

which makes them favored for real-time applications. The easiest method

is linearly scale (see fig. 2.9) all pixels of the image by the maximum lu-

minance: lum = LUM/LUMmax. While this method is the fastest, it has

two big limitations: most of the details in the image will vanish, especially

in darker regions. The other problem is that it is not adequate to human

perception by any means. The visual impression of the result will totally

differ from the impression given by the real scene.

Since our work is concerned with accelerating local operators exclusively

we will not further discuss global operators. From now on, we use the term

“tone mapping operator“ as an equivalent for spatial local tone mapping

operator.

Nearly all of the tone mapping algorithms operate on the luminance rep-

resentation of the image. Therefore the HDR RGB3 image is first converted

to luminance with eq. 2.1. The different coefficients are due to the varying

response curves of the cones. This representation is then “compressed“ by

a tone-mapping method. The tone-mapped luminance is then used to bring

the original RGB into the [0, 1] range to obtain the low dynamic range (ldr)

representation of the image, see alg.1.

LUM = 0.2126 ∗ R + 0.7152 ∗ G + 0.0722 ∗ B (2.1)

Therefore most of the local algorithms build up an image pyramid (e.g.

Gaussian pyramid), consisting of layers of iteratively filtered versions of the

original image. This pyramid is then used to extract important features by

somehow comparing the levels against each other. Obviously, this process is

computationally costly compared to global tone mapping.

3We denote high dynamic range (respectively low dynamic range) magnitudes in up-

percase (respectively lowercase)
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Figure 2.8: Nave.hdr with selected scan-line (red)

Figure 2.9: LUM scan-line of nave.hdr compared with two naive methods of
bringing HDR images into displayable range of [0.0,1.0]: clamping LUM (blue)
and linear scaling LUM (green). Note that the red scan-line is also clamped at 2.
Its maximum is at 653
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Algorithm 1 Generic local tone mapping
convert RGB ⇒ LUM

for each pixel do

for s=1..NUMITERATIONS do

examine neighborhood with radius s

set pixel’s adaption Ladaption according to some criteria

end for

end for

scale LUM by previously computed adaption map

recombine RGB to retrieve tone-mapped rgb

Figure 2.10: Global vs. local tone mapping
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2.4 Visual Effects

Visual effects are evoked by the construction of the eye and extreme lighting

conditions. We will describe here some of the visual effects, like glare, loss of

acuity and scotopic vision.

Glare, the effect of veiling luminance around edges of strong light, is

caused by scattering of bright light within the eye. Glare prevents the eye

from perceiving the scene in a precise way. Instead it causes a blurred im-

pression, especially at the edge of the light source’s corona. This effect is also

reproducible with a conventional camera, when capturing a scene against the

sun (fig. 2.11).

The transitional region from photopic to scotopic vision causes loss of

acuity when perceived surroundings get darker. Due the inability of the

rods to perform chromatic vision, differentiation between colors gets impos-

sible. Because the rods compact the perceived wavelengths and blue is at the

shorter wave-length end of the visible spectrum, there happens to be also a

shifting to the blue spectrum, called blue shift.

Alternating lighting conditions and resulting changes in contrast force

our eyes to somehow adapt to the new circumstances. Temporal luminance

adaption is the mechanism used when our eyes adjust from one light situa-

tion to another one, which is noticeable lighter/darker.

The listed effects are the most notable. If tone mapping, especially real-

time tone mapping is conducted without applying visual effects, the result is

perceived as somehow incomplete.

2.5 Visual Attention

It is well known, that the human visual system does not process complex

scenes at once. It does not operate in an ordered fashion, from the upper-left

corner to the lower-right. The eyes scan the scene and conceive the most

salient objects first by changing the point of interest very fast and alternat-

ing between the various objects in the scene. When entering a room with

dim lighting, we will first encounter the windows, when the light conditions
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Figure 2.11: An example of glare

outside are better. Looking at a painting, our visual system first analyzes

interesting details, avoiding unimportant regions. The process of scanning

the scene for interesting regions is proceeded automatically in a bottom-up

fashion, not controlled by the individual.

The opposite of this operation is the top-down process which operates

task-oriented. The individual is looking for a dedicated object. The indi-

vidual knows, what has to be found, therefore the analysis happens on one’s

own volition. More elements of the human perception involved in the top-

down process makes it slower compared to the bottom-up procedure. Both

processes work hand in hand to guarantee, despite limited facilities of the

HVS, the fast and correct cognition of our surroundings.

The fact, that the HVS identifies important regions, while ignoring other

non-interesting ones can be used to vastly speed up pixel-based rendering

algorithms, without loosing visual perceptible quality. This means that an

observer, who studies two renderings of the same scene is not able (in reason-

able time) to differentiate between those two images. Studies conducted in

this part of visual perception accumulated into a model called saliency based

rendering, which is further explained in chapter 3.
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2.6 Motivation

With the emerge of HDR, affordable equipment will be available soon, which

allows recording HDR stills and movies without any tweaks. By now, com-

puter games, other interactive content and rendered movies make up a wide

field for applying real time tone mapping techniques.

Most of the algorithms used are global algorithms, allowing a fast pro-

cessing of data. For preserving small details, local operators are essential.

It is therefore crucial to optimize local operators to be real-time-applicable.

Often this means a trade-off in terms of quality.

In this thesis we want to present several optimizations in terms of speed

for an existing local tone mapping operator, without noticeable degradation

of quality and relative low memory consumption.



Chapter 3

Related Work

The secret to creativity is knowing
how to hide your sources

Albert Einstein

Tone mapping is one of the newer topics of computer graphics. Neverthe-

less, a lot of algorithms had been invented in the last 20 years. We list here

some representatives, describing their function in short. Since this work is

not concerned with comparing different tone-mapping operators but acceler-

ating them, we only describe two publications we used as a basis in detail,

one local tone mapping operator and one concerned with visual effects.

3.1 Tone Mapping

3.1.1 LCIS

The Low Curvature Image Simplifier (LCIS) by Tumblin et al. [TT99] tries

to imitate the process of painting. An artist draws from coarse to fine, de-

tailing the picture in every iteration. This method allows very fine control

of local contrast and preservation of details by different kinds of shading

and gradients. LCIS tries to mimic this process in reverse. By iteratively

removing details from the image, the algorithm selects regions which can be

further compressed. Smoothing is done with edge preserving convolution to

find regions and their boundaries. At the end only the coarse features are

21



CHAPTER 3. RELATED WORK 22

compressed, infusing back the details afterwards. Its attempt to strongly

preserve details leads to an over-emphasizing of edges and introduces grain

into smooth regions. The need for adjusting 8 parameters and expensiveness

in terms of computational power is another problem and makes this algo-

rithm impractical for day to day use.

Fattal et al. [LW02] presented another gradient-based approach to solve

the tone mapping problem. Their algorithm tries to preserve the perceived

local intensity ratios. First the algorithm computes the log(LUM) and its

gradients. The gradient is then attenuated by a function φ. The attenuation

function is computed based upon a Gaussian pyramid, created from the gra-

dients in a top down fashion. To avoid artifacts due to the multi-resolution

edge detection scheme, they found out that it is important to not attenuate

each gradient at the resolution it was found, but to propagate it down to

the base level. This allows a fast implementation, which can be used in a

versatile way. The authors propose to use their algorithm also for ldr images

- enhancing contrast in darker regions.

An example for frequency domain-based is the publication of 2002 [DD02]

by Durand et al. They propose the usage of an edge preserving filtering

technique, based on Gaussian filtering. Basically their algorithm compresses

HDR images by blurring noisy textures without blurring strong contrasts (i.e.

preserves edges). They use piecewise bilateral filtering in Fourier Domain,

which greatly speeds up computation.

3.1.2 Photographic Tone Reproduction for Digital Im-

ages

The photographic tone reproduction operator by Erik Reinhard et al. is

based on the zone system by Ansel Adams [Adaed]. It is spatial operator.

The input RGB is converted to log(LUM). Then the local adaption value is

computed, based upon subsequent differences of a Gaussian pyramid. This

procedure simulates the process of automatic “dodging and burning“. Every
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pixel examined is part of some region, including itself and its neighborhood.

On the one hand, we want to enlarge the region as much as possible, while

on the other hand we don’t want to loose details through smoothing. By

enlarging the filter kernel (size s) and subsequent filter kernel (size s+1) and

comparing these two, it is possible to find the right scale (adaption value)

for every pixel, without loosing details or producing artifacts. Because of

simplicity, robustness and speed, it is one of the most popular tone mapping

algorithm today.

3.2 Ashikhmin’s Tone Mapping Algorithm

Our implementation is based on M. Ashikhmin’s paper “Tone Mapping Algo-

rithm for High Contrast Images“ [Ash02]. It operates on the HDR luminance.

First it computes the luminance extrema (Lmin and Lmax). Then it creates

a Gaussian pyramid of the input LUM, from level s = [1..20].

lc =
|Ls − L2s|

Ls

(3.1)

Afterward, the so called “neighborhood growing procedure“ tries to find

the right size of the adaption region around every pixel. This is compara-

ble to Reinhard’s automatic “dodging and burning“ technique. Instead of

comparing two successive levels against each other, Ashikhmin’s algorithm

compares level s with level 2s, iterating from s = 1 up to s = 10. In every

iteration, the local contrast (lc) is computed for each pixel by 3.1. Ls and

L2s represent the luminance of the pixel at the respective level s.

As long as lc stays under a certain threshold (between 0.0 and 1.0, default

at 0.5), we iterate further, setting the adaption value of the current pixel to

la = ls. Once Ls gets over the threshold or we reach the maximum of

iterations, we fix Ls of the last iteration to be the luminance adaption value

(la) for that pixel and go on to the next pixel.
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C(L)=



























L/0.0014 ifL<0.0034

2.4483+log(L/0.0034)/0.04027 if0.0034≤L<1

16.5630+(L−1)/0.4027 if1≤L<7.2444

32.0693+log(L/7.2444)/0.0556 otherwise

(3.2)

TM(L) =
C(L) − C(Lmin)

C(Lmax) − C(Lmin)
(3.3)

The resulting map, which holds the luminance adaption values for the

whole image is called LUMa, which is then tonemapped with eq.3.3 which

uses the TVI function. The TVI (threshold vs. intensity) function, which is

taken from [FPSG] and depicted in 3.1, simulates the response of the human

visual system to luminance values against a certain background. Since the

function is too complex to be integrated analytically, it is approximated by

four line segments, see eq. 3.2.

The tone-mapped LUMa is called display luminance map (LUMd). This

is then recombined with the HDR RGB and LUMa by eq.3.4 to retrieve the

final tone-mapped rgb image.

rgb = RGB ∗
LUMd

LUMa

(3.4)

3.3 Real-Time Tone Mapping

3.3.1 Goodnight’s interactive Tone Mapper

Goodnight et al. [GWWH03] demonstrated a GPU accelerated version of

Reinhard’s operator. They use a modified pixel layout - one pixel (RGBA-

format) holds four adjacent luminance values (i.e. packed structure), which

loads four luminance values with one texture read. An additional variable is

then loaded with the filter values and a dot product computes the filtered

value. For a 1D filter with size=11 (radius=5), this means that it needs

⌈11/4⌉ = 3 passes and accumulation of the values to retrieve the final filtered

value. For separable 2D filter with size n× n it needs n/2 + 2 render passes.

Additionally to the two frame-buffers used for the Gaussian blur, their

implementation uses 2 additional buffers for adaption zone computation (one
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Figure 3.1: The TVI function from [Ash02]

for read and one for write) - the gauss buffers and the zone buffers are used

in an alternating fashion (ping-pong)3.2, see section 4 for an explanation on

ping-pong rendering. The process works as described in alg.3.3.1.

Algorithm 2 Implementation of Reinhard’s algorithm by Goodnight et al.

for s=1..N do

Compute level si+2 of the Gaussian pyramid

Set zone buffer as render target

Bind levels si+1 and si+2 of Gaussian pyramid as well as the other zone

buffer

Render with the zone fragment shader to the zone buffer

end for

They implemented a simple temporal luminance adaption to avoid large

discontinuities when panning over an image or during an animation.

dm

dt
=

m∗ − m

τ
(3.5)

Due the high number of texture reads, the implementation of Goodnight

et al. is only suitable for small sizes of input data.
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Figure 3.2: Gaussian convolution (left) and accumulation of adaption zones

(right) to the zone buffer in the implementation by Goodnight et al. [GWWH03]

3.3.2 Real Time Effects by Krawczyk et al.

Krawczyk et al. [KMS05] also took Reinhard’s algorithm as basis. They also

presented a real-time implementation. Instead of using the packed luminance

structure of Goodnight, they did not modify the pixel layout. They also

separated the Gaussian filter (2 × 1D). They use a real Gaussian pyramid

(therefore each level is a down-sampled version of the previous one) and

therefore perform faster than the previous one. They also include more visual

effects simulation:

• Glare

• Photopic and scotopic vision

• Loss of acuity

• Blue shift

They propose to use the Gaussian image pyramid based on the input

luminance to simulate these effects. The most prominent effect, glare, (bloom

around a highlighted region) is caused by strong light, which is scattered

in the eye. This effect appears only in highlighted regions, i.e. it is not

reproduced by a tone-mapped image. Because the lack of such blooming

produces an unnatural look, it has to be simulated. They also implemented

simulation of loss of acuity and scotopic vision.
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3.4 Visual Attention

Itti et al present a concept [IKN98], which concentrates solely on the bottom-

up process, i.e. non-volitional part, of the visual attention model. They cre-

ate a so called saliency map, which consists of several feature maps extracted

from the scene. These feature maps can be divided into three groups: inten-

sity, colors and orientations. Gaussian pyramids are built from the intensity

and the colors, while Gabor pyramid are built to form the orientations map.

This maps are then, after the center-surround differences stage and normal-

ization combined to the saliency map. The saliency map then represents the

important parts of the scene.

As explained in 2, visual attention is used by primates to identify impor-

tant objects. We now explain the process for computing the saliency map.3.3

in a short form.

First the intensity map is computed with I = (r + g + b)/3, with which

then a Gaussian pyramid with 9 levels is created3.3. The red, green and blue

channels of the input image are then normalized by I, but only at locations,

where I > 1/10 of its maximum. Locations, having I <= 1/10 set r,g, and b

to zero, because color perception is not given at such low luminance levels.

Then four broadly tuned color channels are generated: R = r− (g + b)/2,

G = g − (r + b)/2, B = b − (r + g)/2 and Y = (r + g)/2− |r − g|/2− b (for

yellow), negative values are set to zero. A set of six intensity maps is created,

I(c,s), with c ∈ {2, 3, 4} and s = c + δ, δ ∈ {3, 4}, as I(c, s) = |I(c) ⊖ I(s)|.

A pair of opponent-color pyramids is computed by RG(c, s) = |(R(c) −

G(c)) ⊖ (G(s) − R(s))| and BY (c, s) = |(B(c) − Y (c)) ⊖ (Y (s) − B(s))|.

Local orientation maps are computed using the Gabor filter, as O(σ, θ), where

σ ∈ [0..8] represents the scale and θ the degree, θ ∈ {0, 45, 90, 135}. These

maps are then used for computing the orientation feature maps: O(c, s, θ) =

|O(c, θ) ⊖ O(s, θ)|. In total 42 maps are computed - 6 intensity maps, 12

color maps and 24 for orientation.

In the next step, these maps are then combined into three “conspicuity

maps“ I, O and C. The conspicuity maps are then normalized and combined

into the saliency map.

The real-time performance of the above mentioned model is limited due
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Figure 3.3: Process of saliency map creation. Taken from [IKN98]

the mass of needed computations. Several publications using saliency map-

ping already exist [LDC05], [SDL+05], [LDC06], proving the concept. The

computational cost of generating the saliency map can be reduced by down-

sampling the input image. As an example for the performance gain achieved,

we mention here the implementation using perception-aware rendering of

[LDC05]. This implementation is able to compute a global illumination scene

without a perceptable loss of details in OpenGL in just 2ms, compared to

382sec without using the saliency map process.



Chapter 4

Implementation

If you optimize everything
you will always be unhappy

Donald E. Knuth

Our approach [ARCC] is implemented using C++ and OpenGL 2.0 [SWND05]

[HB03], which allows for easy use of vendor extensions and supports indirect

rendering.

The OpenGL pipeline consists merely of two big stages: the vertex and

the fragment stage. The application provides vertex input in form of vertex

arrays or display lists. This vertex data is then handled by the vertex pro-

cessor which applies transformations. Then the vertex data is converted to

raster graphics and forwarded to the fragment stage, which applies color and

texture to the pixels.

The OpenGL shading language (GLSL) [Ros04] allows to modify the GL’s

fixed function pipeline (fig. 4.1) by replacing the vertex or/and the fragment

stage with programmable shader objects. Our implementation solely op-

erates on the fragment stage. We just have one vertex shader, loading an

Figure 4.1: Simplified view of the standard OpenGL pipeline

29
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orthographic projection, which creates a (0, 0)×(1, 1) projection matrix. This

equivalence eases manipulation of pixel data. The GL TEXTURE WRAP

mode is set to GL CLAMP TO EDGE for all textures in this implementa-

tion.

Since version 2.0 it is no problem to use arbitrary sized textures by default,

which makes it possible to use any rectangular region of pixels without further

resizing (as long as it stays under the maximum size). OpenGL uses the

normalized address space, i.e. that every texture is addressed by [0, 1]×[0, 1],

independently from its size. Every pixel is referenced at its center, the origin

of textures is at the lower left corner, see fig.4.2. To get the offset for a

width × height sized image, we have to divide 1.0 by the size, having then

(1.0/width, 1.0/height). This offset is then used to address neighborhood

pixels. We will explain that concept further down below.

Normally, rendered content targets the framebuffer. Indirect rendering

allows to use so called render targets. One such a render target is the exten-

sion GL FRAMEBUFFER OBJECT (FBO). It allows a dedicated memory

area residing on the GPU to be used as alternative “framebuffer“, which

can then be used (bound) as a texture for further processing. FBOs have

more numerical formats than the default framebuffer. The default way in

which OpenGL handles numerical data is fixed point, which is clamped

to the interval [0.0,1.0]. This means, that it is not usable for HDR data,

which lies in [0.0,10000.0]. Normalizing data is not an option, since we

loose precision, see 2, therefore other techniques are needed. The solution is

to use a floating point precision pixel format, like GL RGBA16F ARB and

GL RGBA32F ARB, which represent 16 and 32 bit floating point precision.

There can be used more than one textures per FBO, this allows for iter-

ative rendering, called ping-pong in case of two textures. The FBO can then

use its own output as input for the next iteration, see alg.4.

4.1 Framework

Our system is easily attachable to existing solutions. The only input is a

floating point color texture. We have chosen the GL RGBA16F ARB as the

default format, since it has enough precision, while still being fast to pro-
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Figure 4.2: Normalized texture coordinate system in OpenGL, for a 4×4 texture.
The pixel p(3,2) is addressed by (0.875,0.625)

Algorithm 3 “Ping-pong“ rendering

Bind texture A of FBO as render target

Render scene

Unbind FBO

Swap FBO

Bind texture A of FBO as texture

Bind texture B of FBO as render target

Render scene

Unbind FBO

Swap FBO
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cess. The basis of the implementation form the Shader and the Framebuffer

Object class - as far as possible, we tried to follow OpenGL’s naming conven-

tions. Therefore having en-/disable and bind (for the Framebuffer Object)

methods. The basic public methods of the Shader class are:

• enable

• disable

• setUniform

The enable and disable methods bind/unbind the object as the current

shader to the OpenGL system. The method setUniform is polymorph and is

able to set the uniform variables of the shader. The code is loaded by the

Shader class’ constructor. The methods of the Framebuffer Object are as

follows:

• enable

• disable

• swap

• bindAsTexture

The en-/disable methods bind the framebuffer as current render target.

As mentioned before, FBOs can also be double-buffered, which means that

we need a mechanism to switch the texture we want to render to. This is

realized with swap, while bindAsTexture, as the name implies, binds the

current texture (the front texture for double buffered FBOs) to the OpenGL

system.

The actual algorithm is implemented in one class - AshikhminHW. The

class has the following main methods:

• enable
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• disable

• processImage

• bindResultTex

The en-/disable methods have a slightly different interpretation than be-

fore. They (re-) set states, which control the stage, and selects which effects

are applied. They also control enabling and disabling of early-Z optimization.

The processImage is the “main“ method, which calls the other needed (pri-

vate) methods. The result, again a texture, is then bound with bindResult-

Tex.

4.2 Overview

An overview of our implementation is shown in fig. 4.3. The diagram is

divided in three parts (from left to right): The actual flow diagram, the

used structures, and the pixel layout in the last column1. Every position of

the flow diagram represents basically one stage of the Ashikhmin algorithm.

The only memory intense data structures, our implementation uses, are one

double-buffered FBO and an image pyramid, consisting of single-buffered

FBOs.

First of all, the algorithm converts the input HDR RGB data to LUM,

filling the red, green and blue channels with the HDR luminance and setting

the alpha channel to 0. Then minimum and maximum of LUM as well as a

Gauss filtered version and a approximated LUM average are computed with

the pyramid method described in 4.4. If early-Z optimization is enabled,

we compute the edgemap of the LUM to the z-buffer. The following step is

computing the luminance adaption map La. This is done in an iterative fash-

ion, using the ping-pong principle described earlier. The first pass computes

the horizontal blur, we call Gs and G2s, followed by the second pass, which

computes the vertical blur (resulting in fully blurred Gs and G2s) including

also the lc value. The alpha channel of each pixel is used as a switch. If

lc > threshold, the alpha value is set from 0 to 1, fixing the pixel for the

1The 4 boxes of the pixel layout represent the red,green,blue and alpha channel
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Figure 4.3: Flow diagram of our implementation
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rest of iterations. After NUMITERATIONS (default is set to 10) the La

is tone-mapped and used to scale the HDR RGB image.

4.3 Accelerating Local Tone Mapping

For optimizing and therefore accelerating graphics processing it is needed

to put as much workload from the CPU to the GPU. The communication

between these two parts must be reduced to a minimum. The biggest per-

formance drop during execution of the fragment stage is caused by texture

reads.

The fact, that a lot of pixels are processed by the graphics card leads to

the need of reducing this number. There are several ways to do this. One way

is down-sampling the input image and process only this downsized version.

Another solution would be to lower the number of iterations. Both lead

to loss of quality. With the following optimizations we reduce the number

of texture reads and processed fragments without noticeable degradation in

terms of quality.

4.4 MinMax computation

The first thing we need for tone mapping is the minimum and the maximum

of the input LUM. Reading back the HDR luminance texture to CPU mem-

ory and analyzing the data would be far too slow for real-time applications.

The imaging subset of OpenGL, which implements basic image modification

tasks like convolution, is not widely available. The most practical solution

is to build up a so called image pyramid. An image pyramid is built upon

the input image, which forms level 0. Every subsequent level is then a fourth

size compared to the previous one (half width and half height). Image pyra-

mids are also widely used for filtering implementing Gaussian or Laplacian

convolution kernels. Examples can be found in [AAB+84] and [SKE06].

We compute the pyramid, by simply taking the next lower pow2 size of

the width and height of the input image, e.g. size = 400x300 (level i = 0)

we use 256x256 as our 1st(i = 1) level. We iterate over i, bisecting level i
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until we get a 1 × 1 texture, as can be seen in fig.4.4.

By bisecting the texture, we compute the min and max of 4 pixels to 1

pixel of the following level. We use the red and green channel of the texture

to store these two values, the blue channel holds a Gaussian-blurred version

and the alpha channel stores an approximated average, needed later for the

visual effects. We use a 3×3 filter kernel, fig.4.4, which would need 9 texture

reads per pixel, if done in 1 pass. Because of the separability of Gaussian

filters, it is normally implemented in a 2-pass fashion with an 1D-horizontal

and vertical filter kernel, which then needs 6 texture reads (but 2 passes).

Figure 4.6 shows the process of computing both, for a 4× 4 pixel region.

On the left side you can see the 8 circles, which represent the neighborhood

samples (linear sampled). By taking the min and max of the 4 inner sampling

points for each level of the pyramid we end up with a 1×1 sized layer, holding

the min and max in the red and green channel. The gauss value, which is

kept in the blue channel, is computed by dividing the sum of these 8 sample

points by 7, which equals A+B+C+D+E+I+H+L+M+N+O+P+5∗(F+G+J+K)
28

. The

average value is just the linear sampled value of the central 4 pixels.

The quality of the Gaussian blur is enough for the visual effects, but not

for the luminance adaption computation. Therefore it will be computed in a

separate stage, see section 4.5.

4.5 Gaussian Filter

Since Ashikhmin’s tone mapping algorithm [Ash02] and [RAM+07] needs 20

iterations to build up the luminance adaption map La, this is the most crucial

part for optimizations. Basically, there are 2 possibilities of computing the

Gaussian blurred layers: a cube or a pyramid. The cube means the same

as the aforementioned pyramid, with the difference, that it just consists of

equal sized layers. If we use the cube and 2D Gaussian filtering, we need

width∗height∗ iterations∗9 texture reads in 20 passes, which is a lot. If we

separate the filter, we end up with width∗height∗iterations∗6 texture reads

in 40 passes, which is still too much. A pyramid is a method of enormously

reducing these numbers. Thereby needing only O(2 ∗ w ∗ h) ∗ iterations ∗ 6

texture reads and 40 passes.
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Figure 4.4: Image pyramid in normalized texture space of OpenGL. Base level
size = 4 × 4 with NUMLEVELS=3
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Figure 4.5: Filter kernel for 3x3 Gaussian filtering (left), followed by the seper-

ated horizontal (center) and vertical (right) base elements
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Figure 4.6: For computing minmaxGaussAvg pyramid, we use GL LINEAR fil-
tering of OpenGL. On the left the sampling points are shown, on the right you can
see the influences for the sampled pixel

Since we want to keep quality, we take the cube approach. The next

thing to change is the number of passes. It is possible to lower this, by using

two Gaussian filters in parallel - the first one with radius s, the second one

radius 2s. In the following, we introduce an approach to iteratively compute

Gaussian blur, with s and 2s in parallel. We also prove that this is equal to

compute the filtering with a non-iterative approach.

We will now demonstrate the equality of the recursive Gaussian filter

method and the Gaussian filter with growing filter size using Pascal’s triangle

as basis for the kernels. Gaussian filters itself are separable, i.e. that it is

enough to just prove this for the one dimensional form of the filter.
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i Coefficients

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

... ...

Every line with the index i = 2 ∗ s can be taken as a Gaussian 1D filter,

with radius s ((1), (1,2,1), ...).

s i = 2 ∗ s Coefficients

0 0 1

1 2 1 2 1

2 4 1 4 6 4 1

3 6 1 6 15 20 15 6 1

... ... ...

We now want to prove that s-times execution of the recursive method

with the base element (1,2,1) on a line of pixels is equal to a filter having

index 2 ∗ s. First we compute the result by processing the pixel line twice

with the base element (1,2,1)

A′ = ? + 2A + B

B′ = A + 2B + C

C ′ = B + 2C + D

...

H ′ = G + 2H + I

I ′ = H + 2I+?

which yields the following scanline: A′B′C ′D′E ′F ′G′H ′I ′, while the sec-

ond iteration looks like this:
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A′′ = ? + 2A′ + B′

B′′ = A′ + 2B′ + C ′

C ′′ = B′ + 2C ′ + D′

...

H ′′ = G′ + 2H ′ + I ′

I ′′ = H ′ + 2I ′+?

which results in: A′′B′′C ′′D′′E ′′F ′′G′′H ′′I ′′. The ? symbolizes the ques-

tion of which value has to be taken, if the filter runs over the border of the

input image. This is solved by the GL CLAMP TO EDGE mode, which

automatically clamps the texture coordiantes to [ 1
2N

, 1 − 1
2N

]. We compute

pixel values for a sample line of pixels: ABCDEFGHI with filter of s = 2

(i.e. (1, 4, 6, 4, 1) ), resulting in

Ã = ? + 6A + 4B + C

B̃ = ? + 4A + 6B + 4C + D

C̃ = A + 4B + 6C + 4D + E

D̃ = B + 4C + 6D + 4E + F

...

Ĩ = G + 4H + 6I+?

Which results in the pixel line ÃB̃C̃D̃ẼF̃ G̃H̃Ĩ. We know that, starting

with C” we have: C ′′ = B′ + 2C ′ + D′ = (A + 2B + C) + 2 ∗ (B + 2C + D) +

(C + 2D + E) = A + 4B + 6C + 4D + E = C̃.

Because s = 1 provides the same result for both (we use (1,2,1) in both

cases), and is also valid for s = 2, we need to prove the way from s → s + 1

holds for all s. Because of the binomial coefficient, where we can construct

the coefficients for every (x + y)n by looking at Pascal’s triangle at index n,

we know that every 2∗nth element is constructible by taking the n-th power

of the base element (x + y)2:

n (x + y)2n Coefficients

0 1 1

1 (x + y)2 1 2 1

2 (x + y)4 1 4 6 4 1

... ... ...
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The iterated application of the base element (1,2,1) means nothing else

than the above, which proves the concept.

Mathematical viewed, both methods are equal, but numerical errors can lead

to very small differences. These differences are no problem for us.

4.6 Visual Attention

Because we concentrate only on one kind of feature, namely high contrast

regions, with a high amount of detail we decided to not fully use the saliency

map process. Instead we selected the edge computation process to be our

only feature extractor for selecting important regions.

Since the luminance adaption method of Ashikhmin’s algorithm is basi-

cally a multi-scale feature detection method, we just have to provide a first

estimation to identify interesting regions in a fast and reliable way.

4.6.1 Edge Map Computation

First we know, that this regions have a high amount of luminance, compared

to the rest of the image. Second, regions of interest are strong details which

we also want to preserve. Therefore we conduct a simple thresholded (default

is set to 0.1) edge detection with the Sobel operator (fig.4.6.1). The threshold

avoids single pixels, which otherwise would prevent hierarchical-Z from being

efficient4.7.3.

4.7 Selective Rendering

Selective rendering is a method to reduce the amount of computations per

pixel. It is used in algorithms, which operate in the spatial domain, often in
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Figure 4.7: Horizontal (left) and vertical (right) Sobel edge detection operator
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an iterative fashion. We call such pixels “marked“. The marking step can be

done by aforementioned edge detection, saliency map, etc. There are several

possibilites in OpenGL to implement selective rendering:

• Tiling

• Conditionals in GLSL

• Early-Z

4.7.1 Tiling

Tiling is a method of dividing the input image into several sub-images of

equal size. Based upon a tile-based marking, the computational expensive

procedure is applied on a per-tile basis. In its most basic form, the OpenGL

viewport is tiled in small equal-sized rectangles and each of this rectangles is

rendered based on its marking. Tile based rendering has two shortcomings.

Since tiles consist of many pixels, it is not very coarse method of pre-selection.

The other problem is, that as long as tile-based rendering is not supported

by the hardware, it is far too slow for real-time applications.

4.7.2 Conditionals

Conditionals in the OpenGL shading language are supported only in the

newer GPU generations. With conditionals it is able to implement a per-

pixel based selcetive rendering. The criteria is either given as an input to

the fragment input shader or it is computed on the fly. The implementation

and performance of conditionals varies over a wide range. Since we wanted

our implementation to be widely usable, we avoided the usage of conditionals

completely.

4.7.3 Early-Z Culling and Hierarchical-Z

We use the edge detection method as the only feature recognitation, which

is enough for our needs. We conducted several experiments related to the

size of the edge-map. They showed, that the edge-detection pass itself is not
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as costly that it would justify additional down- and up-sampling of the map.

Due this, we directly compute the edge-map to the depth buffer, without any

indirect rendering in between.

Early-Z and Hierarchical-Z are both technologies, developed for optimiz-

ing fragment throughput in connection with depth testing. Early-Z means

relocation of the Z-Test before the fragment stage 4.8. This means, that

the depth test can happen, before fragments are written to the depth buffer,

avoiding expensive computations on pixels, which would later be discarded

by their depth value. Therefore early-Z is not always enabled, only at the

following conditions:

• Alpha and stencil tests are disabled

• Z-Buffer is not modified in fragment stage

Only if every condition holds, early-Z is enabled. Preferably it is used

as a mask and replacement for conditionals [SI05]. Using early-Z consists of

a setup pass (alg.4) and one or more following rendering passes. Basically,

the setup process is allowed to do everything what’s needed to compute the

needed mask values into the depth buffer. Once the depth buffer is ready, one

or more render passes follow. It is not allowed to write to the depth buffer, do

alpha test nor execute stencil test functionality during these render passes,

therefore we set glDepthMask( GL FALSE ).

We apply the early-Z principle to mask out fragments which are not

perceived as important details. In our case the renderDataToDepthBuffer

method is a shader which computes an edge-map (Sobel operator) of the

input LUM. The resulting values are thresholded (defaultedgeThreshold =

1.0), which also eliminates isolated pixels. Singular pixels would make hierarchical-

Z ineffective. Hierarchical-Z (fig.4.9) means that the depth-test is not con-

ducted on a per-pixel basis, but on bigger regions. The Z-values are therefore

Figure 4.8: Simplified view of the OpenGL pipeline with early-Z enabled
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Algorithm 4 Setup pass of Early-Z in OpenGL

glClearDepth( 1.0 );

glDepthMask( GL TRUE );

glColorMask( GL FALSE, GL FALSE, GL FALSE, GL FALSE );

glClear( GL DEPTH BUFFER BIT | GL COLOR BUFFER BIT );

glLoadIdentity();

renderDataToDepthBuffer();

glColorMask( GL TRUE, GL TRUE, GL TRUE, GL TRUE );

glDepthMask( GL FALSE );

propagated and subsumed in a pixel group. This example has 4 × 4 sized

regions (which is rather small). For the lower-left rectangle (region) we know,

that there are no blocking pixels, we don’t have to examine no more pixels

contained in that region, and can go on to the next one.

4.8 Visual Effects

As mentioned in section 2.4, realtime tone mapping is not complete with-

out implementing basic visual effects. Our implementation is based upon

[KMS05], which describes the biophysical basics of these effects in detail.

Since they applied these effects to a similar local tone mapping operator

[RSSF02] it is easy adaptable to our needs. The rest of this section describes,

which effects were implemented at which stage of our TMO implementation.

4.8.1 Temporal Luminance Adaption

Simulating luminance adaption is a primary thing and can eased by interpo-

lating the actual luminance extrema. Equation 4.1 shows the version from

[KMS05]. As stated in [GWWH03] luminance adaption is more important

to look good, than to be physically correct.

We apply the adaption to Lmin and Lmax, therfore influencing the whole

scene (at the recombination). The L terms are 2d vectors, holding the min-

imum and the maximum, deltat represents the time the last frame took to

render. The τ is depending on the simulated sensors’ adaption time, see
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Figure 4.9: Depiction of hierarchical-Z

section 2.

LnewMinMax = LoldMinMax +(LMinMax −LoldMinMax) ∗ (1.0− e
−deltat

τ )L̃ (4.1)

4.8.2 Loss of Acuity

The computation of Loss of Acuity has to be done on a per-pixel basis. The

right level of convolution is selected based on the input L value of the pixel,

see fig. 4.10. This diagram is based on measurements of the HVS and taken

from [KMS05]. The selection is thereby easily implementable. We recompute

the numerical values by the e function and use them to index an array of

values.

We implement this in the luminance adaption computation stage, where

per-pixel information is available. We already have one stop criteria, lc, and

add the value of the diagram as an additional one. In each iteration we pass

the current range to be examined to the fragment shader, which computes

the adaption value. If the original L value of the pixel lies in the range, we

fix it, otherwise it will be further iterated.

The resulting luminance adaption value, which is basically the Gaussian

filter value with radius s from (s is the current iteration) is fixed then. This

allows for an easy integration of acuity in the adaption computation, with-

out any further modifications (except one additional texture read and one
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Figure 4.10: Graph showing which level of the Gaussian pyramid has to be se-
lected for simulating glare and loss of acuity. Taken from [KMS05]

computation).

4.8.3 Glare

Glare describes the effect of veiling luminance, caused by strong streaks of

light, which is scattered in the human eye. The selection of the glare-map,

which is a blurred version of the input LUM, is based on a global value.

Krawczyk proposes the relative luminance value of Reinhard’s algorithm,

which can be approximated by the log avg LUM. We approximate the avg

LUM by using the avg value in the alpha channel of the minmax pyramid, see

fig. 4.3. When the right glare-map is selected, the actual glare is computed

by

glare = LglareMap ∗ (1.0 −
0.9

0.9 + LglareMap
) (4.2)

4.9 Recombination

Basically the recombination is done as shown in [Ash02]. While the acuity

modifies the La, the glare map modifes the hdr luminance. Therefore we have

to compute the glare-map and the resulting glare after the La computation

stage in the recombination.
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Scotopic vision describes the perception under bad lighting conditions

(e.g. dark rooms). Low light means, that the HVS has to concentrate on rec-

ognizing contours instead of details. Since rods are specialized in “collecting

and using all light possible“, they are not able to extract detailed features or

color - therefore a “blue shift“ occurs, which compresses the lower end of the

visible spectrum (red) towards the upper end (blue). The model of [KMS05]

does not handle the two types of sensors separately. Instead they are com-

bined using eq.4.3, which also takes care of “greying-out“ chromaticity.



Chapter 5

Results

Computers are useless
They can only give you answers

Pablo Picasso

We present the results in two sections. A quality and a performance

related section. For the local tone mapping algorithm in both cases the

same parameters are used. We compute the results with 10 iterations with

threshold set to 0.5 and gamma of 2.4. Exceptions are the global part, which

is computed with 0 iterations. The default value for the edge threshold used

by the selective tone mapper is set to 0.1.

5.1 Quality

We compare the output of several configurations of our implementation:

• Software Local

• GPU-based Global-only

• GPU-based Local

• GPU-based Selective with saliency map input

• GPU-based Selective with edge map input

48
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Our reference software implementation also uses Pascal’s triangle as base

elements, but instead of iteratively applying the two elements (1, 2, 1) and

(1, 4, 6, 4, 1) the kernels are taken by their appropriate radius. This is done

to prove the equality of the concept.

Our GPU-based implementation is able, beside computing the edge-map

as depth mask, to also take other sources for the depth buffer input. We

comptued the saliency map with the software by [LDC06] and used it as an

input to our implementation to show the equality of the two concepts.

The numbers presented here are taken with the visible difference predictor

(vdp) [Man]. This software shows, by comparing two images, how many

pixels would be perceived as different by a human observer.

Visual effects are not applied in this part of the comparison, since they

are a real-time related topic. Comparison of quality with effects applied can

be seen in section 5.1.1.

In table 5.1, we compare the different configurations. The most interest-

ing result here is the Sel. TM vs Loc. TM which shows, that, though the

operator is fast, it still produces results of high quality. We know, that using

just the edge map computation part of the saliency process is not enough to

retreive a full saliency map, we think that the results show, that especially

in spatial based tone mapping operators it still provides good results.

HDR Image Glo vs Loc Sel vs Loc Sal vs Loc

Belgium 1.63 0.21 0.34

FogMap 0.26 0.08 0.21

Memorial 5.4 2.4 3.6

Nave 3.7 1.47 2.81

Table 5.1: Percentage of difference given for Global vs Local, Selective vs Local,

Saliency vs Local. In this case the edge threshold is set to 0.1

Table 5.2 even more justifies the observation we stated before. The edge

map approach performs better in this type of operator in terms of quality

than the saliency-based one.
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HDR Image Sel vs CPU Loc Sal vs CPU Loc

Belgium 0.22 0.35

FogMap 0.08 0.20

Memorial 2.4 3.7

Nave 1.86 3.2

Table 5.2: Percentage of difference given for Selective vs CPU Local and Saliency

vs CPULocal. In this case the threshold is 0.1

5.1.1 Visual Effects

The visual effects of loss of acuity, blue shift and glare can be applied sep-

arately. We present the result of applying all effects in fig. 5.1. The figure

shows two details of the rosette image, with visual effects applied. The first

row of both details show the result using selective tone-mapping, while the

second row shows the result using local tone-mapping.

5.2 Real-Time Performance

All real-time experiments were conducted on an AMD Athlon XP 2500+

equipped with 1.83GHz and 1GB of main memory under MS Windows XP.

The graphics card used was a nVidia GeForce 6800 with 128MB of on-board

memory. This represents a common setup having mid-range characteristics.

The real-time performance figures in terms of frames per seconds (fps)

we achieved with our implementation are listed in table 5.3. Table 5.4 and

table 5.4 show the measurements of our implementation used as a backend

for a simple cube-mapped teapot scene.

The stills reflect the possible use case of an HDR image editing applica-

tion, with a low number of modifications on the whole image per time. Since

the figures can be optimized by the GPU through caching, the teapot scene

proves that the concept is usable.

As you can see for the stills, we gain a performance boost of around

3, when comparing local-tonemapping with and without selective rendering.

You can also see, that equi-sized images like nave and rosette both perform

equal, as long as it comes to selective tone-mapping. This shows that the
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Figure 5.1: Rosette with selective (first row) and local (second row) tone mapping,

with visual effects applied seperately. The two rows show details, one taken from

a high-lighted and one from a dark region. They are (from left to right): tone

mapped only, loss of acuity including blue shift applied, the effect of glare
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performance rises noticeable when reducing the number of pixels being pro-

cessed.

HDR Image Size Global Local Selective Selective
Local

16RPP 900x900 63 12 44 3.76

Aeroporto 1024x705 71 13 40 3.08

Belgium 1025x769 66 13 30 2.31

Desk 644x874 95 18 31 1.7

Fogmap 751x1130 63 12 37 3.08

Lamp 400x300 395 78 248 3.18

Memorial 512x768 136 25 82 3.28

Nave 720x480 147 29 94 3.24

Rosette 720x480 147 29 78 2.69

Stillife 1240x846 49 10 26 2.6

Table 5.3: Frames per second, applying our GPU-based implementation to stills

The viewport sizes we used for the teapot scene are standard screen res-

olutions. As you can see in table 5.4, the ratio in the last column shows

an increase, which means nothing else, then the computation with selective

tone-mapping is more resident to higher resolutions.

Size TM disabled Global Local Selective Selective
Local

320x240 369 226 83 141 1.70

640x480 269 111 28 78 2.79

800x600 239 80 19 55 2.89

1024x768 206 55 12 37 3.08

Table 5.4: Realtime performance of applying our operator using selective render-

ing to a simple cube-mapped teapot scene

Table 5.5 subsumes results of different edge detection thresholds. The

lower the edge detection threshold, the less pixels are discarded during the

iterative process. The results show, that it is not needed to raise the edge

threshold for better performance. We found out, that 0.1 is a good value to

go.
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Size 0.1 0.2 0.5 1.0 5.0 10.0 20.0

320x240 141 145 145 145 146 146 146

640x480 76 79 82 82 84 85 85

800x600 54 58 59 59 60 60 60

1024x768 37 38 40 40 40 40 40

Table 5.5: Realtime performance of applying our operator using selective render-

ing with varying edge threshold to a simple cube-mapped teapot scene with varying

edge-threshold

Showing results is nothing without showing interesting images. Following

is a small gallery presenting results of our implementation.



CHAPTER 5. RESULTS 54

Figure 5.2: Images generated with selective tone mapper
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Figure 5.3: Images generated with selective tone mapper
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Figure 5.4: Images generated with selective tone mapper (left) and visual effects

applied additionally (right). The last row shows a shot from our real-time demo,

used to do the measurements from above
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Summary

In three words
I can sum up everything

I’ve learned about life
It goes on

Robert Frost

In this thesis we presented optimizations for an existing local tone map-

ping operator. We shortly described the fundamental concepts our work is

based on: the human visual system, and its strategies of perceiving its sur-

roundings. We explained the basic concepts of high dynamic range imaging,

the acquisition of HDR data, as well as the tone mapping process. We then

concentrated on the problem of tone-mapping, also in connection with real-

time applications. The introduction was closed by a short discussion of visual

attention in relation to optimizing throughput of the rendering process.

Based on related publications we tried to devise a model of the saliency-map

process, which is also usable under real-time conditions. We chose to only use

the edge detection stage as the process to build up a map, which represents

the important regions.

We combined this alongside other optimizations into a C++ framework,

based on OpenGL 2.0 with fragment shaders. This framework is easily at-

tachable to existing rendering engines, which provide HDR output in the form

of a floating point texture. This texture is then used as input to our frame-

work. The implementation is fully controllable by enabling and disabling

57
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states. It uses the combined Gauss convolution and the early-Z optimization

to accelerate the pixel throughput of the luminance adaption computation.

We also implemented the visual effects like temporal luminance adaption,

glare, scotopic vision and loss of acuity.

The results we generated show that it is possible to gain real-time perfor-

mance, while still preserving quality of the unmodified local operator.

6.1 Drawbacks

Our model roots only on saliency based mapping. We only use edge detection

as a feature extraction process. Though the procedure produces good results

in terms of quality and execution speed, it is not clear, if we miss regions

which would be otherwise judged as salient by the observer.

6.2 Conclusion

By using perceptual based rendering, we proved that it is possible to accel-

erate local tone mapping operators, without any noticeable loss of detail and

quality. Most of the optimizations we applied are also applicable to other

spatial oriented tone mapping algorithms. We present a well-performing

implementation of an existing broadly usable tone mapping operator, by

combining passes and reducing the number of texture reads to a minimum.

Comparing the ratios of selective vs. local the figures prove the good scala-

bility to changing viewport sizes.

6.3 Future Work

Our model can be easily extended. Maybe finding a way of directly extracting

the information for important regions from the local tone mapping algorithm

would improve the performance even more, since on the one hand we reduce

further by one pass and on the other hand have a more precise definition

which pixels should be processed with the local operator and which can

by discarded. Computing the edge-map not for every frame, but somehow
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use information from previous frames, could be an additional modification,

increasing the performance.
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Appendix A - Abbrevations

HV S Human Visual System

TM Tone Mapping

TMO Tone Mapping Operator

HDR High Dynamic Range

ldr Low Dynamic Range

RGB HDR rgb image

LUM HDR luminance image

rgb ldr rgb image

lum ldr luminance image

L HDR luminance value

l ldr luminance value

FBO FramebufferObject

Z − Buffer Depth Buffer
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