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Abstract

This paper describes an accurate method to obtain the Tone Reproduction Curve (TRC)
of display devices without using a measurement device. It is an improvement of an existing
technique based on human observation, solving its problem of numerical instability and re-
sulting in functions in log–log scale which correspond better to the nature of display devices.
We demonstrate the effiency of our technique on different monitor technologies, comparing it
with direct measurements using a spectrophotometer.

Keywords: Colour Reproduction, Display Measurement, Human Visual System, Spatial Vision,
Generalized Gamma Function

1 Introduction

The colorimetric characterization of display devices is performed in two steps. The first step is the
definition of the Tone Reproduction Curve (TRC) which describes the relationship between the
input signal of the monitor and the luminance produced on the screen. The second step consists
in the definition of a matrix that describes the additive nature of the display device.

Several methods have been proposed to solve both steps in the recent past, and of particular
interest is how to define the TRC without the use of a spectrophotometer. These methods use
properties of human perception to achieve the final goal. This paper introduces a method to
solve the first step without the necessity of using a spectrophotometer. It is based on the work
presented in a previous paper[1], solving its problem of occasional numerical instability and unequal
weighting.

The paper is structured as follows. After reviewing related work, we introduce our topic by
explaining the principle of a human comparison based measurement system. Following human
vision aspects are investigated: the spatial vision system and contrast sensitivity. Then mathe-
matical aspects of human comparison based measurements are exoplained in detail with the frame



of their application, also with setup of single measurements with the next step and stop criterium,
respectively. The chapter about the core mathematical problem discusses 2 different methods:
one is defined in a previous paper of the authors [1], describing a smoothness problem in a linear
coordinate system. The other method transforms the problem into a log–log scale. The latter
method has to face a numerical problem of the enormously different coefficients of the minimum
problem, due to the log–log scaling. We show a two-pass method solving the numerical problem
and making the algorithm faster and more reliable at the same time. The paper closes with a
discussion of the new method and future work.

2 Related Work

Several display characterization models with different characteristics have been presented in the
past. These models can be classified into two basic categories: measuring device based and human

vision based models.
Many works have been presented for the first category[2, 3, 4, 5, 6, 7], trying to model the

real Tone Reproduction Curve (TRC) characteristic of a CRT display device. In many cases these
models are still not accurate enough to acquire the real TRC, but just an approximation of it. In
addition, even if they reach sufficient accuracy for CRT displays, this accuracy is not achieved for
LCD displays. In consequence, the users are not able to gain the high precision required for many
applications. On the other hand a model for LCD displays has been proposed[8] which introduces
a spline interpolation in order to estimate the TRC.

In any case, these models require a spectrophotometer to get the information necessary to
describe the TRC.

The models of the second category are based on interaction with the user and based on human
vision and observation. One example is used in commercial software such as Adobe GammaTM,
which comes with Adobe PhotoshopTM.

While acceptable quality can be achieved in the first category, in the second this goal has not
been achieved until now for two reasons. First, the current models are not able to estimate or
compute the real TRC, but only a simplification of the model used in the first category. Second,
the applied mathematical background in these models is typically restricted to describe a kind of
simple exponential gamma correction function. In order to solve this problem, a more accurate
characterization model of display devices based only on human observation has been presented[1].
In this paper, the human vision is used to compare a series of dithered color patches against
interactively changeable homogeneously colored display areas to obtain the TRC of display devices.

3 Principle

The main disadvantage of the characterization of a display based only on human perception, as
reported in Neumann et al.[1], is implied by its adaptation mechanism making it impossible to
define absolute values.

A human observer perceives an arbitrary periodic pattern as a homogeneous field when observed
from a sufficient distance: If the spatial frequency of the elementary pattern is above a given value,
i.e., the view angle of the elements is below a certain threshold, then it will be perceived as a
homogeneous patch, e.g., a black and white chess board of pixels looks gray.

The absolute luminance and contrast are important quantities. We can not distinguish lumi-
nance differences or contrasts of two homogeneous patches if the luminance difference is below a
given ratio of their absolute average luminance, according to the widely known and simple Weber-
Fechner law or to the more accurate color appearance models. This ratio depends on an absolute
luminance level (given in [cd/m2]) and whether photopic or scotopic vision is used [9].

In the visual comparisons used in our method, limits of spatial vision in the perception of
homogeneous regions will be used. We would like to work with the possible minimal just noticeable
luminance difference in order to ensure the highest accuracy. We therefore have to use an optimal
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Figure 1: Dither patterns for the “chess board”

balance of conflicting requirements of spatio-chromatic features of observation. In practice, it
means appropriate view distances, patterns and luminance levels. These are easily realizable for
display devices.

As mentioned above, commercial graphics software sometimes includes applets which allow to
find the gamma value of the display based on the same basic principle, so our method can be seen
as an extension of them [1].

The inaccuracies of the visual observation based approach are typically invisible for human
observers, because the image observation and the measurement observations have the same visible
thresholds. Furthermore, our method reduces the errors of individual observations. It is easy to
choose more appropriate circumstances to maximize the accuracy of our method. The observation
process can happen in a dark environment, and judgements of more observers can be used.

Measurements are to be performed for the 3 color channels separately, so that series of obser-
vations will be performed on ’dithered’ patches embedded in a homogeneous background color.
During a single measurement, the user tunes the background luminance level so that visual differ-
ences disappear between the central dithered area and the “background”, i.e., the homogeneous
surrounding area. Such a measurement step is completed when a background luminance level is
accepted. Note that the relative error of observered values will be nearly luminance independent,
except in cases of very low luminances, especially with an ambient light, when observation may
have higher relative error.

A measurement input can be defined as the triplet consisting of the pattern used in the central
area (see Fig. 1) and its bright and dark luminance levels. Practically, only a ratio between the
number of bright and dark pixels is taken into consideration. An individual measurement results
in an equivalent background luminance level. These luminance levels are identified by integer
numbers, in practice represented as bytes, as our method does not use any further information of
them either.

The “next triplet”, i.e., the “next measurement”, can be defined either depending on, or
independent of, the results of the already existing data. To complete the process, a data analysis
and optimization step computes the curve in question, which can be specified by combining certain
criteria like the minimization of the differences at each point or the overall smoothness of the
resulting curve.

The overall evaluation of the measurements as well as the definition of their series can be
controlled by different criteria such as minimizing the number of measurements, having a fixed
procedure or gaining the most exact characterization of the display possible.

4 Human Vision Aspects

4.1 Spatial Vision

Based only on human observation, our method cannot determine the absolute contrast, i.e., the
ratio of max/min output luminance levels, Lc(255)/Lc(0) [1]. We recommend a practical approach
to calibrate this singular free parameter after applying the mathematical model described below.

The practical range of the perceptual contrast of a typical monitor is 20. . . 100; for a high
quality display under special conditions, it can be also be more than 1000, while in the worst case
of common CRTs it can fall also below 10 in case of a bright environment.

Why do we speak about perceptual difference? According to the color appearance models [10]
we have to take at least the ambient luminance level into consideration for a CRT or LCD screen
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Figure 2: (a) Contrast Sensitivity Function (CSF) – (b) Visible Contrast Threshold

in commonplace environmental settings (e.g., office). Also the rough gamma correction LUT
approaches, using a simple gamma value, have to be changed for dark, dim or average adaptation
luminance levels: the real gamma value has to be divided approximately by 1.6. . . 1.7, 1.2 and 1,
respectively. Thereby we perceive linear contrast e.g. in darkness only as 60 instead of 1000.

But this perceptual aspect of visible contrast influences only the accuracy of measurement,
not the original “pre-perceptive” gamma curve itself, which is not depending on the ambient
luminance level, only on the display. We will compute objective emission values of a display for
different input signals and for the 3 basic colors. Of course, if we use an arbitrarily measured
or human vision based gamma curve to generate color images, we have to additionally take the
influence of ambient light and its effect for the gamma LUT into consideration. But this task
would already be a problem of correct color appearance or image reproduction.

The core of the comparison process is a single comparison of an area uniformly filled by a single
color against another area, the “chess board”, filled by a repeating pixel pattern. The pattern
contains only two definite colors or luminance levels (low and high), assembled according to a
simple, fixed ratio, e.g. 1/2 or some other rational number with small denominator (Figure 1). A
homogeneous area encloses the chess board, acting as background with luminance background .

To be usable, the patterns which are to be observed must appear homogeneous, otherwise the
inhomogenity disturbs our estimation of its equivalence with a homogeneous area. The spatial
vision models give us quantitative values for the required viewing distance.

The contrast sensitivity function (Figure 2a) and the appropriate visible contrast threshold

function (Figure 2b) describe the spatial behavior of our vision [11, 12, 13, 14]. This figure
corresponds to the case of the highest luminance sensitivity.

Color vision models [9] are working with the opposite color channel models, using achromatic,
red-green and yellow-blue channels following the preprocessing in the retina. The color channels
are less sensitive, that means that we do not see really sharp in particular in yellow-blue channels,
we only have a feeling of sharpness thanks to the achromatic channel and the huge number of rods
in the retina.

In order to avoid a complicated model and also to ensure the highest accuracy we selected the
curve of the highly sensitive achromatic channel for all colors.

Image detail can be measured in cycles/degree(cpd). In case of a sinusoidal luminance pattern
it is one cycle of the sine function. At a discretized approach it is a pair of a darker and a brighter
pixel. We do not see details in images with spatial resolution of more than approximately 60 cpd,
but a homogeneous field without contrast. For opponent color channels we reach this visibility at
30 . . . 40 cpd.

In our case the different “superpixel patterns” of Figure 1 represent different cpd resolutions.
The required view distance can be estimated with 5 × 5 pixels representing the largest patterns
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Figure 3: Effect of ambient illumination of 1cd/m2 and 10cd/m2 vs. dark ambient on image value.

of Figure 1. The resolution of the human eye is about 1 arcminute (60 cpd), so a pattern with
5 × 5 pixels will become invisible for distances farther than about 5m, depending on the screen’s
luminances and the pixel size. According to our experience, a distance of 3-4 m is always enough,
and for low contrast patterns even 1 m is usually sufficient. Nevertheless, the widely used 40-50 cm
distance of gamma calibration tools is not enough for large patterns.

4.2 Displays and Contrast

As mentioned above, both CRT and LCD have a maximum contrast, which is the ratio of luminance
values emitted by the highest and the lowest video signal, e.g., 255 and 0, and is finite instead of
infinite, caused by the display technology and also unwanted ambient effects.

A CRT always has unwanted electron backscattering. The reflectivity or BRDF (Bidirectional
Reflectance Distribution Function) of the surface of a display is always positive. Reflections can
be represented, e.g., by a sum of a specular and a diffuse component. The specular component is
often a visible mirror image of the ambient room.

All of these unwanted effects reduce the contrast of a display to a certain finite value. The
answer of a zero input video signal will be a positive value at each color channel. We have
not mentioned cross effects of color channels as another unwanted factor, e.g., the excitation of
phosphors by the “wrong” cathode ray.

Fig. 3 illustrates how the shape of the display response curve changes depending on ambient
luminance level.

Unwanted emissions despite zero signals at the different color channels decrease the displayable
gamut. Contrasts of color channels influenced by these unwanted emissions can be roughly esti-
mated also by visual observation. Special calibration test images can be used for this observation,
which contain equidistant gray, red, green and blue scales. Linear contrast values of the color
channels can be estimated from the distinguishable dark patches of these scales.

These contrast values can complete results of gamma functions obtained also by human obser-
vation. Although contrast estimation is less accurate than the gamma function, fortunately it is
sufficient for tone mapping, because the visual quality of displayed images match the accuracy of
measurements based on human observation.

5 Setup of measurements

5.1 Relative Measurement by Human Observation

Our method deals with isolated color channels, therefore the computation is applied only on one-
dimensional problems, independent from each other. We ignore cross effects between the r, g and b
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color channels. In fact, for CRTs the cross effect is 1-3%. In lack of other colorimetric information
we assume that the CIE xy chromaticity values are according to the sRGB recommendation, the
standard ITU-R BT.709: r = (0.64, 0.33), g = (0.30, 0.60) and b = (0.15, 0.06), and white point
D65 = (0.3127, 0.3290). As mentioned in the previous section, only visual comparisons are used
as relative inputs, so the result is also a relative function which describes the relative luminance
values of the independent channels, from 0 to 255. The relative luminance values lr, lg, lb can be
converted to absolute values Lr, Lg, Lb by

Lc(val) = Lc(0) +
Lc(255) − Lc(0)

lc(255) − lc(0)
· (lc(val) − lc(0)) (1)

where c = {r, g, b} and val = 0 . . . 255, and it is easy to see that any linear transformation of a
given series lc(val)(val = 0 . . . 255) result in the same absolute values Lc(val)(val = 0 . . . 255):

Lc(0) +
Lc(255) − Lc(0)

(a · lc(255) + b) − (a · lc(0) + b)
· ((a · lc(val) + b) − (a · lc(0) + b)) =

Lc(0) +
Lc(255) − Lc(0)

lc(255) − lc(0)
· (lc(val) − lc(0)) (2)

where the parameters a and b are the gain and the offset, respectively. Therefore we can use any
linear transformation on the series lc(val)(val = 0 . . . 255) without changing the values Lc(val)
obtained. This linear transformation can be defined, e.g., by fixing 2 different values of this series.
For the sake of simplicity we will work with lc(0) = 0 and lc(255) = 1, so Eq. (1) is simplified to

Lc(val) = Lc(0) + (Lc(255) − Lc(0)) · lc(val) (3)

The measured and computed values lc(val) are independent of the values Lc(0) and Lc(255).
While these absolute values and their ratio defining the absolute contrast range of the display
device in question can be interesting for the overall appearance, finding them is outside the scope
of our method.

Showing a dither pattern realized by luminances low and high, the observer is requested to tune
the third, homogeneous luminance level (background) until the luminance difference disappears.
Now we have 3 values (low , high, background), and a ratio of the number of the low luminance
level pixels within the pattern, ratio = Nlow

Nlow+Nhigh
. The following approximation can be written

for the absolute luminance values of channels c = {r, g, b}.

Lc(background) ≈ Lc(low) · ratio + Lc(high) · (1 − ratio) (4)

Using Eq. (1), we see

Lc(0) + Q · lc(background) ≈ (Lc(0) + Q · lc(low)) · ratio + (Lc(0) + Q · lc(high)) · (1− ratio) (5)

with Q = Lc(255) − Lc(0) by Eq. (3), and reordering

lc(background) ≈ lc(low) · ratio + lc(high) · (1 − ratio) (6)

shows the independence of the measurements from values of Lc(0) and Lc(255), and also that lc(0)
and lc(255) can be predefined arbitrarily:

lc(0) = 0 and lc(255) = 1 (7)

A single measurement results in a singular background value for the measurement input triplet
(low , high, ratio); background , low and high are bytes, and ratio is a simple rational number. The
goal is to define the function lc, that is, 256 separate values for inputs 0. . . 255. Since values of the
function lc are real numbers, when the output shall be given in the same format as its domain,
they shall be rounded to bytes finally.

We now face a practical and two mathematical problems
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1. Conditions of the measurements have to be defined.

2. Having a list of measurements and perhaps a preliminary curve defined by them, either
define the next measurement’s setup, and/or recommend to stop the process.

3. Having a list of measurements, a curve has to be derived. This curve may be an input of
the previous step as well as an output of the whole process.

The first question belongs to the setup problem, covering human vision aspects which have been
discussed in section 4, and also to the problem of parameter definition. The second question,
concerning similar problems as well as including the definition of the stop criterion, is discussed
in the next section 5.2. Then the mathematical core of the method will be presented in section 6.

5.2 Definition of the Next Measurement, and Stop Criterion

The measurement shall be accurate, while at the same time the number of measurements should be
minimized to achieve good results with low effort for the user. These requirements lead to another
optimization problem: defining the next measurement step in an optimal way, and notifying the
user when reliability has reached a certain threshold.

The main problem for generating the input for the next measurement is that the expected effect
of an additional measurement on the reliability of the function should be evaluated depending on
the behavior of the still unknown function itself. How could this function behave between the points
(colour values) where we already have some information, and how can we rely on the previous
measurements? These questions are connected to the principles of the optimization method. We
use some heuristics relying on experiments, in order to get a compromise between simplicity and
accuracy, where the observer can still overrule the recommendation to stop.

A “measurement” means a definition of a background value by the user, where the low and
high values used in the pattern are given as well as their mixing ratio, represented by the pattern.
The method restricts the set of the possible low and high points for the new measurement only
to points having taken part in some previous measurement, i.e., 0, 255 and the already defined
background points. Hereafter they are named also as support points.

The process defining the next measurement consists of three successive steps, using functions
f1, f2 and f3 balancing the process properly. The central players of the process are the Reliability

and its opposite and reciprocal, the Uncertainty. Three kinds (layers) of Reliabilities will be defined
below, differing by their meaning and argumentation, and using each other in their definitions.

1. First the reliabilities of existing support points are defined as the sum of all the Reliabilities

coming from the measurements in which these points appear (as low , high, or user defined
(“measured”) background point). Obviously, the points 0 and 255 are assigned absolute
Reliabilities (i.e., zero Uncertainty).

An individual measurement’s Uncertainty, i.e., the reciprocal of its concerning Reliability, is
equal to the error of its condition M(j) to be minimized (see Eq. 12), multiplied by the effect
of the pattern’s non-homogenity and the contrast sensitivity belonging to the luminance to
be set.

Uncsupp(j) = |M(j)|

× f1

(

nonhomogenity(pattern(j))
)

× f2

(

contrastsensitivity(luminance(j))
)

2. Then, each regular (i.e., not support) point is assigned the other kind of Reliability with its
reciprocal Uncertainty. For the sake of simplicity, this step will be divided into two substeps.
The first substep defines an effect of a support point to a regular one, resulting in a ‘relative’
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Uncertainty. Then sum of concerning Reliabilities of these Uncertainties results in Reliability

of a regular point.

Uncrel(i, j) = Uncsupp(j) + f3((i − j)2) (8)

Relreg(i) =
∑

i↔j∈M

Relrel(i, j) (9)

In Eq. (9), i ↔ j ∈ M means

• M is a (potentially sparse) subset of {0, . . . , 255}, and

• i, j ∈ {0, . . . , 255}

• j ∈ M

• i 6∈ M

• no element j′ ∈ M is between i and j,

and of course there cannot be more than two such indices j for any given i.

Relreg(i) characterizes an existing set of measurements with respect to i. Some compound
value of Uncreg(i) over all regular points, actually their maximum, characterizes the obtained
approximation at this stage of the process. When it reaches a certain threshold, the process
is suggested to be terminated, without performing the next step.

3. In case of having not stopped at the second step, the third step selects the best triplet for
the next measurement by a heuristic evaluation of all the possible triplets (low , high, ratio).
Each of these investigations consists of four substeps, vis

• definition of the background value, belonging to the triplet in question, simply by taking
the value of the approximation function, given at the moment.

• definition of a ‘tentative’ Uncertainty by the previously defined background as ’tentative’
support point, as

Uncsupptent
(background) = Uncsupp(low) + Uncsupp(high) (10)

• computing Reliability at each regular point, in the same way as in Equations (8) and (9),
taking the completed Set M into consideration.

• similar to the normal case above, the maximum value of Uncertainties results in eval-
uation of the tentative triplet in question.

Finally the best triplet is selected by using their evaluations detailed above.

The third step of the aforementioned process, i.e., definition of the next measurement setup, can
be replaced by processing a predefined series of triplets as well. This simplification makes the
process more robust, with respect to heuristic components of this step, although it can result in a
less optimized solution.

6 The Mathematical Problem

Given a list of measurements with input controlled by a predefined or automatically derived series,
we wanted to derive a corresponding function.

First of all, properties have to be defined which the function has to fulfill. A set of approxima-
tions as in Eq. (6) is obviously not enough to give a definition of the function, simply because of
the many degrees of freedom. In order to reduce them, the resulting function should fulfill certain
additional conditions, defining its general behaviour. These conditions can restrict the set of the
possible functions to a certain class and/or give additional criteria corresponding to the likely
nature of the result.
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We worked out two different approaches in this paper, both of them assume the function being
smooth or, more exactly, having a small second derivative. The first approach works in the original
coordinate system while the second one translates its axes, so the problem is defined in another
coordinate system.

6.1 Problem in Linear Coordinate System

First, we restrict the domain of the function only to the possible inputs, i.e., integers from 0 to
255. The second derivative on a domain consisting of a discrete set of points can be written in the
form of finite differences:

S(i) = f(i + 1) + f(i − 1) − 2f(i) (i = 1 . . . 254) (11)

We transform the approximations (Eq. 6) for the N measurements (j = 1 . . . N):

M(j) = f(low j) · ratioj + f(highj) · (1 − ratioj) − f(background j) (12)

Now we have two separate sets of conditions which impact the shape of the desired function:
the smoothness conditions S(i) and the measurement conditions M(j). The latter can be used
also by two different modes. One is to take them as hard constraints, i.e., M(j) = 0, the other is
to minimize them together with the other conditions.

It can be argued that there is no exact measurement, at least because setting their values
should give an exact real number, because the measurements can only be chosen from a discrete
set of numbers actually. On the other hand, the user can introduce errors by his/her estimation
as well, so in addition there can even be more or less contradictional conditions. The problem is
solved as compound minimum problem of the smoothness and measurement conditions, and their
importances are accounted for by weight factors si and mj . The optimal result would have all of
the expressions S(i) and M(j) equal to zero (i = 1 . . . 254, j = 1 . . . N), so we have to minimize
the expression

F =
254
∑

i=1

si · S(i)2 +
N

∑

j=1

mj · M(j)2, (13)

where, from Eq. (7), f(0) and f(1) are constant, and F is a 254-variable function. As a result
we get a smooth function conforming well to the measurements, as expected. All in all there are
256−2+N minimum criteria and 2 constraints despite the original 256 variables. These obviously
cannot be made zero at the same time, so the solution will be a compromise depending on the
weights si,mj and the content of M(j).

There are several efficient methods to solve the quadratic minimum problem, two of which are
mentioned here. One is solving F using a system of 254 linear equations with a sparse matrix.
The other is directly solving the minimum problem by an appropriate descent method [15].

We have chosen a conjugate gradient method, which is a modification of the steepest descent
method, and in our case is faster by order of one magnitude than the ordinary steepest descent
(gradient) method. An optimization needs 20–50 elementary steps, each of them consisting of an
evaluation of F and its derivative.

A problem not yet mentioned is the definition of the weights si and mj . Considering the
equal importance of the different smoothness conditions and the different measurement conditions
respectively, we assume all si = s and mj = m. Multiplying the whole problem by a constant we
can set s = 1, so it is enough to define m.

To define this value, let us consider the overall behaviour of the solution. Optimizing the total
smoothness leads to spline-like curves, where the magnitude of the average value of the second
derivative is 1/2552, and its overall sum is 1/255. Minimizing its distribution, we get a slowly
changing second derivative, i.e., a curve behaving locally similar to a polynomial of about 3rd
degree. A sudden jump causes an O(1) constant anomaly, so if the magnitude of m is between 1
and 1/255, we have a locally and also globally well behaving function. The method is described
in more details by Neumann et al. [1].
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6.2 Solution in log-log Coordinate System

Considering that the optimization introduced above tries to reach maximal smoothness which
leads to functions behaving locally like 3rd order polynomials, and also considering that the
display characteristics used to be approximately a power function which differs from this one,
another approach was investigated.

We transform the coordinate system, the domain as well as the range, to a log-log scale so that

log y = g(log(x/255)) where y = f(x) (14)

Linear functions of this coordinate system are corresponding to c · xp power functions in the
original system, and the minimum problem results in the possibly smoothest functions, that is,
the functions must be similar to linear functions, so this transformation looks like the appropriate
way to get power-like functions in the original coordinate system.

6.2.1 Problem Statement

Taking the new variables, the coefficients si of the smoothness conditions S(i) will change, and
also the measurement conditions M(j) shall be rewritten with exponential functions of the new
variables, since the formula is applicable to the original values. All in all another minimum problem
is to be solved by the conditions:

S(i) = si,i+1 · f(log(i + 1)) + si,i−1 · f(log(i − 1)) + si,i · f(log i) (15)

with (i = 2 . . . 254), where, from the finite difference formulas,

si,i−1 =
2

(

log i − log(i − 1)
)

·
(

log(i + 1) − log(i − 1)
)

si,i =
2

(

log(i + 1) − log i
)

·
(

log i − log(i − 1)
)

si,i+1 =
2

(

log(i + 1) − log i
)

·
(

log(i + 1) − log(i − 1)
)

S(1) has been omitted, since the variable y0 = −∞ is omitted anyway, which means that no
smoothness condition could be defined using this variable. This is neither a real problem in this
coordinate system, nor in its retransformed linear version. (Behind this little but strange point
the characteristics of the power-like functions can be found.) All in all, the problem is simpler
by one variable, which gives one more degree of freedom. This additional freedom lies behind the
phenomenon that an arbitrary power function can be defined by one measurement, as it can be
done by e.g. the simple gamma applets.

The measurement conditions change into

M(j) = exp
(

f
(

log(low j)
)

)

· ratioj

+ exp
(

f
(

log(highj)
)

)

· (1 − ratioj)

− exp
(

f
(

log(background j)
)

)

(16)

where (j = 1 . . . N).
The minimum problem (Eq. 13) can be written with the expressions above in order to obtain

the form of the directly transformed measurement conditions, but in this case we face two new
problems. One is the convexity of the measurement conditions, corresponding to Eq. (16). The
square of these expressions will not be convex, which leads to some algorithmical difficulties,
especially when considering the original dimensionality of the problem, which has 256 variables.

The other problem is much more crucial. Conditions in Eq. (15) can be weighted arbitrarily,
their weights expressing their individual importance. If different weights are used, they could
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distort the overall smoothness depending how unbalanced they are, that is, the function would
be smoother in one part and less smooth in another. In a drastic case it destroys the original
expectation, that is, the function will not behave like a power function, which was the argument
to apply the axis transformation in the first place. Unfortunately, if the weights are equal, the
magnitudes of the coefficients will be enormously different, their maximum value will be

s2,2/s254,254 =
(log 255 − log 254) · (log 254 − log 253)

(log 3 − log 2) · (log 2 − log 1)

≈
1/254.5 · 1/253.5

1/2.5 · 1/1.5

≈ 2−14

which leads to unsolvable numerical instabilities when minimizing them, especially by taking
their squares the magnitude will be squared as well (2−28). So it is obvious that the log-log
transformation with the form of the minimum problem cannot work because of numerical reasons.

6.2.2 A Two Pass Solution for the log-log Problem

There are two sets of points on the transformed independent axis, which play a special role in
our problems. S consists of all points involved in the smoothness conditions (Eq. 15). The other,
set M, is a subset of the 256-element set S. M consists of all points playing any role in the
measurement conditions (Eq. 16). Let us consider the next smoothness conditions written for the
triplets of the sparser set M.

SM(k) = sMk,j · f(log j)

+ sMk,k · f(log k)

+ sMk,l · f(log l)

(17)

where (log j, log k, log l) is a successive triplet of M, and, from the finite difference formulas,

sMk,j =
2

(log k − log j) · (log l − log j)

sMk,k =
2

(log l − log k) · (log k − log j)

sMk,l =
2

(log l − log k) · (log l − log j)

It can be seen that solving the minimum problem of the smoothness criteria (Eq. 15) over S, and
taking its values only over the subset M, this restricted solution can be taken as a good quasi-
minimum for the problem of the smoothness criteria (Eq. 17) defined directly over M. And vice
versa, solving the problem just over M and fixing its results, then solving the previous problem
by these constraints, the obtained overall solution will also be a good quasi-minimum for the
non-constrained original problem.

It can be seen as well that the situation is similar if other, new conditions are added to the
original problem. As its main example, the measurement conditions of Eq. (16) can be added
to both versions of the smoothness problem above, that is, to the original condition system of
Eq. (15), and also to its extension by Eq. (17) over M, and their solutions will approximate each
other well.

Let us suppose that the minimum problem of this extended condition system has already been
solved. Now, let values f(log j) be fixed for each log j from M, and the minimum problem be
solved again with this additional constraints. Let us recognise that the solution of this second
problem cannot differ from the non-constrained one, since this solution could be a better solution
also for the first problem, contradicting its minimality! Therefore the same solution must be
obtained for both of them.

After this recognition let us consider the series of problems:
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A – Smoothness condition (15) over S

– Measurement condition (16) over M

– no constraints

B – Smoothness condition (15) over S

– Smoothness condition (17) over M

– Measurement condition (16) over M

– no constraints

C – Smoothness condition (17) over M

– Measurement condition (16) over M

– no constraints

D – Smoothness condition (15) over S

– Smoothness condition (17) over M

– Measurement condition (16) over M

– constraints of solution C over M

E – Smoothness condition (15) over S

– constraints of solution C over M

A is the original problem, it gives an equivalent solution with B, and B gives also an equivalent
solution over M with C. D gives also an equivalent solution with C, so that they are equivalent
over M. Finally, as proven above, the solution of E is identical to the solution of D.

This implies a two pass method resulting in a well-approximating solution of the original
minimum problem.

First, problem C shall be solved, which is a minimum problem in few variables, containing
also slightly non-convex components, but its technical problems can be overcome with moderate
effort.

Second, problem E shall be solved, which includes all the numerical instabilities, but in this
form it is a pure smoothness problem. This problem is identical with defining a spline across a
finite set of given points. Independent from the number of given points, it leads to a 2-dimensional
optimum problem defining interval-wise 3rd order polynomials. These polynomials are defined by
their coefficients instead of a set of points of the domain that would promise numerical difficulties.

For the last step a reconversion shall be performed, transforming the log yi = f(log i) that is
log yi = fi values back to yi = exp fi. The obtained curve is a piecewise transition of power-like
base functions, so it coalesces the behaviour of the power function and changes one power function
to another in the smoothest way in the sense of the log-log coordinate system.

6.2.3 Discussion of the Methods

The original linear problem is a 256 variable, 256+N condition minimum problem, with N ≪ 256.
It is solved in practice by a steepest descent method, which is a stable and fast algorithm.

The behaviour of the approximation highly depends on the balance between the smoothness
conditions and measurement conditions. The solution of a compound quadratic optimum problem
has been selected in order to compensate for the possible errors of the measurements, which are
actually human perception based, but errors would come into account in any sort of measurements.
In case of absolute weights of measurements, that is, assuming their absolute accuracy, a spline
problem is implied, similar to the second pass of the two pass method. This case shows the nature
of the obtained curve better, which is an interval-wise 3rd-order polynomial in a general case
too. Interval-wise 3rd-order polynomials of a spline realize the smoothest transition between their
supporting points or, in other words, the smoothest transformation of linear segments in order to
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link them together smoothly. This character is watermarked also in a softer weighting similar to
the weights given in the linear coordinate system.

The second method using the log-log coordinate transformation also keeps the smoothness,
since the transformation of the coordinate system has been introduced just in order to conform
the preferred shapes to the displays. It is only a practical question, but just because of that, it
can result in a better practical solution.

After the coordinate transformation, a two pass separation of the algorithm has been applied in
order to overcome the numerical instabilities. In fact this method could have been applied also for
the original “lin-lin” coordinate system, and this could reveal that the solution is also a spline in
any case because of the equality of the solutions of the constrained and non-constrained problems,
as it has been proven in the previous section. However, it is clear that the quasi-equivalences of
the previous section are not strict equivalences, so this solution is not the theoretical optimum.

Nevertheless, applying this two-step process to our case we have decreased the problem of
the weights, which is addressed in both steps to the same domain M where they are naturally
commensurable. On the other hand, the second pass is also obvious, and both are fast. In addition,
one can introduce additional freedom into the spline computation, allowing the values over M not
to be exact, but the function being smoother. This leads to a similar question as it has appeared
with the lin-lin method’s weighting, but in a much simpler form and in a faster algorithm. All in
all, it means that the theoretical exactness has been sacrificed for getting a faster, simpler result
which is still extendable to a similarly flexible solution.

In addition it can be seen that the applied methods and forms are secondary compared to the
original problem, which is not exactly formalized, but a matter of decision.

7 Results

To evaluate the ability of our method to capture the real TRC curve of a monitor, we compare
it with results from direct measurements of the TRC curve using a GretagMacbeth Spectrolino
spectrophotometer. In order to demonstrate the general usability of the method, the experiments
are performed on two different monitor technologies: Cathode Ray Tube (CRT, Nokia 446Pro)
and Liquid Crystal Display (LCD, EIZO FlexScan L985EX). The Spectrolino measured 52 color
values per channel, with color values 0 to 255 increasing in equal steps of 5.

Figure 4 shows the results for the CRT Monitor in the left half, for the LCD monitor in the right
half, for all three channels. In this figure the TRCs obtained as result of the spectrophotometer
measurements are taken as reference (solid line). The TRCs obtained as result of our method
(dashed line) are practically able to reproduce the reference curve, or a close approximation. This
is valid for both monitors used in the experiments. Note the jagginess in the Spectrolino CRT
curves caused by the different colour depth setting.

8 Conclusion and Future Work

A significant improvement of our model for gamma display characterization [1] has been presented
in this paper which is able to overcome the limitations of the previous version, in particular,
solving the problems of instability and unequal weighting. This method is simplified and made
more reliable by changing the simple smoothness principle to a log-log scale based one. A trade-off
between the smoothness and observation conditions is analyzed, improving the reliability of the
method’s results.

The flexibility of the model allows it to be used in many applications without the necessity
to use a spectrophotometer. Also a fast and simple (re)characterization is possible, just using an
interactive process with the end user. The main benefit of this approach is that it is a cheap and
simple solution, either to define a relative TRC of a display or to verify a given one.

There are a couple of open possibilities in the method. On one hand its usability could be
further improved by taking information about the absolute values, that is, about the contrast
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Figure 4: Comparison of TRC acquired with the new method (thick dashed line) and Spectrolino
measurements (thin solid line)
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value and the smallest (or the largest) value of the absolute luminance, either staying with human
perception based input or using other methods.

On the other hand, it should be possible to solve the phenomenon of the cross effect between
the colour channels, and the method may be extended for a multidisplay system application.
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