
State of the Art Report on Ambient Occlusion

Martin Knecht∗

Technical University of Vienna, Austria

Abstract

Ambient occlusion is a shading method which takes light occluded
by geometry into account. Since this technique needs to integrate
over a hemisphere it was first only used in offline rendering tools.
However, the increasing resources of modern graphics hardware,
enable us to render ambient occlusion in realtime. The goal of this
report is to describe the most popular techniques with respect to
realtime rendering. First we introduce how ambient occlusion is
defined and then we will explain and categorize the presented tech-
niques.

Keywords: ambient occlusion, global illumination, real time

1 Introduction

Ambient Occlusion is a inverted form of surface exposure for in-
coming light. In the following sections we will first introduce what
surface exposure is. After that we will concentrate on the mathe-
matical definition of Ambient Occlusion.

1.1 Surface exposure

The term surface exposure is understood as an accessability fac-
tor for a given point p in a 3D world. Surface exposure plays a
very important role when simulating real world phenomena where
distribution of some particles over a given geometry is taken into
account. For example Desbenoit et al. [Desbenoit et al. 2004] used
surface exposure to alter the growth behavior of lichen.

1.2 Ambient light, Ambient Occlusion

Ambient light is a uniform light, illuminating all points on all ob-
jects with the same intensity. The positions and shapes of the ob-
jects are not taken into account and thereby giving them an un-
natural look and flattening their features. By taking the occlusion
factor at a given point p into account, it is possible to get much
better results. For instance, areas with sharp corners appear darker
than open areas and contact shadows seem plausible [Kontkanen
and Laine 2005].

Ambient Occlusion was introduced by Zhukov et al. [Zhukov et al.
1998]. It uses the inverted principal as surface exposure and is de-
fined as the percentage of light, blocked by geometry close to point
p:

∗e-mail: martin.knecht@aon.at

ao(p,n) =
1
π

∫
Ω

V (p,ω)max(n ·ω,0)dω (1)

Here n is the normal of point p and V (p,ω) is the visibility function
which returns zero if no geometry is visible in direction ω and one
otherwise. The importance of a particular direction is weighted by
the cosine between the normal n and direction ω .

∫
Ω

refers to the

integration over the entire hemisphere with respect to n.

With this method we can approximate global illumination, but with
much less computational effort. But still, for realtime applications
it is a challenge to do this calculation. So there are many different
approaches to solve this problem. Some of them do a precomputa-
tion step in where they calculate some occlusion factors and save it
for later use.

1.3 Overview

In this report we will discuss several ambient occlusion techniques.
Since there are many different approaches we made a classifica-
tion. In Section 2 we describe methods which use some kind of ob-
ject based approaches. In Section 3 we will present algorithms that
are able to directly calculate ambient occlusion for a given vertex.
Section 4 introduces a recently developed image based method and
Section 5 explains two special algorithms designed for animated
characters.

2 Object based Methods

In this section we will present two object based methods [Kontka-
nen and Laine 2005; Malmer et al. 2006]. With object based meth-
ods we mean, that ambient occlusion is calculated on the level of
objects. In both techniques there are some sort of textures attached
to the occluder objects.

Previous work was done by Mendez et al. [Mendez et al. 2003].
They introduced a method where obscurances are only re-sampled
at moving objects. However, since the calculation is based on
patches, a scene needs a high number of patches to get good con-
tact shadows. Greger et al. [Greger et al. 1998] used a grid to store
illumination values that was attached to the scene, not to the ob-
jects. Gibson et al. [Gibson et al. 2003] introduced a method where
objects could be placed interactively into a scene, casting shadows
onto the existing scene. Incident light could be arbitrary, but the
scene had to remain static. Zhou et al. [Zhou et al. 2005] precom-
putes a shadow field and a occlusion field for an object inside the
scene. At runtime these fields can be used to calculate inter object
shadowing.

2.1 Ambient Occlusion Fields

This technique introduced by Kontkanen and Laine [Kontkanen and
Laine 2005] makes use of precomputation for a given occluder and

the results are stored in two cube-maps. It is able to handle in-
ter object occlusion but deformable objects are not supported. See
Figure 1 for an example image of the algorithm.

Figure 1: A tank casts shadows on the surrounding environment.
The shadows are rendered using the method described in this paper.
The scene runs at 136 fps at a resolution of 1024768 on a Pentium
4 with ATI Radeon 9800XT graphics board.

[Kontkanen and Laine 2005]

2.1.1 Description of the algorithm

The idea behind the algorithm is, to approximate the occluder by a
spherical cap when computing the ambient occlusion on a receiver.
To calculate this quickly a preprocessing step is performed, where
the angle of the cone and the average occlusion direction is stored
as fields around the occluder. To access these fields quickly and
keep memory usage low these fields are stored as radial functions
into cube-maps (see Figure 2).

Figure 2: Illustration of the approximated spherical cap [Kontkanen
and Laine 2005].

2.1.2 Precomputation

The precomputation does three main steps. First, the size of the
spherical cap Ω(x) at a defined position x has to be calculated. Sec-
ond, the average occlusion direction Γ(x) is calculated and third, a
radial parametric representation has to be computed.

The spherical cap is calculated using a similar equation as ambient
occlusion:

Ω(x) =
∫
Θ

V (x,ω)dω (2)

If the occluder is visible over the entire sphere, Ω(x) equals 4π .
To calculate the average occlusion direction we use the following
equation:

Γ(x) = normalize(
∫
Θ

V (x,ω)ωdω) (3)

Function Γ(x) is a component wise addition of directions ω where
V (x,ω) returns one.

The third step is to compute a radial parametric representation for
the given Ω(x) and Γ(x). The representation should ideally fulfill
the constrain, that we have higher resolution near the occluder and
lower resolution when distance is large. Ω and Γ can be seen as
depending on the radius for a given ω . Ω̃(r,ω) approximates this by
taking into account that the angle ω is approximately proportional
to the inverse square root of r.

Ω̃(r,ω) =
1

a(ω)r2 +b(ω)r + c(ω)
(4)

For Γ̃(r,ω) they assume that while going further away from the oc-
cluder, the average occlusion direction will fade towards the center
of the object.

Γ̃(x) = normalize(C0(ω)− rω) (5)

C0(ω) can be seen as a characteristic point of the object. The next
step is to find values for a(ω), b(ω), c(ω) and C0(ω). Kontkanen
and Laine [Kontkanen and Laine 2005] does this by using a method
of least squares to find the minimum error for given ω and r. To
appropriately approximate ambient occlusion for receivers inside
the convex hull of a occluder, we have to store the distance from
the center of the occluder to the convex hull in r0(ω). We will
explain this situation in more detail in the Discussion Section.

Up to now, we have three scalar values a(ω), b(ω) and c(ω) plus
three scalar values for C0(ω) plus the distance between the cen-
ter and the convex hull r0(ω), which makes a total of seven scalar
values. These values can be stored in two cube-maps.

2.1.3 Runtime

At runtime the algorithm is executed as followed:

For all occluders O do

For all receiver R do

If R influenced by O then

Render R with ambient occlusion field of O with
multiplicative blending

end if

end for

end for

For every pixel of a receiving object a fragment shader is executed.
The polynomials are fetched from the two cube-maps of the oc-
cluder. Ω̃(r,ω) and Γ̃(r,ω) are calculated. To take the relation be-
tween the average occlusion direction and the surface normal into
account we use a precomputed lookup table which stores the effec-
tive occlusion values (see Figure 3).

Note that the occlusion values should decrease to zero with increas-
ing radius r. So it is possible to omit occluders which are far away
of the receiver.

Figure 3: The effective occlusion area is drawn in gray [Malmer
et al. 2006].

2.1.4 Combining Occluders

The ambient occlusion values for two occluders are given by Aa and
Ab. What we are looking for is the combined Aab occlusion value.
Modeling an analytical formula for the spherical caps makes no
sense because the caps are already approximations. So as showed
in Figure 4 there are three cases which can occur for two occluders
a and b. In the first case one occluder completely occludes the
other one. The overall occlusion Aab would be max(Aa,Ab). When
the occluders do not overlap Aab would be simply Aa + Ab. These
two cases can be seen as the extremals, so we can put it into an
inequation:

max(Aa,Ab) ≤ Aab ≤ Aa +Ab (6)

Figure 4: This illustration shows three different cases that can oc-
cur. Left: Object a is completely occluded by object b. Middle:
The occluder do not overlap at all. Right: The occluder overlap
only partially [Kontkanen and Laine 2005].

Furthermore Kontkanen and Laine [Kontkanen and Laine 2005]
showed that, when shooting rays from a receivers surface with a co-
sine probability distribution function, the probability of a hit equals
ambient occlusion. So we can assume Ai as probability of a hit on
object Oi. And Aab can be seen as the probability on hitting both
occluders Oa and Ob. By assuming that Aa and Ab are uncorrelated
we can combine the probabilities to:

1−Aab = (1−Aa)(1−Ab) (7)

So statistically the best guesss is to simply use multiplicative blend-
ing with 1−Ai.

2.1.5 Discussion

1. As mentioned above ambient occlusion calculation for re-
ceivers, which lie inside the convex hull, has to be handled
in a different way. A radial ray from the center of an occluder
can hit the surface multiple times. This fact would lead to dis-
continuities in Ω̃ and Γ̃. So Kontkanen and Laine [Kontkanen
and Laine 2005] assume that this case will seldom come true.
However, if it happens, they modeled a formula which fades

ambient occlusion to a predefined occlusion term A0 with re-
spect to the distance of the convex hull, shown in equations 8
& 9.

t = (r/r0(ω))p (8)
A(ω,r) = tA(ω,r0(ω))+(1− t)A0 (9)

Here r0 is the radial distance from the center to the convex
hull stored in one of the cube maps. Parameter p defines how
fast A fades towards A0.

2. In some cases it can happen that the resulting ambient occlu-
sion term has high frequency detail. To omit these artifacts a
simple lowpass process is applied. This is done by rendering
a high resolution cube-map and then downsampling it with an
appropriate filter kernel.

3. Kontkanen and Laine [Kontkanen and Laine 2005] showed,
that with even extremely low cube-map resolution such as 8x8
pixel, convincing results can be achieved. They point out that
it is important to do interpolation on the borders because hard-
ware does not support it for cube-maps.

2.2 Fast Precomputed Ambient Occlusion for Prox-
imity Shadows

As Ambient Occlusion Fields, this technique developed by Malmer
et al. [Malmer et al. 2006], needs a precomputation step to render
ambient occlusion. It can handle inter object occlusion but is not
able of handling deformable meshes. See Figure 5 for an example
image of the algorithm.

Figure 5: Scene with cubes and spaceships, running at 135 to 175
fps on a Pentium 4, running at 2.8 GHz, with a NVidia GeForce
7800GTX, using a grid resolution of 323 [Malmer et al. 2006].

2.2.1 Description of the algorithm

Like in Ambient Occlsuion Fields a texture is attached to an oc-
cluder object. But instead of cube-maps they use a volume texture
surrounding an object. This volume texture stores the percentage of
occlusion from the object over an entire sphere in every voxel.

2.2.2 Precomputation

The precomputation step is quite easy. A volume grid is attached to
the occluder as seen in Figure 6. For every voxel the occlusion over
the entire sphere of the object is calculated. This can be done with
raytracing methods or with graphics hardware support. Each value
is stored in the according voxel in a volume texture.

Figure 6: In this illustration we see the occluder with the attached
volume grid [Malmer et al. 2006].

2.2.3 Runtime

At Runtime the algorithm is executed as followed:

Render world space position and normals of all shadow receivers
in the scene, including occluders.

For all occluders O Do

Render the back faces of the occluder’s grid (depth-testing
is disabled)

For every pixel accessed, execute fragment program

Retrieve the world space position of the pixel

Convert this world space position to voxel position in
the grid, passed as a 3D texture.

Retrieve ambient occlusion value in the grid, using lin-
ear interpolation.

Ambient occlusion values a from each occluder are blended
using multiplicative blending with 1−a.

The reason for drawing back faces instead of front faces is, that it
is unlikely that they will be culled by the far plane. It is much more
probably that drawing front faces could lead to artifacts because of
culling against the near plane.

Note that world space position and normal has to be available for
every pixel.

2.2.4 Simple shading

In each pixel, the corresponding world position is taken and trans-
formed into this 3d texture grid position. Then a simple lookup into
the occlusion map is done. Since the occlusion factor was calcu-
lated over the entire sphere but one half of the sphere is occluded
by the receiver, the ambient occlusion value is multiplied by 2. Af-
ter that it is painted using multiplicative blending with 1−a.

There are two drawbacks with this method: First, the occluder
sometimes has influences, where it should not, like doing occlu-
sion ”through” even behind a wall. Second, self occlusion is not
handled and has to be done in a second render pass.

2.2.5 Taking the occlusion direction into account

To overcome this drawbacks Malmer et al. [Malmer et al. 2006]
stores along the occlusion value a an average occlusion direction
vector d in the volume texture. This constellation can be seen as a
cone in direction d and an angle α which is directly linked to a.

Now, the effectively percentage of occlusion depends on the angle
β between the receivers normal n and average occlusion direction
d and the cone angle α respectively a. The evaluation function can
also be precomputed and stored in a lookup table Tclip(a,cosβ).
With this approach self occlusion is handled in a naturally way (see
Figure 3 for illustration).

2.2.6 Discussion

1. A very important parameter of this algorithm is the spatial ex-
tend of the volume texture. Is it too large, undersampling hap-
pens and thus loosing some variations of ambient occlusion.
Is it too small we would need too much texture memory. A
detailed method to get good results is explained in Kontkanen
and Laine [Kontkanen and Laine 2005].

2. If the spatial extend has been calculated, it can happen that
artifacts will appear at the borders of the volume texture. To
avoid these artifacts the occlusion values have to be rescaled.

3. Voxel which lie inside the occluders volume are always set to
one. However, with this assumption occlusion values at the
boundary of the occluder will often have non-correct values.
To omit these errors the values inside the occluder should be
an average of the nearest voxels having an occlusion value not
equal to one.

2.3 Comparison

Precomputation: It is obviously that in Kontkanen and
Laine [Kontkanen and Laine 2005] precomputation is more
complex than it is in Malmer et al. [Malmer et al. 2006].
While there are two cub-maps needed which store 7 scalars,
Malmer et al. [Malmer et al. 2006] needs one volume texture
with 4 scalars.

Memory: Since ambient occlusion is low frequency, even very
small texture sizes will lead to convincing results. For us-
ing two cube-maps with a size of 32x32 pixel and a 16bit
fixed-point format, a storage cost of approximately 100Kb is
needed. Where Malmer et al. [Malmer et al. 2006] uses a 323

voxel volume texture with 8bit integer format, they need 32Kb
when only storing ambient occlusion and around 128Kb when
also storing the average occlusion direction.

Runtime costs: Because of the parametrical representation the
fragment shader of Kontkanen and Laine [Kontkanen and
Laine 2005] has 47 assembly instruction plus three texture
lookups. In comparison the method of Malmer et al. [Malmer
et al. 2006] needs a fragment shader that has 16 assembler
instructions and four texture lookups.

Convex Hull: The method from Kontkanen and Laine [Kontkanen
and Laine 2005] is not really capable of rendering receiving
objects inside a convex hull of an occluder, although they per-
form an additional computation to avoid artifacts. Through
using a volume texture and tweaking the values inside of the
occluder appropriately, the method of Malmer et al. [Malmer
et al. 2006] can handle these cases naturally.

Deferred Shading: Note that both methods can be used with de-
ferred shading.

3 Vertex based Methods

With vertex based methods we mean algorithms that compute the
ambient occlusion on the level of vertices. So there are no occluder
objects at all. Most of these algorithms come with very little pre-
computation afford, doing ambient occlusion calculation just on the
fly.

Chunhui et al. [Chunhui et al. 2004] precomputes spherical radiance
transport maps to solve inter-object occlusion by pre-rasterizing
coverage masks of an occluder. At runtime, illumination compu-
tation is done per vertex. Sloan et al. [Sloan et al. 2002] introduced
precomputed radiance transfer with spherical harmonics to calcu-
late global illumination. However, only scenes with static geometry
can be rendered.

3.1 Dynamic Ambient Occlusion and Indirect Light-
ing

The presented algorithm is able to calculate ambient occlusion
nearly on the fly. The preprocessing step is very small in compari-
son to the previously presented methods. Furthermore through the
fact that nearly everything is done while rendering, it is also possi-
ble to use deformable meshes. Through the conversation to surface
elements, which is described below, we are also able to calculate
bounces of indirect light.

3.1.1 Description of the algorithm

The basic idea behind this method from Bunnell [Bunnell 2005] is
to treat a geometric mesh as a bunch of surface elements. Surface
elements are oriented discs having a position, a normal and an area
size. For each vertex of the mesh, a surface element is created by
calculating the size of the polygons surrounding it, taking the po-
sition and the average normal of the surrounding polygons. So a
surface element is an approximation of the surface making it easier
to calculate illumination or shadowing against each other. Figure 7
shows the conversion from a mesh to surface element representa-
tion.

Figure 7: For every vertex a surface element is calculated [Bunnell
2005].

In order to allow animated meshes the surface elements have to be
stored in a texture map, enabling us to update them very fast. The
main part of the algorithm is just calculating the accessibility from
one surface (the emitter) element to the other (the receiver). So
the receivers luminance is defined as one minus all other surface

elements shadowing the receiver. Bunnell [Bunnell 2005] approxi-
mates the amount of shadow by an equation which depends on the
area size A of the emitter and the angles between the surface ele-
ments:

1− r cosΘE max(1,4cosΘR)√
A
π

+ r2
(10)

As shown in Figure 8 ΘE and ΘR are the angles between the corre-
sponding disc normals and the connecting line between the surface
elements.

Figure 8: For every vertex a surface element is calculated [Bunnell
2005].

3.1.2 Precomputation

Precomputation necessary for this method is rather small. As we
will show later, each surface element is applied to each other. So
we have a complexity of O(n2) which scales very bad. To work
against this circumstances we can build up a hierarchic representa-
tion of surface elements. This is done by summarize neighboring
surface elements to a single new one. When rendering we traverse
this hierarchy and if the emitter surface element is far away, we
can stop earlier in the hierarchy thus, enabling better scaling with
a complexity of O(n logn). However, when using animated meshes
these surface elements have to be recalculated. But since the change
of size of the surface elements is very sparse only the position and
normals needs to be updated.

3.1.3 Runtime

The algorithm is executed in two passes. In the first pass for a
receiving surface element the occlusion of every other surface el-
ement is summed and the result is subtracted from one. This pass
gives a first approximation on the ambient occlusion but since some
surface elements cast shadows but are themselves in a shadow other
surface elements will get too dark. See Figure 9 for illustration. So
in the second pass again the occlusion is calculated for a given re-
ceiver but this time the occlusion value for each surface element is
multiplied by its own accessability value from the first pass. With
this step any double shadowed surface is corrected. However tripled
shadowed surfaces will still be too dark. Additionally to the access-
ability values the bend normal is calculated and stored in the tex-
ture. Since all of the previously described calculations are done in a
fragment shader, we have to draw a quad with a size that correlates
with the number of vertices/surface elements in the scene.

Figure 9: Left: Occlusion calculation is correct. Middle: Occlu-
sion calculation gets too dark. Right: After the second pass, dark-
ening is reduced [Bunnell 2005].

3.1.4 Adding indirect lighting

With some modifications this algorithm can also be used for calcu-
lating bounces of indirect light. This is done by replacing the solid
angle function 10 with a disc-to-disc radiance transfer function. We
will not go into more details but as seen in Figure 10 the additional
bounce improves image quality very much.

Figure 10: Top, left to right: Scene lit with direct lighting, with
direct lighting plus one bounce of indirect lighting, and with direct
lighting plus two bounces of indirect lighting. Bottom, left to right:
Indirect lighting after one pass, after two passes (one bounce), and
after two bounces (four passes total) [Bunnell 2005].

3.2 Hemispherical Rasterization for Self-Shadowing
of Dynamic Objects

This method developed by Kautz et al. [Kautz et al. 2004] can be
used to calculate self-shadowing for dynamic objects. It utilizes
the previous work on Precomputed Radiance Transfer by Sloan et
al. [Sloan et al. 2002]. Figure 11 shows an animated model of a
hand calculated with this approach.

3.2.1 Description of the algorithm

The main idea behind this method is to use a dynamic form of ra-
diance transfer for calculating self-shadowing. Without going into
further detail, we present the main equation for radiance transfer:

Lout(p,v) = Lin ·V ∗(p,v) (11)

where Lout(p,v) is the outgoing radiance at point p in direction v.
Lin represents the incoming light. V ∗(p,v) is called the transfer
vector, which specifies how much incoming radiance from a given
direction is transferred to the outgoing direction.

Normally V ∗(p,v) is precomputed to get realtime results. In this
method they calculate the transfer vector on the fly. In order to do

Figure 11: Animated hand, rendered with BRDF at 6.1 fps [Kautz
et al. 2004].

so, the hemispherical integral at point p

V ∗(p,v) =
∫
Ω

bi(ω)V (p,ω) fr(ω,v)max(0,n ·ω)dω (12)

has to be solved for each vertex. We are interested in fast compu-
tation of the term V (p,ω) which will be called the visibility mask.
Kautz et al. [Kautz et al. 2004] therefore developed the so called
visibility rasterizer.

3.2.2 Runtime

At runtime for each vertex a visibility rasterization is performed.
Working in the tangent space the visibility mask - a 1 bit regular
grid - is inside the unit hemisphere at point p. The point normal co-
incidences with the visibility mask plane normal. The presented
method is very similar to the hemicube algorithm developed by
Cohen and Greenberg [Cohen and Greenberg 1985] for calculating
form factors.

When a triangle is determined to lie above the tangent plane its
spherical projection is rasterized into the visibility mask. More
specifically, note that each edge of a triangle and the hemisphere
origin define a plane. Now, a pixel in the visible mask is inside
the projected triangle if the according point on the hemisphere is
above all three planes (see Figure 12 for illustration). Since Kautz et
al. [Kautz et al. 2004] uses a low resolution visibility mask of 32x32
pixels, a lookup table for discretized planes can be precomputed. At
runtime for every plane a mask set is obtained. By combining the
three mask sets by an AND operation the resulting visibility mask
can easily be calculated. Multiple triangles are then combined by
using the OR operation.

3.2.3 Discussion

1. Note that through the projection on the hemisphere and ras-
terization the samples are perfectly weighted by the cosine
distribution function.

2. To reduces the number of samples when calculating equa-
tion 12 Kautz et al. [Kautz et al. 2004] performs down-
sampling to a visibility mask of 4x4, obtaining an gray-scale
occlusion term.

Figure 12: Principle of spherical rasterization. (a)-(c): Each edge
of the triangle defines a plane with the origin. A lookup table stores
a visibility mask of pixels that lie above a certain plane. For every
plane a lookup is performed. (d): The final image of the spherically
projected triangle is obtained by using an AND operation on the
looked up visibility masks [Kautz et al. 2004].

3. The complexity of computation for the rasterizer is the num-
ber of vertices times the number of triangles, which scales
very bad for larger objects. To obtain better scaling the fact,
that nearer triangles support for more occlusion is exploited.
So the near surrounding triangles are normally rasterized and
for triangles which are farther away, a low-poly model is used
instead of the high resolution model. Since for every triangle
it has to be evaluated if it lies above the tangent plane a bet-
ter performance would be achieved if neighboring triangles
would be clustered.

3.3 Hardware-accelerated ambient occlusion com-
putation

This method developed by Sattler et al. [Sattler et al. 2004] does
not need any precalculation at all. It is able to handle inter object
occlusion as well as deformable meshes. For better performance
it is also possible to distribute ambient occlusion calculation over
several frames. Figure 13 shows the Stanford dragon illuminated
by an environment map.

Figure 13: Stanford dragon rendered with ambient occlusion [Sat-
tler et al. 2004].

3.3.1 Description of the algorithm

The main idea is to discretize the integration over the hemisphere
for a given point p. This discretisation is the same as if there where
k directional light sources surrounding the object evenly distributed
on a sphere. And for every vertex it is tested if a particular light
source is visible to the vertex. To perform these tests very quickly
Sattler et al. [Sattler et al. 2004] makes use of hardware occlusion
queries and depth testing.

3.3.2 Runtime

Consider that we have k light sources surrounding the entire scene.
Given a light source we render the entire scene from the light source
position. After that we render all vertices as a point set. For every
vertex an individual occlusion query is defined. So, when rendering
a vertex which lies behind another object, which is determined by
depth testing, the occlusion query will return zero otherwise one.
To speed up later computation the dot product between the vertex
normal ni and the direction of the lightsource li are stored in a ma-
trix M which is called the visibility matrix. So matrix M should
look as followed:

Mi j =
{

ni · li : vertex visible
0 : vertex invisible

The following pseudo code outlines the algorithm:

enable orthographic projection

disable frame-buffer

For all light directions j do

set camera at light direction l j

render objects into depth buffer with polygon offset

For all vertices i do

begin query i

render vertex i

end query i

end for

For all vertices i do

retrieve result from query i

if result is ’visible’ then

Mi j = ni · l j

end if

end for

end for

After the matrix Mi j has been calculated the resulting color ci for
each vertex vi can be obtained by following formula:

ci =
k

∑
j=1

Mi jIi (13)

where Ii is the RGB color of the light.

3.3.3 Discussion

1. For positioning the directional lights around the sphere Sat-
tler et al. [Sattler et al. 2004] uses subdivisions on an octahe-
dron. They start with k = 6 directional lights for subdivision
level s = 0. For subdivision level s+1 they perform midpoint
subdivision on the edges and reposition the new light sources
on the sphere. In that way they get well distributed vertices
around the sphere with the big advantage that the previously
calculated vertices can be reused.

2. Every time a object is moved or deformed the matrix M has to
be completely recalculated. Sattler et al. [Sattler et al. 2004]
developed some approaches which can still get realtime frame
rates. The first optimization uses the fact, that not all values
of matrix M have to be calculated for a given viewpoint. And
if the viewpoint changes temporal coherence can be exploited
so that only a few vertices, the ones which appear near the
borders of an object, have to be calculated.

3. Another optimization uses the possibilities of the subdivision
sphere for the light positions. Every time when an object is
moved or deformed the subdivision level is decreased and thus
calculation is faster. When nothing changes inside the scene,
the subdivision level can be increased and thus converging to
the exact solution.

4. Sattler et al. [Sattler et al. 2004] also showed that an environ-
ment map can be used to illuminate the scene. This is done by
using a Mercator projection of the image and then blurring it.
The illumination of a specific light li is given by a lookup in
the environment map.

3.4 Comparison

The previously described algorithms do most of the calculation on
the fly. Except Sattler et al. [Sattler et al. 2004], every method uses
some sort of mesh simplification like Bunnell [Bunnell 2005] and
Kautz et al. [Kautz et al. 2004] use a low poly model of a mesh.

Bunnell [Bunnell 2005] needs two render passes to get convincing
results. Kautz et al. [Kautz et al. 2004] needs one render pass to
calculate outgoing radiance, but it is also the only method which has
to do a lot of work on the cpu because of the visibility rasterization.
Sattler et al. [Sattler et al. 2004] needs for k light sources k render
passes to calculate matrix M. However once calculated, ambient
occlusion can be evaluated pretty fast.

Bunnell [Bunnell 2005] scales for a number of n vertices by
O(n logn). A similar behavior could be expected from Kautz et
al. [Kautz et al. 2004]. Scaling of Sattler et al. [Sattler et al. 2004]
mainly depends on the number of light sources used. For the num-
ber of vertices it scales by O(n).

Note that vertex based methods all suffer from the same problem.
Since only vertices are calculated, a scene needs a high triangula-
tion to get convincing results otherwise under-sampling will occur.
See Figure 14 for illustration.

4 Image Based Methods

With image based methods, we mean algorithms that are able to
calculate ambient occlusion with a viewing plane driven approach.
In this section we will present a recently introduced method to com-
pute ambient occlusion.

Figure 14: Artifacts due to a coarse mesh [Kautz et al. 2004].

4.1 Hardware Accelerated Ambient Occlusion Tech-
niques on GPUs

The algorithm developed by Shanmugam and Arikan [Shanmugam
and Arikan 2007] uses an image based approach to ambient occlu-
sion. Furthermore it differentiates between high frequency and low
frequency ambient occlusion. It can be executed completely with-
out prepcomputation and is therefore well suited for animated and
deformable objects.

4.1.1 Description of the algorithm

The main idea behind this method is to split the ambient occlusion
problem into two parts, high frequency and low frequency ambient
occlusion. In this section we will first describe how high frequency
ambient occlusion is calculated.

High frequency ambient occlusion can occur, when an object is
pretty close to another one. At the shortest distances between the
objects, the crossover between bright and dark areas can be rather
fast, therefore the term high frequency. To approximate ambient oc-
clusion given in equation 14 they use a representation with spheres
as shown in Figure 15. This assumption leads to the following equa-
tion:

AΨ(C,r,P,n) = SΩ(P,C,r)max(n ·PC,0) (14)

where SΩ is the surface area of the spherical cap of the sphere de-
fined by position C and radius r. PC is the unit vector from receiver
point P to sphere center C. n is the normal at point P.

As they show by further examples, ambient occlusion factors de-
pend mostly on occluders which are near to the receiving point.
Thus they choose an image based approach to calculate high fre-
quency ambient occlusion. A so called ND-buffer which stores the
normal and depth values for each viewing pixel is used to exploit
spacial relationships. Due to the nature of perspective projection,
points which are near to each other in a 3d world will also be on the
2d projected plane. Please note that there are some special cases
which will be described later in the Discussion section. Nearby oc-
cluders are that ones which lie inside a given r f ar. Each pixel is
approximated as a sphere 〈Qi,ri〉 depending on the pixels depth.
So when looking at nearby pixels in the ND-buffer it is possible to
approximate ambient occlusion. To do so we have to reproject r f ar
into the 3d world to get the effective size of the lookup area. In the
following equation we calculate ambient occlusion for a given pixel
p in the ND-buffer:

Figure 15: Spheres are used to approximate occluders [Sattler et al.
2004].

A(P,n) = ∑
|P−Qi|<r f ar

AΨ(Qi,ri,P,n) (15)

where P is the 3d position of the receiver pixel p. And Qi and ri
are the neighboring 3d sphere approximations for a given pixel qi
of the ND-buffer.

For the low frequency ambient occlusion Shanmugam and
Arikan [Shanmugam and Arikan 2007] uses spherical approxima-
tion methods for solid objects [Wang et al. 2006; Bradshaw and
O’Sullivan 2002]. These sphere approximation can be used as dis-
tant occluders. So when a occluder is far away of the receiver there
exists a distance d f ar where the spherical cap will fall below a cer-
tain user defined value ε . To calculate d f ar they developed the
following equation depending on the radius r of an approximated
sphere:

d f ar = r
1

sin(cos−1(1− ε

2π
))

(16)

d f ar represents the limited influence of an approximated sphere
with radius r. d f ar can now be projected onto the imageplane
(d′f ar). By rendering billboards with this size a fragment shader
is executed for every pixel which is influenced by this occluder. In
this shader the ambient occlusion term is calculated by using the
data out of the ND-buffer (P,n) and evaluate AΨ(C,r,P,n). The
result is additively blended. With this approach it is possible to ren-
der distance occluders very fast by just drawing billboards onto the
image plane.

4.1.2 Discussion

1. Previously we discussed, that near objects in 3d are also near
in perspective projected 2d. But note that this is not true the
other way around. So it does sometimes occur, that pixels are
looked up in 2d which are far away in 3d to the receiving point
p. However, this does not really impact the ambient occlusion
term since its influence is decreased by r2.

2. In equation 15 the calculation of ambient occlusion is depend-
ing on r f ar. It is possible to use different ways for the lookup
of neighboring pixels. For example we could use random
sample points or just take every pixel inside r f ar.

3. Shanmugam and Arikan [Shanmugam and Arikan 2007] also
mentioned that because of the depth test, neighboring pixels
may not be represented in the NB-buffer. To omit this prob-
lem depth-peeling, as described by Everitt [Everitt 2001], is
recommend.

4. Similar to the occlusion problem in Bunnell [Bunnell 2005]
some points can be too dark by applying several occluders.
A possible solution for some cases would be to tweak the ε

value.

4.1.3 Comparison

As we have now presented object-, vertex- and image based meth-
ods, we will show in Table 1 a comparison of their features. The
numbers at the methods correspond to the section where they were
presented:

Method type p i s d complexity
2.1 ao. fields object + + - - O(nonr)
2.2 prox. shadows object + + + - O(nonr)
3.1 surface elements vertex � + + + O(nv lognv)
3.2 rasterization vertex � - + + ≈ O(nv lognt)
3.3 lightsphere vertex - + + + O(nl)
4.1 image based image � + + + O(sxsy)

Table 1: Shows a comparison between the differen ambient occlu-
sion methods.

Legend:

p ... Shows if preprocessing is necessary. The algorithms presented
in 3.1, 3.2 and 4.1 where set to � because they all use some
kind of mesh approximation, which can be done in a precom-
putation step.

i ... ability to handle inter object occlusion

s ... ability to handle self occlusion. Note that for ambient occlu-
sion fields [Kontkanen and Laine 2005], self-occlusion inside
the convex hull is only supported by fading towards a preset
occlusion factor.

d ... support for deformable meshes

In the complexity column, no,nr stands for number of occluders and
number of receivers. nv,nt are used for vertex based methods and
are linked to the number of vertices and triangles. Complexity of
the method presented in Section 3.3, depends on the number of light
sources nl used. The image based approach described in Section 4.1
depends on the screen resolution sx,sy.

Object based approaches are a good and easy to implement way,
when using ambient occlusion with some non-deformable objects.
But both presented methods need a precomputation step. Vertex
based methods instead need only a small precomputation step, Sat-
tler et al. [Sattler et al. 2004] for instance is able to handle every-
thing on the fly, for the price of multiple render passes. An inter-
esting approach is introduced by Shanmugam and Arikan [Shan-
mugam and Arikan 2007]. They use an image based approach and
thus, the performance mainly depends on the screen resolution and
not on the complexity of the scene, like it does in vertex based meth-
ods.

5 Ambient Occlusion for Animated Char-
acters

The fourth group of ambient occlusion algorithms focus on calcu-
lating ambient occlusion for an animated character. Start position
for both algorithms, explained in this section, is a model with sev-
eral reference poses. For each pose the animation parameters and
the ambient occlusion values (for each vertex) are available.

5.1 Ambient Occlusion for Animated Characters

This method developed by Kontkanen and Aila [Kontkanen and
Aila 2006] is able to calculate ambient occlusion for animated char-
acters. To do so, a precomputation step is need.

5.1.1 Description of the algorithm

The idea of this algorithm is to do a linear mapping between the
animation parameters, such as the angle of a joint, and the ambient
occlusion factor of a given vertex.

5.1.2 Precomputation

The precomputation step is necessary to find the right coefficients
for the linear mapping. There are two types of input data: First,
the reference poses of the animated character, for example joint
angles. Second, the corresponding ambient occlusion values for
each vertex. Each reference pose is stored in a vector j containing
the animation parameters j0, j1, jN−1.

With this information we can try to find a linear mapping from the
reference pose to ambient occlusion values:

av = jT tv (17)

where tv is a per-vertex vector containing N coefficients.

Now that there are several reference poses, they all can be put into
a matrix representation, where A are the occlusion values and J the
animation parameters.

A = JT (18)

In J, all reference poses are aligned in vertical order. In A, the per-
vertex ambient occlusion for each reference pose is stored. In T the
effect of a given animation parameter is stored for all vertices in
vertical order.

Each column of T describes how the animation parameters affect
a specific vertex. So we have to solve this equation system to get
the coefficients in T . When there are more reference poses than an-
imation parameters, which is normally the case, the system is over
determined and there exists no exact solution. However Kontka-
nen and Aila [Kontkanen and Aila 2006] calculate the optima in an
MSE-sense the following way:

T = J+A (19)

where J+ refers to the pseudo-inverse described by Golub and
Loan [Golub and Loan 1996] of the animation pose matrix J. By
solving this equation, we get coefficients of T which represent the

linear mapping between animation parameters and ambient occlu-
sion values for each vertex.

5.1.3 Runtime

At runtime the only thing which has to be performed for each vertex
is the calculation of ambient occlusion for a given set of animation
parameters. Kontkanen and Aila [Kontkanen and Aila 2006] tested
it with two animated characters. One with 73 and the other with
54 scalar animation parameters. Thus the computation complexity
was roughly given by 4 times of a vertex transformation.

5.1.4 Discussion

1. There is one special case which cannot be modeled with this
approach. If an ambient occlusion value does not linearly de-
pend on any animation parameter. To handle this situation
an additional column with constant coefficients is added to J.
So this creates a new virtual animation parameter that does
not depend on any other animation parameter and though can
handle this problem.

2. Another point is, that the model assumes that the ambient oc-
clusion values linearly depend on animation parameters. Al-
though this assumption works very well for most cases there
are several in which this will not work.

3. Another assumption is, that the animation parameters are han-
dled independently by summing up the individual occlusion
values. But this does not always work. For example, if a hand
shadows the nose of a character, depends on many parame-
ters not only on the hand joint parameter. To omit this error a
higher order model would be necessary but would lead to sig-
nificantly more computational and storage cost. So this was
ignored.

5.2 Real-Time Ambient Occlusion for Dynamic
Character Skins

Kirk and Arikan [Kirk and Arikan 2007] present a method for fast
ambient occlusion rendering for dynamic characters. It reduces
runtime-computation and storage costs by doing a more complex
precomputation step.

5.2.1 Description of the algorithm

This work is closely related to Kontkanen and Aila [Kontkanen and
Aila 2006]. It also tries to find mappings between the animation pa-
rameter and the ambient occlusion values. Instead of using joint an-
gles as input parameter they use the position of handles plus an ad-
ditional point outside the handle to get a coordinate frame as shown
in Figure 16.

Since a mapping between animation parameters and ambient oc-
clusion values is not linear they developed a different calculation
method. To achieve a linear mapping they exploit the fact that am-
bient occlusion will change nearly linear when only small changes
are applied to the animation parameters.

Figure 16: Illustrates the way handles are defined [Kirk and Arikan
2007].

5.2.2 Precomputation

To get only small pose changes they clustered the animation pa-
rameters with a k-means method. So each cluster has only small
changes in poses. Furthermore PCA can be applied to the pose vec-
tor of the cluster, which improves memory usage significantly.

The next step is to calculate linear mappings of ambient occlusion
per vertex for a given cluster. This is done in a similar way to
Kontkanen and Aila [Kontkanen and Aila 2006].

To perform even better, spatial coherence is exploited. This means
that vertices which are near to each other usually have similar am-
bient occlusion terms. So like in pose space we can perform a clus-
tering over the vertices. Since the number of vertices can be pretty
high, Kirk and Arikan [Kirk and Arikan 2007] mentioned another
method than k-means. They use a greedy hierarchical clustering
technique. In more detail, all vertices are put into the same cluster.
The center of the cluster is calculated. The vertex with the largest
distance to the center becomes an own cluster. Then the vertices are
reassigned depending on the clusters centers. This process can now
be recursively applied to the two clusters until a certain criteria like
the maximum number of clusters is fulfilled.

5.2.3 Runtime

At runtime for a given pose the nearest pose cluster has to be found.
This is done by simply finding the cluster with the nearest pose cen-
ter. However, when the character is animated, several pose clusters
will be transitioned and thus leading to ambient occlusion disconti-
nuities. To omit these problem moving least squares described by
Levin [Levin 1998] and Shen et al. [Shen et al. 2004] can be used.
The ambient occlusion is then a weighted sum of the pose spaces.

5.2.4 Discussion

1. Kirk and Arikan [Kirk and Arikan 2007] used a test character
with 4130 reference poses. Storing for every vertex one float
ambient occlusion value this lead to a total memory amount of
approximately 592MB. With the clustering they only needed
about 23MB of memory which equals to a compression rate
of over 25.

2. This ambient occlusion approach does not take occlusion by
other objects into account. However, it should be possible
to combine the presented method with other global ambient
occlusion techniques.

5.2.5 Comparison

The methods described in the previous sections were pretty similar.
Both tried to find a mapping of animation parameters to ambient
occlusion values. While Kontkanen and Aila [Kontkanen and Aila
2006] use linear mapping Kirk and Arikan [Kirk and Arikan 2007]
use a more complex approach. And this is the main difference be-
tween these two techniques. While the method from Kontkanen and
Aila [Kontkanen and Aila 2006] is easier to implement and faster in
calculation it is not able to approximate nonlinear cases. Kirk and
Arikan [Kirk and Arikan 2007] on the other side need two cluster-
ing steps in precomputation. The result leads to more storage and
computational cost but is therefore able to approximate nonlinear
behavior.

6 Conclusion & Future Work

We presented a lot of algorithms, all capable of rendering ambient
occlusion at realtime frame rates. They were grouped into four dif-
ferent categories. First, algorithms which work on the object level
by attaching a texture onto an occluder. Second, vertex based algo-
rithms were presented. These algorithms have the great benefit of
being able to calculate nearly everything on the fly. Third, a recently
introduced image based method was described. Fourth, algorithms
specialized for rendering animated characters, by mapping anima-
tion parameters to ambient occlusion values, were presented.

It is remarkable that there exist a lot of very different methods to
calculate ambient occlusion in realtime. So realtime ambient oc-
clusion will still be a field of research. In future, it is to expect, that
ambient occlusion will be applicable for large scale scenes and that
additional features, like light bounces as shown by Bunnell [Bun-
nell 2005], will be added.

Realtime Ambient Occlusion will stay as a research area for years
since it is for now the only way to approximate dynamic global
illumination in realtime.

References

BRADSHAW, G., AND O’SULLIVAN, C. 2002. Sphere-tree con-
struction using dynamic medial axis approximation.

BUNNELL, M. 2005. GPU Gems 2, har/cdr (1. april 2005) ed.
Addison-Wesley Longman, 223–233.

CHUNHUI, M., SHI, J., AND WU, F. 2004. Rendering with spher-
ical radiance transport maps. Comput. Graph. Forum 23, 3, 281–
290.

COHEN, M. F., AND GREENBERG, D. P. 1985. The hemi-cube:
a radiosity solution for complex environments. In SIGGRAPH
’85: Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 31–40.

DESBENOIT, B., GALIN, E., AND AKKOUCHE, S. 2004. Sim-
ulating and modeling lichen growth. Tech. Rep. RR-LIRIS-
2004-007, LIRIS UMR 5205 CNRS/INSA de Lyon/Universit
Claude Bernard Lyon 1/Universit Lumire Lyon 2/Ecole Centrale
de Lyon, Mar.

EVERITT, C. 2001. Interactive order-independent trans-
parency. available at http://developer.nvidia.com/object/ interac-
tive order transparency.html (5th july 2007).

GIBSON, S., COOK, J., HOWARD, T., AND HUBBOLD, R. 2003.
Rapid shadow generation in real-world lighting environments.
In EGRW ’03: Proceedings of the 14th Eurographics workshop
on Rendering, Eurographics Association, Aire-la-Ville, Switzer-
land, Switzerland, 219–229.

GOLUB, G. H., AND LOAN, C. F. V. 1996. Matrix Computations,
third ed. Johns Hopkins University Press, Baltimore, MD.

GREGER, G., SHIRLEY, P., HUBBARD, P. M., AND GREENBERG,
D. P. 1998. The irradiance volume. IEEE Comput. Graph. Appl.
18, 2, 32–43.

KAUTZ, J., LEHTINEN, J., AND AILA, T. 2004. Hemispheri-
cal rasterization for self-shadowing of dynamic objects. In Pro-
ceedings of Eurographics Symposium on Rendering 2004, Euro-
graphics Association, 179–184.

KIRK, A. G., AND ARIKAN, O. 2007. Real-time ambient occlu-
sion for dynamic character skins. In I3D ’07: Proceedings of the
2007 symposium on Interactive 3D graphics and games.

KONTKANEN, J., AND AILA, T. 2006. Ambient occlusion for ani-
mated characters. In Rendering Techniques 2006 (Eurographics
Symposium on Rendering), T. A.-M. Wolfgang Heidrich, Ed.,
Eurographics.

KONTKANEN, J., AND LAINE, S. 2005. Ambient occlusion fields.
In SI3D ’05: Proceedings of the 2005 symposium on Interactive
3D graphics and games, ACM Press, New York, NY, USA, 41–
48.

LEVIN, D. 1998. The approximation power of moving least-
squares. Mathematics of Computation 67, 224, 1517–1531.

MALMER, M., MALMER, F., ASSARSON, U., AND
HOLZSCHUCH, N. 2006. Fast precomputed ambient oc-
clusion for proximity shadows. Journal of Graphics Tools.

MENDEZ, A., SBERT, M., AND CAT, J. 2003. Real-time obscu-
rances with color bleeding. In SCCG ’03: Proceedings of the
19th spring conference on Computer graphics, ACM Press, New
York, NY, USA, 171–176.

SATTLER, M., SARLETTE, R., ZACHMANN, G., AND KLEIN, R.
2004. Hardware-accelerated ambient occlusion computation. In
9th Int’l Fall Workshop VISION, MODELING, AND VISUAL-
IZATION (VMV), 119–135.

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated
ambient occlusion techniques on gpus. In I3D ’07: Proceedings
of the 2007 symposium on Interactive 3D graphics and games,
ACM Press, New York, NY, USA, 73–80.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. Inter-
polating and approximating implicit surfaces from polygon soup.
In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, ACM Press,
New York, NY, USA, 896–904.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. Graph. 21, 3,
527–536.

WANG, R., ZHOU, K., SNYDER, J., LIU, X., BAO, H., PENG,
Q., AND GUO, B. 2006. Variational sphere set approximation
for solid objects. The Visual Computer 22, 9, 612–621.

ZHOU, K., HU, Y., LIN, S., GUO, B., AND SHUM, H.-Y. 2005.
Precomputed shadow fields for dynamic scenes. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Papers, ACM Press, New York, NY,
USA, 1196–1201.

ZHUKOV, S., INOES, A., AND KRONIN, G. 1998. An ambient
light illumination model. In Rendering Techniques ’98, Springer-
Verlag Wien New York, G. Drettakis and N. Max, Eds., Euro-
graphics, 45–56.

