
Illustrative Rendering of Seismic Data

Daniel Patel1,2, Christopher Giertsen1, John Thurmond3, Eduard Gr̈oller4,2

Christian Michelsen Research, Bergen, Norway1

University of Bergen, Bergen, Norway2

Norsk Hydro, Bergen, Norway3

Vienna University of Technology, Austria4

Email: daniel@cmr.no, chrisgie@cmr.no
john.thurmond@hydro.com, groeller@cg.tuwien.ac.at

Abstract

In our work we present techniques for illustra-
tive rendering of interpreted seismic volume data
by adopting elements from geology book illustra-
tions. We also introduce combined visualization
techniques of interpreted and uninterpreted data for
validation, comparison and interdisciplinary com-
munication reasons. We introduce the concept of
smooth transitions between these two semantical
levels. To achieve this we present transfer func-
tions that map seismic volume attributes to 2D tex-
tures that flow according to a deformation volume
describing the buckling and discontinuities of the
layers of the seismic data.

Figure 1: Geological and rendered illustrations.
Top left: A cutout with extruding features. Top
right: Textured layers with a fault discontinuity in
the middle. Pictures are taken from Grotzinger et
al. [6]. Bottom: Illustration rendered with our tech-
niques.

1 Introduction

In geology faults and horizons are central subsur-
face structures. The earth has a layer-like structure
and horizons are defined as the surfaces that sepa-
rate one layer from another. Tension in the crust of
the earth deforms the layers over time and creates
cracks. These so called faults are more or less ver-
tical discontinuities of the layers.

Geological illustrations in text books try to con-
vey faults, horizons and other structures of the earth
by using different artistic techniques as seen in the
top of Figure 1. The illustrator draws a cubical sub-
section of the earth defining the area of interest. The
horizons and faults are represented by using tex-
tures flowing inside the layers that are discontin-
uous across faults. The textures are drawn on the
exterior side faces of the cubical subsection whose
extent we hereby refer to as the roaming box. Axis-
aligned cutouts with textures on the interior side
faces are used to show features inside the cubical
subsection. The cutouts sometimes contain extrud-
ing 3D features. Our illustrative renderings adopt
all these techniques as seen in the bottom of Fig-
ure 1.

Figure 2 presents the flow from data acquisition
to data visualization. The faults, horizons and other
subsurface structures are discovered by geoscien-
tists interpreting volumetric descriptions of the sub-
surface. These volumetric descriptions are typically
obtained in geophysical surveys by processing the
reflections of waves sent into the surface. The vol-
ume storing the reflection data is called the reflec-
tion volume. In a time consuming process the faults
and horizons are manually found from the reflec-
tion volume and stored as surfaces. Several seismic
attributes can be computed from the reflection data

VMV 2007 H. P. A. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek,J. Weickert (Editors)



such as acoustic impedance (Ai) and the ratio be-
tween the pressure and shear wave (Vp/Vs). We
will refer to these volumes as seismic attributes.

Coming up with a good visualization of inter-
preted data can be difficult, therefore we propose
to use illustrative techniques. Illustrations are be-
ing used when there are certain high level aspects
of a complex image, such as interpreted informa-
tion, that need to be communicated in a simple way.
Rendering of interpreted seismic data as illustra-
tions has several advantages. It simplifies the visu-
alization and emphasizes the elements of interest in
order to disseminate gained knowledge from the in-
terpretation process. Making a good illustration for
scientific purposes takes time. Being able to ren-
der geological illustrations is advantageous both for
quickly creating static images to illustrate geolog-
ical books and for interactive oil exploration when
interpreted survey data needs to be communicated
as part of decision making.

Interpreting seismic data is a time consuming
manual process and it is important to verify the in-
terpretation with the underlying data source. By
combining visualizations of interpreted and uninter-
preted data it is possible to perform comparisons
and look for deviations. This is another goal in
our work. We propose to visualize the interpreted
data as geological illustrations and to visualize un-
interpreted data using color coded cutting planes
and regular volume rendering. We present how to
combine these two representations. The user can
control the balance between these two visualization
styles to fit his or her needs. For interdisciplinary
communication reasons visualizations can be made
to have the right balance between interpreted data
which contains semantical information understand-
able by lay men to uninterpreted data which con-
tains the information-rich underlying data material
understandable by domain experts.

To our knowledge the concept of creating auto-
matic illustrations of seismic data has not been thor-
oughly explored before, neither in the geophysics
nor in the visualization research community. We
also believe this applies to combined rendering of
interpreted and uninterpreted seismic data.

We start with related work in Chapter 2. After an
overview in Chapter 3 we describe the calculation
of the texture flow in chapter 4. In chapter 5 we
use the calculated flow in combination with texture
transfer functions to texturize the cutting planes on

the side faces of the cubical subsection and on the
cutout. In chapter 6 we describe volume rendering
for displaying the cutout and the surroundings and
we specify how this is integrated with the rendering
of textures during ray casting. Finally future work
and conclusions are presented in chapter 7. The bot-
tom half of Figure 2 shows a high level overview of
the paper.

Figure 2: Overview of the process from data col-
lection to visualization. The paper covers the lower
three colored rectangles in chapter 4, 5 and 6.

2 Related work

We first review work dealing with illustrative tech-
niques and then review work in the field of seis-
mic visualization. Illustrative rendering is a non-
photo realistic visualization technique using the ad-
vantages of conveying information through illustra-
tions. In recent years several illustrative rendering
techniques, mainly in the domain of anatomical vi-
sualization, but none in the domain of seismic visu-
alization, have been proposed. Some of these tech-
niques deal with applying textures from reference
images.

Owada et al. [11] present an interactive system
for texturing arbitrary cuts through polygonal ob-



jects. The user defines the texture flow by spec-
ifying a flow field and a distance field on the cut
which is used in the texture synthesis to create a tex-
ture on the cut that follows the flow. Their method
is general and therefore requires user interaction to
specify the deformation and the texture. We calcu-
late a parameterization up front so texturing can be
achieved quickly and without the need for texture
synthesis. In our approach many of the parameters
defining the visualization are known prior to render-
ing, therefore less user specification is required

There are also several papers dealing with tex-
tures in medical volume rendering. Lu and Ebert [9]
generate illustrative renderings of color and scalar
3D volumes by applying textures sampled from il-
lustrations and photographs. 3D textures are created
by combining color information from the illustra-
tions with 3D volume data of a corresponding area.
Finally the 3D textures are made tileable with Wang
Cubes. With segmented volume data they apply the
corresponding 3D textures on each segment. With
unsegmented scalar data they use a transfer func-
tion to map scalar voxel values to the 3D textures
in a similar way to what we propose. They do not
deal with multi-attribute texture transfer functions
and with deforming the textures to follow the un-
derlying flow of the data as we do. In addition their
method of calculating the textures is tailored to han-
dle 3D textures whereas we use 2D textures.

Dong and Clapworthy [4] present a technique
that achieves 3D texture synthesis following the tex-
ture orientation of 3D muscle data. Their algo-
rithm has two steps. First they determine the tex-
ture orientation by looking at the gradient data of
the volume and by using a direction limited Hough
transform. Second they perform a volumetric tex-
ture synthesis based on the orientation data. In our
work, instead of considering the volume for evalu-
ating texture flow, we consider the geometric layers.
In addition the texture synthesis of Dong and Clap-
worthy has the drawback of not working on textures
with large interior variation as textures in geologic
illustrations commonly have.

Wang and Mueller [14] use 3D texture synthe-
sis to achieve sub-resolution zooming into volumet-
ric data. With 2D images of several zoom levels
of a tissue, they synthesize 3D volume textures for
each level and use constrained texture synthesis dur-
ing zooming to blend smoothly between the levels.
They address the issue of sub-resolution details but

do not consider texture flow.
In the domain of seismic processing

GeoChron [10] is a formal model for parame-
terizing the layers defined by faults and horizons.
The GeoChron model allows for several inputs
which act as constraints to the parameterization.
It considers the physical processes behind the
deformation whereas our parameterization is
fully defined by the fault and the horizon data.
We believe that for illustration purposes a less
physically accurate and computationally less
intensive algorithm requiring a minimal amount of
input and expertise such as our parameterization
is preferable. However since our visualization
algorithm is decoupled from the parameterization,
it would also accept a GeoChron parameterization.

Cutouts on seismic data and interaction in VR
was presented in the work by Ropinski et al. [13]
where they use volume rendering with two trans-
fer functions. One transfer function is used for the
volume inside a user defined box and one trans-
fer function is used for the volume outside. We
incorporate and extend this concept in our work.
Several papers on visualizing seismic data exist.
Some deal with automatic horizon extraction [2]
or fault extraction [2, 7], others deal with handling
large volumes [2, 12], but none deal with illustra-
tive rendering. Somewhat related is the disserta-
tion of Frank [5] where the GeoChron parameter-
ization [10] is used as a lookup to unfold and flat-
ten a seismic data volume. In commercial systems
seismic attribute data is presented with volume ren-
dering and geometric surfaces are used to present
horizons and faults.

3 Overview of the rendering process

Our methods render interactively the illustrative
features found in geological images. Texturing is
achieved by rendering deformed 2D textures on the
exterior side faces of the roaming box and on the
interior side faces of the cutout. For each layer the
user assigns a texture and the texture’s horizontal
and vertical repeat rate. To also represent seismic
attributes the user can assign textures and opacities
to intervals of the seismic attribute values. These
attribute textures are then blended and laid over the
layer textures. We represent extruding features in
the cutouts by volume rendering using a color trans-
fer function together with a depth based opacity



transfer function. The opacity is a function of the
layer depth and the transparency can be set to re-
strict volume rendering to certain layers or to cer-
tain depths within a layer. Also in the surrounding
area outside the cutout we perform volume render-
ing that can be restricted to certain layers or to cer-
tain depths within a layer. In the surrounding area
the voxel colors are equal to the average color of
the 2D texture used in the layer the voxel is in. This
gives a consistent coloring with the cutting plane
textures as can be seen in the bottom of Figure 2 and
the top of Figure 10. There we render opaquely the
top and bottom horizon with the average color of the
2D texture in the horizons. To visualize the unin-
terpreted seismic data we render the cutting planes
and the surrounding volume with the color trans-
fer function used for the cutout volume rendering.
The user can smoothly change between the uninter-
preted data rendering and the interpreted illustrative
textured rendering by changing the blending factor.
An overview of the texturing process can be seen
in Figure 6 while the lower part of Figure 2 shows
how the texturing fits into the 3D visualization. In
the next three chapters the details of the visualiza-
tion process described above is presented.

4 Layer parameterization

We parameterize the volume to render 2D planar
textures following the flow of the layers and to
achieve depth controlled volume rendering. Using
the coordinate system shown in Figure 3d we define
horizons as non-intersecting surfaces stacked in the
z-direction of the typez = H(x, y) and faults as
non intersecting surfaces stacked in the x-direction
of the typex = F (y, z) or in the y-direction of
the typey = F (x, z). The faults, horizons and the
side faces of the roaming box divide the volume into
subvolumes which we will refer to as slabs. Con-
versely, each of these slabs is horizontally confined
by what we will refer to as the upper and lower hori-
zon and are laterally confined by fault surfaces and
the side faces of the roaming box (see Figure 3a).

There exists no unique solution to parameterize
a volume. We have designed the parameterization
so that it represents the slabs in a flattened version
where horizons and the layer between are planar.
Figure 3d shows the parameterization coordinate
system(u, v, w) embedded in the world coordinate
system(x, y, z).

The parameterization consists of several steps.
First the upper and lower horizon of the slab is
extended by extrapolation (see dotted lines in Fig-
ure 3a). We do this extension to get a correct vol-
umetric parameterization close to the vertical slab
borders. Then the lower horizon surface is parame-
terized and the depth parameterw is calculated for
the volume, (see curves in Figure 3b). Finally the
2D parameterization of the lower horizon is pro-
jected into the volume along the gradient field of the
w parameter (blue curves in Figure 3c), resulting in
a 3D parameterized slab.

Figure 3: A 2D version of the steps needed for pa-
rameterizing a slab is shown in a-c. The world and
the parameter coordinate system is shown in d.

Let wp = {x, y, z} ∈ R3 be a point inW (orld
space), andpp = {u, v, w} ∈ R3 be the corre-
sponding point inP (arameter space). We represent
the mapping fromW to P as :

P : W → P : pp = P(wp) = {Pu(wp), Pv(wp), Pw(wp)}

Let minupper(wp) andminlower(wp) express the
Euclidean distance fromwp to the closest point on
the upper and lower horizon respectively. Thew

parameter, or layer depth, is defined as:

Pw(wp) =
minlower(wp)

minlower(wp) + minupper(wp)

minupper andminlower are found by discretizing
the upper/lower horizon into a point cloud. For
discretizing we linearly subsample the horizon grid
four times, and store the points in a kd-tree for effi-
cient searching. Note thatPw does not express the
distance to the closest surface as found by a distance
transform, but the relative distance between the up-
per and lower horizon, it maps the lower horizon to
0, the upper horizon to 1 and is linear in between. In



effect it flattens the layer and defines a local depth
measure on it. See curves in Figure 3b.

We now have aw parameterization of the slab.
The(u, v) values in the slab are found by projecting
the(u, v) values from the parameterized lower hori-
zon, which is described in 4.2. Projections into the
volume is done along the streamlines seen as blue
curves in Figure 3c which are defined by the vector
field ∇Pw. ∇Pw is calculated using central differ-
ences. For each voxel we trace along the streamline
in the opposite gradient direction toward the lower
horizon, seen as a green arrow in Figure 3c. We as-
sign to the voxel the(u, v) value of the intersected
point on the lower horizon.

Assigning(u, v) values for the voxels inside the
slab that are close to the vertical slab borders might
result in streamlines leaving the slab and entering an
area wherePw has not been calculated. See green
arrow in Figure 3c. We have extended the horizons
with the method described in 4.1 prior to thew pa-
rameterization and prior to the(u, v) parameteriza-
tion of the bottom horizon. By doing this we have
gradient data outside the slab as well as a param-
eterized surface outside the lower horizon which
makes it possible to calculate streamlines leaving
the slab. The parameterization procedure ensures
that the(u, v) parameterization is orthogonal to the
w parameterization which in turn will result in an-
gle preservation in the 2D textures. The parameteri-
zation works well for surfaces of low curvature and
without folds as seen in this application but would
require some extension for handling other types of
surfaces.

The parameterization is done on each slab and is
stored in an RGB volume consisting of the(u, v, w)
parameters. The parameters of each slab are all in
the [0, 1] range. To encode segmentation informa-
tion for each slab we scale and shift thew andu

parameter values. Each layer’sw values are scaled
and shifted such that values go from 0 at the lower
horizon in the bottom layer to 1 at the upper hori-
zon in the top layer with each layer having equally
sized intervals. Similarly, theu values are scaled
and shifted on each side of the fault. At the left side
of the fault in Figure 4 theu values are between
0 and 0.5 and on the right side they are between
0.5 and 1. The segmentation information is used
for having different textures in different layers and
possibly on different sides of faults. The parame-
terization is not meant to be geologically accurate

Figure 4: The parameterizationRGB volume.
White lines have been added on horizons. There
is a color change across the fault due to shifting and
scaling of theu parameter.

but to act as a tool for 2D texturing and depth de-
pendent volume rendering. The goal is to achieve
images with illustrative quality. The two following
sections will describe the horizon extrapolation and
the bottom horizon parameterization which was as-
sumed to be done prior to the layer parameterization
but were not explained in detail.

4.1 Horizon extrapolation

For parameterization of areas close to the vertical
slab borders we need surface information beyond
the horizon borders as described earlier. To achieve
this we carry out a simple surface extrapolation in
all directions. First we extrapolate the surface in
positive and negativex direction by considering the
surface as a collection of curves parallel to thex

axis and extending the endpoints of the curves in
tangential direction. See normals and dotted lines
in Figure 3a. We then do the same procedure on
the resulting surface in positive and negativey di-
rections. Finally we crop the horizons so that their
projections to thexy plane are rectangular and so
that sufficient data exists beyond their original bor-
ders. On our data we ended up with a heuristic ex-
tension of 20 percent of the horizon length in each
direction to correctly parameterize the areas close
to the vertical slab borders.

4.2 Surface parameterization

For the(u, v) parameterization of the lower hori-
zon surface we calculate a parameterization that lo-
cally minimizes the area distortion. Red dots on
Figure 3b show the corresponding 1D version. The
parameterization is created with the CGAL library
[1] using the discrete authalic parameterization [3].



The parameterization defines(u, v) values for each
vertex on the surface. The parameterization is con-
strained by giving initial values to the surface bor-
ders whose projection to thexy plane forms a rect-
angle due to the surface extrapolation. For the initial
values we clockwise assign the border vertices with
values (0,0) (0,1), (1,0) and (1,1) and interpolate
the values along each edge with equidistant spac-
ing. We now have a(u, v) parameterization of the
lower horizon and aw parameterization of the slab.

4.3 Interpolation problem around hori-
zons and faults

The parameterization volume is a discrete specifica-
tion of our parameterization function. With trilinear
sampling we get a smoother function which how-
ever leads to invalid interpolation in cells on slab
boundaries where the eight cell corners are in dif-
ferent slabs. We calculate new values for the invalid
corners by extrapolating from valid neighbor val-
ues. Then we perform the trilinear interpolation for
the new corner values on the GPU. The extrapola-
tion will try to assign a new value for invalid corners
by considering the corner’s two neighbors in posi-
tive x direction. If both are valid then their values
are linearly extrapolated and assigned to the corner.
If not, then the search continues in negativex direc-
tion and then similarly iny andz direction. In rare
occasions the procedure fails to extrapolate all the
invalid corner values and an erroneous interpolation
is performed. The resulting artifacts will be notice-
ably only at the slab borders and will be of the same
size as a voxel in the parameterization volume. The
procedure improves the quality of the renderings as
can be seen in Figure 5.

4.4 2D texture mapping on axis-aligned
cutting planes

Our parameterization volume now makes it possi-
ble to apply an undeformed 3D texture stored in pa-
rameter space and deform it into world space for
texturing voxels in our layers. However this would
require to first generate 3D textures which is a re-
search topic in its own as investigated by Lu and
Ebert [9]. Since we are going to texture axis-
aligned cutting planes as done in geological illustra-
tions we can reduce the problem to a 2D texturing
problem. This has several advantages. 2D tileable
textures are easy to generate, take little space, and

Figure 5: Fault and interpolation problems. In a)
linear interpolation is used. In b) extrapolation as
described in 4.3 improves the quality. In c) we
see the parameterization of the zoomed-in rectangle
with extrapolation as opposed to without in (d). In
(e) we see the parameterization with nearest neigh-
bor interpolation showing the resolution of the pa-
rameterization.

can be sampled from illustrations directly. With our
method the 2D textures maintain coherency when
moving the cutting planes and we have better con-
trol over the repetitive appearance than for 3D tex-
tures. However we need to define a transformation
from 3D parameter space(u, v, w) to 2D parameter
space(u′, v′). The mapping is straightforward. For
texturing in thexz plane we use the(u, w) values,
for texturing in theyz plane we use(v, w) and for
texturing in thexy plane we use(u, v) values. The
mapping conserves the angle preservation property
of the 3D parameterization.

5 Layer texturing

This chapter presents three transfer functions that
are being used together to texture and color cutting
planes. First we present the layer texture transfer
function, abbreviated as layer TTF. It assigns tex-
tures to each layer. Then we present the scalar tex-
ture transfer function, abbreviated as scalar TTF.
It assigns textures and opacities to regions having
seismic attribute values in certain ranges. The re-
sulting scalar TTF texture for a cutting plane is
blended according to its opacities with the layer
TTF texture using the over operator. The com-
bined results are cutting planes with deformed tex-



tures similar to the ones in geology illustrations.
Finally we present the concept of smoothly mov-
ing from illustratively rendered cutting planes to
color coded cutting planes. Here seismic attribute
values are mapped to colors using a color transfer
function, abbreviated as color TF. See Figure 6 for
an overview and Figure 7 for a texture example.
Visualizing horizon, fault, deformation and seismic

Figure 6: Overview of how textures are combined.
Layer TTF, scalar TTF and color TFs are explained
in 5.1, 5.2 and 5.3 respectively.

attribute information through textures has several
advantages. By looking at Figure 7 one sees that
textures communicate the id, orientation and com-
pression of layers on a local scale. An example is
given with the two small patches in the black circles
in Figure 7. The texture of a patch reveals its layer
id. The angles in the texture express the orientation
of the layer in that area. Compression is presented
through the vertical texture repeats in a layer. Since
the vertical texture repeats are constant throughout
the layer (there are always 16.5 bricks stacked in
the height in layer 1 in Figure 7), compression will
be high where the layer is thin and low where the
layer is thick. It is possible to see that the texture
patch in the left circle is slightly more compressed
than the texture patch in the right circle of Figure 7.
Finally, by letting both the horizontal and vertical
texture repeat rate be a function of an underlying
scalar value, scalar data can be presented in the tex-
ture as seen Figure 8. All this information is com-

municated with textures even on zoom scales where
no horizons are visible, and also when zooming be-
yond the resolution of the seismic attribute volume.
On such sub-resolution scales color transfer func-
tions yield blocky or monotonous colored results
whereas textures give aesthetically pleasing results.
One can imagine zooming past the attribute volume
resolution when inspecting overlaid high resolution
data, such as bore well core data.

Figure 7: Combination of layer TTF and scalar TTF
for the reflectance volume. The brown brick texture
shows areas of high scalar values and the violet tex-
ture shows areas of low scalar values.

5.1 Layer texture transfer function (TTF)

To texture the cutting planes we use 2DRGB tex-
tures with wrap-around and bilinear filtering. They
are taken from geological illustrations, and mapped
on the layers. We use a layer TTF that maps from
a voxel’sw parameter value to a texture id, a hori-
zontal and vertical texture repeat rate and an opacity
value: layerttf (w) = {layerId, hrep, vrep, α}.
The opacity value is only used later in the cutout
volume rendering. Sincew varies in distinct inter-
vals for each layer, each layer can have its own tex-
ture assigned. Texture variations within one layer
such as having different textures in the top and bot-
tom half of the same layer or having different tex-
tures on each side of a fault is also possible.



5.2 Scalar texture transfer function (TTF)

While the layer TTF represents the interpreted hori-
zons as textures, the scalar TTF represents uninter-
preted seismic attribute data as textures. The scalar
TTF is equal to the layer TTF except that it is the
seismic attribute values that are used as look up val-
ues. This makes it possible to control the textural
appearance for regions on the cutting plane which
have seismic attribute values in certain ranges. The
scalar TTF texture is overlaid on the layer TTF tex-
ture using the over operator. Theα value defines its
transparency in the various regions. This combined
view expresses how individual seismic attributes re-
late to layers, i.e., if intervals of an attribute are con-
fined within certain layers or change significantly
(or subtly) between layers. It also represents a uni-
fied visualization of layer data and seismic attribute
data through textures.

Typically the repeat rates of a scalar texture are
taken from the layer it is drawn on. However the
user can set multiplicative factors in the repeat val-
ues in the scalar TTF to change this. We do this by
default so textures can maintain the same repeat fac-
tors when crossing layers of different thicknesses.
For a layer twice as thick as another one the verti-
cal repeat of the thick layer’s texture will be half of
the thin layer’s. A scalar texture crossing the lay-
ers would abruptly change its repeat rates. To have
consistent repeats across layers as can be seen for
the brown brick texture in Figure 7, the user can
change in the layer TTF the vertical repeat for the
thin layer to half of what it is for the thick layer.

The selection of repeat rates for the textures is
highly dependent on the degree of zoom. When
zooming out, textures will be perceived as being
too high frequent and when zooming in they will be
perceived as being too low frequent. For this rea-
son we multiply all the repeat factors with a global
user definable repeat factor which is manually set
according to the zoom level.

5.3 Rendering uninterpreted and inter-
preted data

To inspect the uninterpreted data directly on cutting
planes we apply the color TF on the scalar values of
a seismic attribute. We also introduce the concept
of a continuous transition from illustrative render-
ing of interpreted data to rendering of uninterpreted
data. The transition is done by smoothly blending

Figure 8: Layer TTF, scalar TTF and color TF com-
bined. Instead of using different textures on inter-
vals of the scalar values we use the same texture
with four different repeat rates. It is difficult to dis-
cern the textures in a). In b) we blend in colors from
the color TF to more easily discern the textures.

from visualizing textured cutting planes to visualiz-
ing cutting planes colored by the color TF with seis-
mic attribute values. This not only gives a smooth
transition from one mode to the other but also in-
troduces an intermediate rendering mode where in-
terpreted data is superimposed on the uninterpreted
data. The balance between the two data sources can
be adjusted to get what the user perceives as an opti-
mal balance between the rendering techniques. See
Figure 10.

6 Rendering cutouts and surround-
ings

We implement volume rendering with one transfer
function for the cutout and another one for the sur-
roundings to support different rendering styles. By
doing this we can achieve rendering of extruding
features in the cutout and opaque ground rendering
in the surroundings as seen in geological illustra-
tions.

For volume rendering in the cutout we use the
color TF on seismic attribute data introduced ear-
lier. To specify transparencies in the volume ren-
dering we extend the color TF with anα channel.
By multiplying a voxel’sα value from the color TF
with theα value from the layer TTF we can adjust
the transparencies based on thew value of the sam-
ple. Now we can do volume rendering on selected
layers by manipulating theα in the layer TTF and



making layers transparent or semitransparent.
For visualizing the surroundings we do volume

rendering where each voxel is given the average
color of the 2D texture at the voxel position. The
average color is precalculated for each 2D tex-
ture. The opacity is controlled by a separate opac-
ity transfer function for the surroundings. It maps
the w parameter to opacities enabling a layer ori-
ented volume rendering of the surroundings. The
opacity can then be set for instance to render certain
horizon surfaces or layers semitransparently. When
performing smooth transitions from rendering of in-
terpreted data to rendering of uninterpreted data we
go from using the average color of the 2D texture at
the voxel position to using the voxel’s color accord-
ing to the color TF and the seismic attribute value
at that position. In the images of this article we ren-
der the top and bottom horizon opaquely to get an
opaque ground as seen in geological illustrations.

In the following paragraphs we describe how vol-
ume rendering is combined with texturing of the
cutting planes. We perform ray casting with empty
space skipping as suggested by Krüger and West-
ermann [8]. The entry and exit point of each ray
is further clipped to the roaming box. Volume ren-
dering with the transfer function for the surround-
ing is performed outside the cutout, while the trans-
fer function for the cutout is used inside the cutout.
Texturing is done at points where the parameteriza-
tion volume intersects the exterior of the roaming
box or the interior of the cutout box. See Figure 9
for a 2D depiction which acts as a reference to the
following description. Texturing is done at the entry

Figure 9: Combining volume rendering with texture
rendering. The green line depicts the entry points.
The yellow lines show where texturing is done. Red
ray segments show where the cutout transfer func-
tion is used and blue ray segments show where the
surrounding transfer function is used

point if the entry point is inside the parameter vol-
ume (green/yellow border). If not volume rendering

with the transfer function for the surrounding is per-
formed until the end point (upper blue ray) or until
the cutout is intersected. If the cutout is intersected
then volume rendering with the transfer function for
the cutout is used (red segments) until the cutout
exit point is reached. If the cutout exit point is in-
side the parameter volume texturing is performed
(yellow border). If not, ray casting with the trans-
fer function for the surrounding is performed until
the exit point. A ray is always terminated if opacity
reaches 1.

By doing volume rendering only on selected lay-
ers we can easily achieve the effect seen in geologi-
cal illustrations of extruding layers in the cutouts.
For exploration of the seismic data this is useful
when the user wants to consider only one layer at
a time. For instance the oil reserves are typically
trapped between horizons in so called reservoirs. If
the expert wants to perform volume rendering to ex-
plore such a reservoir it would be natural to con-
fine the volume rendering to the layer the reservoir
is in. See the bottom of Figure 1 for an example
of volume rendering in a cutout limited to a layer.
It shows a combined texture and volume rendering
with an extruding layer. Volume rendering is per-
formed only for layer 3 with brown color to mimic
a geological illustration. The layer discontinuity is
due to a fault. Turquoise patches on the textures
show areas with high reflection values. Figure 10
shows a smooth transition from illustrative render-
ing to seismic attribute rendering.

The texture calculation and volume rendering is
performed on the GPU in a single pass. With a
Geforce 8800 GTX graphics card and an image size
of 800×800 we achieve 5 frames per second. With-
out the extrapolation as described in 4.3 the frame
rate is doubled. The three component parameteri-
zation volume is of size128 × 128 × 128 and the
reflectance volume of size240 × 271 × 500. The
Ai volume is of size96 × 96 × 500 and covers a
smaller area than the reflectance volume. The 2D
textures are each of size64 × 64.

7 Conclusions and future work

We have presented a technique for illustrative ren-
dering of interpreted geological data. We have also
shown how to create combined visualizations of in-
terpreted and uninterpreted seismic data for valida-
tion and comparison reasons and for creating visu-



Figure 10: Blending from illustrative rendering to
uninterpreted data rendering of the Ai attribute.
Volume rendering is performed in areas with high
Ai values. On the right of the cutout one can see
how the green area having high Ai values corre-
sponds to a layer. The black areas contain no Ai
data.

alizations that can be targeted to anyone from lay-
men to domain experts. On the technical side we
have presented the concept of 2D texture transfer
functions with deformed textures.

Illustrative techniques can make it faster to eval-
uate large oil prospects. It can also improve com-
munication between different stakeholders and to-
wards media, public sector and politicians. In the
future we will look into methods making it possible
to do illustrative rendering of uninterpreted data.

References

[1] CGAL, Computational Geometry Algorithms
Library. http://www.cgal.org.

[2] L. Castanie, B. Levy, and F. Bosquet. Volume-
explorer: Roaming large volumes to couple

visualization and data processing for oil and
gas exploration.Proceedings of IEEE Visual-
ization ’05, pages 247–254, 2005.

[3] M. Desbrun, M. Meyer, and P. Alliez. Intrin-
sic parameterizations of surface meshes.Com-
puter Graphics Forum, 21:209–218, 2002.
Eurographics conference proceedings.

[4] F. Dong and G. Clapworthy. Volumetric tex-
ture synthesis for non-photorealistic volume
rendering of medical data.The Visual Com-
puter, 21(7):463–473, 2005.

[5] T. Frank. Advanced Visualisation and Mod-
eling of Tetrahedral Meshes. PhD in geo-
sciences, Institut National Polytechnique de
Lorraine, 2006.

[6] J. Grotzinger, T. H. Jordan, F. Press, and
R. Siever.Understanding Earth. W. H. Free-
man and Company, 1994.

[7] W.-K. Jeong, R. Whitaker, and M. Dobin.
Interactive 3d seismic fault detection on the
graphics hardware.Volume Graphics, pages
111–118, 2006.

[8] J. Krüger and R. Westermann. Acceleration
techniques for gpu-based volume rendering.
Proceedings of IEEE Visualization ’03, pages
38–47, 2003.

[9] A. Lu and D. S. Ebert. Example-based volume
illustrations. Proceedings of IEEE Visualiza-
tion ’05, pages 83–92, 2005.

[10] R. Moyen. Parametrisation 3d de lespace en
geologie sedimentaire: le modele geochron.
PhD in geosciences, Institut National Poly-
technique de Lorraine, 2005.

[11] S. Owada, F. Nielsen, M. Okabe, and
T. Igarashi. Volumetric illustration: designing
3d models with internal textures.SIGGRAPH
’04, pages 322–328, 2004.

[12] J. Plate, M. Tirtasana, R. Carmona, and
B. Fröhlich. Octreemizer: a hierarchical ap-
proach for interactive roaming through very
large volumes.Proceedings of VISSYM ’02,
pages 53–64, 2002.

[13] T. Ropinski, F. Steinicke, and K. H. Hinrichs.
Visual exploration of seismic volume datasets.
Journal Proceedings of WSCG ’06, 14:73–80,
2006.

[14] L. Wang and K. Mueller. Generating sub-
resolution detail in images and volumes using
constrained texture synthesis.Proceedings of
IEEE Visualization ’04, pages 75–82, 2004.


